Transporting Functions across Ornaments

Pierre-Evariste Dagand

Conor McBride

Mathematically Structured Programming group
University of Strathclyde

{dagand,conor}@cis.strath.ac.uk

Abstract

Programming with dependent types is a blessing and a curse. It
is a blessing to be able to bake invariants into the definition of
datatypes: we can finally write correct-by-construction software.
However, this extreme accuracy is also a curse: a datatype is the
combination of a structuring medium together with a special pur-
pose logic. These domain-specific logics hamper any effort of code
reuse among similarly structured data. In this paper, we exorcise
our datatypes by adapting the notion of ornament to our universe of
inductive families. We then show how code reuse can be achieved
by ornamenting functions. Using these functional ornaments, we
capture the relationship between functions such as the addition of
natural numbers and the concatenation of lists. With this knowl-
edge, we demonstrate how the implementation of the former in-
forms the implementation of the latter: the user can ask the defi-
nition of addition to be lifted to lists and she will only be asked
the details necessary to carry on adding lists rather than numbers.
Our presentation is formalised in a type theory with a universe
of datatypes and all our constructions have been implemented as
generic programs, requiring no extension to the type theory.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords Dependent types, Datatype, Ornament

1. Introduction

Imagine designing a library for a ML-like language. For instance,
we start with natural numbers and their operations, then we move to
binary trees, then rose trees, etc. It is the garden of Eden: datatypes
are data-structures, each coming with its optimised set of opera-
tions. If, tempted by a snake, we move to a language with richer
datatypes, such as a dependently typed language, we enter the
Augean stables. Where we used to have binary trees, now we have
complete binary trees, red-black trees, AVL trees, and countless
other variants. Worse, we have to duplicate code across these tree-
like datatypes: because they are defined upon this common binarily
branching structure, a lot of computationally identical operations
will have to be duplicated for the type-checker to be satisfied.
Since the ML days, datatypes have evolved: besides provid-
ing an organising structure for computation, they are now offering
more control over what is a valid result. With richer datatypes, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’12, September 9-15, 2012, Copenhagen, Denmark.

Copyright © 2012 ACM 978-1-4503-1054-3/12/09. .. $10.00

programmer can enforce invariants on top of the data-structures.
In such a system, programmers strive to express the correctness of
programs in their types: a well typed program is correct by con-
struction, the proof of correctness being reduced to type-checking.

A simple yet powerful recipe to obtain these richer datatypes
is to index the data-structure. These datatypes have originally been
studied in the context of type theory under the name of inductive
families [Dybjer 1994; Morris et al. 2009]. Inductive families made
it to mainstream functional programming with Generalised Alge-
braic Data-Types [Xi et al. 2003], a subset of inductive families for
which type inference is decidable. Refinement types [Freeman and
Pfenning 1991; Swamy et al. 2011] are another technique to equip
data-structures with rich invariants. Atkey et al. [2011] have shown
how refinement types relate to inductive families, and Bernardy and
Lasson [2011] establish a connection with realisability.

However, these carefully crafted datatypes are a threat to any
library design: the same data-structure is used for logically incom-
patible purposes. This explosion of specialised datatypes is over-
whelming: these objects are too specialised to fit in a global library.
Yet, because they share this common structure, many operations
on them are extremely similar, if not exactly the same. To address
this issue, McBride [2012] developed ornaments, describing how
one datatype can be enriched into others with the same structure.
Such structure-preserving transformations take two forms: one can
extend the initial type with more information — such as obtaining
Maybe 4 from Bool or List4 from Nat:

data Bool: SET where data Nat:SET where

Bool > true Nat > 0
| false | suc(n:Nat)
|Maybe-Orn {List-Orn

data Maybe [A:SET]:SET where data List [A:SET]: SET where
Maybes 3 just(a:A) List4 > nil
| nothing | cons(a:A)(as:Lista)

Or one can refine the indexing of the initial type by a finer disci-
pline — e.g., obtaining Fin by indexing Nat with a bound n:

data Nat:SET where
Nat 3 0
| suc(n:Nat)

|Fin-Orn
data Fin (n:Nat):SET where
Fin (n=sucn’) > 0 (n’:Nat)
| fsuc(n/:Nat)(fn:Finn’)

One can also do both at the same time — such as extending Nat
into a List 4 while refining the index to match the length of the list:

data Nat:SET where
Nat > 0
| suc(n:Nat)

JVec-Orn
data Vec [A:SET](n:Nat):SET where
Vecy (n=0) > nil
Vecy (n=sucn’) 3 cons(n’:Nat)(a:A)(vs:Vecy n')

Note that we declare datatype parameters [A : SET] in brackets
and datatype indices (n: Nat) in parentheses. We make equational
constraints on the latter only when needed, and explicitly.

Because of their constructive nature, ornaments are not merely
identifying similar structures: they give an effective recipe to build
new datatypes from old, guaranteeing by construction that the
structure is preserved. Hence, we can obtain a plethora of new
datatypes with minimal effort. Whilst we now have a good handle
on the transformation of individual datatypes, we are still facing
a major reusability issue: a datatype often comes equipped with a
set of operations. Ornamenting this datatype, we have to entirely
re-implement many similar operations. For example, the datatype
Nat comes with operations such as addition and subtraction. When
defining List4 as an ornament of Nat, it seems natural to trans-
port some structure-preserving function of Nat to Lista, such as
moving from addition of natural numbers to concatenation of lists:

(m:Nat) + (n:Nat) : Nat
0 + n = n
(suem) + n — suc(m+n)

I
(zs:Listg) ++ (ys:Listq) : Listy
nil ++ Ys = Ys
(cons a xs) ++ ys — cons a (zs ++ ys)

Or moving from subtraction of natural numbers to dropping the
prefix of a list:

(m:Nat) — (n:Nat) : Nat

0 - n — 0
m — 0 — m
(sucm) — (sucn) — m—n
I
drop (ws:Listy) (n:Nat) : Listy
drop nil n — nil
drop s 0 — xS

drop (consa zs) (sucn) — dropzs n

More interestingly, the function we start with may involve sev-
eral datatypes, each of which may be ornamented differently. In this
paper, we develop the notion of functional ornament as a generali-
sation of ornaments to functions:

e We adapt ornaments to our universe of datatypes [Chapman
et al. 2010] in Section 3. This presentation benefits greatly from
our ability to inspect indices when defining datatypes. This
allows us to consider ornaments which delete index-determined
information, yielding a key simplification in the construction of
an algebraic ornament from an ornamental algebra ;

We describe how functions can be transported through func-
tional ornaments: ‘deletion’ allows us a contrasting approach to
Ko and Gibbons [2011], internalising proof obligations. First,
we manually work through an example in Section 2. Then, we
formalise the concept of functional ornament by a universe con-
struction in Section 4. Based on this universe, we establish the
connection between a base function (such as _+ _and _ — _) and
its ornamented version (such as, respectively, _++ _and drop).
Within this framework, we redevelop the example of Section 2
with all the automation offered by our constructions ;

In Section 5, we provide further support to drive the computer
into lifting functions semi-automatically. As we can see from
our examples above, the lifted functions often follow the same
recursion pattern and return similar constructors: with a few
generic constructions, we shall remove further clutter and code
duplication from our libraries.

(m:Nat) < (n:Nat) : Bool
m < 0 — false
0 < sucm +— true
sucm < sucn = m<n

12

lookup (m:Nat) (zs:Lista) Maybe 4
lookup m nil — nothing
lookup 0 (cons a xs) +— justa

lookup (sucn) (consa zs) — lookupn s

Figure 1. Implementation of _ < _ and lookup

This paper is an exercise in constructive mathematics: upon
identifying an isomorphism, we shall look at it with our construc-
tive glasses and obtain an effective procedure that lets us cross the
isomorphism. In this paper, we put a strong emphasis on the pro-
gramming aspect: we shall only hint at the isomorphisms through
concrete examples and let the reader consult the companion techni-
cal report for the actual mathematical proofs.

We shall write our code in a syntax inspired by the Epi-
gram [McBride and McKinna 2004] programming language. In
particular, we make use of the by (<) and return (—) program-
ming gadgets, further extending them to account for the automatic
lifting of functions. For brevity, we write pattern-matching defini-
tions when the recursion pattern is evident and unremarkable. We
shall also make ample use of mathematical notations and symbols
in the programming language itself (in particular, mixfix opera-
tors), hence appealing to our reader’s eye for mathematics, rather
than to the intricate details of a particular formal syntax. Like ML,
unbound variables in type definitions are universally quantified,
further abating syntactic noise. The syntax of datatype definitions
draws upon the ML tradition as well: its novelty will be presented
by way of examples in Section 3. All the constructions presented in
this paper have been modelled in Agda, using only standard induc-
tive definitions and two levels of universe. The formalisation and
technical report are available on Dagand’s website.

2. From _< _to lookup, manually

There is an astonishing resemblance between the comparison func-
tion _ < _ on natural numbers and the list lookup function (Fig. 1).
The similarity is not merely at the level of types but also in their
implementation: their definitions follow the same pattern of recur-
sion (first, case analysis on the second element; then induction on
the first element) and they both return a failure value (false and
nothing respectively) in the first case analysis and a success value
(true and just respectively) in the base case of the induction.

This raises the question: what exactly is the relation between
_< _and lookup? Also, could we use the implementation of _ < _to
guide the construction of lookup? First, let us work out the relation
at the type level. To this end, we use ornaments to explain how
each individual datatype has been promoted when going from _ < _
to lookup:

< : Nat — Nat — Bool
idOnae, List-Omn) Maybe-Om|,
lookup : Nat — Lista — Maybe 4

Note that the first argument is ornamented to itself, or put differ-
ently, it has been ornamented by the identity ornament.

Each of these ornaments come with a forgetful map, computed
from the ornamental algebra:
length (as:Listq) : Nat isJust (m:Maybey) : Bool
length nil — 0 isJust nothing > false
length (cons a as) — suc (length as) isJust (justa) > true

Using these forgetful map, the relation, at the computational level,

between _ < _ and lookup is uniquely established by their orna-
mentation. This relation is captured by the coherence property:
Vn:Nat.Vas: List4. isJust (lookup n zs) = n < length zs.

Let us settle the vocabulary at this stage. We call the function
we start with the base function (here, _ < _), its type being the base
type (here, Nat — Nat — Bool). The richer function type built by
ornamenting the individual pieces is called the functional ornament
(here, Nat — List4 — Maybe 4). A function inhabiting this type is
called a lifting (here, lookup). A lifting is said to be coherent if it
satisfies the coherence property. It is crucial to understand that the
coherence of a lifting is relative to a given functional ornament:
the same base function ornamented differently would give rise to
different coherence properties.

We now have a better grasp of the relation between the base
function and its lifting. However, lookup remains to be imple-
mented while making sure that it satisfies the coherence property.
Traditionally, one would stop here: one would implement lookup
and prove the coherence as a theorem. This works rather well in a
system like Coq [The Coq Development Team] as it offers a pow-
erful theorem proving environment. It does not work so well in a
system like Agda [Norell 2007] that does not offer tactics to its
users, forcing them to write explicit proof terms. It would not work
at all in Haskell with GADTs, which has no notion of proof.

However, we are not satisfied by this laborious approach: if we
have dependent types, why should we use them only for proofs, as
an afterthought? We should rather write a lookup function correct
by construction: by implementing a more precisely indexed ver-
sion of lookup, the user can drive the index-level computations to
unfold, hence making the type-checker verify the necessary invari-
ants. We believe that this is how it should be: computers should
replace proofs by computation; humans should drive computers.
The other way around — where humans are coerced into computing
for computers — may seem surreal, yet it corresponds to the current
situation in most proof systems.

To get the computer to work for us, we would rather implement
the function ilookup:

ilookup (m:Nat) (vs:Vecy n) IMaybe 4 (m < n)
ilookup m nil — nothing

ilookup 0 (consa vs) + justa

ilookup (sucm) (consa vs) > ilookupm vs

Where IMaybe 4 is Maybe 4 indexed by its truth as computed by
isJust. It is defined as follows':
data IMaybe [A:SET](b:Bool): SET where
IMaybe 4 true > just(a:A)
IMaybe 4 false 3 nothing

This comes with the following forgetful map:

forgetIMaybe (mba :IMaybe 4 b)
forgetIMaybe (just a)
forgetIMaybe nothing

(ma:Maybey) x isJust ma = b
— (just a, refl)
— (nothing, refl)

The rationale behind ilookup is to index the types of lookup
by their unornamented version, i.e. the arguments and result of
_< _. Hence, we can make sure that the result computed by ilookup
respects the output of _ < _ on the unornamented indices: the result
is correct by indexing! The type of ilookup is naturally derived from

I'Note that we have overloaded the constructors of Maybe and IMaybe:
for a bi-directional type-checker, there is no ambiguity as constructors are
checked against their type.

the ornamentation of _ < _into lookup and is uniquely determined
by the functional ornament we start with. Expounding further our
vocabulary, we call coherent liftings these finely indexed functions
that are correct by construction.

Ko and Gibbons [2011] use ornaments to specify the coherence
requirements for functional liftings, but we work the other way
around, using ornaments to internalise coherence requirements.
From ilookup, we can extract both lookup and its proof of cor-
rectness without having written any proof term ourselves:

lookup (m:Nat) (zs:Listy)

lookup m zs —
mo (forgetIMaybe (ilookup m (makeVec zs)))

Maybe 4

cohLookup (n:Nat) (zs:Listg)
isJust (lookup n zs) = n < length zs
cohLookup m zs —
w1 (forgetMaybe (ilookup m (makeVec zs)))
where makeVec: (zs : List4) — Veca (length zs) simply turns a
list into a vector of the corresponding length.
With this example, we have manually unfolded the key steps of

the construction of a lifting of _ < _. Let us recapitulate each steps:

e Start with a base function, here _ < _:Nat — Nat — Bool

e Ornament its inductive components as desired, here Nat to
List4 and Bool to Maybeys in order to describe the desired
lifting, here lookup:Nat — List4 — Maybe4 satisfying
Vn:Nat.Vzs: Lista. isJust (lookup n zs) = n < length zs

e Implement a carefully indexed version of the lifting, here
ilookup: (m:Nat)(vs:Veca n) — IMaybes (m < n)

e Derive the lifting, here lookup, and its coherence proof, without
proving any theorem

This manual unfolding of the lifting is instructive: it involves
a lot of constructions on datatypes (here, the datatypes List4 and
Maybe 4) as well as on functions (here, the type of ilookup, the
definition of lookup and its coherence proof). Yet, it feels like a lot
of these constructions could be automated. In the next Section, we
shall build the machinery to describe these constructions and obtain
them within the type theory itself.

3. A universe of datatypes and their ornaments

In dependently typed systems such as Coq or Agda, datatypes
are an external entity: each datatype definition extends the type-
theory with new introduction and elimination forms. The validity
of datatypes is guaranteed by a positivity-checker that is part of
the meta-theory of the proof system. A consequence is that, from
within the type theory, it is not possible to create or manipulate
datatype definitions, as they belong to the meta-theory.

3.1 A closed theory of datatypes

In our previous work [Chapman et al. 2010], we have shown how to
internalise inductive families into type theory. The practical impact
of this approach is that we can manipulate datatype declarations
as first-class objects. We can program over datatype declarations
and, in particular, we can compute new datatypes from old. This
is particularly useful to formalise the notion of ornament entirely
within the type theory. This also has a theoretical impact: we do not
need to prove meta-theoretical properties of our constructions, we
can work in our type theory and use its logic as our formal system.

Note that our results are not restricted to this setting where
datatype definitions are internalised: all our constructions could
be justified at the meta-level and then be syntactically presented
in a language, such as, say, Agda, Coq, or Haskell with GADTs.
Working with an internalised presentation, we can simply avoid
these two levels of logic and work in the logic provided by the
type theory itself.

data IDesc [I: SET|: SET; where
IDesc I > “var(i:[])
1
| 'II(S:SET)(T:S — IDescI)
2 (S:SET) (T:S — IDescI)

[(D:1DescI)] (X :I— SET) : SET
[vari] X — X4

[1]X =1

[OIST] X w—(s:8)—=[Ts] X
[EST] X —(s:S)x[Ts]X

Figure 2. Universe of inductive families

For the sake of completeness, let us recall a few definitions
and results from our previous work. As in previous work, our
requirements on the type theory are minimal: we will need X-, 11I-
types, and at least two universes. For convenience, we require a type
of finite sets, which lets us build collections of labels®>. We also
need a pre-existing notion of propositional equality, upon which
we make no assumption. We internalise the inductive families by a
universe construction (Fig. 2): an indexed datatype is described by
a function from its index to codes. The codes are then interpreted
to build the fix-point:

data p [D:1 — |Desc I](i:I):SET where
wDi > in(zs:[D] (uD))

For readability purposes, we use an informal notation to declare
datatypes. This notation is strongly inspired by Agda’s datatype
declarations. Note that these definitions can always be turned into
IDesc codes: when defining a datatype 7', we will denote T-Desc
the code it elaborates to. Similarly, we denote 7-elim and T-case
the induction principle and case analysis operators associated with
T. For instance, Nat-case corresponds to case analysis over natu-
ral numbers (either 0 or suc) while Nat-elim corresponds to stan-
dard induction on natural numbers. These operations can be imple-
mented by generic programming, along the lines of McBride et al.
[2004]. Formalising the elaboration of datatypes definitions down
to code is beyond the scope of this paper. However, it is simple
enough to be understood with a few examples. Three key ideas are
at play.

First, non-indexed datatypes definitions follow the ML tradition:
we name the datatype and then comes a choice of constructors.
For example, List and Brouwer ordinals would be written and
elaborated as follows:
data List [A:SET]: SET where
List4 > nil
| cons(a:A)(as:Listy)

$
List-Desc (A:SET) (z:1) : IDesc1
. s *nil nil —1
List-Desc A+ — 2{ >cons }{’cons — X A A varx }

data Ord:SET where
Ord 20
| suc(o:0rd)
| lim (I:Nat — Ord)

Ord-Desc (z:1) : IDescl

’0 0 =1
Ord-Desc * — X< ’suc ’suc > ‘var x
’lim lim +— "TI Nat A_. ’var %

2We denote finite sets of tagged elements by {’x,’y, 'z, ...}. Their elimi-
nation principle consists of an exhaustive case enumeration and is denoted
by {’x — vz,’y — vy,’z — vz,...}. If the tags are vertically aligned,
we shall skip the separating comma.

Secondly, indexed datatypes can be defined following the Agda
convention: indices are constrained to some particular value. For
example, Vec could be defined by constraining the index to be 0 in
the nil case and sucn’ for some n’ : Nat in the cons case:
data Vec [A:SET](n:Nat): SET where
Vecy (n=0) > nil
Vecy (n=sucn’) > cons(n’:Nat)(a:A)(vs:Vecy n')

Vec-Desc (A:SET) (n:Nat) : IDisc Nat
Vec-Desc An +—
"nil vnil =Y (n=0)A."1
’Z{ ’cons } ‘veons — Y Nat An’.’Y (n = sucn’)A_.
"L ANvarn/

The elaboration naturally captures the constraints on indices by
using propositional equality. In the case of Vec, we first abstract
over the index n, introduce the choice of constructors with the first
’> and then, once constructors have been chosen, we restrict n to
its valid value(s): O in the first case and sucn’ for some n’ in the
second case. Hence the placement of the equality constraints in the
above definition: after the constructor is chosen, we first introduce
a fresh variable and then constrain the index with it. If no fresh
variable needs to be introduced, we directly constrain the index.

Thirdly, we can compute over indices: here, we make use of the
crucial property that a datatype definition is a function from index
to IDesc codes. Hence, our notation should reflect this ability to
define datatypes as functions on their index. For instance, inspired
by Brady et al. [2004], an alternative presentation of vector would
match on the index to determine the constructor to be presented,
hence removing the need for constraints:
data Vec [A:SET](n:Nat):SET where
Vecy n < Nat-casen
Vecy O S nil
Vecy (sucn) > cons(a:A)(vs:Vecy n)

Vec-Desc (A:SET) (n: Nit) : |Desc Nat
Vec-Desc An +— Nat-case n (A_. IDesc Nat)

1

(An.”X AA_ varn)

In order to be fully explicit about computations, we use here the
Epigram [McBride and McKinna 2004] by (<=) programming gad-
get, which let us appeal to any elimination principle with a syn-
tax close to pattern-matching. However, standard pattern-matching
constructions [Coquand 1992; Norell 2007] would work just as
well. Again, we shall write pattern-matching definitions when the
recursion pattern is unremarkable.

Our syntax departs radically from the one adopted by Coq,
Agda, and GADTs in Haskell. It is crucial to understand that this
is but reflecting the actual semantics of inductive families: we
can compute over indices, not merely constrain them to be what
we would like. With our syntax, we give the user the ability to
write these functions: the reader should now understand a datatype
definition as a special kind of function definition, taking indices
as arguments, potentially computing over them, and eventually
emitting a choice of constructors.

3.2 Ornaments

Originally, McBride [2012] presented the notion of ornament for a
universe where the indices a constructor targets could be enforced
only by equality constraints. As a consequence, in that simpler
setting, computing types from indices was impossible. We shall
now adapt the original definition to our setting.

Just as the original definition, an ornament is defined upon a
base datatype — specified by a function D : I — |Desc ! — and
indices are refined up to a reindexing function re : J — I. The

difference in our setting is that, just as the code of datatypes can be
computed from the indices, we want the ornament to be computable
from its J-index. Hence, an ornament is a function from j : J to
ornament codes describing the ornamentation of D (re j):

orn(rer:J —I)(rep: P — O)(D: 0 —1DescI) : SETy
ornrer reg D — (p:P)—Ornrey (D (rep p))

As for the ornament codes themselves, they are similar to the
original definition: we shall be able to copy the base datatype,
extend it by inserting sets, or refine the indexing subject to the
relation imposed by re. However, we also have the J-index in our
context: following Brady’s insight that inductive families need not
store their indices [Brady et al. 2004], we could as well delete parts
of a datatype definition as long as we can recover this information

from the index. Hence, we obtain the following code®:

data Orn [re: J — I|(D:1Desc I):SET; where
— Extend with S':
Omre D > insert (S:SET)(D1:S— Ornre D)
— Refine index:
Ornre ('vari) 2 ‘var(j:re ~14)
— Copy the original:
Orn re 1 > 1
Omre(CIIS T) > "II(Tt:(s:S)—Ornre (T s))
Omre (XS T) 2 'S(TT:(s:5)—>O0mre (T s))
— Delete S':
| delete (replace: S)(T+ :Orn re (T replace))

Note that the recursive structure of the original data-type — as
specified by ’II — is preserved by the ornament: we have thus
ensured, by construction, that the source datatype and its ornament
have the same recursive structure. Being able to insert or delete
’II-quantifiers would defeat our purpose by making ambiguous the
connection between the source datatype and its ornamented form.

Given an ornament, we can interpret it as the datatype it de-
scribes. The implementation consists in traversing the ornament
code, introducing a *> when inserting new data and computing the
ornament at the replaced value when deleting some redundant data:

[(o:ornrer reo D)]om (p: P) IDesc J

o]ern p o> intOm (D (reo p)) (0 p)
intOrn(D :1Desc I)(O:Orn re D):IDesc J
intOrn D (insert S D) +— "X .S As.intOrn D (D7 s)
intOrn ("var (re j)) ('var(invj)) +— ’varj
intOrn "1 "1 — 1

where

intOrn (CIIS T) (ILTT) + "IIS As.intOrn (T s) (T s)
intOrn (XS T) (E=TTH) = "SS9 As.intOm (T s) (T s)
intOrn ("X S T) (deletereplace T1)

intOrn (T replace) (T replace)

Note that in the delete case, no *X code is generated: the set S
has been deleted from the original datatype. The witness of this
existential is instead provided by replace.

Once again, we adopt an informal notation to describe orna-
ments conveniently. The idea is to simply mirror our data defini-
tion, adding from which datatype the ornament is defined. When
specifying a constructor, we can then extend it with a new element
using [s : S] or delete an element originally named s by giving its
value with [s £ value]. Some typical examples of extension are
presented in Figure 3.

While the definition Vec in Figure 3 mirrors Agda’s convention
of constraining indices with equality, our definition of ornaments
lets us define a version of Vec that does not store its indices:

data Vec [A:SET](n:Nat) from List4 where
Vecy 0 S nil
Vecy (sucn’) 3 cons(a:A)(vs:Vecyn')

3 The inverse image of a function is defined by:

data (71!) [f: A— B](b: B):SET where
f~t(b=fa) 3 inv(a:A)

data List [A:SET] from Nat where
List4 > nil
| cons[a:A](as:Listy)

data Vec [A:SET](n:Nat) from List 4 where
Veca n 3 nil [¢g:n = 0]
| cons[n’:Nat][g:n = sucn’](a:A)(vs:Vecan’)

data Fin (n:Nat) from Nat where
Finn > f0 [n’:Nat][q:n = sucn’]
| fsuc[n':Nat][g:n = sucn’](fn:Finn’)

Figure 3. Examples of ornament

Note that such a definition was unavailable in the basic presenta-
tion [McBride 2012]. Brady et al. [2004] call this operation detag-
ging: the constructors of the datatype are determined by the index.
The definition of Fin given in Figure 3 is also subject to an opti-
misation: by matching the index, we can avoid the duplication of
n by deleting n’ with the matched predecessor and deleting the re-
sulting, obvious proof. Hence, Fin can be further ornamented to the
optimised Fin’, which makes crucial use of deletion:

data Fin' (n:Nat) from Fin where
Fin" 0 > [b:0] — no constructor
Fin' (sucn) > 0 [n' £ n][q £ refl]
| fsuc[n’ £ n](q = refl](fn:Fin' n’)

Again, this definition was previously unavailable to us. Besides,
we are making crucial use of the deletion ornament to avoid dupli-
cation. Brady et al. [2004] call this operation forcing: the content
of the constructors — here n’ and the constraint — are retrieved from
the index, instead of being needlessly duplicated.

Just as the datatype declaration syntax was elaborated to IDesc
codes, this high-level syntax is elaborated to ornament codes. A for-
mal description of the translation is beyond the scope of this paper.
Note that we require the order of constructors to be preserved, as
their name might change from the original to the ornamented ver-
sion. From the definition of an ornamented type 7', we will assume
the existence of its corresponding ornament code 7-Orn.

As described by McBride [2012], every ornament induces an or-
namental algebra: intuitively, an algebra that forgets the extra data,
hence mapping the ornamented datatype back to its unornamented
form. From an ornament O : orn re D, there is a natural transforma-
tion from the ornamented functor down to the unornamented one,
which we denote:

O-forgetNat: (X : 1 — SET)(5:J) = [[Ollomj] (X o re) — [D(rej)]| X
Applied with p D for X and post-composed with in, this natural
transformation induces the ornamental algebra:
O-forgetAlg: (j: J) = [[Olom j] (u D ore) = pu D (re 5)
In turn, this algebra induces an ornamental forgetful map denoted:
O-forget: (j:J) — 1 [Ollom j — p D (re j)
We do not re-implement these functions here: it is straightforward
to update the original definitions to our setting.

3.2.1 Algebraic ornaments

An important class of datatypes is constructed by algebraic or-
namentation over a base datatype. The idea of an algebraic or-
nament is to index an inductive type by the result of a fold over
the original data. From the code D : I — IDesc I and an algebra
o:(1:1)—[Di] X — X 4, there is an ornament that defines a
code D% : (i:I)x X i—IDesc (i : I) x X i with the property
that:
uD® (i) = (t:pDi) X (@) t ==

We shall indiscriminately use D to refer to the ornament and
the resulting datatype. Seen as a refinement type, the correctness

property states that 4 D (¢,2) = {¢t € puDi| () t = z}. The
type theoretic construction of D is described by McBride [2012].
We shall not reiterate it here, the implementation being essentially
the same. A categorical presentation is also given in Atkey et al.
[2011] that explores the connection with refinement types.

Constructively, the correctness property gives us two (mutually
inverse) functions. The direction p D* (i, z) — (t:p Di) X (o)) t =z
relies on the generic D“-forget function to compute the first com-
ponent of the pair and gives us the following theorem:

coherentOrn:Vt® : u D% (4, z). (o) (D*-forget t¢) = z
This corresponds to the Recomputation theorem of McBride

[2012]. We shall not reprove it here, the construction being similar.
In the other direction, the isomorphism gives us a function of type:

(t:pDi)x (o) t =x— puD*(i,)

Put in full and simplifying the equation, this corresponds to the
function D*-make: (t:pu D4) — p D*(3, («) ¢). This corresponds to
the remember function of McBride [2012]. Again, we will assume
this construction here.

A typical use-case of algebraic ornaments is the implementa-
tion of semantic-preserving operations on syntax trees [McBride
2012]. For example, let us consider arithmetic expressions, which
semantics is given by interpretation in Nat:
data Expr:SET where Cteval (es:[[Expr-Desc] Nat) : Nat

Expr > const(n:Nat) aeyal (const n) —n
| add (de:Expr) Qeval (add m n) — m4n

Using the algebra aevai, we construct the algebraic ornament of
Expr and obtain expressions indexed by their semantics:

data Expr®e! (k:Nat):SET where
Expr@ea (k=mn) > const(n:Nat)
Expr@e (k=m+n) > add (mn:Nat)
(d: Expr®ea m)(e: Expr®ea n)

Hence, we can enforce semantics preservation by typing. For ex-
ample, let us optimise away all additions of the form “0 + e

optimize-0+ (e:Expr® n) Exprea n
optimize-0-+ (const n) — const n
optimize-0+ (add 0 n (const0) e) — optimize-0+ e
optimize-0+ (addmnde) +— addmnde

If the type-checker accepts our definition, we have that, by con-
struction, the operation preserves the semantics. We can then prune
the semantics from the types using the coherentOrn theorem and
retrieve the transformation on raw syntax trees.

3.2.2 Reornaments

In this paper, we are interested in a special sub-class of algebraic
ornaments. As we have seen, every ornament O induces an orna-
mental algebra O-forgetAlg, which forgets the extra information
introduced by the ornament. Hence, given a datatype D and an or-
nament Op of D, we can algebraically ornament [OpJom using
the ornamental algebra O p-forgetAlg. The resulting ornament is
denoted D®P . McBride [2012] calls this object the algebraic or-
nament by the ornamental algebra. For brevity, we call it the reor-
nament of Op. Again, we shall overload D°P to denote both the
ornament and the resulting datatype. A standard example of reor-
nament is Vec: it is the reornament of List-Orn. Put otherwise, a
vector is the algebraic ornament of List by the algebra computing
its length, i.e. the ornamental algebra from List to Nat.

Reornaments can be implemented straightforwardly by unfold-
ing their definition: first, compute the ornamental algebra and, sec-
ond, construct the algebraic ornament by this algebra. However,
such a simplistic construction introduces a lot of spurious equal-
ity constraints and duplication of information. For instance, using
this naive definition of reornaments, a vector indexed by n is con-
structed as any list as long as it is of length n.

We can adopt a more fine-grained approach yielding an isomor-
phic but better structured datatype. In our setting, where we can
compute over the index, a finer construction of the Vec reornament
would be as follows:

e We retrieve the index, hence obtaining n ;

e By inspecting the ornament List-Orn, we obtain exactly the
information by which n is extended into a list: if n = 0, no
supplementary information is needed and if n = sucn’, we
need to extend it with an a : A. We call this the Extension of 1 ;

By inspecting the ornament List-Orn again, we obtain the re-
cursive structure of the reornament by deleting the data already
fully determined by the index and its extension, and refining the
indexing discipline: the tail of a vector of size sucn’ is a vector
of size n’. The recursive structure is denoted by Structure.

A reornament is thus the Extension of its index followed by the
recursive structure as defined by Structure®. Based on this intu-
ition, we define the associated reornament at index t = inxs: u D
by, first, inserting the valid extensions of ¢t with Extension, then,
building the recursive structure using Structure:

reornament (O:ornre D) : ornmg [O]on
reornament O +— A(J,inzs). insert (Extension (O j) xs) Ae.
Structure (O j) zs e

Applied to the reornament of List-Orn, this construction gives the
fully Brady-optimised — detagged and forced — version of Vec, here
written in full:

data Vec [A:SET|(n:Nat):SET where
Vecy O S nil
Vecy (sucn) o cons(a:A)(vs:Vecy n)

Note that our ability to compute over the index is crucial for
this construction to work. Also, it is isomorphic to the datatype one
would have obtained with the algebraic ornament of the ornamental
algebra. Consequently, the correctness property of algebraic orna-
ments is still valid here: constructively, we get the coherentOrn
theorem in one direction and the *-make function in the other.

In this Section, we have adapted the notion of ornament to our
universe of datatypes. In doing so, we have introduced the concept
of a deletion ornament, using the indexing to remove duplicated
information in the datatypes. This has proved useful to simplify the
definition of reornaments. We shall see how this can be turned to
our advantage when we transport functions across ornaments.

4. A universe of functions and their ornaments

We are now going to generalise the notion of ornament to functions.
In order to do this, we first need to be able, in type theory, to
manipulate functions and especially their types. Hence, we define
a universe of functions. With it, we will be able to write generic
programs over the class of functions captured by our universe.

Using this technology, we define a functional ornament as a dec-
oration over the universe of functions. The liftings implementing
the functional ornament are related to the base function by a coher-
ence property. To minimise the theorem proving burden induced by
coherence proofs, we expand our system with patches: a patch is
the type of the functions that satisfy the coherence property by con-
struction. Finally, and still writing generic programs, we show how
we can automatically project the lifting and its coherence certificate
out of a patch.

4 For space reasons, we shall refer the reader to the companion technical
report for the type-theoretic definition of Extension and Structure. Their
exact definition is not necessary for the understanding of this paper.

data FunOrn (T': Type): SET1 where
FunOrn (i{Di}» T) 3 pt{(O:ornre D) (j:re ~!
FunOrn (){Di}x T) > pt{(O:ornre D) (j:re !
FunOrn 1 >1
(a) Code

[(T* :FunOrn T)]Funom : SET

)} (T+:FunOm T) [0 (inv5) 1> T+ runom — 4 [Oorm 5 = [T+ Jrunom
Z) }X (T+:Funorn T) ILU‘+{O (Ian) }X T+]]Fun0rn = Y [[O]]OF"j X [[T+]]Fun0rn

|I]-]] FunOrn =1
(b) Interpretation

Figure 4. Universe of functional ornaments

4.1 A universe of functions

For clarity of exposition, we restrict our language of types to the
bare minimum: a type can either be an exponential which domain
is an inductive object, or a product which first component is an
inductive object, or the unit type — used as a termination symbol:

data Type:SET; where
Type > {(D:I—1Descl)(i:1)}~ (T:Type)
| {(D:I—1Descl)(i:1)}x (T:Type)
| 1

Hence, this universe codes the function space from some (maybe
none) inductive types to some (maybe none) inductive types. Con-
cretely, the codes are interpreted as follows:

[[(T:Type)]]Type ¢ SET

(14D i} Tlrype — pDi— [T]rype
ILU'{D i }X THType = pDix [ITHType
[1ype =1

The constructions we develop below could be extended to a
more powerful universe — such as one supporting non-inductive
sets or having dependent functions and pairs. However, this would
needlessly complicate our exposition.

Example 1 (Coding _< _). Written in the universe of function
types, the type of _ < _is:

type< : Type
type< +— g Nat-Desc x }— pf Nat-Desc * }— p{ Bool-Desc * }x 1

The implementation of _ < _ is essentially the same as earlier, ex-
cepted that it must now return a pair of a boolean and an inhabitant
of the unit type. To be explicit about the recursion pattern of this
function, we make use of Epigram’s by (<=) construct:

- < - [type<]]Type
m < n <« Nat-casen
< 0 > (false,x)
<sucn < Nat-elimm
0 <sucn — (true, x)
sucm <sucn — m<n

m
m

That is to say: we first do a case analysis on n and then, in the
successor case, we proceed by induction over m.

Example 2 (Coding -+ _). Written in the universe of function
types, the type of _+ _is:

type+ : Type

type+ — g Nat-Desc * }— f Nat-Desc x }— p{ Nat-Desc * }x 1
Again, up to a multiplication by 1, the implementation of _+ _is
left unchanged.

4.2 Functional ornament

From the universe of function types, it is now straightforward to
define the notion of functional ornament: we traverse the type code
and ornament the inductive types as we go. Note that it is always
possible to leave an object unornamented: we ornament by the
identity that simply copies the original definition. Hence, we obtain
the definition given in Fig. 4(a). From a functional ornament, we get
the type of the liftings by interpreting each ornaments (Fig. 4(b)).
This defines the universe of functional ornaments.

We will want our ornamented function to be coherent with the
base function we started with: for a function f : u D — pu F, the

ornamented function fT : p [ObJom — 1 [OE]om is said to be
coherent with f if it satisfies the following equation:

*T:u[OpJom.f (Op-forget £T) = Op-forget (f+ z)

To generalise the definition of coherence to any arity, we proceed
by induction over the universe of functional ornaments:

Coherence(T+ :FunOrn T)(f: [[T]]Type) (ft: [[T+]]Fu"0rn) SET

Coherence (ut{O (invj) }» TT) f ft —

Vot : 1 [O]om j.Coherence T+ (f (forgetOrnz)) (f Tz t)
Coherence (u{O (invj) Ix T+) (z,as) (z+, zsT) —

z = forgetOrn z1 x Coherence Tt zs zst
Coherence 1 * * — 1

Example 3 (Ornamenting type< to describe lookup). In Section 2,
we have identified the ornaments involved to transport the type
of _< _ to obtain the type of lookup. From there, we give the
functional ornament describing the type of the lookup function:

typeLookup FunOrn type<

typeLookup +— pH{idOpge *

pH{List-Orn * }—
pT{Maybe-Orn x }x 1

The user can verify that [typeLookup]runom gives us the type of
the lookup function, up to multiplication by 1. Also, computing
Coherence typelLookup (- < -) gives the expected result:

)\fjL : [typeLookup]Funom-
Vn:Nat.Vrs: List 4.isJust (f T n zs) = n < length zs
Note that this equation is not specifying the lookup function: it
is only establishing a computational relation between _ < _ and a
candidate lifting fT, for which lookup is a valid choice. However,
one could be interested in other functions satisfying this coherence
property and they would be handled by our system just as well.

Example 4 (Ornamenting type+ to describe -4+). The func-
tional ornament of type+ makes only use of the ornamentation of
Nat into List 4:

type++ FunOrn type+

type++ — puH{List-Orn * }—

pH{List-Orn * }—
pH{List-Orn* }x 1
Again, computing [type++]runorm indeed gives us the type of

_4+ - while Coherence type++ (-4 -) correctly captures our re-
quirement that list append preserves the length of its arguments.
As before, the list append function is not the only valid lifting: one
could for example consider a function that reverts the first list and
appends it to the second one.

4.3 Patches

By definition of a functional ornament, the lifting of a base function
f : [T]type is a function f* of type [T Jrunom satisfying the
coherence property Coherence Tt f. To implement a lifting that
is coherent, we might ask the user to first implement the lifting
f+ and then prove it coherent. However, we find this process
unsatisfactory: we fail to harness the power of dependent types
when implementing f, this weakness being then paid off by
tedious proof obligations. To overcome this limitation, we define
the notion of Patch as the type of all the functions that are coherent
by construction.

Note that we are looking for an equivalence here: we will de-
fine patches so that they are in bijection with liftings satisfying a
coherence property, informally:

PatchT T f 2= (fT: [[T+]]Funo,n) x Coherence Tt f f+ (D)

In this paper, we constructively use this bijection in the left to right
direction: having implemented a patch f* of type Patch T T'" f,
we will show, in the next Section, how we can extract a lifting
together with its coherence proof.

Before giving the generic construction of the Patch object, let
us first work through the _ < _ example. After having functionally
ornamented _ < _ with typelLookup, the lifting function f* and
coherence property can be represented by the following pair:
(ft:Nat x List4 — Maybe 4) x

V¥m:Nat.Vas:List4.m < List-forget as = Maybe-forget (f m as)

Applying dependent choice, this is equivalent to:

2 (m:Nat) x (n:Nat) X (as:Listy) X List-forget as = n —
(ma:Maybe 4) x Maybe-forget ma = m <n

Now, by definition of reornaments, we have that:
(as:List4) X List-forget as =n = Vecy n and
(ma:Maybe 4) x Maybe-forget ma = b = IMaybe 4 b

Applying these isomorphisms, we obtain the following type, which
we call the Patch of the functional ornament typel.ookup:

2 (m:Nat) X (n:Nat) x (vs:Vecy n) —IMaybe 4 (m < n)

Which is thus equivalent to a pair of a lifting and its coherence.

Intuitively, the Patch construction consists in turning the pairs
of data and their algebraically defined constraint into equivalent re-
ornaments. The coherence property of reornaments tells us that pro-
jecting the ornamented function down to its unornamented compo-
nents gives back the base function. By turning the projection func-
tions into inductive datatypes, we enforce the coherence property
directly by the index: we introduce a fresh index for the arguments
(here, introducing m and n) and index the return types by the result
of the unornamented function (here, indexing IMaybe 4 by m < n).

To build this type generically, we simply proceed by induction
over the functional ornament. Upon an argument (i.e. a {0 }=),
we introduce a fresh index and the reornament of O. Upon a result
(i.e. a u{O }x), we ask for a reornament of O indexed by the
result of the base function.

Patch(T : Type)(T :FunOrn T)(f : [T]type) : SET

Patch (1D (re j) }» T) (O (invj) }» T+) f >

(z:uD (re§)) = uDO (j,z) —Patch T T+ (f)
Patch (1{D (re j) }x T) (uH{O (invj) Ix Tt) (z,25) —
uwDO (j,z) x Patch T T xs
Patch 1 1 * =1

Example 5 (Patch of typeLookup). The type of the coherent
liftings of _ < _ by typeLookup, as defined by the Patch of _< _
by typelLookup, computes to:
(m:Nat) — (m™T : u Nat'9Onae m) —
(n:Nat) — (vs: p Nat'sta n) — y BoolMa¥bea (m < n) x 1

Note that p Nat'@ONat 1y is isomorphic to 1: all the content of the
datatype has been forced — the recursive structure of the datatype
is entirely determined by its index — and detagged — the choice of
constructors is entirely determined by its index, leaving no actual
data in it. Hence, we discard this argument as computationally
uninteresting. On the other hand, Nat-t4 and BoolM®e4 gare,
respectively, the previously introduced Vec4 and IMaybe 4 types.

Example 6 (Patch of type+). Similarly, the Patch of _+4 _ by
type+ computes to the type of the vector append function:
(m:Nat) — (zs:Nat™st4 m) — _
(n:Nat) — (ys:Nat"sta m) — Natbsta (m4-n) x 1

Discussion: While these precisely indexed functions remove the
burden of theorem proving, this solution is not relevant in all situ-
ations. For instance, if we were to implement a length-preserving
list reversal, our patching machinery would ask us to implement
vrev: Vecy n — Vecy n that will inevitably require some proving
to match up the types: we must appeal to the equational theory of
addition — in this case, n+ 1 = sucn — and this is beyond the grasp
of our type-checker, which can only decide definitional identities.
Unless the type-checker works up to equational theories, as done in
CogMT [Strub 2010], the programmer is certainly better off using
our machinery to generate the coherence condition (Section 4.2)
and implement the lifting and its coherence proof manually, rather
than using patches. However, this example gives a hint as to what
can be seen as a “good” coherence property: because we want the
type-checker to do all the proving, the equations we rely on at the
type level need to be definitionally true, either because our logic
has a rich definitional equality, or because we rely on operations
that satisfy these identities by definition.

4.4 Patching and coherence

At this stage, we can implement the ilookup function exactly as we
did in Section 2. From there, we now want to obtain the lookup
function and its coherence certificate. More generally, having im-
plemented a function satisfying the Patch type, we want to extract
the lifting and its coherence proof.

Perhaps not surprisingly, we obtain this construction by look-
ing at the isomorphism (1) of the previous Section through our
constructive glasses: indeed, as the Patch type is isomorphic to
the set of liftings satisfying the coherence property, we effec-
tively get a function taking every Patch to a lifting and its co-
herence proof. More precisely, we obtain the lifting by general-
ising the reornament-induced x-forget functions to functional or-
naments while we obtain the coherence proof by generalising the
reornament-induced coherentOrn theorem.

We call patching the action of projecting the coherent lifting
from a Patch function. Again, it is defined by mere induction
over the functional ornament. When ornamented arguments are
introduced (i.e. with ut{O }—), we simply patch the body of
the function. This is possible because from ™ : 1 [OpJom, We
can forget the ornament to compute f (forgetOrnz™) and we can
also make the reornament to compute f+* _ (makeAlgOr z™).
When an ornamented result is to be returned, we simply forget the
reornamentation computed by the coherent lifting:

patch (T :FunOrn T)(f : [T]1ype)(p:Patch T TT f) :
[[T ﬂFunOrn
patch (HO (M) 1a T+) [f++ o
Azt patch (f (forgetOrnz 1))
(ft+ (forgetOrn z1) (makeAlgOrn z 1))
patch (u™{O (invj) }x T*) (z,2s) (at+,zstt) —
(forgetOrn z 7+ patch T+ zs zs+)
patch 1 *x % — x

Extracting the coherence proof follows a similar pattern. We
introduce arguments as we go, just as we did with patch. When we
reach a result, we have to prove the coherence of the result returned
by the patched function: this is a straightforward application of the
coherentOrn theorem:

coherence (TF :FunOrn T)(f : [T]type)(p:Patch T TT f) :
Coherence Tt f (patch T+ f p)
coherence (uH{O(invi) =>T%) f »p ~—
Azt . coherence Tt (f (forgetOrnzt))
(p (forgetOrn z1) (makeAlgOrn z 1))
coherence (ut{O (invj) }x T*) (z,2s) (zF,p)
(coherentOrn zt, coherence T+ s p)
coherence 1 x % > %

thpe<]]Type
Nat-case n
(false, *)
Nat-elim m
(true, *)
m<n

0 <sucn
sucm < sucn

3

N

s
1l

ilookup

ilookup
ilookup
ilookup

(m:Nat) (vs:Vecy n) IMaybe 4 (m < n)
m vs < Vector-case vs
m nil — nothing
m (consa vs) < Nat-elimm
ilookup 0 (consa vs) + justa

ilookup (sucm) (consa vs) > ilookupm vs

Figure 5. Implementations of _ < _ and ilookup

Example 7 (Obtaining lookup and its coherence certificate, for
free). This last step is a mere application of the patch and
coherence functions. Hence, we define lookup as follows:

lookup : [typelLookup]runorm
lookup +— patch typeLookup (- < _) ilookup

And we get its coherence proof, here spelled in full:

cohLookup (n:Nat) (zs:Lists)
Maybe-forget (7o (lookup n zs)) = mo(n < List-forget zs)
cohLookup n zs —
coherence typeLookup (- < -) ilookup n zs

Example 8 (Obtaining -4+ - and its coherence certificate, for
free). Assuming that we have implemented the coherent lifting
vappend, we obtain concatenation of lists and its coherence proof
by simply running our generic machinery:

+ [[typeﬁ]]FunOrn
++ > patch type++ (- +-) vappend

coh++ (xs:Lista) (ys:Lista) :
List-forget (7o (zs ++ ys)) = mo((List-forget zs) +(List-forget ys))
coh-++ zs ys —
coherence type++ (- + -) vappend zs ys

Looking back at the manual construction in Section 2, we can
measure the progress we have made: while we had to duplicate en-
tirely the type signature of lookup and its coherence proof, we can
now write down a functional ornament and these are generated for
us. This is not just convenient: by giving a functional ornament, we
establish a strong connection between two functions. By pinning
down this connection with the universe of functional ornaments,
we turn this knowledge into an effective object that can be ma-
nipulated and reasoned about within the type theory. We make use
of this concrete object when we construct the Patch induced by
a functional ornament: this is again a construction that is generic
now, while we had to tediously (and perhaps painfully) construct it
in Section 2. Similarly, we get patching and extraction of the co-
herence proof for free now, while we had to manually fiddle with
several projection and injection functions.

We presented the Patch as the type of the liftings coherent by
construction. As we have seen, its construction and further pro-
jection down to a lifting is now entirely automated, hence effort-
less. This is a significant step forward: we could either implement
lookup and then prove it coherent, or we could go through the
trouble of manually defining carefully indexed types and write a
function correct by construction. We have now made this second
alternative just as accessible as the first one. And, from a program-
ming perspective, the second approach is much more appealing. In
a word, we have made an appealing technique extremely cheap!

Finally, we shall reiterate that none of the above constructions
involve extending the type theory: using our universe of datatypes,
functional ornaments are internalised as a few generic programs
and inductive types. For systems such as Agda, Coq, or Haskell
with GADTs, this technology would need to be provided at the
meta-level. However, the fact that our constructions type-check in
our system suggests that adding these constructions at the meta-
level is consistent with a pre-existing meta-theory.

5. Lazy programmers, clever constructors

In our journey from _< _ to lookup, we had to implement the
ilookup function. It is instructive to put _ < _ and ilookup side-by-
side (Fig. 5). First, both functions follow the same recursion pat-
tern: case analysis over n/vs followed by induction over m. Sec-
ond, the returned constructors are related through the Maybe or-
nament: knowing that we have returned true or false when imple-
menting _ < _, we can deduce which of just or nothing will be used
in ilookup. Interestingly, the only unknown, hence the only neces-
sary input from the user, is the a in the just case: it is precisely the
information that has been introduced by the Maybe ornament.

In this Section, we are going to leverage our knowledge of
the definition of the base function — such as _ < _ — to guide the
implementation of the coherent lifting — such as ilookup: instead
of re-implementing ilookup by duplicating most of the code of
_< _, the user indicates what to duplicate and only provides strictly
necessary inputs. We are primarily interested in transporting two
forms of structure:

Recursion pattern: if the base function is a fold (o) and the user
provides us with a coherent algebra B of «, we automatically
construct the coherent lifting (3) of () ;

Returned constructor: if the base function returns a constructor
C and the user provides us with a coherent extension Cof C,
we automatically construct the coherent lifting of C'

We shall formalise what we understand by being a coherent alge-
bra and a coherent extension below. The key idea is to identify the
strictly necessary inputs from the user, helped in that by the orna-
ments. It is then straightforward to, automatically and generically,
build the lifted folds and values.

5.1 Transporting recursion patterns

When transporting a function, we are very unlikely to change the
recursion pattern of the base function. Indeed, the very reason why
we can do this transportation is that the lifting uses exactly the
same structure to compute its results. Hence, in the majority of
the cases, we could just ask the computer to use the induction
principle induced by the base one: the only task left to the user
will be to give the algebra. For clarity of exposition, we restrict
ourselves to transporting folds. However, the treatment of induction
is essentially the same, as hinted by the fact that induction can be
reduced to folds [Fumex et al. 2011].

To illustrate this approach, we work through a concrete exam-
ple: we derive hd : List4 — Maybe 4 from isSuc : Nat — Bool by
transporting the algebra. For the sake of argument, we artificially
define isSuc by a fold:

isSuc (n:Nat) : Bool

isSuc n — (cissuc) » where
aissuc (zs:[Nat-Desc] Bool) : Bool
QisSuc 0 — false
QisSuc (’suc xs) — true

Our objective is thus to define the algebra for hd, which has the
following type:

apg : [List-Desc] Maybe 4 — Maybe 4

ihd (vs:Vecy n)

IMaybe 4 isSuc n

(a) Request lifting of algebra: . ife .
(user input) ihd < lift-fold
{7}
ihd (vs:Veca n) IMaybe 4 (isSuc n)

. lift .
(b) Result of lifting the algebra: ihd < lift-fold
(system output) _
Qihd "nil

Qijhd ("cons a xs)

ihd (vs:Veca n)
. ihd B Jife-fold
(c) Request lifting of constructors:
(user input)

5

Qlihd nil

Qlihd (’cons a xs)

ihd (vs:Veca n)
. ihd I Jift-fold
(d) Result of lifting constructors:
(system output)

5

Qihd nil

Qihd ("cons a xs)

ihd (vs:Veca n)

(e) Type-checked term: hd vs

(automatically generated from (d)) ing il

Qihd (’cons a ws)

where
Qinhd (vs:[Vec-Desc] (An'.IMaybey4 (isSucn’)) n)

where
Qihd (vs:[Vec-Desc] (An'.IMaybey4 (isSucn’)) n)

where
Qihd (vs: [Vec-Desc] (An'. IMaybe4 (isSucn’)) n)

:_IMaybey4 (isSucn)
{7
{7}

IMaybe 4 (isSucn)

IMaybe 4 (isSucn)
{7}
{7}

5

1z

IMaybe 4 (isSuc n)

IMaybe 4 (isSucn)
— nothing [{?:1} [{?:1}]
— just {?: A} [{?:1}]

IMaybe 4 (isSuc n)
— lift-fold ctissuc Qihd
Qihd (vs:[Vec-Desc] (An'.IMaybe4 (isSucn’)) n)

where
IMaybe 4 (isSucn)
— lift-constructor ’nil {?:1} {?:1} %
— lift-constructor ("suc n) [{?: A} {?:1} =

Figure 6. Guided implementation of ihd

such that its fold is coherent. By the fold-fusion theorem [Bird and
de Moor 1997], it is sufficient (but not necessary) for anq to satisfy
the following condition:
Vms: [List-Desc]] Maybe 4.

isJust (ahg ms) = aissuc (List-forgetNat([List-Desc] isJust ms))

Following the same methodology we applied to define the Patch
type, we can massage the type of ang and its coherence condition
to obtain an equivalent definition enforcing the coherence by index-
ing. In this case, the natural candidate is:

aing : [Vec-Desc] (An'. IMaybe 4 (isSucn’)) n — IMaybe 4 (isSuc n)

This construction generalises to any functional ornament. That
is, from an algebra

o:(i:1) = [D] A= [TTrype) = [TT1ype

together with an ornament O p : orn re D and a functional ornament
T :FunOrn T, the type of coherent algebras for c is:

B:G:)(t:uD (rej)) =
[D° (7,)] (A, t). Patch T ((a) t) T*) —
Patch T ((a) t) T+
It can formally be proved that algebras of this type capture exactly
the algebras satisfying the coherence condition. Constructively, we

get that such a coherent algebra induces a coherent lifting, by a
mere fold of the coherent algebra:

lift-fold (av: (1) — [D i] (A~ [TTrype) — [TTrype)
(B: (G:I)(t:pD (rej)) —
[D (5,)] (A, t). Patch T ((a) t) TF) —
Patch T ((a)) t) TT)
 Patch (D (re) }» T) (a) (4{05 1> T+)
lift-fold a 8 — Az. Azt (B) zt+

Generalising this idea, we can similarly lift induction: we de-
note lift-ind the corresponding clever constructor. Lifting case anal-

ysis is now simple, as case analysis is derivable from induction by
stripping out the induction hypotheses [McBride et al. 2004].

Example 9 (Transporting the recursion pattern of isSuc). We can
now apply our generic machinery to transport isSuc to hd: in a
high-level notation, we would write the command of Fig. 6(a). To
this command, an interactive system would respond by automati-
cally generating the algebra, as shown in Fig. 6(b). In the low-level
type theory, this would elaborate to the following term:

ihd (vs:Vecy n) IMaybe 4 (isSucn)
ihd Vs — lift-fold ajssuc @ihg =~ Where
Qihd (vs: [Vec-Desc] (An'. IMaybey (isSucn’)) n)
IMaybe 4 (isSucn)
Qihd *nil
Qihd (’cons a xs)

— {71

= {7

Once again, it is beyond the scope of this paper to formalise
the elaboration process from the high-level notation to the low-
level type theory. The reader will convince himself that the high-
level notation contains all the information necessary to conduct
this task. We shall now freely use the high-level syntax, with the
understanding that it builds a low-level term that type-checks.

Example 10 (Transporting the recursion pattern of - < _). To im-
plement ilookup, we use lift-case to transport the case analysis on
n and lift-ind to transport the induction over m. In a high-level
notation, this interaction results in:

ilookup : Patch type< typelLookup _ < _
m lift

ilookup m m" n Vs < _lift-case
ilookup m m™ 0 nil {7}
ilookup m m™ (sucn) (consa vs) M fiftoind
ilookup 0 0 0 nil {7}
ilookup (sucm) (sucm™) 0 nil {7}

5.2 Transporting constructors

Just as the recursive structure, the returned values often simply
mirror the original definition: we are in a situation where the base
function returns a given constructor and we would like to return its
ornamented counterpart. Informing the computer that we simply
want to lift the constructor, it should fill in the parts that are already
determined by the original constructor and ask only for the missing
information, i.e. the data freshly introduced by the ornament.

Remember that, when implementing the coherent lifting, we
are working on the reornaments of the lifting type. Hence, when
returning a constructor-headed value, we are building an inhabitant
of a reornament. When defining reornaments in Section 3.2.2, we
have shown that, thanks to deletion ornaments, a reornament can
be decomposed in two components:

o first, the extension that contains all the extra information intro-
duced by the ornament ;

e second, the recursive structure of the refined datatype, which
defines the type of the arguments of the constructor

And no additional information is required: all the information pro-
vided by indexing with the unornamented datatype is optimally
used in the definition of the reornament. Thus, there is absolutely
no duplication of information.

This clear separation of concerns is a blessing for us: when lift-
ing a constructor, we only have to provide the extension and the
arguments of the datatype, nothing more. In terms of implementa-
tion, this is as simple as:
lift-constructor (zs:[D (re j)] u D)

(e:Extension (O j) xs) — coherent extension
(a:[[Structure O zs €]orn] (1t D)) — arguments
(tT+:Patch Tt TT)
: Patch (1 D (re 5) X T)
(inzs, t)
(0] Ix T+)
lift-constructorzs e a t++ — (in(e,a), tT7)

Example 11 (Transporting the constructors of isSuc). Let us finish
the implementation of hd from isSuc. Our task is simply to trans-
port the true and false constructors along the Maybe ornament.
In a high-level notation, we would write the command shown in
Fig. 6(c). The interactive system would then respond by generat-
ing the code of Fig. 6(d). The 1 goals are trivially solved, probably
automatically by the system. The only information the user has to
provide is a value of type A returned by the just constructor.

Example 12 (Transporting the constructors of _ < _). In the imple-
mentation of ilookup, we want to lift the returned true and false to
the Maybe ornament. In a high-level notation, this would be repre-
sented as follows:

ilookup: Patch type< typeLookup _ < _

3

ilookup m m" n Vs < lift-case
ilookup m m™ 0 nil s nothing *[*]
ilookup m m™ (sucn) (consa vs) % ift-ind

ilookup 0 0 (sucn) (cons a vs) At just {2: A} [%]

ilookup (suc m) (sucm™) (sucn) (cons a vs) {?}
As before, in an interactive setting, the user would instruct the

. lf
machine to execute the command ~ and the computer would come
back with the skeleton of the expected inputs.

6. Related work

Our work is an extension of the work of McBride [2012] on or-
naments, originally introduced to organise datatypes according to
their common structure. This gave rise to the notion of ornamen-
tal algebras — forgetting the extra information of an ornamented

datatype — and algebraic ornaments — indexing a datatype accord-
ing to an algebra. This, in turn, induced the notion of algebraic
ornament by ornamental algebras, which is a key ingredient for our
work. However, for simplicity of exposition, these ornaments had
originally been defined on a less index-aware universe of datatypes.
As a consequence, computation over indices was impossible and,
therefore, deletion of duplicated information was impossible. A
corollary of this was that reornaments contained a lot of duplica-
tion, hence making the lifting of value from ornamented to reorna-
mented datatype extremely tedious.

Our presentation of algebraic ornament has been greatly im-
proved by the categorical model developed by Atkey et al. [2011]:
the authors gave a conceptually clear treatment of algebraic orna-
ment in a Lawvere fibration. At the technical level, the authors con-
nected the definition of algebraic ornament with truth-preserving
liftings, which are also used in the construction of induction prin-
ciples, and op-reindexing, which models 3-types in type theory.

Whilst the authors did not explicitly address the issue of trans-
porting functions across ornaments, much of the infrastructure was
implicitly there: for instance, lifting of folds is a trivial specialisa-
tion of induction. Also, the characterisation of the fix-point of an
algebraic ornament as op-reindexing of the fold is a key ingredient
to understanding index-level computations and assimilate them at
the term level.

In their work on realisability and parametricity for Pure Type
Systems, Bernardy and Lasson [Bernardy and Lasson 2011] have
shown how to build a logic from a programming language. In such
a system, terms of type theory can be precisely segregated based
on their computational contribution and their logical contribution.
In particular, the idea that natural numbers realise lists of the corre-
sponding length appears in this system under the guise of vectors,
the reflection of the realisability predicate. The strength of the re-
alisability interpretation is that it is naturally defined on functions:
while McBride [2012] and Atkey et al. [2011] only consider or-
naments on datatypes, their work is the first, to our knowledge, to
capture a general notion of functions realising — i.e. ornamenting —
other functions.

Following the steps of Bernardy, Ko and Gibbons [2011]
adapted the realisability interpretation to McBride’s universe of
datatypes and explored the other direction of the Patch equiva-
lence, using reornaments to generate coherence properties: they
describe how one could take list append together with a proof that
it is coherent with respect to addition and obtain the vector append
function. Their approach would shift neatly to our index-aware
setting, where the treatment of reornaments is streamlined by the
availability of deletion.

However, we prefer to exploit the direction of the equivalence
which internalises coherence: we would rather use the full power of
dependent types to avoid explicit proof. Hence, in our framework,
we simultaneously induce list append and implicitly prove its co-
herence with addition just by defining vector append. Of course,
which approach is appropriate depends on one’s starting point.
Moreover, our universe of functions takes a step beyond the related
work by supporting the mechanised construction of liftings, leaving
to the user the task of supplying a minimal patch. Our framework
could easily be used to mechanise the realisability predicate con-
structions of Bernardy and Lasson [2011], Ko and Gibbons [2011].

7. Conclusion

In this paper, we have developed the notion of functional ornament
and shown how one can achieve code reuse by transporting func-
tions along a functional ornament. To this end, we have adapted
McBride’s ornaments to our universe of datatypes [Chapman et al.
2010]. This gave us the ability to compute over indices, hence in-
troducing the deletion ornament. Deletion ornaments are a key in-

gredient for the internalisation of Brady’s optimisation [Brady et al.
2004] over inductive families. In particular, this gave us a simpler
implementation of reornaments.

We then generalised ornaments to functions: from a universe of
function type, we define a functional ornament as the ornamenta-
tion of each of its inductive components. A function of the resulting
type will be subject to a coherence property, akin to the ornamental
forgetful map of ornaments. We have constructively presented this
object, by building a small universe of functional ornaments.

Having functional ornaments, this raises the question of trans-
porting a function to its ornamented version in such way that the
coherence property holds. Instead of asking our user to write cum-
bersome proofs, we defined a Patch type as the type of all the func-
tions that satisfies the coherence property by construction. Hence,
we make extensive use of the dependently typed programming
machinery offered by the environment: in this setting, the type-
checker, that is the computer, is working with us to construct a term,
not waiting for us to produce a proof.

Having implemented a function correct by construction, one
then gets, for free, the lifting and its coherence certificate. This
is a straightforward application of the equivalence between the
Patch type and the set of coherent functions. These projection
functions have been implemented in type theory by simple generic
programming over the universe of functional ornaments.

To further improve code reuse, we provide two clever construc-
tors to implement a Patch type: the idea is to use the structure of
the base function to guide the implementation of the coherent lift-
ing. Hence, if the base function uses a specific induction principle
or returns a specific constructor, we make it possible for the user to
specify that she wants to lift this element one level up. This way, the
function is not duplicated: only the new information, as determined
by the ornament, is necessary.

To conclude, we believe that this is a first yet interesting step to-
ward code reuse for dependently typed programming systems. With
ornaments, we were able to organise datatypes by their structure.
With functional ornaments, we are now able to organise functions
by their structure-preserving computational behaviour. Besides, we
have developed some appealing automation to assist the implemen-
tation of functional ornaments, without any proving required, hence
making this approach even more accessible.

7.1 Future work

Whilst we have deliberately chosen a simple universe of functions,
we plan to extend it in various directions. Adding type dependency
(II- and X-types) but also non inductive sets is a necessary first
step. Inspired by Bernardy and Lasson [2011], we would like to
add a parametric quantifier: in the implementation of ilookup, we
would mark the index A of Vecs and IMaybey as parametric so
that in the cons a case, the a could automatically be carried over.

The universe of functional ornaments could be extended as
well, especially once the universe of functions has been extended
with dependent quantifiers. For instance, we want to consider the
introduction and deletion of quantifiers, as we are currently doing
on datatypes. Whilst we have only looked at least fixed points in
this paper, we also want to generalise our universe with greatest
fixed points and the lifting of co-inductive definitions.

Further, our framework relies crucially on the duality between a
reornament and its ornament presentation subject to a proof. We
cross this isomorphism in both directions when we project the
lifting from the coherent lifting. In practice, this involves a traversal
of each of the input datatypes and a traversal of each of the output
datatypes. However, computationally, these traversal are identities:
the only purpose of these terms is at the logical level, for the
type-checker to fix the types. We are looking at transforming our
library of clever constructor into a proper domain-specific language

(DSL). This way, implementing a coherent lifting would consists in
working in a DSL for which an optimising compiler could compute
away the computationally irrelevant operations.

Finally, much work remains to be done on the front of usability:
for convenience, we have presented some informal notations for
datatypes, their ornaments and an extension of Epigram program-
ming facility with liftings. A formal treatment of these syntaxes and
of their elaboration to the low-level type theory is underway: we are
confident that a sufficiently abstract semantics can be given to these
syntaxes by giving a relational specification of the elaboration pro-
cess, in the style of Harper and Stone [2000] for Standard ML.

Acknowledgements We owe many thanks to the anonymous re-
viewer, their comments having significantly improved this paper.
We are also very grateful to Guillaume Allais, Stevan Andjelkovic
and Peter Hancock for their meticulous reviews of this paper. We
shall also thank Edwin Brady for suggesting the study of lookup
functions and Andrea Vezzosi for spotting an issue in our defini-
tion of reornaments. Finally, this paper would have remained a draft
without the help and encouragement of José Pedro Magalhdes. The
authors are supported by the Engineering and Physical Sciences
Research Council, Grant EP/G034699/1.

References

R. Atkey, P. Johann, and N. Ghani. When is a type refinement an inductive
type? In FOSSACS, volume 6604 of Lecture Notes in Computer Science,
pages 72-87. Springer, 2011.

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type
systems. In FOSSACS, volume 6604 of Lecture Notes in Computer
Science, pages 108—122. Springer, 2011.

R. S. Bird and O. de Moor. Algebra of programming. Prentice Hall, 1997.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store
their indices. In Types for Proofs and Programs, pages 115-129. 2004.

J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art of
levitation. SIGPLAN Not., 45:3-14, September 2010.

T. Coquand. Pattern matching with dependent types. In Types for Proofs
and Programs, 1992.

P. Dybjer. Inductive families. Formal Asp. Comput., 6(4):440—465, 1994.

T. Freeman and F. Pfenning. Refinement types for ML. SIGPLAN Not., 26:
268-277, May 1991.

C. Fumex, N. Ghani, and P. Johann. Indexed induction and coinduction,
fibrationally. In CALCO, pages 176-191, 2011.

R. Harper and C. Stone. A Type-Theoretic interpretation of standard ML.
In Proof, Language, and Interaction: essays in honour of Robin Milner,
2000.

H.-S. Ko and J. Gibbons. Modularising inductive families. In Workshop on
Generic Programming, pages 13-24, 2011.

C. McBride. Ornamental algebras, algebraic ornaments. Journal of Func-
tional Programming, to appear, 2012.

C. McBride and J. McKinna. The view from the left. J. Funct. Program.,
14(1):69-111, 2004.

C. McBride, H. Goguen, and J. McKinna. A few constructions on construc-
tors. In TYPES, pages 186-200, 2004.

P. Morris, T. Altenkirch, and N. Ghani. A universe of strictly positive
families. Int. J. Found. Comput. Sci., 20(1):83-107, 2009.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

P-Y. Strub. Coq modulo theory. In CSL, pages 529-543, 2010.

N. Swamy, J. Chen, C. Fournet, P-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In ICFP,
pages 266-278. ACM, 2011.

The Coq Development Team. The Coq Proof Assistant Reference Manual.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. In
POPL, 2003.

