
Custom Instruction Support for Modular
Defense against Side-channel and Fault Attacks

Pantea Kiaei1, Darius Mercadier2, Pierre-Evariste Dagand3,
Karine Heydemann4, and Patrick Schaumont5

1 Virginia Tech, Blacksburg, VA 24061, USA, pantea95@vt.edu
2 LIP6, Paris, France, darius.mercadier@gmail.com

3 LIP6, Paris, France, pierre-evariste.dagand@lip6.fr
4 LIP6, Paris, France, karine.heydemann@lip6.fr

5 Worcester Polytechnic Institute, Worcester, MA 01609, USA, pschaumont@wpi.edu

Abstract. The design of software countermeasures against active and
passive adversaries is a challenging problem that has been addressed by
many authors in recent years. The proposed solutions adopt a theoretical
foundation (such as a leakage model) but often do not offer concrete ref-
erence implementations to validate the foundation. Contributing to the
experimental dimension of this body of work, we propose a customized
processor called SKIVA that supports experiments with the design of
countermeasures against a broad range of implementation attacks. Based
on bitslice programming and recent advances in the literature, SKIVA
offers a flexible and modular combination of countermeasures against
power-based and timing-based side-channel leakage and fault injection.
Multiple configurations of side-channel protection and fault protection
enable the programmer to select the desired number of shares and the
desired redundancy level for each slice. Recurring and security-sensitive
operations are supported in hardware through custom instruction-set
extensions. The new instructions support bitslicing, secret-share genera-
tion, redundant logic computation, and fault detection. We demonstrate
and analyze multiple versions of AES from a side-channel analysis and
a fault-injection perspective, in addition to providing a detailed perfor-
mance evaluation of the protected designs. To our knowledge, this is the
first validated end-to-end implementation of a modular bitslice-oriented
countermeasure.

Keywords: Side-channel Leakage · Fault Injection · Bitslice Program-
ming

1 Introduction

Side-channel analysis and fault attacks have plagued cryptographic software on
embedded processors for many years. The threat of power-based and timing-
based side-channel leakage is well understood and countermeasures such as mask-
ing and constant-time programming figure prominently in the cryptographer’s
toolbox [43, 5]. In parallel, the research community has gained more insight into

2 P. Kiaei, D. Mercadier, et al.

bit0bitn-1 slice0slicek-1

bit0

bitn-1

bit1

bit0

bitn-1

bit1

reg0

regn-1

aggregated
slice{{

standard
representation

bitslice
representation

aggregated bitslice
representation

Higher-order
Masking

Data
Redundancy

Temporal
Redundancy

aggregated
slice

reg1

reg0

regk-1

reg1

reg0

regn-1

reg1
k

n

n

k

Fig. 1: In a standard representation, processor registers are allocated per data
word. In a bitsliced representation, processor registers are allocated per bit-
weight of a block of data words. In an aggregated bitslice representation, multiple
bitslices are allocated per data bit. Aggregated bitslices can be shares of a masked
design, redundant data of a fault-protected design, or a combination of those.

the fault behavior of hardware and software, thus greatly increasing the potency
of fault attacks [52, 46]. The impact of fault attacks is minimized with fault
detection and temporal or spatial redundancy of the software execution [33, 3].

Although there exists an extensive array of specific, dedicated countermea-
sures, there is surprisingly few work available [44, 48, 49] offering protection
against both side-channel analysis and fault injection. This is especially true for
software. The programmer is left selecting candidate solutions, figuring out if
and how they can safely be assembled. This is not an easy task because coun-
termeasures may interact in non-trivial (and unsafe) manners.

Recent related work on side-channel countermeasures has proposed partial
implementations of behavior called gadgets. The integration of these gadgets
into an overall secure implementation is a challenge that has triggered multiple
revisions of the attacker model. For example, Ishai et al. [27], Beläıd et al. [8],
Battistello et al. [6], Barthe et al. [5] and Cassiers et al. [14] present the masked
implementation of a multiplication operation, each protected against attackers
of a different level of sophistication. Given this broad variation in proposals,
we believe there is a need for their practical evaluation in a common setting.
It is not our intention to compare these proposals as in [21]. Instead, we high-
light the role of custom instruction-set extensions as a tool for countermeasure
implementation.

In this paper, we introduce SKIVA, a processor that enables a modular
approach to countermeasure design, giving programmers the flexibility to pro-
tect their ciphers against timing-based side-channel analysis, power-based side-
channel analysis and/or fault injection at various levels of security. We leverage
existing techniques in higher-order masking, in spatial and in temporal redun-
dancy. Modularity is achieved through bitslicing, each countermeasure being
expressed as a transformation from a bitsliced design into another bitsliced de-

Custom Instruction Support for Modular Defense 3

sign. The capabilities of SKIVA are demonstrated on the Advanced Encryption
Standard, but the proposed techniques can be applied to other ciphers as well.

Countermeasure design through bitslice aggregation. SKIVA exploits the redun-
dancy that is provided by a bitsliced execution model. The n-bit datapath of
the processor is seen as n 1-bit processors operating in parallel. The symmetry
of bitslices in a processor word is the basis for the modular protection schemes
enabled by SKIVA. Figure 1 demonstrates three different organizations of a reg-
ister file in a processor. We obtain the bitslice representation through a matrix
transposition of the input data so that one processor register contains all bits of
a given weight. The key idea of bitslice aggregation is to allocate multiple slices
to the representation of each data-bit. We will demonstrate how bitslice aggre-
gation enables higher-order masking (to protect against power side-channels),
data redundancy (to protect against data faults), and temporal redundancy (to
protect against control faults).

Contributions. SKIVA is a processor with built-in support for modular counter-
measures against side-channel analysis and fault analysis. We open-source our
codes to make it possible for the community to evaluate our implementation 6.
We make the following contributions.
1. We propose a flexible and modular methodology for designing countermea-

sures. It enables the combination of higher-order masking with spatial fault-
redundancy and with temporal fault-redundancy. The number of shares and
fault-redundancy levels is statically determined by the programmer (single,
double, quadruple shares and single, double, quadruple fault-redundancy).

2. We describe hardware support for the proposed methodology in SKIVA, a
processor with instruction set extensions specialized for bitsliced transpo-
sition, bitsliced masked operation, bitsliced fault detection, redundant bit-
sliced expansion, and Boolean operations on complementary data.

3. We analyze the performance and code size of the Advanced Encryption Stan-
dard on SKIVA, under multiple levels of side-channel and fault-resistance.

4. We evaluate the side-channel leakage characteristics of SKIVA implemented
as a soft-core processor on a SAKURA-G FPGA board. We perform theo-
retical as well as empirical analysis of fault detection coverage.

Outline. In Section 2, we review the related work, covering the design of bitsliced
software and countermeasures based on such software. In Section 3, we introduce
several modular countermeasure schemes. Starting with bitslicing, we describe
a systematic treatment of higher-order masking, intra-instruction redundancy,
and temporal redundancy. In Section 4, we dive into the implementation aspects
and propose a custom instruction-set extension to support various aspects of
the bitslice-oriented countermeasures. In Section 5, we present the measurement
results of our prototype, including performance, side-channel leakage evaluation,
and fault detection/correction coverage. In Section 6, we conclude the paper.

6 Cfr. https://github.com/Secure-Embedded-Systems/Skiva

https://github.com/Secure-Embedded-Systems/Skiva

4 P. Kiaei, D. Mercadier, et al.

2 Preliminaries

Bitslicing is an implementation technique to produce high-throughput, constant-
time software implementations of cryptographic primitives [10, 29]. A cipher
is expressed as a Boolean circuit. The circuit is compiled into a straight-line
program by leveling the circuit and translating each Boolean operation to a
corresponding bitwise CPU instruction. Since the CPU manipulates registers of
32 bits, running the resulting program amounts to running 32 parallel instances
of the original Boolean circuit.

Bitslicing versus wordslicing. In a block cipher, the state variables are k-bit
wide. The bitsliced version of the cipher will store these k bits in a transposed
manner, such that register i will contain the i-th bit of the state. This approach
has been used for DES [10] as well as for AES [41]. However, one can also adopt
wordslicing, which stores groups of b bits out of a k-bit state per register. A
wordsliced design requires k/b registers, as opposed to k registers for a bitsliced
design. Wordsliced design has been demonstrated for AES [31, 29]. The choice
between bitslicing and wordslicing has a significant impact on the efficiency
of the resulting design. The resulting code also changes significantly with the
slicing strategy. The bitsliced implementation of AES has to juggle with 128
machine words while being restricted to straightforward logical instructions. The
wordsliced implementation of AES fits within eight registers, at the expense
of complex permutations within individual words. On an embedded RISC-like
CPU, our experiments have shown that the bitsliced implementation yields a
higher throughput than the wordsliced one (Section 5.1). Conversely, on a high-
end SIMD CPU, earlier work has shown that wordslicing is key to reach speed
records in software encryption [29]. The lack of SIMD instructions and the lesser
register pressure for RISC CPUs thus favors bitsliced implementations, hence
our focus on bitslicing in the present work.

Countermeasures for bitsliced designs. Many hardware-oriented countermea-
sures can be applied as transformations on the Boolean programs of bitsliced
designs. An early effort to address power-based side-channel leakage is the du-
plication method [17]. More recently, several masking-oriented techniques have
been proposed [13, 5, 28, 23]. Bitslicing is also a systematic countermeasure
against timing attacks. By construction, a Boolean program runs in constant (or
repeatable) time. Conditionals in a Boolean program are implemented through
data-multiplexing: both results are sequentially computed and the relevant out-
put is obtained by demultiplexing these intermediary results based on the con-
ditional. Finally, the massively parallel nature of a bitsliced implementation can
be exploited to provide intra-instruction redundancy (encrypting the same data
in redundant slices) as well as various forms of temporal redundancy (processing
data at distinct rounds in distinct, randomly-chosen slices) [37, 32]. In a bitsliced
setting, these techniques translate into end-to-end protection, protecting a cipher
from the moment the plaintext is introduced to the moment the ciphertext is
produced.

Custom Instruction Support for Modular Defense 5

(D,Rs) = (1, 1)b10b11b12b13b14b15b16b17b18b19b110b111b112b113b114b115b116b117b118b119b120b121b122b123b124b125b126b127b128b129b130b131

(D,Rs) = (1, 2)b10b11b12b13b14b15b16b17b18b19b110b111b112b113b114b115b10b11b12b13b14b15b16b17b18b19b110b111b112b113b114b115

(D,Rs) = (1, 4)b10b11b12b13b14b15b16b17b10b11b12b13b14b15b16b17b10b11b12b13b14b15b16b17b10b11b12b13b14b15b16b17

(D,Rs) = (2, 1)b10b20b11b21b12b22b13b23b14b24b15b25b16b26b17b27b18b28b19b29b110b210b111b211b112b212b113b213b114b214b115b215

(D,Rs) = (2, 2)b10b20b11b21b12b22b13b23b14b24b15b25b16b26b17b27b10b20b11b21b12b22b13b23b14b24b15b25b16b26b17b27

(D,Rs) = (2, 4)b10b20b11b21b12b22b13b23b10b20b11b21b12b22b13b23b10b20b11b21b12b22b13b23b10b20b11b21b12b22b13b23

(D,Rs) = (4, 1)b10b20b30b40b11b21b31b41b12b22b32b42b13b23b33b43b14b24b34b44b15b25b35b45b16b26b36b46b17b27b37b47

(D,Rs) = (4, 2)b10b20b30b40b11b21b31b41b12b22b32b42b13b23b33b43b10b20b30b40b11b21b31b41b12b22b32b42b13b23b33b43

(D,Rs) = (4, 4)b10b20b30b40b11b21b31b41b10b20b30b40b11b21b31b41b10b20b30b40b11b21b31b41b10b20b30b40b11b21b31b41

Fig. 2: Bitslice aggregations on a 32 bit register, depending on (D,Rs).

3 Modular design of countermeasures

In this section, we present the four protection mechanisms that can be com-
bined in a modular manner, including (a) bitslicing to protect against timing
attacks; (b) higher-order masking to protect against power side-channel leakage;
(c) intra-instruction redundancy to protect against data faults and (d) temporal
redundancy to protect against control faults. We demonstrate our protection on
the AES cipher running on SKIVA. However, the techniques are equally applica-
ble to other bitsliced ciphers. However, the panel of techniques is not restricted to
this cipher nor this processor: they naturally generalize – in a systematic manner
– to any cipher admitting a bitsliced implementation, for processors of arbitrary
bitwidth as well as design (RISC as well as CISC, SIMD or not). We leave it to
future work to evaluate their effectiveness on a broader range of cryptographic
primitives and hardware platforms.

Our implementation of AES is fully bitsliced: the 128-bit input of the cipher
is represented with 128 variables. Since each variable stores 32 bits on SKIVA,
a single run of our primitive computes 32 parallel instances of AES. The protec-
tion mechanisms presented in the following assume the availability of a bitsliced
design while themselves producing a bitsliced design (of lesser parallelism) in
return. The modularity of our approach lies in this simple observation: as long
as there is enough parallelism to compute at least one run of the algorithm, we
can chain these program transformations.

Figure 2 shows the bitslice organization for masked and intra-instruction-
redundant design. We support masking with 1, 2, and 4 shares leading to re-
spectively unmasked, 1st-order, and 3rd-order masked implementations. By con-
vention, we use the letter D to denote the number of shares (D ∈ {1, 2, 4}) of

6 P. Kiaei, D. Mercadier, et al.

a given implementation. Within a machine word, the D shares encoding the ith

bit are grouped together, as illustrated by the contiguously colored bits b
j∈[1,D]
i

in Figure 2.
We also support spatial redundancy by duplicating a single slice into two or

four slices. By convention, we use the letter Rs to denote the spatial redundancy
(Rs ∈ {1, 2, 4}) of a given implementation. Within a machine word, the Rs

duplicates of the ith bit are interspersed every 32/Rs bits, as illustrated by
the alternation of colored words bji∈[1,RS] in Figure 2. The following subsections

elaborate on doing computations using this redundant bitslice allocation scheme.

3.1 Higher-order Masked Computation

Recent masking schemes, including those for bitsliced designs [8, 6, 5, 14, 18],
have relied on the definition of gadgets, elementary masked logic operations that
can be securely composed together. A complete cipher is then expressed as a
combination of gadgets that are wired together. The most important gadgets
include the multiplication gadget (as the canonical non-linear operation) and
the mask refresh gadget. We will demonstrate our design based on the secure
duplicated multiplication gadget by Dhooghe and Nikova [18]. For a 4-share
implementation, we base our cross-product calculations on the parallel masked
multiplication algorithm defined by Barthe et al. [5, Algorithm 3]. For 2-share
masking, we use the following multiplication gadget [21]. If x and y are two-
share inputs and r is a two-share random vector, then the two-share output is
obtained by the following expression.

z = (((x.y⊕ r)⊕ x.rot(y, 1))⊕ rot(r, 1))

Optimizing this masked design by reducing the amount of randomness [4, 9]
is orthogonal to the present work. The objective of SKIVA is to define a common
platform to evaluate such proposals.

3.2 Data-redundant Computation

We protect our implementation against data faults using intra-instruction redun-
dancy (IIR) [37, 32, 15]. We support either a direct redundant implementation,
in which the duplicated slices contain the same value, or a complementary redun-
dant implementation, in which the duplicated slices are complemented pairwise.
For example, with Rs = 4, we can have four exact copies (direct redundancy) or
two exact copies and two complementary copies (complementary redundancy).

In practice, we will favor complementary redundancy over direct redundancy.
First, it is less likely for complemented bits to flip to consistent values due to
single fault injection. For instance, timing faults during state transition [53] or
memory accesses [2] follow a random word corruption or a stuck-at-0 model.
Second, complementary slices ensure a constant Hamming weight for a slice
throughout the computation of a cipher. Our results show that complementary
redundancy results in reduced power leakage when compared to direct redun-
dancy [11].

Custom Instruction Support for Modular Defense 7

aesround

aesround
(on ½ state)

key whitening

fault check

bitsliced state

every
round

cipheri‐1 cipheri

last round

last round

cipheri cipheri+1

output

fault check

input

Fig. 3: Time-redundant computation of a bitsliced AES.

3.3 Time-redundant Computation

Data-redundant computation does not protect against control faults such as in-
struction skip. We, therefore, use a different strategy: we protect our implementa-
tion against control faults using temporal redundancy (TR) across rounds [37].
We pipeline the execution of 2 consecutive rounds in 2 aggregated slices. By
convention, we use the letter Rt to distinguish implementations with temporal
redundancy (Rt = 2) from implementations without (Rt = 1). For Rt = 2, half
of the slices compute round i while the other half compute round i− 1. Figure 3
illustrates the principle of time-redundant bitslicing as applied to AES computa-
tion. The operation starts the pipeline by filling half of the slices with the output
of the first round of AES, and the other half with the output of the initial key
whitening. At the end of round i + 1, we have re-computed the output of round
i (at a later time): we can, therefore, compare the two results and detect control
faults based on the different results they may have produced. In contrast to typ-
ical temporal-redundancy countermeasures such as instruction duplication [40],
this technique does not increase code size: the same instructions compute both
rounds at the same time. Only the last AES round, which is different from regular
rounds, must be computed twice in a non-pipelined fashion.

Whereas pipelining protects the inner round function, faults remain possible
on the control path of the loop itself. We protect against these threats through

8 P. Kiaei, D. Mercadier, et al.

Table 1: Proposed ISE. These instructions are added to the standard SPARC-V
instruction set, occupying unused opcodes. Symbols in the instruction format -
rs1, rs2, rd are registers. imm is an immediate operand. The “Type” column
shows what opcode group was used for each instruction. Appendix 6 lists the
functional specification for each instruction.

Semantics Instruction format Immediate Type

Normal → Bitslice TR2 rs1, rs2, rd logic
Bitslice → Normal INVTR2 rs1, rs2, rd ld/st

Slice Rotation SUBROT rs, imm, rd D logic

Redundancy Generation RED rs, imm, rd Rs logic
Redundancy Checking FTCHK rs, imm, rd Rs logic
Redundant AND (Rs=2) ANDC16 rs1, rs2, rd logic
Redundant XOR (Rs=2) XORC16 rs1, rs2, rd logic
Redundant XNOR (Rs=2) XNORC16 rs1, rs2, rd ld/st
Redundant AND (Rs=4) ANDC8 rs1, rs2, rd logic
Redundant XOR (Rs=4) XORC8 rs1, rs2, rd logic
Redundant XNOR (Rs=4) XNORC8 rs1, rs2, rd ld/st

standard loop hardening techniques, namely redundant loop counters – packing
multiple copies of a counter in a single machine word – and duplication of the
loop control structure [25] – producing multiple copies of conditional jumps so
as to lower the odds of all of them being skipped through an injected fault.

4 SKIVA Implementation

In this section, we present the SKIVA hardware, a custom instruction-set exten-
sion (ISE) tailored to support efficient and safe implementation of these schemes.

4.1 Custom Instruction-Set Extensions in SKIVA

We added new instructions to SKIVA to support computing on aggregated bit-
slices in three different areas. First, they help with the conversion from nor-
mal representation to bitsliced form and back. Second, they handle subword-
operations for the computation of non-linear operations on two or four shares
(D ∈ {2, 4}). Third, they handle subword-operations for spatially redundant
computations and fault checking (Rs ∈ {2, 4}). The new instructions are summa-
rized in Table 1 and will be described in detail in further subsections. Appendix
6 provides their functional specification. These new instructions are orthogo-
nal; they can be used in a mix-and-match fashion to obtain the desired level of
sharing and redundancy. We integrated the new instructions on the SPARC V8
instruction set of the open-source LEON3 processor and software toolchain [45].

Hardware integration. Figure 4 illustrates the integration of the custom data-
path into the seven-stage RISC pipeline. The instructions follow a two-input,

Custom Instruction Support for Modular Defense 9

F D A E M X W

RF
(32x32)

Cust
Instr

Y

imm

op1

op2

res

y

PC

INS rs1, rs2, rd, imm

Fig. 4: Integrated in the regular 7-stage pipeline as a new execution stage.

one-output or two-input, two-output format, encoded as two source registers,
a destination register, and an immediate field (INS rs1, rs2, rd, imm). The
upper 32-bit output of the custom instruction is transferred to the Y-register, a
register which is used for SPARC V8 instructions with 64-bit output, such as
the regular data multiplication. Instructions with longer than 32-bit outputs can
be integrated into instruction sets without this special register by duplicating
the instruction for calculating the lower half of the output and the upper half
of it separately (similar to MUL and SMMUL in ARM and Thumb instruction
set). The integration of custom-hardware deep into the pipeline necessitates the
use of simple and fast datapath hardware. However, these instructions benefit
from the same performance advantages as regular instructions, including a typ-
ical throughput of one instruction per cycle and minimal stall effect thanks to
forwarding [38].

The new instructions are mapped into unused opcodes of the SPARC V8
instruction set [50]. Since we did not replace any existing SPARC instruction,
SKIVA is backward binary-compatible with existing LEON applications. The
new instructions add minimal overhead to the design. In terms of 180nm stan-
dard cell ASIC technology, we added 1250 gate-equivalent to the design, which
amounts to 3% of the area of the integer unit of SKIVA.

Software integration. We integrated the new instructions into the software toolchain
of SKIVA by extending the assembler. The new mnemonics were then integrated
into the application in C through inline assembly coding. Because the custom
instruction format is compatible with that of existing, standard SPARC V8 in-
structions, they benefit from off-the-shelf compiler optimizations.

Related Work. Earlier efforts of hardware-specific side-channel countermeasures
based on custom instructions include mask generation [51] and hiding [42].
CRISP explores the use of custom instructions for bitslicing in a processor de-
sign [22]. CRISP defines three new instructions, based on two programmable
lookup tables. These instructions deal with bitslicing, but they do not offer
redundancy nor support for countermeasures. With the advent of open plat-
forms such as RISC-V, instruction set extensions are now a viable mechanism for
platform customization. XCrypto [34] defined instruction extensions for RISC-

10 P. Kiaei, D. Mercadier, et al.

ya0a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17a18a19a20a21a22a23a24a25a26a27a28a29a30a31rs1

rdb0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15b16b17b18b19b20b21b22b23b24b25b26b27b28b29b30b31rs2

rs1b16a16b17a17b18a18b19a19b20a20b21a21b22a22b23a23b24a24b25a25b26a26b27a27b28a28b29a29b30a30b31a31y

rs2b0a0b1a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b9a9b10a10b11a11b12a12b13a13b14a14b15a15rd

TR2 rs1, rs2, rd INVTR2 rs1, rs2, rd

(a) Semantics of TR2 and INVTR2.

r1

r2

r3

r4

r5

r6

r7

r8

r1

r2

r3

r4

r5

r6

r7

r8

r1

r2

r3

r4

r5

r6

r7

r8

r1

r2

r3

r4

r5

r6

r7

r8

tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

bit 31-28

bit 15-12

bit 23-20

bit 7-4

bit 27-24

bit 11-8

bit 19-16

bit 3-0

word 7

word 6

word 5

word 4

word 3

word 2

word 1

word 0

(b) Example of an 8-bit bitslice transposition using 8 registers.

Fig. 5: Transposition and its inverse

V while Galois has proposed a formally validated one [30]. XCrypto supports
special registers for cryptographic algorithms as well as custom instructions to
improve the performance of such applications. XCrypto is designed for efficient
cryptographic workload processing with support for random number generation
and dedicated arithmetic. The SKIVA custom instructions are instead designed
as flexible countermeasures. The SKIVA programmer decides on the level of
security and then applies SKIVA instructions commensurate with the selected
level.

4.2 Hardware Support for Aggregated Bitslice Operations

In the following, we describe each group of custom instructions and their usage.
Appendix 6 gives a formal specification of each instruction.

Instructions for bitslicing. We introduce two instructions to transpose data into
their bitsliced representation (Figure 5a). The first instruction, TR2 rs1, rs2,

rd, performs an interleaving of the bits of two source registers into two output
registers. This interleaving can be thought of as a 2-bit transposition, as it places
bits within the same column of register rs1 and rs2 in adjacent positions of
the output registers rd and y. The second instruction, INVTR2 rs1, rs2, rd,
performs the inverse operation. Bitslice transposition for an arbitrary number
of bits is achieved through repeated application of TR2. Figure 5b shows an
8-bit transposition achieved using twelve applications of TR2. In general, for a
2n-bit transition, n.2n−1 applications of TR2 are needed. To create aggregated
bitslices (Rs > 1 or D > 1), we pre-process the source registers (in non-bitsliced
form) by duplicating them first and then transposing them to bitsliced form.
The side-channel protection and fault-detection of SKIVA are not active during

Custom Instruction Support for Modular Defense 11

byte3rs1 byte2 byte1 byte0

byte3rd byte2 byte1 byte0

byte3rs2 byte2 byte1 byte0

andorandor

hword1rs1 hword0

rd

hword1rs2 hword0

xorxnor

hword1 hword0

(c) (d)

higher lower

lower’ lower

higher’ higher

rs1

rd

y

lower’ lowerrs1

lower lowerrd

(inv) xnor

(a) (b)

Fig. 6: (a) Example of RED on half-word (top, left). (b) Example of FTCHK on half-
word (top, right). (c) Example of ANDC8 (bottom, left). (d) Example of XORC16
(bottom, right).

bitslice conversion, but we check their consistency after transposition and before
encryption.

Instructions for higher-order masking. SKIVA supports two-share and four-share
implementations of bitsliced algorithms, which provide first-order and third-
order masked side-channel resistance. The shares are located in adjacent bits of
a processor register. We use Boolean masking so that the XOR of all shares yields
the unmasked value. Linear operations on an ensemble of shares are computed as
the linear operation on each individual share. Linear operations are done using
bitwise operations on the two-share and four-share representation. Computing
a secure multiplication over multiple shares requires the computation of the
partial share-products. For example, the secure multiplication of the two-share
slices (a1, a0) with the two-share slices (b1, b0) requires the partial products a1.b1,
a1.b0, a0.b1, and a0.b0. To align the slices for the cross-products, we implement
a slice rotation instruction SUBROT rs, imm, rd. This instruction transforms
the two-share slices (a1, a0) into (a0, a1). The same instruction SUBROT can also
handle a four-share design, which transforms (a3, a2, a1, a0) into (a2, a1, a0, a3).

Instructions for fault redundancy checking. SKIVA supports fault redundancy
countermeasures using instructions for the generation and checking of fault-
redundant slices. The redundant bits with respect to fault injection are stored
in adjacent bytes of a halfword. Figure 6(a) shows the example of a halfword
operation to generate redundant data, while Figure 6(b) shows the example of
a halfword operation to verify redundant data.

The RED rs1, imm, rd instruction generates redundant data. The redun-
dant copy is stored in the upper halfword (Rs = 2) or in the three upper bytes
(Rs = 4). The redundant portion can be either a direct or else a complement
of the original data. There are six variants of RED rs1, imm, rd. Two of them
support dual redundancy (Rs = 2), they duplicate the lower and upper halfword,

12 P. Kiaei, D. Mercadier, et al.

two-share NINA Secure Multiplication
input: %i2 (a),
%i3 (b),
%i4 (random),
%i5 (fault flags)
output: %o0 (a & b)
%i5 (accumulated fault)
step 1: clear input in case of a fault
NOT %i5, %o4 #
AND %i2, %o4, %o6 #
step 2: calculate AND result
AND %i3, %o6, %o5 # partial product 1
SUBROT %o6, 2, %l0 # share-rotate
AND %i3, %l0, %o3 # partial product 2
XOR %l0, %l0, %l0 # clear SUBROT output
XOR %o5, %i4, %o2 # random + parprod 1
XOR %o2, %o3, %o1 # + parprod 2
step 3: refresh the output
SUBROT %i4, 2, %l1 # parallel refresh
XOR %o1, %l1, %o0 # output
step 4: update fault flags
FTCHK %o0, imm, %g5 # imm depends on Rs and Rt
OR %g5, %i5, %i5 #

Fig. 7: Two-share NINA multiplication gadget using SKIVA instructions

in direct or complementary form. Four additional variants support quadruple re-
dundancy (Rs = 4), and they quadruple the lower two bytes or the upper two
bytes, each in direct or complementary form.

The FTCHK rs1, imm, rd instruction verifies the consistency of the redun-
dant data. This instruction generates a fault-flag in the redundant form (over Rs

bits, Appendix 6), which can be used to drive a fault condition test. Figure 6(b)
illustrates the case of a dual-redundancy check on complementary redundant
data. The fault-check is evaluated in a redundant manner so that the fault-
check itself can detect fault injection on its own check. The expected faultless
result of the instruction example in Figure 6(b) is 0x00000000. There are four
variants of this instruction, for either dual (Rs = 2) or quadruple redundancy
(Rs = 4), and direct or complementary redundancy.

Instructions for fault-redundant computations. Computations on direct-redundant
bitslices can be done using standard bitwise operations. For complementary-
redundant bitslices, the bitwise operations have to be adjusted to complement-
operations. The complement-redundant data format can be introduced at the
halfword boundary (Rs = 2) or the byte boundary (Rs = 4). We opted to pro-
vide support for bitwise AND, XOR, and XNOR on these complement-redundant
data formats. Figure 6(c-d) illustrates the case of ANDC8 and XORC16.

Putting it all together. We demonstrate how the proposed instructions can be
combined by building an implementation for a recently proposed gadget that
offers protection against combined attacks (side-channel attacks and faults) us-
ing the non-interference and non-accumulation (NINA) property [18]. Figure 7

Custom Instruction Support for Modular Defense 13

shows a two-share NINA multiplication. Appendix C lists a four-share NINA
multiplication. The multiplication takes four steps. First, we check the fault
flags and conditionally clear an input. This diverts attacks where an adversary
uses faults to influence side-channel leakage. Second, the parallel multiplication
algorithm evaluates the product [5]. Third, the output is refreshed using paral-
lel mask refreshing (required for the four-share multiplication [5]). Finally, the
fault flags are updated to reflect the computation status of the result. In terms
of NINA property, these gadgets are (D,Rs)-SNINA. The proposed gadget in
Figure 7 is of the fault-detecting type and does not protect against statistical
ineffective fault attacks (SIFA). To overcome this vulnerability, we need fault-
correction instead of detection. Fault-correction based on majority voting fits
well into SKIVA scheme where Rs = 4 by extending the FTCHK instruction to
check the redundant copies of the input and put the most agreeable copy on the
output. Majority voting needs at least 2k+1 copies to resolve k faults; therefore,
when Rs = 4, it can resolve one fault.

In practice, the custom instruction-set extensions of SKIVA have to be judi-
ciously applied to prevent accidental side-channel leakage. One area of attention
is the allocation of masked variables in registers. For non-bitsliced designs, acci-
dental unmasking has been demonstrated when a mask m overwrites a masked
variable m⊕ v [1, 36] For bitsliced designs, the risk is lower because each share
resides at a different bit-index. Still, bitslices may interfere with each other in
unexpected manners [19]. In SKIVA, the SUBROT instruction shifts shares over
bit-positions using a dedicated data-path. After the result of SUBROT is con-
sumed, that register is cleared to eliminate lingering shares. In addition, we
control register allocation for secure gadgets manually. For example, we ensure
that SUBROT never overwrites its own input. We also maintain a strict separation
between registers used for the masked algorithm (i.e. AES), and registers used
for mask generation and mask distribution. This ensures that registers contain-
ing masked data cannot be overwritten by registers directly related to random
masks.

5 Results

This section evaluates the performance and side-channel security of AES on
SKIVA. The implementation under test is in bitsliced format and uses the secure
multiplication gadgets introduced in Section 4.2. Next, we analyze the fault
coverage of applications on SKIVA under the assumed fault model.

We used the Usuba [35] compiler to generate the 18 different implementations
of AES (all combinations of D ∈ {1, 2, 4} , Rs ∈ {1, 2, 4} and Rt ∈ {1, 2}). Usuba
takes as input a high-level dataflow description of a cipher, which it bitslices and
optimizes before generating C code. We added a new backend to Usuba to make
it use our protection schemes and custom instructions in the C codes it produces.
We also patched Leon Bare-C Cross Compilation System’s (BCC) assembler to
support SKIVA’s custom instructions in order to be able to compile the C codes
produced by Usuba.

14 P. Kiaei, D. Mercadier, et al.

Table 2: Exhaustive evaluation of the AES design space

Rt = 1
D

1 2 4

Rs

1 44 C/B 176 C/B 579 C/B
2 89 C/B 413 C/B 1298 C/B
4 169 C/B 819 C/B 2593 C/B

(a) Reciprocal throughput (Rt = 1)

Rt = 2
D

1 2 4

Rs

1 131 C/B 465 C/B 1433 C/B
2 269 C/B 1065 C/B 3170 C/B
4 529 C/B 2122 C/B 6327 C/B

(b) Reciprocal throughput (Rt = 2)

5.1 Performance Evaluation

Our experimental evaluation has been carried on a prototype of SKIVA deployed
on the main FPGA (Cyclone IV EP4CE115) of an Altera DE2-115 board. The
processor is clocked at 50 MHz and has access to 128 kB of RAM. Our perfor-
mance results are obtained by running the desired programs on bare metal. We
assume that we have access to a TRNG that frequently fills a register with a
fresh 32-bit random string. We use a software pseudo-random number generator
(32-bit xorshift) to emulate a TRNG refreshed at a rate of our choosing. We
checked that our experiments did not overflow the period of the RNG.

Several implementations of AES are available on our 32-bit, SPARC-derivative
processor, with varying degrees of performance. The constant-time, byte-sliced
implementation (using only 8 variables to represent 128 bits of data) of BearSSL [39]
performs at 48 C/B. Our bitsliced implementation (using 128 variables to rep-
resent 128 bits of data) performs favorably at 44 C/B while weighing 8060B:
despite a significant register pressure (128 live variables for 32 machine regis-
ters), the rotations of MixColumn and the ShiftRows operations are compiled
away. This bitsliced implementation serves as our baseline in the following.

Throughput (AES). We report on the impact of our hardware and software
design on the performance of our bitsliced implementation of AES (Section 3).
To do so, we evaluate the performance of our 18 variants of AES, for each value
of (D ∈ {1, 2, 4}, Rs ∈ {1, 2, 4}, Rt ∈ {1, 2}). To remove the influence of the
TRNG’s throughput from the performance evaluation, we assume that its refill
frequency is strictly higher than the rate at which our implementation consumes
random bits. In practice, a refill rate of 10 cycles for 32 bits is enough to meet
this requirement.

We report our performance results in Table 2. For D and Rt fixed, the
throughput decreases linearly with Rs. At fixed D, the variant (D,Rs = 1, Rt =
2) (temporal redundancy by a factor 2) exhibits similar performances as (D,Rs =
2, Rt = 1) (spatial redundancy by a factor 2). However, both implementation
are not equivalent from a security standpoint. The former offers weaker security
guarantees than the latter. Similarly, at fixed D and Rs, we may be tempted to
run twice the implementation (D,Rs, Rt = 1) rather than running once the im-
plementation (D,Rs, Rt = 2): once again, the security of the former is reduced

Custom Instruction Support for Modular Defense 15
0 2 4 6 8 10

sample ×104

-50

0

50

le
ak

ag
e

Power trace

0 2 4 6 8 10

sample ×104

-50

0

50

le
ak

ag
e

Power trace

0 2 4 6 8 10

sample ×104

-10

0

10

t v
al

ue

1st order t-test

0 2 4 6 8 10

sample ×104

-5

0

5

t v
al

ue

1st order t-test

0 2 4 6 8 10

sample ×104

-10

0

10

t v
al

ue

2nd order t-test

0 2 4 6 8 10

sample ×104

-10

0

10

t v
al

ue

2nd order t-test

Fig. 8: 1st and 2nd order t-tests of 1st order masked implementation. Left column:
40K fixed vs. 40K random traces with PRNG off. Right column: 500K fixed vs.
500K random traces with PRNG on.

compared to the latter since temporal redundancy (Rt = 2) couples the compu-
tation of 2 rounds within each instruction, whereas pure instruction redundancy
(Rt = 1) does not.

Code size (AES). We measure the impact of our hardware and software design on
code size, using our bitsliced implementation of AES as a baseline. Our hardware
design provides us with native support for spatial, complementary redundancy
(ANDC, XORC, and XNORC). Performing these operations through software emula-
tion would result in a ×1.3 (for D = 2) to ×1.4 (for D = 4) increase in code
size. One must nonetheless bear in mind that the security provided by emulation
is not equivalent to the one provided by native support. The temporal redun-
dancy (Rt = 2) mechanism comes at the expense of a small increase (less than
×1.06) in code size, due to the loop hardening protections as well as the checks
validating results across successive rounds. The higher-order masking comes at
a reasonable expense in code size: going from 1 to 2 shares increases code size by
×1.5 whereas going from 1 to 4 shares corresponds to a ×1.6 increase. A fully
protected implementation (D = 4, Rs = 4, Rt = 2) thus weighs 13148 bytes.

5.2 Side-channel Analysis

We conduct an experiment to demonstrate how the proposed custom instructions
can help decrease the power leakage. We implement SKIVA on the main FPGA
of SAKURA-G board running at 9.8MHz and powered at 5V by an external
power generator. We use a LeCroy WaveRunner 610Zi oscilloscope, sampling
250M samples/sec. To limit the noise level, we use a low-pass filter with a cutoff
frequency of 81MHz on the power probe.

Correlation power analysis. To evaluate our design, we conduct 1st order corre-
lation power analysis (CPA) [12] on power consumption traces of the SubBytes

16 P. Kiaei, D. Mercadier, et al.
0 2 4 6 8 10 12

sample ×104

-100

0

100

le
ak

ag
e

Power trace

0 2 4 6 8 10 12

sample ×104

-100

0

100

le
ak

ag
e

Power trace

0 2 4 6 8 10 12

sample ×104

-20

0

20

t v
al

ue

1st order t-test

0 2 4 6 8 10 12

sample ×104

-5

0

5

t v
al

ue

1st order t-test

0 2 4 6 8 10 12

sample ×104

-10

0

10

t v
al

ue

2nd order t-test

0 2 4 6 8 10 12

sample ×104

-5

0

5

t v
al

ue

2nd order t-test

0 2 4 6 8 10 12

sample ×104

-50

0

50

t v
al

ue

3rd order t-test

0 2 4 6 8 10 12

sample ×104

-5

0

5

t v
al

ue

3rd order t-test

0 2 4 6 8 10 12

sample ×104

-50

0

50

t v
al

ue

4th order t-test

0 2 4 6 8 10 12

sample ×104

-50

0

50
t v

al
ue

4th order t-test

Fig. 9: 1st to 4th order t-tests of 3rd order masked implementation. Left column:
35K fixed vs. 35K random traces with PRNG off. Right column: 500K fixed vs.
500K random traces with PRNG on.

stage of the first round of AES. We use the Hamming weight of the SubBytes

output as the power model. To speed up our attack, we use a sampling rate of
50M samples/sec. In this test case, we attack a single bitslice out of 32 parallel
bitslices; the unused bitslices perform constant encryption of an all-zero plain-
text with an all-zero key. Our CPA attack analyzes 50K traces and confirms
that 1st order CPA on the unmasked scheme can reveal half of the key with 12K
traces while it reveals all the secret key bytes with 24K traces. When masking
is enabled, no key byte is revealed under any configuration at the maximum
number of traces we considered (50K).

Test vector leakage assessment. To test the correctness of our secure implemen-
tations with the proposed instructions, we use the TVLA methodology [20, 7]
and conduct the 1st and 2nd order t-tests on our 1st order masked implementa-
tion and the 1st to 4th order t-tests on our 3rd order masked encryption in two
settings with and without the custom instructions. We set the trigger on one
S-box in the fourth round of AES based per TVLA methodology [7].

For our experiments, we conduct the univariate non-specific fixed-vs.-random
t-test in which a set of random inputs and a set of fixed inputs are interspersed in
a random order and sent to the device. The fixed plaintext is selected such that

Custom Instruction Support for Modular Defense 17

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

sample ×10
4

-6

-4

-2

0

2

4

6

t
v
a
lu

e

1st order t-test

(a) Complementary redundancy,
1st order masked / 1st order t-test
(25K fixed vs. 25K random)

1.4 1.6 1.8 2 2.2 2.4

sample ×10
4

-6

-4

-2

0

2

4

6

t
v
a
lu

e

1st order t-test

(b) Direct redundancy, 1st order
masked / 1st order t-test (25K
fixed vs. 25K random)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

sample

-25

-20

-15

-10

-5

0

5

10

15

20

25

t
v
a

lu
e

2nd order t-test

(c) Complementary redundancy,
1st order masked / 2nd order t-test
(5K fixed vs. 5K random)

0 2000 4000 6000 8000 10000 12000

sample

-25

-20

-15

-10

-5

0

5

10

15

20

25

t
v
a
lu

e

2nd order t-test

(d) Direct redundancy, 1st order
masked / 2nd order t-test (5K fixed
vs. 5K random)

the output of the SubBytes stage in the 4th round of AES is zero. Furthermore,
for higher-order t-tests, we post-process the traces to calculate the t-scores of
the target order [47]. Figure 8 and Figure 9 show the results of the t-test on
our masked implementations. The right column in Figure 8 (resp. Figure 9)
indicates that our first (resp. third) order masked scheme shows no leakage of
first (resp. first, second, or third) order on 500K fixed vs. 500K random traces
while showing second (resp. fourth) order leakage as expected. The left columns
show how turning the PRNG off causes the implementations to have leakage of
all orders.

This experiment shows that the secure implementations are sound for analysis
up to 500K traces. We do not conclude that the security claim underpinning the
gadgets is valid; while an experimental observation can validate a security claim,
the experiment cannot be used as its proof of correctness.

Power leakage of direct and complementary redundancy. To compare the effect
of the direct and complementary redundancy schemes on side-channel leakage,
we run the following test. We make two different versions of our AES C code:
(1) 16 parallel aggregated bitslices of the direct (D = 2, Rs = 1, Rt = 1) scheme

18 P. Kiaei, D. Mercadier, et al.

as the input to the first S-box in the fourth round of AES; and (2) 8 parallel
aggregated bitslices of the complementary (D = 2, Rs = 2, Rt = 1) scheme as the
input to the first S-box in the fourth round of AES. We then measure 5K traces
for fixed input and 5K traces for random input and apply a second-order t-test on
the measured traces. To speed up our measurements, the traces were collected
at 50MS/s. As expected, Figures 10c and 10d show second-order leakage for
both schemes. However, the direct redundancy results in much higher t-values
indicating a higher probability of leakage than complementary redundancy. We
also confirmed that a first-order t-test on both implementations shows no leakage
for a non-specific test of 25K fixed vs. 25K random traces even when sampled at
a higher rate of 100MS/s (Figures 10a and 10b). Appendix 6 includes additional
observations.

5.3 Security Analysis of Data Faults

In the following, we analyze the fault sensitivity of our protected implementa-
tions. Our data protection scheme relies on spatial redundancy (Rs ∈ {2, 4}).
Faults that cannot be detected are those that affect redundant copies within a
single register in a consistent manner, which implies either identical values in
case of direct redundancy or negated values in case of complemented redundancy.
Note that this analysis is independent of whether sharing (D) is used or not.
From the standpoint of redundancy, each share is independently protected: for
example, if two shares of the same data are subjected to a bit flip, our redun-
dancy mechanism will report an error, even though the underlying data remains
unchanged (x1 ⊕ x2 = x1 ⊕ x2).

There are different ways to achieve undetected faults, i.e. generate a consis-
tent value: one may skip an instruction whose destination register already holds
a consistent value; one may replace an instruction with another (e.g., substitute
an ANDC by an XORC); or directly perform a data fault.

If P is the probability for a data fault to result in a consistent value, then
the detection rate is 1 − P . Such a probability depends on the injection tech-
nique, its parameters, the target architecture, as well as the physical properties
of the device. In the following, we develop a theoretical analysis based on the
assumption that data faults follow a stuck-at 0 or stuck-at 1 model, or uniformly
distributed random byte, half-word, and word model. We then complement this
analysis by an empirical evaluation of the impact of instruction skip.

Theoretical analysis of spatial redundancy In this analysis, we use the fault
coverage (FC) metric [24] FC = 1 − Fundetected/Ftotal where Ftotal is the total
number of faults covered by the fault model and Fundetected is the number of
faults that affect the execution while escaping detection by the countermeasure.

By construction, data fault effects such as single bit set, single reset, single bit
flip, byte or half-word zeroing, faulty random byte or faulty random half-word
are all detected (FC = 100%). Word zeroing or stuck-at 1 on complementary
redundant data are also all detected (FC = 100%) but direct redundancy will
never detect it (FC = 0%).

Custom Instruction Support for Modular Defense 19

If the attacker injects random data faults following a uniform distribution,
it means that there are Ftotal = 232 fault injection possibilities. For Rs = 2 and
independently of the redundancy (direct or complementary), 216 of those values
are consistent, including the expected output. Hence Fundetected = 216 − 1 and
FC = 99.99%. For Rs = 4, there are Fundetected = 28 − 1 faults that are left
undetected, thus FC = 99.99%.

For illustrative purposes, we now consider a slightly stronger attacker who
may flip p randomly chosen data bits. In practice, such analysis ought to be
tailored to account for the specific distribution of faults of a given injection
technique on a given platform. Under this attacker model, there are Ftotal =

(
32
p

)
fault injection possibilities leading to a p-bit flip (with p an even number). For
Rs = 2, there are Fundetected =

(
16
p
2

)
faults corresponding to a p-bit flip that are

left undetected. The lower-bound for FC is reached for p = 2 and p = 30, where
FC = 96.77%. For Rs = 4, there are Fundetected =

(
8
p
4

)
faults corresponding to a

p-bit flip that are left undetected. The lower-bound for FC is reached for p = 4
and p = 28, where FC = 99.97%. A p-bit set or reset fault model leads to a
100% detection rate if complementary redundancy is used. If direct redundancy
is used, then this amounts to the p-bit flip model. Either way the detection rate
is very high.

Experimental evaluation of temporal redundancy. We have simulated the impact
of faults on our implementation of AES. We focus our attention exclusively
on control faults (instruction skips) since our above analytical model already
predicts the outcome of data faults. To this end, we use a fault injection simulator
based on gdb running through the JTAG interface of the FPGA board. We
execute our implementation up to a chosen breakpoint, after which we instruct
the processor to jump to a given address, hence simulating the effect of an
instruction skip. In particular, we have exhaustively targeted every instruction
of the first and last round as well as the AES_secure routine (for Rt = 2) and
its counterpart for Rt = 1. Since rounds 2 to 9 use the same code as the first
round, the absence of vulnerabilities against instruction skips within the latter
means that the former is secure against instruction skip as well. This exposes a
total of 1248 injection points for Rt = 2 and 1093 injection points for Rt = 1.
For each such injection point, we perform an instruction skip from 512 random
combinations of key and plaintext for Rt = 2 and 352 random combinations for
Rt = 1.

The results are summarized in Table 3. Injecting a fault had one of five effects.
A fault may yield an incorrect ciphertext with (1) or without (2) being detected.
A fault may yield a correct ciphertext, with (3) or without (4) being detected.
Finally, a fault may cause the program or the board to crash (5). According to
our attacker model, only outcome (2) witnesses a vulnerability. In every other
outcome, the fault either does not produce a faulty ciphertext or is detected
within two rounds. For Rt = 2, we verify that every instruction skip was either
detected (outcome 1 or 3) or had no effect on the output of the corresponding
round (outcome 4) or lead to a crash (outcome 5). Comparatively, with Rt = 1,

20 P. Kiaei, D. Mercadier, et al.

nearly 95% of the instruction skips lead to an undetected fault impacting the
ciphertext. In 0.19% of the cases, the fault actually impacts the fault-detection
mechanism itself, thus triggering a false positive.

Table 3: Experimental results of simulated instruction skips
With impact Without impact

Detected Not detected Detected Not detected Crash # of faults
(1) (2) (3) (4) (5)

Rt = 1 0.19% 92.34% 0.00% 4.31% 3.15% 12840
Rt = 2 78.19% 0.00% 5.22% 12.18% 4.40% 21160

6 Conclusion

We have presented SKIVA, a general-purpose 32-bit processor supporting high-
throughput, secure block ciphers on embedded devices. Our objective in extend-
ing the SPARC instruction set was to provide cryptographers with a manageable
programming model for implementing secure ciphers on a general-purpose CPU.
On the software side, we advocate an approach centered around bitslicing, where
cryptographic primitives are treated as combinational circuits. By design, bit-
slicing protects an implementation against timing-based side-channel attacks.
However, it also provides a sound basis for modular protections against fault
and/or power-based side-channel attacks, thus paving the way for a pay-as-you-
go security approach. In essence, SKIVA can be understood as a Turing machine
for efficiently and securely executing combinational circuits in software.

These design choices translate into protection mechanisms that can natu-
rally and systematically be integrated together. To protect against faults, we
have shown that intra-instruction redundancy enables purely analytic security
analysis, guaranteeing significant coverage, while we experimentally showed that
temporal redundancy protects against instruction skips. To protect against side-
channel, we crucially rely on the physical isolation of slices, thus significantly
reducing the risk of involuntary interference due to architectural details invisible
to the programmer.

We have demonstrated the benefits of our approach with a bitsliced imple-
mentation of AES with 1, 2, and 4 shares, a temporal redundancy of 1 and
2, as well as a spatial redundancy of 1, 2, and 4. In terms of code size, we
have shown that all security levels can be implemented in less than 13148B. In
terms of performance, we have seen that it scales well with protection levels,
dividing the throughput by 161 with all protections enabled at their maximum
(D = 4, Rs = 4, Rt = 2).

Acknowledgements This project was supported in part by NSF Grant 1617203,
NSF Grant 1931639, NIST Grant 70NANB17H280, the Émergence(s) program
of the City of Paris and the EDITE doctoral school.

Custom Instruction Support for Modular Defense 21

References

[1] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. “On the Cost of Lazy Engineering for Masked
Software Implementations”. In: Smart Card Research and Advanced Ap-
plications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers. 2014, pp. 64–81. doi: 10.
1007/978-3-319-16763-3_5.

[2] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. “An In-depth
and Black-box Characterization of the Effects of Clock Glitches on 8-bit
MCUs”. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, FDTC 2011, Tokyo, Japan, September 29, 2011. 2011, pp. 105–114.
doi: 10.1109/FDTC.2011.9.

[3] Thierno Barry, Damien Couroussé, and Bruno Robisson. “Compilation of
a Countermeasure Against Instruction-Skip Fault Attacks”. In: Proceed-
ings of the Third Workshop on Cryptography and Security in Computing
Systems, CS2@HiPEAC, Prague, Czech Republic, January 20, 2016. 2016,
pp. 1–6. doi: 10.1145/2858930.2858931.

[4] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. “Strong
Non-Interference and Type-Directed Higher-Order Masking”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, Vienna, Austria, October 24-28, 2016. 2016, pp. 116–129.
doi: 10.1145/2976749.2978427.

[5] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. “Parallel Implementa-
tions of Masking Schemes and the Bounded Moment Leakage Model”. In:
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I. Ed. by Jean-
Sébastien Coron and Jesper Buus Nielsen. Vol. 10210. Lecture Notes in
Computer Science. 2017, pp. 535–566. doi: 10.1007/978-3-319-56620-
7_19.

[6] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. “Horizontal Side-Channel Attacks and Countermeasures on the
ISW Masking Scheme”. In: Cryptographic Hardware and Embedded Sys-
tems - CHES 2016 - 18th International Conference, Santa Barbara, CA,
USA, August 17-19, 2016, Proceedings. 2016, pp. 23–39. doi: 10.1007/
978-3-662-53140-2_2.

[7] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi, and S. Saab. Test
Vector Leakage Assessment (TVLA) methodology in practice. 2013.

[8] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. “Randomness Complexity of Pri-
vate Circuits for Multiplication”. In: Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1109/FDTC.2011.9
https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2

22 P. Kiaei, D. Mercadier, et al.

Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II. 2016, pp. 616–648. doi: 10.1007/978- 3-

662-49896-5_22.
[9] Sonia Beläıd, Dahmun Goudarzi, and Matthieu Rivain. “Tight Private Cir-

cuits: Achieving Probing Security with the Least Refreshing”. In: Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II. 2018, pp. 343–
372. doi: 10.1007/978-3-030-03329-3_12.

[10] Eli Biham. “A Fast New DES Implementation in Software”. In: Fast Soft-
ware Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, Jan-
uary 20-22, 1997, Proceedings. Vol. 1267. Lecture Notes in Computer Sci-
ence. Springer, 1997, pp. 260–272. doi: 10.1007/BFb0052352.

[11] Jakub Breier, Dirmanto Jap, Xiaolu Hou, and Shivam Bhasin. “On Side-
Channel Vulnerabilities of Bit Permutations: Key Recovery and Reverse
Engineering”. In: IACR Cryptology ePrint Archive 2018 (2018), p. 219.
url: http://eprint.iacr.org/2018/219.

[12] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power
Analysis with a Leakage Model”. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2004: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004. Proceedings. 2004, pp. 16–29. doi: 10.1007/
978-3-540-28632-5_2.

[13] Gaetan Cassiers and François-Xavier Standaert. “Improved Bitslice Mask-
ing: from Optimized Non-Interference to Probe Isolation”. In: IACR Cryp-
tology ePrint Archive 2018 (2018), p. 438. url: https://eprint.iacr.
org/2018/438.

[14] Gaetan Cassiers and François-Xavier Standaert. “Towards Globally Opti-
mized Masking: From Low Randomness to Low Noise Rate or Probe Isolat-
ing Multiplications with Reduced Randomness and Security against Hor-
izontal Attacks”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.2
(2019), pp. 162–198. doi: 10.13154/tches.v2019.i2.162-198.

[15] Zhi Chen, Junjie Shen, Alex Nicolau, Alexander V. Veidenbaum, Nahid
Farhady Ghalaty, and Rosario Cammarota. “CAMFAS: A Compiler Ap-
proach to Mitigate Fault Attacks via Enhanced SIMDization”. In: 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2017,
Taipei, Taiwan, September 25, 2017. 2017, pp. 57–64. doi: 10.1109/FDTC.
2017.10.

[16] Zhimin Chen, Ambuj Sinha, and Patrick Schaumont. “Using Virtual Se-
cure Circuit to Protect Embedded Software from Side-Channel Attacks”.
In: IEEE Trans. Computers 62.1 (2013), pp. 124–136. doi: 10.1109/TC.
2011.225. url: https://doi.org/10.1109/TC.2011.225.

[17] Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Bitslice Ciphers
and Power Analysis Attacks”. In: Fast Software Encryption, 7th Inter-
national Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000,
Proceedings. 2000, pp. 134–149. doi: 10.1007/3-540-44706-7_10.

https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/BFb0052352
http://eprint.iacr.org/2018/219
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://eprint.iacr.org/2018/438
https://eprint.iacr.org/2018/438
https://doi.org/10.13154/tches.v2019.i2.162-198
https://doi.org/10.1109/FDTC.2017.10
https://doi.org/10.1109/FDTC.2017.10
https://doi.org/10.1109/TC.2011.225
https://doi.org/10.1109/TC.2011.225
https://doi.org/10.1109/TC.2011.225
https://doi.org/10.1007/3-540-44706-7_10

Custom Instruction Support for Modular Defense 23

[18] Siemen Dhooghe and Svetla Nikova. “My Gadget Just Cares For Me -
How NINA Can Prove Security Against Combined Attacks”. In: IACR
Cryptology ePrint Archive 2019 (2019), p. 615. url: https://eprint.
iacr.org/2019/615.

[19] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. “Share-slicing:
Friend or Foe?” In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.1
(2020), pp. 152–174. doi: 10.13154/tches.v2020.i1.152-174.

[20] Gilbert Goodwill, Benjamin Jun, John Jaffe, and Pankaj Rohatgi. A test-
ing methodology for side channel resistance. https://csrc.nist.gov/
csrc / media / events / non - invasive - attack - testing - workshop /

documents/08_goodwill.pdf. 2011.
[21] Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-

Xavier Standaert. “Secure Multiplication for Bitslice Higher-Order Mask-
ing: Optimisation and Comparison”. In: Constructive Side-Channel Analy-
sis and Secure Design - 9th International Workshop, COSADE 2018, Sin-
gapore, April 23-24, 2018, Proceedings. 2018, pp. 3–22. doi: 10.1007/978-
3-319-89641-0_1.

[22] Philipp Grabher, Johann Großschädl, and Dan Page. “Light-Weight In-
struction Set Extensions for Bit-Sliced Cryptography”. In: Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Work-
shop, Washington, D.C., USA, August 10-13, 2008. Proceedings. 2008,
pp. 331–345. doi: 10.1007/978-3-540-85053-3_21.

[23] Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko
Stoffelen. “Vectorizing Higher-Order Masking”. In: Constructive Side-Channel
Analysis and Secure Design - 9th International Workshop, COSADE 2018,
Singapore, April 23-24, 2018, Proceedings. 2018, pp. 23–43. doi: 10.1007/
978-3-319-89641-0_2.

[24] Xiaofei Guo, Debdeep Mukhopadhyay, and Ramesh Karri. “Provably Se-
cure Concurrent Error Detection Against Differential Fault Analysis”. In:
IACR Cryptology ePrint Archive 2012 (2012), p. 552. url: http : / /

eprint.iacr.org/2012/552.
[25] Karine Heydemann. “Sécurité et performance des applications : analyses

et optimisations multi-niveaux”. Habilitation. LIP6, 2017.
[26] Philippe Hoogvorst, Guillaume Duc, and Jean-Luc Danger. “Software Im-

plementation of Dual-Rail Representation”. In: Constructive Side-Channel
Analysis and Secure Design - Second International Workshop, COSADE
2011. Ed. by Werner Schindler and Sorin A. Huss.

[27] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits: Secur-
ing Hardware against Probing Attacks”. In: Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings. Vol. 2729.
Lecture Notes in Computer Science. Springer, 2003, pp. 463–481. doi:
10.1007/978-3-540-45146-4_27.

[28] Anthony Journault and François-Xavier Standaert. “Very High Order Mask-
ing: Efficient Implementation and Security Evaluation”. In: Cryptographic

https://eprint.iacr.org/2019/615
https://eprint.iacr.org/2019/615
https://doi.org/10.13154/tches.v2020.i1.152-174
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.1007/978-3-319-89641-0_1
https://doi.org/10.1007/978-3-319-89641-0_1
https://doi.org/10.1007/978-3-540-85053-3_21
https://doi.org/10.1007/978-3-319-89641-0_2
https://doi.org/10.1007/978-3-319-89641-0_2
http://eprint.iacr.org/2012/552
http://eprint.iacr.org/2012/552
https://doi.org/10.1007/978-3-540-45146-4_27

24 P. Kiaei, D. Mercadier, et al.

Hardware and Embedded Systems - CHES 2017 - 19th International Con-
ference, Taipei, Taiwan, September 25-28, 2017, Proceedings. 2017, pp. 623–
643. doi: 10.1007/978-3-319-66787-4_30.

[29] Emilia Käsper and Peter Schwabe. “Faster and Timing-Attack Resistant
AES-GCM”. In: Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-
9, 2009, Proceedings. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747.
Lecture Notes in Computer Science. Springer, 2009, pp. 1–17. doi: 10.
1007/978-3-642-04138-9_1.

[30] Joseph R. Kiniry, Daniel M. Zimmerman, Robert Dockins, and Rishiyur
Nikhil. “A Formally Verified Cryptographic Extension to a RISC-V Pro-
cessor”. In: Second Workshop on Computer Architecture Research with
RISC-V (CARRV 2018). ACM, New York, NY, USA. 2018, 5 pages.

[31] Robert Könighofer. “A Fast and Cache-Timing Resistant Implementation
of the AES”. In: Topics in Cryptology - CT-RSA 2008, The Cryptogra-
phers’ Track at the RSA Conference 2008, San Francisco, CA, USA, April
8-11, 2008. Proceedings. 2008, pp. 187–202. doi: 10.1007/978-3-540-
79263-5_12.

[32] Benjamin Lac, Anne Canteaut, Jacques J. A. Fournier, and Renaud Sirdey.
“Thwarting Fault Attacks against Lightweight Cryptography using SIMD
Instructions”. In: IEEE International Symposium on Circuits and Systems,
ISCAS 2018, 27-30 May 2018, Florence, Italy. 2018, pp. 1–5. doi: 10.
1109/ISCAS.2018.8351693.

[33] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. “Soft-
ware Countermeasures for Control Flow Integrity of Smart Card C Codes”.
In: Computer Security - ESORICS 2014 - 19th European Symposium on
Research in Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part II. 2014, pp. 200–218. doi: 10.1007/978-3-319-11212-
1_12.

[34] B. Marshall, D. Page, and T. Pham. XCrypto: a cryptographic ISE for
RISC-V. 2019. url: https://github.com/scarv/xcrypto.

[35] Darius Mercadier and Pierre-Évariste Dagand. “Usuba: high-throughput
and constant-time ciphers, by construction”. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. 2019,
pp. 157–173. doi: 10.1145/3314221.3314636.

[36] Kostas Papagiannopoulos and Nikita Veshchikov. “Mind the Gap: Towards
Secure 1st-Order Masking in Software”. In: Constructive Side-Channel
Analysis and Secure Design - 8th International Workshop, COSADE 2017,
Paris, France, April 13-14, 2017, Revised Selected Papers. 2017, pp. 282–
297. doi: 10.1007/978-3-319-64647-3_17.

[37] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schau-
mont. “Lightweight Fault Attack Resistance in Software Using Intra-instruction
Redundancy”. In: Selected Areas in Cryptography - SAC 2016 - 23rd Inter-
national Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised

https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1109/ISCAS.2018.8351693
https://doi.org/10.1109/ISCAS.2018.8351693
https://doi.org/10.1007/978-3-319-11212-1_12
https://doi.org/10.1007/978-3-319-11212-1_12
https://github.com/scarv/xcrypto
https://doi.org/10.1145/3314221.3314636
https://doi.org/10.1007/978-3-319-64647-3_17

Custom Instruction Support for Modular Defense 25

Selected Papers. 2016, pp. 231–244. doi: 10.1007/978-3-319-69453-
5_13.

[38] David A. Patterson and John L. Hennessy. Computer Organization and
Design - The Hardware / Software Interface (Revised 4th Edition). The
Morgan Kaufmann Series in Computer Architecture and Design. Academic
Press, 2012.

[39] Thomas Pornin. BearSSL, a smaller SSL/TLS library. https://bearssl.
org. Accessed: 2019-01-08.

[40] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
“Compiler-Assisted Loop Hardening Against Fault Attacks”. In: TACO
14.4 (2017), 36:1–36:25. doi: 10.1145/3141234.

[41] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. “Bitslice Imple-
mentation of AES”. In: Cryptology and Network Security, 5th International
Conference, CANS 2006, Suzhou, China, December 8-10, 2006, Proceed-
ings. 2006, pp. 203–212. doi: 10.1007/11935070_14.

[42] Francesco Regazzoni, Alessandro Cevrero, François-Xavier Standaert, Stéphane
Badel, Theo Kluter, Philip Brisk, Yusuf Leblebici, and Paolo Ienne. “A De-
sign Flow and Evaluation Framework for DPA-Resistant Instruction Set
Extensions”. In: Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-
9, 2009, Proceedings. 2009, pp. 205–219. doi: 10.1007/978- 3- 642-

04138-9_15.
[43] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. “Dude, is my code

constant time?” In: Design, Automation & Test in Europe Conference &
Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017. 2017,
pp. 1697–1702. doi: 10.23919/DATE.2017.7927267.

[44] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel P. Smart. “CAPA: The Spirit of Beaver
Against Physical Attacks”. In: Advances in Cryptology - CRYPTO 2018
- 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I. 2018, pp. 121–151. doi:
10.1007/978-3-319-96884-1_5.

[45] Cobham Gaisler Research. LEON-3 Processor. https://www.gaisler.
com/index.php/products/processors/leon3. 2018.

[46] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer,
and Laurent Sauvage. “High precision fault injections on the instruction
cache of ARMv7-M architectures”. In: IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2015, Washington, DC,
USA, 5-7 May, 2015. IEEE Computer Society, 2015, pp. 62–67. doi: 10.
1109/HST.2015.7140238.

[47] Tobias Schneider and Amir Moradi. “Leakage Assessment Methodology -
a clear roadmap for side-channel evaluations”. In: IACR Cryptology ePrint
Archive. 2015, pp. 495–513. doi: 10.1007/978-3-662-48324-4_25.

[48] Tobias Schneider, Amir Moradi, and Tim Güneysu. “ParTI: Towards Com-
bined Hardware Countermeasures against Side-Channel and Fault-Injection

https://doi.org/10.1007/978-3-319-69453-5_13
https://doi.org/10.1007/978-3-319-69453-5_13
https://bearssl.org
https://bearssl.org
https://doi.org/10.1145/3141234
https://doi.org/10.1007/11935070_14
https://doi.org/10.1007/978-3-642-04138-9_15
https://doi.org/10.1007/978-3-642-04138-9_15
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.1007/978-3-319-96884-1_5
https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3
https://doi.org/10.1109/HST.2015.7140238
https://doi.org/10.1109/HST.2015.7140238
https://doi.org/10.1007/978-3-662-48324-4_25

26 P. Kiaei, D. Mercadier, et al.

Attacks”. In: Proceedings of the ACM Workshop on Theory of Implementa-
tion Security, TIS@CCS 2016 Vienna, Austria, October, 2016. 2016, p. 39.
doi: 10.1145/2996366.2996427.

[49] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat
Costa Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels
Samwel. “Towards Lightweight Cryptographic Primitives with Built-in
Fault-Detection”. In: IACR Cryptology ePrint Archive 2018 (2018), p. 729.
url: https://eprint.iacr.org/2018/729.

[50] CORPORATE SPARC International Inc. The SPARC Architecture Man-
ual: Version 8. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992.
isbn: 0-13-825001-4.

[51] Stefan Tillich and Johann Großschädl. “Power Analysis Resistant AES
Implementation with Instruction Set Extensions”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings. 2007, pp. 303–319.
doi: 10.1007/978-3-540-74735-2_21.

[52] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. “Fault Attacks
on Secure Embedded Software: Threats, Design, and Evaluation”. In: J.
Hardware and Systems Security 2.2 (2018), pp. 111–130. doi: 10.1007/
s41635-018-0038-1.

[53] Löıc Zussa, Jean-Max Dutertre, Jessy Clédière, and Assia Tria. “Power
supply glitch induced faults on FPGA: An in-depth analysis of the injec-
tion mechanism”. In: 2013 IEEE 19th International On-Line Testing Sym-
posium (IOLTS), Chania, Crete, Greece, July 8-10, 2013. 2013, pp. 110–
115. doi: 10.1109/IOLTS.2013.6604060.

https://doi.org/10.1145/2996366.2996427
https://eprint.iacr.org/2018/729
https://doi.org/10.1007/978-3-540-74735-2_21
https://doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1109/IOLTS.2013.6604060

Custom Instruction Support for Modular Defense 27

Custom instructions details

TR2 instruction

TR2 rs1, rs2, rd

regrd[31:0] := CONCAT(...

regrs1[15],regrs2[15],regrs1[14],regrs2[14], ...

regrs1[13],regrs2[13],regrs1[12],regrs2[12], ...

regrs1[11],regrs2[11],regrs1[10],regrs2[10], ...

regrs1[9],regrs2[9],regrs1[8],regrs2[8], ...

regrs1[7],regrs2[7],regrs1[6],regrs2[6], ...

regrs1[5],regrs2[5],regrs1[4],regrs2[4], ...

regrs1[3],regrs2[3],regrs1[2],regrs2[2], ...

regrs1[1],regrs2[1],regrs1[0],regrs2[0])

y[31:0] := CONCAT(...

regrs1[31],regrs2[31],regrs1[30],regrs2[30], ...

regrs1[29],regrs2[29],regrs1[28],regrs2[28], ...

regrs1[27],regrs2[27],regrs1[26],regrs2[26], ...

regrs1[25],regrs2[25],regrs1[24],regrs2[24], ...

regrs1[23],regrs2[23],regrs1[22],regrs2[22], ...

regrs1[21],regrs2[21],regrs1[20],regrs2[20], ...

regrs1[19],regrs2[19],regrs1[18],regrs2[18], ...

regrs1[17],regrs2[17],regrs1[16],regrs2[16])

INVTR2 instruction

INVTR2 rs1, rs2, rd

regrd[31:0] := CONCAT(...

regrs1[30],regrs1[28],regrs1[26],regrs1[24], ...

regrs1[22],regrs1[20],regrs1[18],regrs1[16], ...

regrs1[14],regrs1[12],regrs1[10],regrs1[8], ...

regrs1[6],regrs1[4],regrs1[2],regrs1[0], ...

regrs2[30],regrs2[28],regrs2[26],regrs2[24], ...

regrs2[22],regrs2[20],regrs2[18],regrs2[16], ...

regrs2[14],regrs2[12],regrs2[10],regrs2[8], ...

regrs2[6],regrs2[4],regrs2[2],regrs2[0])

y[31:0] := CONCAT(...

regrs1[31],regrs1[29],regrs1[27],regrs1[25], ...

regrs1[23],regrs1[21],regrs1[19],regrs1[17], ...

regrs1[15],regrs1[13],regrs1[11],regrs1[9], ...

regrs1[7],regrs1[5],regrs1[3],regrs1[1], ...

regrs2[31],regrs2[29],regrs2[27],regrs2[25], ...

regrs2[23],regrs2[21],regrs2[19],regrs2[17], ...

28 P. Kiaei, D. Mercadier, et al.

regrs2[15],regrs2[13],regrs2[11],regrs2[9], ...

regrs2[7],regrs2[5],regrs2[3],regrs2[1])

SUBROT instruction

SUBROT rs, imm, rd

IF imm[2:0] = 010

FOR i:=0:15

j := 2*i

regrd[j+1:j] := regrs[j:j+1]

ENDFOR

ELIF imm[2:0] = 100

FOR i:=0:7

j := 4*i

regrd[j+3:j] := CONCAT(regrs[j+2:j],regrs[j+3])

ENDFOR

FI

RED instruction

RED rs, imm, rd

IF imm[2:0] = 010

regrd[15:0] := regrs[15:0]

regrd[31:16] := regrs[15:0]

y[15:0] := regrs[31:16]

y[31:16] := regrs[31:16]

ELIF imm[2:0] = 011

regrd[15:0] := regrs[15:0]

regrd[31:16] := (NOT regrs[15:0])

y[15:0] := rregrss[31:16]

y[31:16] := (NOT regrs[31:16])

ELIF imm[2:0] = 100

regrd[7:0] := regrs[7:0]

regrd[15:8] := regrs[7:0]

regrd[23:16] := regrs[7:0]

regrd[31:24] := regrs[7:0]

y[7:0] := regrs[15:8]

y[15:8] := regrs[15:8]

y[23:16] := regrs[15:8]

y[31:24] := regrs[15:8]

ELIF imm[2:0] = 101

regrd[7:0] := regrs[7:0]

Custom Instruction Support for Modular Defense 29

regrd[15:8] := (NOT regrs[7:0])

regrd[23:16] := regrs[7:0]

regrd[31:24] := (NOT regrs[7:0])

y[7:0] := rs[15:8]

y[15:8] := (NOT regrs[15:8])

y[23:16] := rs[15:8]

y[31:24] := (NOT regrs[15:8])

ELIF imm[2:0] = 110

regrd[7:0] := regrs[23:16]

regrd[15:8] := regrs[23:16]

regrd[23:16] := regrs[23:16]

regrd[31:24] := regrs[23:16]

y[7:0] := regrs[31:24]

y[15:8] := regrs[31:24]

y[23:16] := regrs[31:24]

y[31:24] := regrs[31:24]

ELIF imm[2:0] = 111

regrd[7:0] := regrs[23:16]

regrd[15:8] := (NOT regrs[23:16])

regrd[23:16] := regrs[23:16]

regrd[31:24] := (NOT regrs[23:16])

y[7:0] := regrs[31:24]

y[15:8] := (NOT regrs[31:24])

y[23:16] := regrs[31:24]

y[31:24] := (NOT regrs[31:24])

FI

ANDC16 instruction

ANDC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] AND regrs2[15:0])

regrd[31:16] := (regrs1[31:16] OR regrs2[31:16])

XORC16 instruction

XORC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] XOR regrs2[15:0])

regrd[31:16] := (regrs1[31:16] XNOR regrs2[31:16])

XNORC16 instruction

XNORC16 rs1, rs2, rd

30 P. Kiaei, D. Mercadier, et al.

regrd[15:0] := (regrs1[15:0] XNOR regrs2[15:0])

regrd[31:16] := (regrs1[31:16] XOR regrs2[31:16])

ANDC8 instruction

ANDC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] AND regrs2[7:0])

regrd[15:8] := (regrs1[15:8] OR regrs2[15:8])

regrd[23:16] := (regrs1[23:16] AND regrs2[23:16])

regrd[31:24] := (regrs1[31:24] OR regrs2[31:24])

XORC8 instruction

XORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XOR regrs2[7:0])

regrd[15:8] := (regrs1[15:8] XNOR regrs2[15:8])

regrd[23:16] := (regrs1[23:16] XOR regrs2[23:16])

regrd[31:24] := (regrs1[31:24] XNOR regrs2[31:24])

XNORC8 instruction

XNORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XNOR regrs2[7:0])

regrd[15:8] := (regrs1[15:8] XOR regrs2[15:8])

regrd[23:16] := (regrs1[23:16] XNOR regrs2[23:16])

regrd[31:24] := (regrs1[31:24] XOR regrs2[31:24])

FTCHK instruction

FTCHK rs, imm, rd

IF imm[2:0] = 010

FOR i:=0:15

regrd[i] := (regrs[i+16] XOR regrs[i])

regrd[i+16] := (regrs[i+16] XOR regrs[i])

ENDFOR

ELIF imm[2:0] = 011

FOR i:=0:15

regrd[i] := (regrs[i+16] XNOR regrs[i])

regrd[i+16] := (regrs[i+16] XNOR regrs[i])

Custom Instruction Support for Modular Defense 31

ENDFOR

ELIF imm[2:0] = 100

FOR i:=0:7

regrd[i] := ((regrs[i+8] XOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XOR regrs[i]))

ENDFOR

ELIF imm[2:0] = 101

FOR i:=0:7

regrd[i] := ((regrs[i+8] XNOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XNOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XNOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XNOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XNOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XNOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XNOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...

(regrs[i+24] XNOR regrs[i]))

ENDFOR

FI

Efficient C emulation of the custom instructions

The following C code shows how to emulate selected custom instructions.

#define ANDC8(r,a,b) r = (((a) | (b)) & 0xFF00FF00) | \

(((a) & (b)) & 0x00FF00FF)

#define XORC8(r,a,b) r = (a) ^ (b) ^ 0xFF00FF00

#define XNORC8(r,a,b) r = (a) ^ (b) ^ 0x00FF00FF

#define ANDC16(r,a,b) r = (((a) | (b)) & 0xFFFF0000) | \

(((a) & (b)) & 0x000FFFF)

#define XORC16(r,a,b) r = (a) ^ (b) ^ 0xFFFF0000

#define XNORC16(r,a,b) r = (a) ^ (b) ^ 0x0000FFFF

32 P. Kiaei, D. Mercadier, et al.

Sample multiplication gadgets

input: %i2 (a), %i3 (b), %i4 (random), %i5 (fault flags)

output: %o0 (a & b), %i5 (updated fault flags)

clear input in case of a fault:

NOT %i5, %o4 #

AND %i2, %o4, %o6 #

calculate AND result:

AND %i3, %o6, %o5 # partial product 1

SUBROT %o6, 2, %l0 # share-rotate

AND %i3, %l0, %o3 # partial product 2

XOR %l0, %l0, %l0 # clear SUBROT output

XOR %o5, %i4, %o2 # random + parprod 1

XOR %o2, %o3, %o1 # + parprod 2

SUBROT %i4, 2, %l1 # parallel refresh

XOR %o1, %l1, %o0 # output

update fault flags:

FTCHK %o0, imm, %g5 # imm depends on Rs and Rt

OR %g5, %i5, %i5 #

(a) First-order secure multiplication

input: %l7 (a), %g1 (b), %g4 (random), %g2 (random), %i6 (fault flags)

output: %i1 (a & b), %i6 (updated fault flags)

clear input in case of a fault:

NOT %i6, %g6 #

AND %l7, %g6, %o6 #

calculate AND result:

AND %o6, %g1, %i3 # partial product 1

SUBROT %o6, 4, %o1 # share-rotate

AND %g1, %o1, %i2 # partial product 2

SUBROT %g1, 4, %o0 # share-rotate

AND %o0, %o6, %i0 # partial product 3

SUBROT %o1, 4, %l0 # share-rotate

AND %g1, %l0, %o7 # partial product 4

XOR %o1, %o1, %o1 # clear SUBROT output

XOR %o0, %o0, %o0 # clear SUBROT output

XOR %l0, %l0, %l0 # clear SUBROT output

XOR %i3, %g4, %o5 # random + parprod 1

XOR %o5, %i2, %o4 # + parprod 2

XOR %o4, %i0, %o3 # + parprod 3

SUBROT %g4, 4, %l1 #

XOR %o3, %l1, %o2 # + rot(random)

XOR %o2, %o7, %g3 # + parprod 4

XOR %g2, %g3, %i5 # output refresh

SUBROT %g2, 4, %l2 #

XOR %l2, %i5, %i1 #

update fault flags:

FTCHK %i1, imm, %g5 # imm depends on Rs and Rt

OR %g5, %i6, %i6 #

(b) Third-order secure multiplication

Fig. 11: Secure multiplication using SUBROT and FTCHK

Custom Instruction Support for Modular Defense 33

Side-channel analysis results

Table 4: Detailed report of 1st order CPA results on unmasked SubBytes of 1st

round AES
of traces # of key bytes revealed

3K 1
4K 3
9K 5
10K 6
11K 7
12K 8 (half key)
14K 10
18K 11
19K 12
21K 13
22K 14
23K 15
24K 16 (full key)

34 P. Kiaei, D. Mercadier, et al.

Effect of Different Redundancy Schemes on Power Leakage

Figure 12 shows the evolution of t-values for the 2nd order t-test with respect to
the number of traces for both redundancy schemes. We observe that the direct
redundancy shows leakage with as few as about 200 traces, while the comple-
mentary redundancy shows leakage only after around 2500 traces. We conclude
that complementary redundancy is better than its direct counterpart in hiding
secret data from the power leakage. We believe that this result is consistent with
earlier work that investigated the impact of complementary representation on
software [26, 16].

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of traces

0

5

10

15

20

25

30

t
v
a
lu

e

Evolution of 2nd order t values for the two redundancy schemes

complementary redundancy

direct redundancy

Fig. 12: Evolution of t values for 2nd order t-test on 1st order masked implemen-
tation with direct and complementary redundancy.

	Custom Instruction Support for Modular Defense against Side-channel and Fault Attacks

