
SKIVA: Flexible and Modular
Side-channel and Fault Countermeasures

Pantea Kiaei1, Darius Mercadier2, Pierre-Evariste Dagand3,
Karine Heydemann4 and Patrick Schaumont5

1 Virginia Tech, Blacksburg, USA, pantea95@vt.edu
2 LIP6, Paris, France, darius.mercadier@gmail.com

3 LIP6, Paris, France, pierre-evariste.dagand@lip6.fr
4 LIP6, Paris, France, karine.heydemann@lip6.fr
5 Virginia Tech, Blacksburg, USA, schaum@vt.edu

Abstract. We describe SKIVA, a customized 32-bit processor enabling the design
of software countermeasures for a broad range of implementation attacks covering
fault injection and side-channel analysis of timing-based and power-based leakage.
We design the countermeasures as variants of bitslice programming. Our protection
scheme is flexible and modular, allowing us to combine higher-order masking – fending
off side-channel analysis – with complementary spatial and temporal redundancy –
protecting against fault injection. Multiple configurations of side-channel and fault
protection enable the programmer to select the desired number of shares and the
desired redundancy level for each slice. Recurring and security-sensitive operations
are supported in hardware through a custom instruction set extension. The new
instructions support bitslicing, secret-share generation, redundant logic computation,
and fault detection. We demonstrate and analyze multiple versions of AES from a
side-channel analysis and a fault-injection perspective, in addition to providing a
detailed performance evaluation of the protected designs.
Keywords: Bitslicing · Side-channel attacks · Fault attacks · Custom-instruction
extensions · Software Countermeasures

1 Introduction
Side-channel analysis and fault attacks have plagued cryptographic software on embedded
processors for many years. The threat of power-based and timing-based side-channel leakage
is well understood and countermeasures such as masking and constant-time programming
figure prominently in the cryptographer’s toolbox [RBV17, BDF+17]. In parallel, the
research community has gained more insight into the fault behavior of hardware and
software, thus greatly increasing the potency of fault attacks [YSW18, RNR+15]. The
impact of fault attacks is minimized with fault detection and temporal or spatial redundancy
of the software execution [LHB14, BCR16].

Although there exists an extensive array of specific, dedicated countermeasures, there
is surprisingly few work available [RDB+18, SMG16, SBD+18] offering protection against
both side-channel analysis and fault injection. This is especially true for software. The
programmer is left selecting candidate solutions, figuring out if and how they can safely
be assembled. This is not an easy task because countermeasures may interact in non-
trivial (and unsafe) manners. For example, time-redundant software [CPT17] or error-
detecting codes [RBIK12] as fault countermeasures may increase side-channel leakage,
while constant-time programming as a side-channel countermeasure increases the risk of
precisely synchronized fault attacks [SMKLM02].

mailto:pantea95@vt.edu
mailto:darius.mercadier@gmail.com
mailto:pierre-evariste.dagand@lip6.fr
mailto:karine.heydemann@lip6.fr
mailto:schaum@vt.edu

2 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

In this paper, we introduce SKIVA, a processor that enables a modular approach to
countermeasure design, giving programmers the flexibility to protect their ciphers against
timing-based side-channel analysis, power-based side-channel analysis and/or fault injection
at various levels of security. We leverage existing techniques in higher-order masking,
in spatial and in temporal redundancy. Modularity is achieved through bitslicing, each
countermeasure being expressed as a transformation from a bitsliced design into another
bitsliced design. The capabilities of SKIVA are demonstrated on the Advanced Encryption
Standard, but the proposed techniques can be applied to other ciphers as well.

Tackling physical effects with software. The protection of software against side-channel
analysis and fault attacks is challenging. Side-channel leakage and faults are physical
effects in the processor hardware. The programmer can control macro-level properties
such as the control path of software or the amount and nature of memory references. But
a large portion of software execution occurs “under the hood”. As a processor fetches,
decodes and executes each instruction, the sensitive data handled by an instruction moves
through the processor hardware. The timing, power consumption, and fault sensitivity
of each instruction is obscured to the programmer. Due to this hardware abstraction,
predicting physical execution properties of sensitive data is very hard for the programmer,
as the following examples illustrate:

• The instruction timing is determined by the micro-architecture pipeline configuration,
the cache organization, the presence of branch prediction, among other factors. A
programmer cannot predict the execution time of a program from the source code
alone. The processor hardware is optimized to make the common case fast [PH12],
but it is unable to deliver strong guarantees on the timing of a single, specific
instruction. Instead, instruction timing is strongly affected by the execution context.

• The instruction power dissipation is affected by signal transitions on programmer-
invisible processor structures such as buses, buffers, memories, and logic. The
power dissipation of these signal transitions is proportional to the Hamming distance
between former and current data values in the hardware. In many cases, for example
when the hardware is a shared resource, the former data value is unknown or invisible
to the programmer.

• The instruction fault-sensitivity is determined by the electrical properties of hardware
structures in the processor including their critical path and their threshold levels
[BGV11, YSW18]. However, published hardware datasheets only list typical, maxi-
mum or minimum ratings. The fault sensitivity of a specific instruction is therefore
unknown to the programmer. This applies not only to timing, but also to power
dissipation.

As a result, contemporary processors do not offer a comprehensive guarantee on the
physical execution properties of hardware: implementing a secure (yet reasonably efficient)
cipher is thus exceedingly hard [BGG+14].

Symmetry from bitslicing. In order to get a handle on this problem, we adopt a bitsliced
execution model. In the bitsliced model, the n-bit datapath of the processor is seen as n 1-
bit processors operating in parallel. Such an SIMD array of n parallel 1-bit processors offers
a significant degree of symmetry and regularity. Through this symmetry, the programmer
gets a grip on the physical execution properties of software, at least in a relative sense:

• The cycle-time of parallel bitslices within an instruction is matched. The amount
of clock cycles, used by any single bitslice within a processor word to complete a
bitslice program, is the same as for any other bitslice of the same word. This property
also holds under typical processor latency effects (pipeline hazards, caches, branch
prediction). Every bit of a processor word experiences the same clock-cycle delay.

P. Kiaei, D. Mercadier et al. 3

bit0bitn-1 slice0slicek-1

bit0

bitn-1

bit1

bit0

bitn-1

bit1

reg0

regn-1

aggregated
slice{{

standard
representation

bitslice
representation

aggregated bitslice
representation

Higher-order
Masking

Data
Redundancy

Temporal
Redundancy

aggregated
slice

reg1

reg0

regk-1

reg1

reg0

regn-1

reg1
k

n

n

k

Figure 1: In a standard representation, processor registers are allocated per data word.
In a bitsliced representation, processor registers are allocated per bit-weight of a block
of data words. In an aggregated bitslice representation, multiple bitslices are allocated
per data bit. Aggregated bitslices can be shares of a masked design, redundant data of a
fault-protected design, or a combination of those.

• The power consumption of parallel bitslices in an instruction is matched. If two
parallel bits in a CPU word make the same transition under the same bit-wise
instruction, then they will have the same power dissipation. Of course, process
manufacturing variations, and variations in on-chip and PCB routing may cause
small differences in power. But these are second-order effects compared to the
first-order symmetry obtained by the bitslices within a processor word.

• The instruction fault sensitivity of parallel bitslices in an instruction is matched. For
example, if two parallel bits in a CPU word experience the same timing fault under
the same bit-wise instruction, then we expect a matched fault effect. As with power
consumption, there may be small static variations due to process manufacturing and
routing [LSG+10].

Countermeasure design through bitslice aggregation. The symmetry of bitslices in a
processor word is the basis for the modular protection schemes enabled by SKIVA. Figure
1 demonstrates three different organizations of a register file in a processor. We obtain
the bitslice representation through a matrix transposition of the input data, so that one
processor register contains all bits of a given weight. The key idea of bitslice aggregation
is to allocate multiple slices to the representation of each data-bit.

Timing-based Side-channel Leakage. Bitslices – aggregated or not – are naturally
synchronized, and always use a matching amount of cycles. Furthermore, bitslice program-
ming naturally leads to straight-line programs with precisely defined timing characteristics
[Bih97]. Straight-line programs have to be written at the level of bit-operations, and hence
they are not easy to develop for the programmer. Fortunately, bitslice software generation
can be automated [Por01, SS16, MDLM18].

Power-based Side-channel Leakage. In an order-d masked implementation, a single
secret data bit is split into d + 1 shares using a masking method and d random shares.
An order-d masked implementation is theoretically protected against order-d side-channel
attacks. By allocating different shares as parallel slices, we obtain a parallel masked
implementation [BDF+17], as demonstrated by Balasch et al. for ARM [BGRV15] and
by Gregoire et al. for ARM-NEON [GPSS18]. Conceptually, their aggregate represents a
single bit.

4 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

Fault redundancy. Bitslice aggregation enables spatial redundancy by encoding a single
bit multiple times in each of the available slices. This allows the detection of data errors such
as bit-flip and stuck-at faults and it is one element in a comprehensive fault countermeasure
[PYGS16, LCFS18]. Interestingly, aggregation of bitslices can also offer support for
temporal redundancy. In an iterative block cipher, for example, different bitslices can
execute different rounds of a redundant cipher. This protects against instruction-skip and
faults on the control path.

Contributions. In this paper we introduce SKIVA, a processor with built-in support for
modular countermeasures against side-channel analysis and fault analysis. We make the
following contributions:

1. A flexible and modular methodology for designing countermeasures. It enables
the combination of a higher-order masking with spatial fault-redundancy and with
temporal fault-redundancy. The number of shares and fault-redundancy levels are
statically determined by the programmer (single, double, quadruple shares and single,
double, quadruple fault-redundancy).

2. Hardware support for the proposed methodology in SKIVA, a processor with instruc-
tion set extensions specialized for bitsliced transposition, bitsliced masked operation,
bitsliced fault detection, redundant bitsliced expansion and Boolean operations on
complementary data.

3. Performance analysis of the Advanced Encryption Standard on SKIVA, under multiple
levels of side-channel and fault-resistance.

4. Side-channel leakage evaluation of SKIVA implemented as a soft-core processor
on a SAKURA-G FPGA board, extensive code size and performance evaluation,
theoretical as well as empirical analysis of fault detection coverage.

Outline. In Section 2, we capture preliminaries to establish a common background among
readers. We discuss the attacker model (Section 2.1) and review the related work, covering
the design of countermeasures (Section 2.2) and the design of bitsliced software (Section
2.3). In Section 3, we introduce several modular countermeasure schemes. Starting with
bitslicing (Section 3.1), we describe our systematic treatment of higher-order masking
(Section 3.2), intra-instruction redundancy (Section 3.3), and temporal redundancy (Section
3.4). Finally, we demonstrate that these features naturally combine to form a coherent
countermeasure within the assumptions of the attacker model (Section 3.5). In Section 4,
we discuss the design and implementation of SKIVA, covering the instruction set extension
and its overhead. In Section 5, we evaluate the software performance results, quantify
the side-channel leakage of several levels of countermeasures, analytically and empirically
bound the impact of fault attacks.

2 Preliminaries
We introduce the attacker model that is covered by our countermeasures (Section 2.1). We
then review the literature for existing protection schemes (Section 2.2), with an eye toward
modular techniques as well as countermeasures against fault and side-channel attacks.
Finally, we recall the notion of bitslicing and review related work protecting bitsliced
designs against fault-attacks and side-channel attacks (Section 2.3).

2.1 Attacker Model
The attacker model captures the presumed capabilities of an attacker. SKIVA considers
adversaries with fault-injection and side-channel measurement capabilities.

P. Kiaei, D. Mercadier et al. 5

Fault attacker model. We consider an attacker who intends to perform Differential Fault
Analysis (DFA) [BS97, TMA11] or Statistical Fault Analysis (SFA) [FJLT13]. To carry
out such an attack, she must induce a fault on an intermediate value or on control flow
(e.g., to force a loop count reduction [DMM+13]). Fault injection is achieved by stressing
the electrical environment of the digital hardware. This induces transient faults that set,
reset, or flip one or several bits in a storage element (register or memory) of the platform.
The exact effect of a fault (or its statistical distribution) depends highly on the injection
technique, its parameters, the target architecture, the manufacturing technology of the
attacked device and the attacker’s skills and time.

It is however generally agreed that there is a trade-off between the temporal and spatial
resolution of a fault on the one hand, and the complexity of the fault injection on the
other [YSW18]. The presumed fault attacker of SKIVA is not all-powerful: we consider
low-cost injection means, with limited temporal resolution and/or spatial control over the
fault effects. Concretely, we assume that the attacker is able to inject transient faults
affecting a selected bit, byte, half-word, or word. We further restrict multi-bits faults to
either setting or resetting the entire byte, half-word, or word (stuck-at 1 and stuck-at 0
models), or overwriting a selected byte, half-word or word with a random value. This
excludes expensive equipment (e.g., multi-spot laser [Col19]) and the ability to inject
chosen values.

At the software level, this manifests itself as either a data corruption or an instruction
corruption. A data corruption results from either a direct corruption (e.g., a corruption of
data transfer, of the bus, data path, or computational logic) or from indirect corruption
(e.g., modification of an instruction opcode). Instruction corruption may occur either
during instruction fetch [MDH+13] or instruction read from Flash [Col19]. Most instruction
corruptions reduce to a data corruption: an instruction is substituted for another, leading
to an incorrect value to be stored in a register. In line with the limited capabilities of
our attacker, we consider that an attacker is unable to corrupt the address of a jump to
a chosen value. We therefore model control faults as instruction skip, whereby a chosen
instruction is simply ignored during execution.

Side-channel attacker model. SKIVA is oriented towards embedded applications. The
attacker controls data input, and can perform chosen-plaintext or chosen-ciphertext opera-
tions. This enables the gamut of differential analysis techniques. We assume an attacker
who can observe the timing as well as the power dissipation of the processor. Timing
measurements, such as done by precise measurement of input/output operations, proceed at
the cycle-accurate level. This resolution enables extraction of data-dependent control-flow,
and a slew of micro-architectural attacks [GYCH16]. The attacker is also able to monitor
power dissipation by shunting the power supply or by measuring electromagnetic emissions.
SKIVA is thus subject to side-channel attacks such as cache-timing analysis [Ber05], corre-
lation power analysis (CPA) [BCO04], and differential electromagnetic analysis [CPM+18].
We also consider high-order side-channel analysis. The use of aggregated bitslices in SKIVA
means that all shares of a secret are processed in parallel. In this contribution, we aim to
demonstrate that SKIVA successfully supports this mode of operation. For this reason,
we use a univariate leakage assessment methodology [SM15a] that evaluates leakage in
the sample stream at multiple different leakage orders. In a generalized higher-order side-
channel evaluation methodology, the attacker would also combine independent observations
of side-channel leakage. Multi-variate leakage evaluation is outside of the scope of this
contribution.

Combined attacker model. We also consider the case of an active attacker, combining
both side-channel measurements and fault injection [GM10, AVFM07]. For instance,
it has been shown that fault protection mechanisms tend to increase leakage and thus

6 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

facilitate side-channel analysis [RBIK12, CPT17]. We take this effect into account in our
experimental evaluation (Section 5.2).

Faults can also be used to mitigate the effect of SCA countermeasures [RLK11, DV12].
Lacking a well-established methodology to evaluate countermeasures against such attacks,
we exclude it from our attacker model. In particular, we assume that our target platform
offers an embedded and protected True Random Number Generator (TRNG) providing 32
bit of randomness at regular intervals in a dedicated register. We shall therefore ignore
fault attacks specifically targeting the TRNG to disable re-masking [YYP+18].

Recent advances in the area of Statistical Ineffective Fault Attacks (SIFA) [DEK+18]
have demonstrated that countermeasures based (solely) on fault detection may be insuffi-
cient, even in the context of a masked implementation. SKIVA offers a framework for explor-
ing the design space of countermeasures resilient to SIFA, such as self-destruction [YGD+16],
fault-correction, or hiding. However, designing and evaluating countermeasures against
SIFA is a burgeoning area of research: in the present work, we therefore exclude this vector
from our attacker model.

2.2 Countermeasures
A limitation of many countermeasures is that they are tailored to a specific algorithm. A
systematic countermeasure is one which can be applied to any cryptographic operation.
Instruction-level countermeasures are generic. They can be applied at the assembly level
or as part of a compiler pipeline. We strive to design a set of systematic countermeasures
that are modular, i.e. program transformations that can safely be chained one after the
other, yielding an overall protection equal to the sum of its parts. Armed with these
building blocks, programmers can adjust the security of their ciphers at will.

Systematic countermeasures. Systematic fault countermeasures are possible through
automated instruction duplication and control-flow tracking [PHBC17, LHB14] or by
exploiting intra-instruction redundancy in the target instruction set [CSN+17]. Intra-
instruction redundancy is enabled either by SIMD or custom instructions (Section 4).

Systematic side-channel countermeasures against power-based side-channel analysis
have overwhelmingly used masking techniques, driven by correctness criteria for the result-
ing side-channel security such as Perfect Masking [BGK05], Threshold Implementations
[NRR06], and DOM [GMK16]. The difficulty of producing secure and efficient masked
implementations in software has lead to various attempts at automating this process. In
the setting of the CAO domain-specific language [BMP+11], it has been shown that the
(strictly necessary) masking gadgets can be automatically synthesized from user-given
annotations identifying public and private data [MOPT11, MOPT12]. A similar technique
can be applied directly to C code [ABMP13, EW14] or assembly [BRN+15], instrumenting
the LLVM compiler infrastructure to carry public/private annotations to the intermediate
representation, performing static analysis to identify vulnerable program points and insert-
ing standard masking gadgets [RP10]. Threshold implementation lends itself naturally – by
its very design – to a systematic treatment, which has been implemented as a compilation
pass in the LLVM compiler [LAZ+17].

Modular countermeasures. To the best of our knowledge, very few work tackles the
issue of systematically protecting a cipher against both faults and side-channel analysis.
One line of work, targeting hardware implementations, applies error-detecting codes on top
of a threshold implementation [SMG16]. Another approach is the "tile-probe-and-fault"
model [RDB+18] that postulates the physical isolation of the underlying hardware (the
tiles). However, from the author’s own admission, “this model [. . .] does not perfectly
fit commercial off-the-shelf multi-core architectures”. To address these shortcomings, the

P. Kiaei, D. Mercadier et al. 7

FRIT permutation [SBD+18] has been specifically designed to allow inexpensive fault
detection while being protected against side-channel attacks. This latter work demonstrates
that combined defense is feasible at a software level (by exhibiting a secure, bitsliced
implementation of FRIT). However, supporting legacy ciphers remains an open question.

2.3 Bitsliced software design
Bitslicing is a folklore technique to produce high-throughput, constant-time software
implementations of cryptographic primitives [Bih97, KS09]. A cipher is expressed as a
Boolean circuit. The circuit is compiled into a straight-line program by leveling the circuit
and translating each Boolean operation to a corresponding bitwise CPU instruction. Since
the CPU manipulates registers of 32 bits, running the resulting program amounts to
running 32 parallel instances of the original Boolean circuit.

Bitslicing versus wordslicing. In a block cipher, the state variables are k-bit wide. The
bitsliced version of the cipher will store these k bits in a transposed manner, such that
register i will contain the i-th bit of the state. This approach has been used for DES [Bih97]
as well as for AES [RSD06]. However, one can also adopt wordslicing, which stores groups
of b bits out of a k-bit state per register. A wordsliced design requires k/b registers, as
opposed to k registers for a bitsliced design. Wordsliced design has been demonstrated for
AES [Kön08, KS09]. The choice between bitslicing and wordslicing has significant impact
on the efficiency of the resulting design. The resulting code also changes significantly
with the slicing strategy. The bitsliced implementation of AES has to juggle with 128
machine words while being restricted to straightforward logical instructions. The wordsliced
implementation of AES fits within 8 registers, at the expense of complex permutations
within individual words. On an embedded RISC-like CPU, our experiments have shown
that the bitsliced implementation yields a higher throughput than the wordsliced one
(Section 5.1). Conversely, on a high-end SIMD CPU, earlier work has shown that wordslicing
is key to reach speed records in software encryption [KS09]. The lack of SIMD instructions
and the lesser register pressure for RISC CPUs thus favors bitsliced implementations,
hence our focus on bitslicing in the present work.

Countermeasures for bitsliced designs. Many hardware-oriented countermeasures can be
applied as transformations on the Boolean programs of bitsliced designs. An early effort to
address power-based side-channel leakage is the duplication method [DPA00]. More recently,
several masking-oriented techniques have been proposed [CS18, BDF+17, JS17, GPSS18].
Bitslicing is also a systematic countermeasure against timing attacks. By construction,
a Boolean program runs in constant time. For instance, S-boxes have data-independent
runtime when run as Boolean programs. Similarly, conditionals in a Boolean program
are implemented through data-multiplexing: both results are (sequentially) computed
and the relevant output is obtained by demultiplexing these intermediary results based
on the conditional. Finally, the massively parallel nature of a bitsliced implementation
can be exploited to provide intra-instruction redundancy (encrypting the same data in
redundant slices) as well as various forms of temporal redundancy (processing data at
distinct rounds in distinct, randomly-chosen slices) [PYGS16, LCFS18]. In a bitsliced
setting, these techniques translate into an end-to-end protection, protecting a cipher from
the moment the plain text is introduced to the moment the cipher text is produced.

In the following, we demonstrate that, with some hardware support, bitslicing provides
a sound basis to generalize some of the systematic protection schemes presented in the
literature and gain protection against both attacks.

8 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

3 Modular design of countermeasures
In this section, we present the four protection mechanisms we adopt – bitslicing to
protect against timing attacks, higher-order masking to protect against side-channels,
intra-instruction redundancy to protect against data faults and temporal redundancy to
protect against control faults – and exhaustively explore this design space opened up by
our ability to compose them together.

Throughout this paper, we focus solely on the AES cipher targeting our 32-bit SKIVA
processor. We chose the AES cipher for pedagogical reasons. It provides a yardstick to
judge our protection scheme: it is well known in the community at large, both in terms of
side-channel analysis, fault attack vectors as well as performance. However, the panel of
techniques is not restricted to this cipher nor this processor: they naturally generalize – in
a systematic manner – to any cipher in sliced form, for processors of arbitrary width as
well as design (RISC as well as CISC, SIMD or not). We leave it to future work to evaluate
their effectiveness on a broader range of cryptographic primitives and hardware platforms.

3.1 Constant-time programming
Our implementation of AES is fully bitsliced: the 128-bit input of the cipher is represented
with 128 variables. Since each variable stores 32 bits on SKIVA, a single run of our
primitive computes 32 parallel instances of AES. In Section 5.1, we show that, despite
its register pressure, this implementation is the most efficient one on this RISC processor
offering 32 general-purpose registers.

This bitsliced implementation of AES is the cornerstone of our work. The protection
mechanisms presented in the following assume the availability of a bitsliced design while
themselves producing a bitsliced design (of lesser parallelism) in return. The modularity
of our approach lies in this simple observation: as long as there is enough parallelism to
compute at least one run of the algorithm, we can chain these program transformations.

3.2 Higher-order masking
We protect our implementation against power analysis attacks by adopting the higher-order
masking method of Barthe et al. [BDF+17, Algorithm 3] at order 4 and a Trichina gate at
order 2. At order 4 and following Journault and Standaert [JS17] bitsliced implementation
of AES, we conservatively refresh the output of every multiplication to achieve composability
through strong non-interference (as per [BDF+17, Table 4]).

Our bitsliced version of the (order-2) Trichina gate has a built-in refresh at the output.
Specifically, if x and y are two-share inputs and r is a two-share random vector, then the
two-share output is obtained as

z = x.y⊕ x.rot(y, 1)⊕ r⊕ rot(r, 1)

Optimizing this masked design by reducing the number of refresh [BBD+16, BGR18]
is orthogonal to the present work: our performance results serve as a pessimistic baseline;
the SKIVA platform would accommodate optimized implementations – already existing or
to come – just as well.

We support masking with 1, 2, and 4 shares leading to respectively unmasked, 1st-order,
and 3rd-order masked implementations. By convention, we use the letter D to denote
the number of shares (D ∈ {1, 2, 4}) of a given implementation. Within a machine word,
the D shares encoding the ith bit are grouped together, as illustrated in Figure 2 for
(D ∈ {1, 2, 4}, Rs = 1). Starting from a bitsliced design, this transformation is systematic:
non-linear instructions are expanded into a masked multiplication (followed by a refresh
for D = 4) while linear instructions are replicated over each share. The parallelism of the
resulting bitsliced design is divided by D. The overall run-time increases with the number of

P. Kiaei, D. Mercadier et al. 9

(D, Rs) = (1, 1)b1
0b1

1b1
2b1

3b1
4b1

5b1
6b1

7b1
8b1

9b1
10b1

11b1
12b1

13b1
14b1

15b1
16b1

17b1
18b1

19b1
20b1

21b1
22b1

23b1
24b1

25b1
26b1

27b1
28b1

29b1
30b1

31

(D, Rs) = (1, 2)b1
0b1

1b1
2b1

3b1
4b1

5b1
6b1

7b1
8b1

9b1
10b1

11b1
12b1

13b1
14b1

15b1
0b1

1b1
2b1

3b1
4b1

5b1
6b1

7b1
8b1

9b1
10b1

11b1
12b1

13b1
14b1

15

(D, Rs) = (1, 4)b1
0b1

1b1
2b1

3b1
4b1

5b1
6b1

7b1
0b1

1b1
2b1

3b1
4b1

5b1
6b1

7b1
0b1

1b1
2b1

3b1
4b1

5b1
6b1

7b1
0b1

1b1
2b1

3b1
4b1

5b1
6b1

7

(D, Rs) = (2, 1)b1
0b2

0b1
1b2

1b1
2b2

2b1
3b2

3b1
4b2

4b1
5b2

5b1
6b2

6b1
7b2

7b1
8b2

8b1
9b2

9b1
10b2

10b1
11b2

11b1
12b2

12b1
13b2

13b1
14b2

14b1
15b2

15

(D, Rs) = (2, 2)b1
0b2

0b1
1b2

1b1
2b2

2b1
3b2

3b1
4b2

4b1
5b2

5b1
6b2

6b1
7b2

7b1
0b2

0b1
1b2

1b1
2b2

2b1
3b2

3b1
4b2

4b1
5b2

5b1
6b2

6b1
7b2

7

(D, Rs) = (2, 4)b1
0b2

0b1
1b2

1b1
2b2

2b1
3b2

3b1
0b2

0b1
1b2

1b1
2b2

2b1
3b2

3b1
0b2

0b1
1b2

1b1
2b2

2b1
3b2

3b1
0b2

0b1
1b2

1b1
2b2

2b1
3b2

3

(D, Rs) = (4, 1)b1
0b2

0b3
0b4

0b1
1b2

1b3
1b4

1b1
2b2

2b3
2b4

2b1
3b2

3b3
3b4

3b1
4b2

4b3
4b4

4b1
5b2

5b3
5b4

5b1
6b2

6b3
6b4

6b1
7b2

7b3
7b4

7

(D, Rs) = (4, 2)b1
0b2

0b3
0b4

0b1
1b2

1b3
1b4

1b1
2b2

2b3
2b4

2b1
3b2

3b3
3b4

3b1
0b2

0b3
0b4

0b1
1b2

1b3
1b4

1b1
2b2

2b3
2b4

2b1
3b2

3b3
3b4

3

(D, Rs) = (4, 4)b1
0b2

0b3
0b4

0b1
1b2

1b3
1b4

1b1
0b2

0b3
0b4

0b1
1b2

1b3
1b4

1b1
0b2

0b3
0b4

0b1
1b2

1b3
1b4

1b1
0b2

0b3
0b4

0b1
1b2

1b3
1b4

1

Figure 2: Bitslice aggregations on a 32 bit register, depending on (D,Rs).

non-linear instructions and with D [GJRS18]. From a security point-of-view, the bitsliced
approach is a natural fit for software implementations, where leakage originates from a
CPU using CMOS technology for which leakage is mostly transition-based. Understanding
and controlling transition-based leakage in general is an arduous task [JS17]. However, by
segregating the various shares in fixed, physically isolated slices of the registers, bitslicing
provides a simpler model to reason about and control interferences across shares.

3.3 Intra-instruction redundancy
We protect our implementation against data faults using intra-instruction redundancy
(IIR) [PYGS16, LCFS18, CSN+17]. We may duplicate a single slice into one (i.e. no spatial
redundancy), two or four slices, checking at the end of each round that all (redundant)
slices agree upon the result. By convention, we use the letter Rs to denote the spatial
redundancy (Rs ∈ {1, 2, 4}) of a given implementation. Within a machine word, the Rs

duplicates of the ith bit are interspersed every 32/Rs bits, as illustrated in Figure 2 for
(D = 1, Rs ∈ {1, 2, 4}). Note that this scheme alone does not protect against control
faults such as instruction skip: because redundancy is spatial and not temporal, skipping
a (parallel, bitwise) operation would affect all the redundant slices simultaneously.

Starting from a bitsliced design, this transformation is systematic and exists in two
forms. One can either implement a direct redundant implementation, in which the
duplicated slices contain the same value, or a complementary redundant implementation,
in which the duplicated slices are complemented pairwise. For example with Rs = 4, we
can have 4 exact copies (direct redundancy) or 2 exact copies and 2 complementary copies
(complementary redundancy). The direct-redundancy scheme requires no change to the
code: we merely have to duplicate the inputs upon calling the protected code and testing
for equality of the output slices. The complementary-redundancy scheme requires special
support from the processor: a logical instruction in the original bitsliced design must be
translated into an instruction that performs this operation on half of the slices and the
complement operation on their redundant copies. We describe such an instruction set in
Section 4. The parallelism of the resulting bitsliced design is divided by Rs. The overall
latency is left unchanged, hence we expect the throughput of the resulting cipher to be
divided by Rs.

In practice, we will favor complementary redundancy instead of direct redundancy. First,

10 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

it is less likely for complemented bits to flip to consistent values due to a single fault injection.
For instance, timing faults during state transition [ZDCT13] or memory accesses [BGV11]
follow a random word corruption or a stuck-at-0 model. Second, following the wave
dynamic differential logic (WDDL) approach [TV04], this enables us to expose the same
Hamming weight for each individual register throughout the entire execution of the cipher,
which has been shown to reduce power leakage compared to direct redundancy [BJHB18].

3.4 Temporal redundancy
We protect our implementation against control faults using temporal redundancy (TR)
across rounds [PYGS16]. This technique consists in pipelining the execution of 2 consecutive
rounds in 2 aggregated slices (Figure 3a). By convention, we use the letter Rt to distinguish
implementations with temporal redundancy (Rt = 2) from implementations without
(Rt = 1). For Rt = 2, half of the slices compute round i while the other half compute round
i−1. The corresponding pseudo-code is shown in Figure 3b. The function init_round starts
the pipeline by filling half of the slices (in state) with the output of the first round of AES,
and the other half with the output of the initial AddRoundKey. At the end of round i + 1,
we have re-computed the output of round i (at a later time): we can therefore compare
the two results (using the check procedure) and detect control faults based on the different
results they may have produced. If a control fault has impacted the output of round i
during iteration i or (exclusively) i + 1, it will necessarily be detected. To go unnoticed,
the fault must be repeated in both rounds – while not impacting the subsequent round
computed at iteration i + 1 – so as to yield the same output in both iterations.

Note that unlike usual implementations of temporal redundancy, such as instruction
duplication [PHBC17], this technique does not increase code size: the same instructions
compute both rounds at the same time. The last round, omitted from Figure 3b, is different
from the others as it does not perform MixColumn, and must therefore be computed twice in
a non-pipelined fashion (i.e., using instruction duplication), after which a final check is
performed.

Whereas pipelining protects the inner round function, faults remain possible on the
control path of the loop itself. For instance, one may attempt to sidestep the rounds by
(data) faulting the loop counter or (control) faulting the conditional jump to reach the
end of the loop earlier or later than desired. We protect against these threats by applying
folklore loop hardening techniques: we spatially duplicate the 4-bit counter to protect
against data faults and duplicate the control structure of the loop (Figure 3b).

By exploiting the iterative nature of the algorithm and the bitsliced implementation
of a round, we obtain a data and control fault protection at minimal expense in code
size and execution time. Since the parallelism of the inner round is divided by Rt, we
expect the overall throughput of the cipher to be divided by Rt. Beside throughput, this
implementation is also space-efficient (our target platform features only 128 kB of RAM):
the protection against control faults piggybacks on the protection against data faults, thus
avoiding instruction duplication and keeping code size in check.

3.5 Combining higher-order masking, IIR and TR
The protections described in the previous sections transform bitsliced designs into bitsliced
designs, merely reducing parallelism (and thus throughput) in the process. As a result,
they naturally compose: given a number of shares D ∈ {1, 2, 4}, a spatial redundancy
Rs ∈ {1, 2, 4} and a temporal redundancy Rt ∈ {1, 2}, we can systematically derive
an implementation immune to power analysis and/or data faults and/or control faults,
processing 32/(Rt ×Rs ×D) blocks at a times. The 9 possible layouts for (D, Rs, Rt = 1)
are illustrated in Figure 2.

P. Kiaei, D. Mercadier et al. 11

bitsliced
round

state

AES

RNG

plain

cipheri

cipher

keys

cipheri−1

(a) Schematic view

void AES_secure(uint plain[128], uint keys[11][128],
uint cipher[128]) {

uint state[128];
// Aggregated bitslice ‘state’: plain and first round
init_round(state, plain, keys[0], keys[1]);
// Data-duplicated loop counter, increment and guard
int round_cpt = 1 | (1 << 4);
const int incr = 1 | (1 << 4);
const int last_round = 9 | (9 << 4);

// Duplicated loop structure
while (1) {

while (1) {
// Retrieve key from duplicated round index
uint[128] round_key = load_key(keys, round_cpt);
// Compute current and previous round in parallel
AES_round_bitsliced(state, round_key, plain);
// Check temporal redundancy
check(state, plain);
memcpy_secure(plain, state, 128*sizeof(uint));
// Increment data-duplicated counter
round_cpt += incr;
// Duplicated loop exit
if (round_cpt == last_round) break;

}
if (round_cpt == last_round) break;

}
// last round twice, checked for temporal redundancy
(..)

}

(b) Temporally redundant run-time

Figure 3: Compact and protected AES skeleton

The modularity of our approach paves the way for pay-as-you-go countermeasures:
depending on the execution context and security requirements of our cipher, we can decide
to adopt a more or less aggressive set of parameters (D, Rs, Rt). Different protections are
obtained by combination of the 3 elementary protection mechanisms available. Let us
first consider the most secure implementations and justify their relevance. In a setting
where multiple cycle-accurate and bit-precise faults are possible [NHH+16], we would
recommend an implementation with (D ∈ {2, 4}, Rs ∈ {2, 4}, Rt = 2). If faults cannot be
reliably repeated in a cycle-accurate and/or bit-precise manner, then (D ∈ {1, 2, 4}, Rs =
1, Rt = 2) is sufficient. A physically isolated device forbids power analysis but is not
necessarily immune to faults [TSS17, KDK+14] altogether: in this setting, one could adopt
(D = 1, Rs ∈ {2, 4}, Rt = 2). We may further strengthen our hypothesis about the device
and thus relax our security requirements. For example, we may dispense from redundancy
altogether if the device is physically protected against probes [YGD+16, CBD+15, LLF16],
yielding (D ∈ {2, 4}, Rs = 1, Rt = 1). Or we may assume that the underlying architecture
provides hardware support enforcing control-flow integrity [WWM15, dCKC+16], in which
case temporal redundancy can be disposed of but not spatial redundancy, covering the
cases where (D ∈ {1, 2, 4}, Rs ∈ {2, 4}, Rt = 1). We have thus mapped the entire design
space.

12 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

Table 1: Proposed ISE. These instructions are added to the standard SPARC-V instruction
set, occupying unused opcodes. Symbols in the instruction format - rs1, rs2, rd are
registers. imm is an immediate operand. The “Type” column shows what opcode group was
used for each instruction. Appendix A lists the functional specification for each instruction.

Semantics Instruction format Immediate Type
Normal → Bitslice TR2 rs1, rs2, rd logic
Bitslice → Normal INVTR2 rs1, rs2, rd ld/st
Slice Rotation SUBROT rs, imm, rd D logic
Redundancy Generation RED rs, imm, rd Rs logic
Redundancy Checking FTCHK rs, imm, rd Rs logic
Redundant AND (Rs=2) ANDC16 rs1, rs2, rd logic
Redundant XOR (Rs=2) XORC16 rs1, rs2, rd logic
Redundant XNOR (Rs=2) XNORC16 rs1, rs2, rd ld/st
Redundant AND (Rs=4) ANDC8 rs1, rs2, rd logic
Redundant XOR (Rs=4) XORC8 rs1, rs2, rd logic
Redundant XNOR (Rs=4) XNORC8 rs1, rs2, rd ld/st

4 Implementation aspects
In the previous section, we have introduced several bitslice aggregation schemes providing
multiple levels of side-channel resistance and fault-attack resistance, depending on a
selected number of shares, level of spatial redundancy, and level of temporal redundancy
(D, Rs, Rt). In this section, we present the SKIVA hardware, a custom instruction set
extension (ISE) tailored to support an efficient and safe implementation of these schemes.
We first lay bare the hardware and software assumptions our design is operating under
(Section 4.1) and expound its semantics (Section 4.2).

4.1 Hardware design space
Custom instructions are commonly used as performance-enhancing mechanisms [GGP08]
since a single custom instruction can replace multiple standard instructions. Custom
ISE is also useful to support hardware-specific side-channel countermeasures, such as
mask generation [TG07] or hiding [RCS+09]. Adding a new instruction to a processor
requires modification of the processor data-path as well as modification of the processor
software toolchain. With the advent of open platforms such as RISC-V and the widespread
availability of programmable logic (FPGA), instruction extensions have become a practical
methodology. For example, XCrypto [MPP19] defines instruction extensions for RISC-V.
CRISP [GGP08] is another effort to add native support for bitslicing in a processor design.
CRISP defines three new instructions, each with six operands. Their custom instruction
datapath relies on two programmable lookup tables with four input bits and one output
bit. However, these instructions only deal with bitslicing, and they do not offer redundancy
nor support for countermeasures.

Design. The design of new instructions involves a trade-off between a specialized,
application-specific solution and a general-purpose, universal solution. Each new cus-
tom instruction must serve as many different applications as possible. We added new
instructions to SKIVA to support computing on aggregated bitslices in three different
areas. First, they help with the conversion from normal representation to bitsliced form
and back. Second, they handle subword-operations for the computation of non-linear
operations on two or four shares (D ∈ {2, 4}). Third, they handle subword-operations for
spatially redundant computations and fault checking (Rs ∈ {2, 4}). The new instructions

P. Kiaei, D. Mercadier et al. 13

F D A E M X W

RF
(32x32)

Cust
Instr

Y

imm

op1

op2

res

y

PC

INS rs1, rs2, rd, imm

Figure 4: Integrated in the regular 7-stage pipeline as a new execution stage.

are summarized in Table 1 and will be described in detail in further subsections. Appendix
A provides their functional specification. These new instructions are orthogonal; they can
be used in a mix-and-match fashion to obtain the desired level of sharing and redundancy.
We integrated the new instructions on the SPARC-V instruction set of the open-source
LEON3 processor and software toolchain [Res18].

Hardware integration. Figure 4 illustrates the integration of the custom datapath into
the seven-stage RISC pipeline. The instructions follow a two-inputs, two-outputs operand
format, encoded as two source registers, a destination register and an immediate field (INS
rs1, rs2, rd, imm). The upper 32-bit output of the custom instruction is transferred to
the Y-register, a register which is used for SPARC-V instructions with 64-bit output such as
the regular data multiplication. The integration of custom-hardware deep into the pipeline
necessitates the use of simple and fast datapath hardware. However, these instructions
benefit from the same performance advantages as regular instructions including a typical
throughput of 1 instruction per cycle and minimal stall effect thanks to forwarding [PH12].

The new instructions are mapped into unused opcodes of the SPARC-V instruction set
[SI92]. This standard instruction set recognizes three different formats. The newly added
instructions belong to the third format, sharing the same opcode space as the instructions
for load/store, logic, and arithmetic, among others. Because all of the proposed instructions
correspond to simple logic manipulations, we integrated them directly into the existing
logic/shift group and the load/store group of SPARC. Within the logic/shift group, we
identified eight unused opcode locations, and we allocated the most frequently needed
instructions in these unused spaces. The remaining three instructions were moved into
the load/store group. The last column of Table 1 identifies the allocation for each new
instruction. Since we did not replace any existing SPARC instruction, SKIVA is backward
binary-compatible with existing LEON applications. The new instructions add minimal
overhead to the design. In terms of 180nm standard cell ASIC technology, we added 1250
gate-equivalent to the design, which amounts to 3% of the area of the integer unit of
SKIVA.

Software integration. We integrated the new instructions into the software toolchain of
SKIVA by extending the assembler. The new mnemonics were then integrated into the
application in C through inline assembly coding. Because the custom-instruction format
is compatible with that of existing, standard SPARC-V instructions, they benefit from
off-the-shelf compiler optimizations.

4.2 Hardware support for aggregated bitslice operations
In the following, we describe each group of instructions, with emphasis on their semantics.
The formal definition of each instruction is given in Appendix A.

14 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

ya0a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17a18a19a20a21a22a23a24a25a26a27a28a29a30a31rs1

rdb0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15b16b17b18b19b20b21b22b23b24b25b26b27b28b29b30b31rs2

rs1b16a16b17a17b18a18b19a19b20a20b21a21b22a22b23a23b24a24b25a25b26a26b27a27b28a28b29a29b30a30b31a31y

rs2b0a0b1a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b9a9b10a10b11a11b12a12b13a13b14a14b15a15rd

TR2 rs1, rs2, rd INVTR2 rs1, rs2, rd

(a) Semantics of TR2 and INVTR2.
r1

r2

r3

r4

r5

r6

r7

r8

r1

r2

r3

r4

r5

r6

r7

r8

r1

r2

r3

r4

r5

r6

r7

r8

r1

r2

r3

r4

r5

r6

r7

r8

tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

tr2tr2

bit 31-28

bit 15-12

bit 23-20

bit 7-4

bit 27-24

bit 11-8

bit 19-16

bit 3-0

word 7

word 6

word 5

word 4

word 3

word 2

word 1

word 0

(b) Example of an 8-bit bitslice transposition using 8 registers.

Figure 5: Transposition and its inverse

Instructions for bitslicing. We introduce two instructions to transpose data into their
bitsliced representation (Figure 5a). The first instruction, TR2 rs1, rs2, rd, performs an
interleaving of the bits of two source registers into two output registers. This interleaving
can be thought of as a 2-bit transposition, as it places bits within the same column of
register rs1 and rs2 in adjacent positions of the output registers rd and y. The second
instruction, INVTR2 rs1, rs2, rd, performs the inverse operation. Bitslice transposition
for an arbitrary number of bits is achieved through repeated application of TR2. For
example, Figure 5b shows an 8-bit transposition, that is, a bitslice conversion of 8-bit
subwords within the input registers r1 to r8. Twelve applications of TR2 in a butterfly-like
diagram yield the desired result. In general, for a 2n-bit transition, n.2n−1 applications of
TR2 are needed. The reader may notice that the bitslice ordering of the output exhibits
the same shuffling effect as for a Fast-Fourier Transform. This effect is dealt with through
proper register ordering before transposition.

To create aggregated bitslices (Rs > 1 or D > 1), we pre-process the source registers (in
non-bitsliced form) by duplicating them first and then tranposing them to bitsliced form.
The side-channel protection and fault-detection of SKIVA is not active during bitslice
conversion but we check their consistency after transposition and before encryption.

Instructions for higher-order masking. To combat side-channel leakage, SKIVA supports
two-share and four-share implementations of bitsliced algorithms, which provides first-
order and third-order masked side-channel resistance. The shares are located in adjacent
bits of a processor register. We use Boolean masking, so that the XOR of all shares
yields the unmasked value. Linear operations on an ensemble of shares are computed as
the linear operation on each individual share. Linear operations are done using bitwise
operations on the two-share and four-share representation. As presented in Section 3.2, we
implement the secure multiplication (AND) using the design of Barthe et al. [BDF+17]
for third-order masking and the design of Trichina [Tri03] for first-order masking. The
secure OR operation is implemented as the De Morgan’s equivalent of a secure AND.

Computing a secure multiplication over multiple shares requires the computation
of the partial share-products. For example, the secure multiplication of the two-share
slices (a1, a0) with the two-share slices (b1, b0) requires the partial products a1.b1, a1.b0,

P. Kiaei, D. Mercadier et al. 15

a0.b1, and a0.b0. To align the slices for the cross-products, we implement a slice rotation
instruction SUBROT rs, imm, rd. This instruction transforms the two-share slices (a1, a0)
into (a0, a1). The same instruction SUBROT can also handle a four-share design, which
transforms (a3, a2, a1, a0) into (a2, a1, a0, a3). The details of this instruction are given in
listing A.3 in Appendix A.

The programming of side-channel protected bitsliced code using SUBROT assumes the
following specific programming rules. Attention has to be paid to side-effects of shared
storage elements in the architecture. Balasch et al. [BGG+14] have shown that a d-th order
security proof against value-based leakage leads to a bd

2c-th proof against transition-based
leakage. Papagiannopoulos et al. [PV17] identified three practical cases in micro-controller
code, where such transition-based leakage occurs. The most obvious source of transition-
based leakage is the overwriting of registers, since the power dissipation of overwriting the
register is proportional to the Hamming distance between the former and the new value.
They also observe transition-based leakage by overwriting of shared memory locations.
Finally, they observe a “neighbour leaking” effect where operations on one register cause
leakage from another.

In a bitslice design, different shares are stored in different bits. Transition-based leakage
will occur when one bitslice overwrites another, and this can unmask the shares as follows.
Assume a two-share bitslice design (a0, a1) = (r⊕ v, r), with r a random bit and v a secret
bit. Then writing the value (a1, a0) into a register holding (a0, a1) leads to unmasking. In
this case, the Hamming distance is (a0 ⊕ a1, a1 ⊕ a0) = (r⊕ v⊕ r, r⊕ v⊕ r) = (v, v). This
example directly applies to SUBROT, when this instruction would write its output into its
own source register.

To avoid these known sources of transition-based leakage, and to minimize the risk of
(undesired) unmasking resulting from this leakage, we applied the following conservative
strategy. (1) For D = 4, we refresh the masks at the output of every secure multiplication
(AND) using Barthe’s parallel refreshing algorithm [BDF+17]. For D = 2, the refresh is
implicit due to the construction of the Trichina gate; (2) We avoid reusing registers within
the secure multiplication by constraining the set of registers that the compiler is allowed
to use. This ensures that SUBROT will never overwrite its own input. In addition, after the
result of a SUBROT instruction is used, we clear that register to prevent later overwriting
by another instruction. Figure 6 shows an example of a first-order and a third-order secure
multiplication. (3) We maintain strict separation between registers used for the masked
algorithm (i.e. AES), and registers used for mask generation and mask distribution. This
ensures that registers containing masked data cannot be overwritten by registers directly
related to random masks. A separation for transition-base leakage between two registers
ra and rb means that neither register is allowed to overwrite the other one.

16 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

higher lower

lower’ lower

higher’ higher

rs1

rd

y

lower’ lowerrs1

lower’ lowerrd

(inv) xnor xor

byte3rs1 byte2 byte1 byte0

byte3rd byte2 byte1 byte0

byte3rs2 byte2 byte1 byte0

andorandor

hword1rs1 hword0

rd

hword1rs2 hword0

xorxnor

hword1 hword0

Figure 7: (a) Example of RED on half-word (top, left). (b) Example of FTCHK on half-word
(top, right). (c) Example of ANDC8 (bottom, left). (d) Example of XORC16 (bottom, right).

input: %i2 (a), %i3 (b), %i4 (random)
output: %o0
AND %i3, %i2, %o5 # partial product 1
SUBROT %i2, 2, %l0 # share-rotate
AND %i3, %l0, %o3 # partial product 2
XOR %l0, %l0, %l0 # clear SUBROT output
XOR %o5, %i4, %o2 # random + parprod 1
XOR %o2, %o3, %o1 # + parprod 2
SUBROT %i4, 2, %l1 # parallel refresh
XOR %o1, %l1, %o0 # output

(a) First-order secure multiplication

input: %l7 (a), %g1 (b), %g4 (random), %g2 (random)
output: %i1
AND %l7, %g1, %i3 # partial product 1
SUBROT %l7, 4, %o1 # share-rotate
AND %g1, %o1, %i2 # partial product 2
SUBROT %g1, 4, %o0 # share-rotate
AND %o0, %l7, %i0 # partial product 3
SUBROT %o1, 4, %l0 # share-rotate
AND %g1, %l0, %o7 # partial product 4
XOR %o1, %o1, %o1 # clear SUBROT output
XOR %o0, %o0, %o0 # clear SUBROT output
XOR %l0, %l0, %l0 # clear SUBROT output
XOR %i3, %g4, %o5 # random + parprod 1
XOR %o5, %i2, %o4 # + parprod 2
XOR %o4, %i0, %o3 # + parprod 3
SUBROT %g4, 4, %l1 #
XOR %o3, %l1, %o2 # + rot(random)
XOR %o2, %o7, %g3 # + parprod 4
XOR %g2, %g3, %i5 # output refresh
SUBROT %g2, 4, %l2 #
XOR %l2, %i5, %i1 #

(b) Third-order secure multiplication

Figure 6: Secure multiplication using SUBROT

Instructions for fault redundancy checking. We present the instructions related to fault
redundancy in two groups. The first is related to generation and checking of fault-redundant
slices, while the second is related to computations. The redundant bits with respect to
fault injection are stored in adjacent bytes of half-word. Figure 7(a) shows the example of
a halfword operation to generate redundant data, while Figure 7(b) shows the example of
a halfword operation to verify redundant data.

The RED rs1, imm, rd instruction generates redundant data. The redundant copy is
stored in the upper halfword (Rs = 2) or in the three upper bytes (Rs = 4). The redundant
portion can be either a direct or else a complement of the original data. There are six
variants of RED rs1, imm, rd. Two of them support dual redundancy (Rs = 2), they
duplicate the lower and upper halfword, in direct or complementary form. Four additional
variants support quadruple redundancy (Rs = 4), and they quadruple the lower two bytes
or the upper two bytes, each in direct or complementary form. Listing A.4 gives a formal

P. Kiaei, D. Mercadier et al. 17

definition of these instructions.
The FTCHK rs1, imm, rd instruction verifies the consistency of the redundant data.

This instruction generates a fault-flag in redundant form (over Rs bits, Appendix A.11),
which can be used to drive a fault condition test. Figure 7(b) illustrates the case of a
dual-redundancy check on direct data. The fault-check is evaluated in a redundant manner,
so that the fault-check itself can detect fault injection on its own check. The expected
faultless result of the instruction example in Figure 7(b) is 0xFFFF0000. There are four
variants of this instruction, for either dual (Rs = 2) or quadruple redundancy (Rs = 4),
and direct or complementary redundancy.

Instructions for fault-redundant computations. Computations on direct-redundant bit-
slices can be done using standard bitwise operations. However, for complementary-
redundant bitslices, the bitwise operations have to be adjusted to complement-operations.
The complement-redundant data format can be introduced at the halfword boundary
(Rs = 2) or at the byte boundary (Rs = 4). We opted to provide support for bitwise AND,
XOR and XNOR on these complement-redundant data formats. Figure 7(c-d) illustrates
the case of ANDC8 and XORC16. Their detailed behavior is given in Appendix A.

5 Results
This section evaluates the performance and side-channel security of AES on SKIVA. Next,
we analyze the fault coverage of applications on SKIVA under the assumed fault model.

5.1 Performance evaluation
Our experimental evaluation has been carried on a prototype of SKIVA deployed on the
main FPGA (Cyclone IV EP4CE115) of an Altera DE2-115 board. The processor is
clocked at 50 MHz and has access to 128 kB of RAM. Our performance results are obtained
by running the desired programs on bare metal. We assume that we have access to a
TRNG that frequently fills a register with a fresh 32-bit random string. We use a software
pseudo-random number generator (32-bit xorshift) to emulate a TRNG refreshed at a rate
of our choosing. We checked that our experiments did not overflow the period of the RNG.

Several implementations of AES are available on our 32-bit, SPARC-derivative processor,
with varying degrees of performance. A straightforward byte-oriented implementation
(supplementary material) takes 77 C/B whereas an optimized 32-bit T-box implementation
(supplementary material) takes 23 C/B. Both implementations are prone to timing attacks.
The constant-time, byte-sliced implementation (using only 8 variables to represent 128
bits of data) of BearSSL [Por] performs at 48 C/B. Our bitsliced implementation (using
128 variables to represent 128 bits of data) (supplementary material) performs favorably
at 44 C/B while weighing 7772B: despite a significant register pressure (128 live variables
for 32 machine registers), the rotations of MixColumn and the ShiftRows operations are
compiled away. This bitsliced implementation serves as our baseline in the following.

Micro-benchmarks. The instructions TR2, INVTR2, RED and SUBROT were introduced
solely for performance reasons. We evaluate their associated performance benefits by micro-
benchmarking them against an equivalent, purely software emulation. The instructions
TR2/INVTR2 improve performance by ×3.64 whereas SUBROT improves performance by
×4.2. The instruction RED improves performance from ×2.7 for Rs = 2 to ×14.1 for
Rs = 4. These results are consistent with the number of instructions necessary to emulate
each instruction (Appendix B). The impact of memory transfers (which takes a significant
portion of the computation time, independently of the instruction set) somewhat reduces
the absolute benefits of TR2/INVTR2 instructions: a full, bitsliced transposition takes 426

18 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

cycles with software emulation while it takes 302 cycles with custom instructions, yielding
a speedup of ×1.4 with custom instructions.

Code size (AES). We measure the impact of our hardware and software design on code
size, using our bitsliced implementation of AES (Section 3) as a baseline. Our hardware
design provides us with native support for spatial, complementary redundancy (ANDC,
XORC, and XNORC). Performing these operations through software emulation would result in
a ×1.2 (for D = 2) to ×1.3 (for D = 4) increase in code size. One must nonetheless bear
in mind that the security provided by emulation is not equivalent to the one provided by
native support. The temporal redundancy (Rt = 2) mechanism comes at the expense of
a small increase (less than ×1.06) in code size, due to the loop hardening protections as
well as the checks validating results across successive rounds. The higher-order masking
comes at a reasonable expense in code size: going from 1 to 2 shares increases code size by
×1.4 whereas going from 1 to 4 shares corresponds to a ×1.8 increase. A fully protected
implementation (D = 4, Rs = 4, Rt = 2) thus weighs 14048 bytes.

Throughput (AES). We report on the impact of our hardware and software design
on the performance of our bitsliced implementation of AES (Section 3). To do so, we
evaluate the performance of our 18 variants of AES, for each value of (D ∈ {1, 2, 4}, Rs ∈
{1, 2, 4}, Rt ∈ {1, 2}). To remove the influence of the TRNG’s throughput from the
performance evaluation, we assume that its refill frequency is strictly higher than the rate
at which our implementation consumes random bits. In practice, a refill rate of 10 cycles
for 32 bits is enough to meet this requirement.

We report our performance results1 in Table 2. As expected, for D and Rt fixed,
the throughput decreases linearly with Rs. Comparing Table 2a with Table 2b at fixed
Rs, we notice that the throughput decreases by a factor ×2.5 (D = 4) to ×3 (D = 1):
temporal redundancy mechanically divides the throughput by a factor 2, on top of which
one must account for the overhead of scheduling and checking the redundant slices. Note
that this overhead is less acute as D increases since more time is spent computing each
AES round (and, thus, relatively less time is spent in the runtime implementing temporal
redundancy). At fixed D, we also notice that the variant (D, Rs = 1, Rt = 2) (temporal
redundancy by a factor 2) exhibits similar performances as (D, Rs = 2, Rt = 1) (spatial
redundancy by a factor 2). However and crucially, both implementation are not equivalent
from a security standpoint: as discussed in Section 5.3, the former offers weaker security
guarantees than the latter. Similarly, at fixed D and Rs, we may be tempted to run
twice the implementation (D, Rs, Rt = 1) rather than running once the implementation
(D, Rs, Rt = 2): once again, the security of the former is reduced compared to the latter
since temporal redundancy (Rt = 2) couples the computation of 2 rounds within each
instruction, whereas pure instruction redundancy (Rt = 1) does not. At fixed Rs and Rt,
going from D = 1 to D = 2 implies a serious performance toll: first, the throughput is
mechanically divided by a factor 2; second, non-linear instructions must be expanded into
secure ones; third, there is a significant run-time overhead induced by masking, such as
creating shares, fetching random numbers, etc. Comparatively, going from 2 to 4 shares, is
less expensive since these run-time overheads are identical.

In Figure 2c and Figure 2d, we report the speedup offered by the custom instruction
set compared to a software emulation of these instructions. For large values of Rs or D,
the custom instruction set yields a speedup between ×1.4 to ×1.6, which is a reasonable
expectation for a fine-grain custom-instruction based hardware acceleration mechanism
[IL07]. On the one hand, custom instructions can be emulated in 2 instructions on

1To fully account for the 3 dimensions of our design space (D, Rs, and Rt), we present our results in a
tabular form – rather than graphical – to avoid biasing the interpretation toward 2 particular dimensions,
at the exclusion of the third one.

P. Kiaei, D. Mercadier et al. 19

Table 2: Exhaustive evaluation of the AES design space

Rt = 1 D
1 2 4

Rs

1 44 C/B 183 C/B 621 C/B
2 89 C/B 447 C/B 1615 C/B
4 169 C/B 847 C/B 3042 C/B

(a) Throughput (Rt = 1)

Rt = 2 D
1 2 4

Rs

1 127 C/B 470 C/B 1507 C/B
2 262 C/B 1122 C/B 3838 C/B
4 513 C/B 2148 C/B 7272 C/B

(b) Throughput (Rt = 2)

Rt = 1 D
1 2 4

Rs

1 ×1.07 ×1.51 ×1.54
2 ×1.41 ×1.51 ×1.57
4 ×1.50 ×1.51 ×1.59

(c) Speedup w/ custom instructions (Rt = 1)

Rt = 2 D
1 2 4

Rs

1 ×1.06 ×1.39 ×1.40
2 ×1.35 ×1.45 ×1.50
4 ×1.46 ×1.48 ×1.55

(d) Speedup w/ custom instructions (Rt = 2)

average: at best, our speedup is at most ×2. On the other hand, relatively few custom
instructions are used: they appear mostly in the S-box, whereas the remainder of the
cipher consists of linear operations and memory transfers. This is consistent with previous
custom cryptographical ISE, such as CRISP [GGP08] where a speedup of ×1.36 was
reported. Note, once again, that both implementations are not comparable from a security
standpoint: the security argument of the former is simpler than the latter while a successful
fault against the former requires a more powerful adversary than the latter.

5.2 Side-channel analysis
To show the security of our masking scheme, we test SKIVA on the main FPGA of
SAKURA-G board running at 9.8MHz and powered at 5V by an external power generator.
We use a LeCroy WaveRunner 610Zi oscilloscope, sampling 250M samples/sec. To limit
the noise level, we use a low-pass filter with a cutoff frequency of 81MHz on the power
probe. Furthermore, to have more accurate power traces, we set the scope to average
five traces and execute each encryption five times on SKIVA. To trigger the scope, we
assign one GPIO pin of LEON to a header pin on SAKURA-G board. We program a C
implementation of AES on SKIVA. This C code gets a plaintext from a PC through UART
and runs the encryption on the plaintext five times. The AES code sets and resets the
trigger before and after the encryption steps described in the following subsections. The
ciphertext is sent back to the PC for checking and validation of the power trace.

Correlation power analysis. To evaluate our design, we conduct 1st order correlation
power analysis (CPA) [BCO04] on power consumption traces of the SubBytes stage of the
first round of AES. We use hamming weight of the SubBytes output as the power model.
To speed up our attack, we use a sampling rate of 50M samples/sec. In this testcase, we
attack a single bitslice out of 32 parallel bitslices; the unused bitslices perform constant
encryption of an all-zero plaintext with an all-zero key. Our CPA attack analyzes 50K
traces and confirms that 1st order CPA on the unmasked scheme can reveal half of the key
with 12K traces while it reveals all the secret key bytes with 24K traces (see Appendix C.1
for specifics). When masking is enabled, no key byte is revealed under any configuration
at the maximum number of traces we considered (50K).

Test vector leakage assessment. To show that our 1st and 3rd order masked schemes
are immune to power-based attacks of orders up to their masking orders, we use the TVLA
methodology [GJJR11, BCD+13] and conduct the 1st and 2nd order t-tests on our 1st

20 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

0 2 4 6 8 10

sample ×10
4

-50

0

50

le
a

k
a

g
e

Power trace

0 2 4 6 8 10

sample ×10
4

-50

0

50

le
a

k
a

g
e

Power trace

0 2 4 6 8 10

sample ×10
4

-10

0

10

t
v
a

lu
e

1st order t-test

0 2 4 6 8 10

sample ×10
4

-5

0

5

t
v
a

lu
e

1st order t-test

0 2 4 6 8 10

sample ×10
4

-10

0

10

t
v
a

lu
e

2nd order t-test

0 2 4 6 8 10

sample ×10
4

-10

0

10

t
v
a

lu
e

2nd order t-test

Figure 8: Example power trace and 1st and 2nd order t-tests of 1st order masked imple-
mentation. Left column: 40K fixed vs. 40K random traces with PRNG off. Right column:
500K fixed vs. 500K random traces with PRNG on.

order masked implementation and the 1st to 4th order t-tests on our 3rd order masked
encryption. We set the trigger on one S-box in the fourth round of AES based on the
observation that the t-test shows more accurate results for the second third part of AES
[BCD+13].

For our experiments, following our attacker model discussed in Section 2.1, we conduct
the univariate non-specific fixed-vs.-random t-test in which a set of random inputs and a
set of fixed inputs are interspersed in a random order and sent to the device. The fixed
plaintext is selected such that the output of the SubBytes stage in the 4th round of AES is
zero. Furthermore, for higher order t-tests, we post-process the traces [SM15b] to calculate
the t-scores of the target order. We adopt the histogram methodology [RGV17] to speed
up our t-test calculations. Using a threshold value of 4.5 gives us a confidence of 99.999%
to test the null hypothesis that the two sets are from the same population, i.e. the device
is not leaking information correlated to the secret data.

Figure 8 and Figure 9 show the results of the t-test on our masked implementations.
The right column in Figure 8 (resp. Figure 9) indicates that our first (resp. third) order
masked scheme shows no leakage of first (resp. first, second, or third) order on 500K fixed
vs. 500K random traces while showing second (resp. fourth) order leakage as expected.
The left columns show how turning the PRNG off causes the implementations to have
leakage of all orders.

We conclude that, by applying the conservative approach mentioned in Section 4.2,
our implementation gives dth order security on a dth order masking scheme.

Power leakage of direct and complementary redundancy. To compare the effect of
the direct and complementary redundancy schemes on side-channel leakage, we run the
following test. We make two different versions of our AES C code: (1) 16 parallel aggregated
bitslices of the direct (D = 2, Rs = 1, Rt = 1) scheme as the input to the first S-box in

P. Kiaei, D. Mercadier et al. 21

0 2 4 6 8 10 12

sample ×10
4

-100

0

100

le
a
k
a
g
e

Power trace

0 2 4 6 8 10 12

sample ×10
4

-100

0

100

le
a
k
a
g
e

Power trace

0 2 4 6 8 10 12

sample ×10
4

-20

0

20

t
v
a
lu

e

1st order t-test

0 2 4 6 8 10 12

sample ×10
4

-5

0

5

t
v
a
lu

e

1st order t-test

0 2 4 6 8 10 12

sample ×10
4

-10

0

10

t
v
a
lu

e

2nd order t-test

0 2 4 6 8 10 12

sample ×10
4

-5

0

5

t
v
a
lu

e

2nd order t-test

0 2 4 6 8 10 12

sample ×10
4

-50

0

50

t
v
a
lu

e

3rd order t-test

0 2 4 6 8 10 12

sample ×10
4

-5

0

5

t
v
a
lu

e

3rd order t-test

0 2 4 6 8 10 12

sample ×10
4

-50

0

50

t
v
a
lu

e

4th order t-test

0 2 4 6 8 10 12

sample ×10
4

-50

0

50

t
v
a
lu

e

4th order t-test

Figure 9: Example power trace and 1st to 4th order t-tests of 3rd order masked implemen-
tation. Left column: 35K fixed vs. 35K random traces with PRNG off. Right column:
500K fixed vs. 500K random traces with PRNG on.

22 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

sample

-25

-20

-15

-10

-5

0

5

10

15

20

25

t
v
a

lu
e

2nd order t-test

(a) 1st order masked / 2nd order t-test
Complementary redundancy
(5K fixed vs. 5K random)

0 2000 4000 6000 8000 10000 12000

sample

-25

-20

-15

-10

-5

0

5

10

15

20

25

t
v
a
lu

e

2nd order t-test

(b) 1st order masked / 2nd order t-test
Direct redundancy
(5K fixed vs. 5K random)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of traces

0

5

10

15

20

25

30

t
v
a
lu

e

Evolution of 2nd order t values for the two redundancy schemes

complementary redundancy

direct redundancy

(c) Evolution of t values for 2nd order t-test on 1st order
masked implementation with direct and complementary
redundancy.

Figure 10: Effect of different redundancy schemes on power leakage.

the fourth round of AES; and (2) 8 parallel aggregated bitslices of the complementary
(D = 2, Rs = 2, Rt = 1) scheme as the input to the first S-box in the fourth round of AES.

We then measure 5K traces for fixed input and 5K traces for random input and apply
a second order t-test on the measured traces. To speed up our measurements, the traces
were collected at 50MS/s. As expected, Figures 10a and 10b show second order leakage for
both schemes. However, the direct redundancy results in much higher t-values indicating
a higher probability of leakage than complementary redundancy. To make this point more
clear, Figure 10c shows the evolution of t-values for the 2nd order t-test with respect to the
number of traces for both redundancy schemes. We observe that the direct redundancy
shows leakage with as few as about 200 traces while the complementary redundancy shows
leakage only after around 2500 traces. From this experiment, we conclude that having
the complementary redundancy is better than its direct counterpart in hiding secret data
from the power leakage. Note that despite exhibiting different power leakage profiles, we
have confirmed that a first order t-test on both implementations shows no leakage for a
non-specific test of 25K fixed vs. 25K random traces (Figure 11 in Appendix C.2).

P. Kiaei, D. Mercadier et al. 23

5.3 Security analysis of data faults
In the following, we analyze the fault sensitivity of our protected implementations according
to the attacker models defined in Section 2.1. Our data protection scheme relies on spatial
redundancy (Rs ∈ {2, 4}). Faults that cannot be detected are those that affect redundant
copies within a single register in a consistent manner, which implies either identical values
in case of direct redundancy or negated values in case of complemented redundancy.

Note that this analysis is independent of whether sharing (D) is used or not. From
the standpoint of redundancy, each share is independently protected: for example, if two
shares of the same data are subjected to a bit flip, our redundancy mechanism will report
an error, even though the underlying data remains unchanged (x1 ⊕ x2 = x1 ⊕ x2).

There are different ways to achieve undetected faults, i.e. generate a consistent value:
one may skip an instruction whose destination register already holds a consistent value;
one may replace an instruction with another (e.g., substitute an ANDC by an XORC); or
directly perform a data fault.

If P is the probability for a data fault to result in a consistent value, then the detection
rate is 1− P . Such a probability depends on the injection technique, its parameters, the
target architecture as well as physical properties of the device. In the following, we develop
a theoretical analysis based on the assumption that data faults follow a stuck-at 0 or
stuck-at 1 model, or uniformly distributed random byte, half-word, and word model. We
then complement this analysis by an empirical evaluation of the impact of instruction skip.

Theoretical analysis of spatial redundancy In this analysis, we use the fault coverage
(FC) metric [GMK12] FC = 1 − Fundetected/Ftotal where Ftotal is the total number of
faults covered by the fault model and Fundetected is the number of faults that affect the
execution while escaping detection by the countermeasure.

By construction, data fault effects such as single bit set, single reset, single bit flip,
byte or half-word zeroing, faulty random byte or faulty random half-word are all detected
(FC = 100%). Word zeroing or stuck-at 1 on complementary redundant data are also all
detected (FC = 100%) but direct redundancy will never detect it (FC = 0%).

If the attacker injects random data faults following a uniform distribution, it means
that there are Ftotal = 232 fault injection possibilities. For Rs = 2 and independently of
the redundancy (direct or complementary), 216 of those values are consistent, including
the expected output. Hence Fundetected = 216 − 1 and FC = 99.99%. For Rs = 4, there
are Fundetected = 28 − 1 faults that are left undetected, thus FC = 99.99%.

For illustrative purposes, we now consider a slightly stronger attacker who may flip p
randomly chosen data bits. In practice, such an analysis ought to be tailored to account for
the specific distribution of faults of a given injection technique on a given platform. Under
this attacker model, there are Ftotal =

(32
p

)
fault injection possibilities leading to a p-bit

flip (with p an even number). For Rs = 2, there are Fundetected =
(16

p
2

)
faults corresponding

to a p-bit flip that are left undetected. The lower-bound for FC is reached for p = 2 and
p = 30, where FC = 96.77%. For Rs = 4, there are Fundetected =

(8
p
4

)
faults corresponding

to a p-bit flip that are left undetected. The lower-bound for FC is reached for p = 4 and
p = 28, where FC = 99.97%. A p-bit set or reset fault model leads to a 100% detection
rate if complementary redundancy is used. If direct redundancy is used, then this amounts
to the p-bit flip model. Either way the detection rate is very high.

Experimental evaluation of temporal redundancy. We have simulated the impact of
faults on our implementation of AES. We focus our attention exclusively on control faults
(instruction skips) since our above analytical model already predicts the outcome of data
faults. To this end, we use a fault injection simulator based on gdb running through
the JTAG interface of the FPGA board. We execute our implementation up to a chosen

24 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

Table 3: Experimental results of simulated instruction skips

With impact Without impact
Detected Not detected Detected Not detected Crash # of faults

(1) (2) (3) (4) (5)
Rt = 1 0.19% 94.40% 0% 2.56% 2.84% 8507
Rt = 2 80.75% 0% 7.74% 7.96% 3.55% 19552

breakpoint, after which we instruct the processor to jump to a given address, hence
simulating the effect of an instruction skip. In particular, we have exhaustively targeted
every instruction of the first and last round as well as the AES_secure routine (for Rt = 2)
and its counterpart for Rt = 1. Since rounds 2 to 9 use the same code as the first round,
the absence of vulnerabilities against instruction skips within the latter means that the
former are secure against instruction skip as well. This exposes a total of 1222 injection
points for Rt = 2 and 1097 injection points for Rt = 1. For each such injection point, we
perform an instruction skip from 512 random combinations of key and plaintext for Rt = 2
and 256 random combinations for Rt = 1.

The results are summarized in Table 3. Injecting a fault had one of five effect. A
fault may yield an incorrect ciphertext with (1) or without (2) being detected. A fault
may yield a correct ciphertext, with (3) or without (4) being detected. Finally, a fault
may cause the program or the board to crash (5). According to our attacker model, only
outcome (2) witnesses a vulnerability. In every other outcome, the fault either does not
produce a faulty ciphertext, or is detected within 2 rounds. For Rt = 2, we verify that
every instruction skip was either detected (outcome 1 or 3) or had no effect on the output
of the corresponding round (outcome 4) or lead to a crash (outcome 5). Comparatively,
with Rt = 1, nearly 95% of the instruction skips lead to an undetected fault impacting the
ciphertext. In 0.19% of the cases, the fault actually impacts the fault-detection mechanism
itself, thus triggering a false positive.

5.4 Discussion
SKIVA sets out to provide a platform for implementing cryptographic primitives resilient
to combined attacks. In this section, we have evaluated a set of candidate designs for AES
in terms of performance (Section 5.1) as well as security. We have carried a theoretical and
empirical evaluation of the impact of faults (Section 5.3) on our designs, hence quantifying
their adequacy with respect to our “fault attacker model” (Section 2.1). We have also
carried out an empirical evaluation of the security of our masking scheme through CPA and
the TVLA methodology, hence quantifying its adequacy with respect to our “side-channel
attacker model” (Section 2.1). Besides, we have quantified the amplification of side-channel
leakage induced by the fault protection mechanism, hence validating our “combined
attacker model” (Section 2.1). Admittedly, our combined attacker model exposes a narrow
attack surface, excluding an attacker actively mitigating the SCA countermeasures or
drawing conclusions from the distribution of masked values (SIFA). As the design and
implementation of protections against such attacks mature, we will be able to integrate
them in a (software) implementation of AES, leaving SKIVA, the underlying (hardware)
platform, untouched. This example thus illustrates the strengths of our approach: thanks
to SKIVA’s support for aggregated bitslice operations, we benefit from techniques and
advances in the field of hardware (e.g., boolean masking) as well as software (e.g., temporal
redundancy) protection mechanisms, while taking full advantage of the flexibility of
software.

P. Kiaei, D. Mercadier et al. 25

6 Conclusion
We have presented SKIVA, a general-purpose 32-bit processor supporting high-throughput,
secure block ciphers on embedded devices. Our objective in extending the SPARC
instruction set was to provide cryptographers with a manageable programming model for
implementing secure ciphers on a general-purpose CPU. On the software side, we advocate
an approach centered around bitslicing, where cryptographic primitives are treated as
combinational circuits. By design, bitslicing protects an implementation against timing-
based side-channel attacks. But it also provides a sound basis for modular protections
against fault and/or power-based side-channel attacks, thus paving the way for a pay-as-
you-go security approach. In essence, SKIVA can be understood as a Turing machine for
efficiently and securely executing combinational circuits in software.

These design choices translate into protection mechanisms that can naturally and
systematically be integrated together. To protect against faults, we have shown that
intra-instruction redundancy enables a purely analytic security analysis, guaranteeing
significant coverage, while we experimental showed that temporal redundancy protects
against instruction skips. To protect against side-channel, we crucially rely on the physical
isolation of slices thus significantly reducing the risk of involuntary interference due to
architectural details invisible to the programmer.

We have demonstrated the benefits of our approach with a bitsliced implementation
of AES with 1, 2 and 4 shares, a temporal redundancy of 1 and 2 as well as a spatial
redundancy of 1, 2, and 4. In terms of code size, we have shown that all security levels can
be implemented in less than 14048B. In terms of performance, we have seen that it scales
well with protection levels, dividing the throughput by 163 with all protections enabled at
their maximum (D = 4, Rs = 4, Rt = 2).
Future work. In this paper, we have studied AES running on the SKIVA platform. To
demonstrate the versatility of SKIVA, we intend to evaluate more ciphers at various
security levels on this platform, including physical fault injection. Besides, we would like to
compare it with alternative platforms, including general-purpose processors – ARM Cortex,
AVR, or RISC-V – as well as cryptographic extensions – namely XCrypto [MPP19]. To
cover this design space, we plan to invest in automation, integrating our countermeasures
into a bitslicing compiler [Por01, MDLM18].

Acknowledgements
The SKIVA design was supported in part by the National Science Foundation Award
1617203, and the National Institute for Standards and Technology Award 70NANDBH17280.

26 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

References
[ABMP13] Giovanni Agosta, Alessandro Barenghi, Massimo Maggi, and Gerardo Pelosi.

Compiler-based side channel vulnerability analysis and optimized counter-
measures application. In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–6. IEEE, 2013.

[AVFM07] Frédéric Amiel, Karine Villegas, Benoit Feix, and Louis Marcel. Passive
and active combined attacks: Combining fault attacks and side channel
analysis. In Fourth International Workshop on Fault Diagnosis and Tolerance
in Cryptography, 2007, FDTC 2007: Vienna, Austria, 10 September 2007,
pages 92–102, 2007.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 116–129, 2016.

[BCD+13] G C Becker, Jennifer Cooper, E. DeMulder, Gilbert Goodwill, Jules Jaffe,
G. Kenworthy, T. Kouzminov, Andrew Leiserson, Mark E. Marson, Pankaj
Rohatgi, and Sami Saab. Test vector leakage assessment (TVLA) methodology
in practice. 2013.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems
- CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, pages 16–29, 2004.

[BCR16] Thierno Barry, Damien Couroussé, and Bruno Robisson. Compilation of
a countermeasure against instruction-skip fault attacks. In Proceedings of
the Third Workshop on Cryptography and Security in Computing Systems,
CS2@HiPEAC, Prague, Czech Republic, January 20, 2016, pages 1–6, 2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations
of masking schemes and the bounded moment leakage model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, pages 535–566, Cham, 2017. Springer International
Publishing.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES, 2005.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked
software implementations. In Smart Card Research and Advanced Applications
- 13th International Conference, CARDIS 2014, Paris, France, November
5-7, 2014. Revised Selected Papers, pages 64–81, 2014.

[BGK05] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure
masking of aes. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, pages 69–83, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits:
Achieving probing security with the least refreshing. In Advances in Cryp-
tology - ASIACRYPT 2018 - 24th International Conference on the Theory

P. Kiaei, D. Mercadier et al. 27

and Application of Cryptology and Information Security, Brisbane, QLD,
Australia, December 2-6, 2018, Proceedings, Part II, pages 343–372, 2018.

[BGRV15] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede.
Dpa, bitslicing and masking at 1 ghz. In Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, pages 599–619, 2015.

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth
and black-box characterization of the effects of clock glitches on 8-bit mcus.
In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2011, Tokyo, Japan, September 29, 2011, pages 105–114, 2011.

[Bih97] Eli Biham. A fast new DES implementation in software. In Fast Software
Encryption (FSE), 1997.

[BJHB18] Jakub Breier, Dirmanto Jap, Xiaolu Hou, and Shivam Bhasin. On side-channel
vulnerabilities of bit permutations: Key recovery and reverse engineering.
IACR Cryptology ePrint Archive, 2018:219, 2018.

[BMP+11] Manuel Barbosa, Andrew Moss, Dan Page, Nuno F. Rodrigues, and Paulo F.
Silva. Type checking cryptography implementations. In Fundamentals
of Software Engineering - 4th IPM International Conference, FSEN 2011,
Tehran, Iran, April 20-22, 2011, Revised Selected Papers, pages 316–334,
2011.

[BRN+15] Ali Galip Bayrak, Francesco Regazzoni, David Novo, Philip Brisk, François-
Xavier Standaert, and Paolo Ienne. Automatic application of power analysis
countermeasures. IEEE Trans. Computers, 64(2):329–341, 2015.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97,
pages 513–525, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[CBD+15] Clement Champeix, Nicolas Borrel, Jean-Max Dutertre, Bruno Robisson,
Mathieu Lisart, and Alexandre Sarafianos. Experimental validation of a bulk
built-in current sensor for detecting laser-induced currents. In 21st IEEE
International On-Line Testing Symposium, IOLTS 2015, Halkidiki, Greece,
July 6-8, 2015, pages 150–155, 2015.

[Col19] Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption
on a 32-bit Microcontroller. In IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2019.

[CPM+18] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and
Aurélien Francillon. Screaming channels: When electromagnetic side channels
meet radio transceivers. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 163–177, 2018.

[CPT17] Lucian Cojocar, Kostas Papagiannopoulos, and Niek Timmers. Instruction
duplication: Leaky and not too fault-tolerant! In Smart Card Research
and Advanced Applications - 16th International Conference, CARDIS 2017,
Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers, pages
160–179, 2017.

28 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

[CS18] Gaetan Cassiers and François-Xavier Standaert. Improved bitslice masking:
from optimized non-interference to probe isolation. IACR Cryptology ePrint
Archive, 2018:438, 2018.

[CSN+17] Zhi Chen, Junjie Shen, Alex Nicolau, Alexander V. Veidenbaum,
Nahid Farhady Ghalaty, and Rosario Cammarota. CAMFAS: A compiler
approach to mitigate fault attacks via enhanced SIMDization. In 2017 Work-
shop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2017, Taipei,
Taiwan, September 25, 2017, pages 57–64, 2017.

[dCKC+16] Ruan de Clercq, Ronald De Keulenaer, Bart Coppens, Bohan Yang, Pieter
Maene, Koen De Bosschere, Bart Preneel, Bjorn De Sutter, and Ingrid
Verbauwhede. SOFIA: software and control flow integrity architecture. In
2016 Design, Automation & Test in Europe Conference & Exhibition, DATE
2016, Dresden, Germany, March 14-18, 2016, pages 1172–1177, 2016.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: exploiting ineffective fault induc-
tions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(3):547–572, 2018.

[DMM+13] Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max Dutertre,
and Assia Tria. Electromagnetic glitch on the AES round counter. In
Constructive Side-Channel Analysis and Secure Design - 4th International
Workshop, COSADE 2013, Paris, France, March 6-8, 2013, Revised Selected
Papers, pages 17–31, 2013.

[DPA00] Joan Daemen, Michaël Peeters, and Gilles Van Assche. Bitslice ciphers
and power analysis attacks. In Fast Software Encryption, 7th International
Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings,
pages 134–149, 2000.

[DV12] François Dassance and Alexandre Venelli. Combined fault and side-channel
attacks on the AES key schedule. In 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography, Leuven, Belgium, September 9, 2012, pages 63–71,
2012.

[EW14] Hassan Eldib and Chao Wang. Synthesis of masking countermeasures against
side channel attacks. In International Conference on Computer Aided Verifi-
cation, pages 114–130. Springer, 2014.

[FJLT13] Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
Attacks on AES with Faulty Ciphertexts Only. In 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 108–118, Aug 2013.

[GGP08] Philipp Grabher, Johann Großschädl, and Dan Page. Light-weight instruction
set extensions for bit-sliced cryptography. In Cryptographic Hardware and
Embedded Systems - CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, pages 331–345, 2008.

[GJJR11] Gilbert Goodwill, Benjamin Jun, John Jaffe, and Pankaj Rohatgi. A testing
methodology for side channel resistance. 2011.

[GJRS18] Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-
Xavier Standaert. Secure multiplication for bitslice higher-order masking:
Optimisation and comparison. In Constructive Side-Channel Analysis and
Secure Design - 9th International Workshop, COSADE 2018, Singapore,
April 23-24, 2018, Proceedings, pages 3–22, 2018.

P. Kiaei, D. Mercadier et al. 29

[GM10] Berndt M. Gammel and Stefan Mangard. On the duality of probing and
fault attacks. J. Electronic Testing, 26(4):483–493, 2010.

[GMK12] Xiaofei Guo, Debdeep Mukhopadhyay, and Ramesh Karri. Provably secure
concurrent error detection against differential fault analysis. IACR Cryptology
ePrint Archive, 2012:552, 2012.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In Proceedings of the ACM Workshop on Theory of Implementation Security,
TIS@CCS 2016 Vienna, Austria, October, 2016, page 3, 2016.

[GPSS18] Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko Stoffe-
len. Vectorizing higher-order masking. In Constructive Side-Channel Analysis
and Secure Design - 9th International Workshop, COSADE 2018, Singapore,
April 23-24, 2018, Proceedings, pages 23–43, 2018.

[GYCH16] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. Cryptology ePrint Archive, Report 2016/613, 2016. https:
//eprint.iacr.org/2016/613.

[IL07] Paolo Ienne and Rainer Leupers. Customizable Embedded Processors: Design
Technologies and Applications. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007.

[JS17] Anthony Journault and François-Xavier Standaert. Very high order masking:
Efficient implementation and security evaluation. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 623–643, 2017.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, pages 361–372, 2014.

[Kön08] Robert Könighofer. A fast and cache-timing resistant implementation of the
AES. In Topics in Cryptology - CT-RSA 2008, The Cryptographers’ Track
at the RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008.
Proceedings, pages 187–202, 2008.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. CHES, 2009.

[LAZ+17] Pei Luo, Konstantinos Athanasiou, Liwei Zhang, Zhen Hang Jiang, Yunsi
Fei, A. Adam Ding, and Thomas Wahl. Compiler-assisted Threshold Imple-
mentation against Power Analysis Attacks. pages 541–544. IEEE, November
2017.

[LCFS18] Benjamin Lac, Anne Canteaut, Jacques J. A. Fournier, and Renaud Sirdey.
Thwarting fault attacks against lightweight cryptography using SIMD instruc-
tions. In IEEE International Symposium on Circuits and Systems, ISCAS
2018, 27-30 May 2018, Florence, Italy, pages 1–5, 2018.

https://eprint.iacr.org/2016/613
https://eprint.iacr.org/2016/613

30 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

[LHB14] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. Software
countermeasures for control flow integrity of smart card C codes. In Com-
puter Security - ESORICS 2014 - 19th European Symposium on Research
in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings,
Part II, pages 200–218, 2014.

[LLF16] Pei Luo, Chao Luo, and Yunsi Fei. System clock and power supply cross-
checking for glitch detection. IACR Cryptology ePrint Archive, 2016:968,
2016.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Cryptographic
Hardware and Embedded Systems, CHES 2010, 12th International Workshop,
Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, pages 320–334,
2010.

[MDH+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and
Encrenaz Encrenaz. Electromagnetic fault injection: towards a fault model
on a 32-bit microcontroller. In Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 77–88, 2013.

[MDLM18] Darius Mercadier, Pierre-Évariste Dagand, Lionel Lacassagne, and Gilles
Muller. Usuba: Optimizing & trustworthy bitslicing compiler. In Proceedings
of the 4th Workshop on Programming Models for SIMD/Vector Processing,
WPMVP@PPoPP 2018, Vienna, Austria, February 24, 2018, pages 4:1–4:8,
2018.

[MOPT11] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Automatic
insertion of DPA countermeasures. IACR Cryptology ePrint Archive, 2011:412,
2011.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems – CHES 2012, pages 58–75,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[MPP19] B. Marshall, D. Page, and T. Pham. XCrypto: a cryptographic ISE for
RISC-V, 2019.

[NHH+16] Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi, Hi-
toshi Fuji, and Takafumi Aoki. Buffer overflow attack with multiple fault
injection and a proven countermeasure. Journal of Cryptographic Engineering,
2016.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In Information
and Communications Security, 8th International Conference, ICICS 2006,
Raleigh, NC, USA, December 4-7, 2006, Proceedings, pages 529–545, 2006.

[PH12] David A. Patterson and John L. Hennessy. Computer Organization and
Design - The Hardware / Software Interface (Revised 4th Edition). The
Morgan Kaufmann Series in Computer Architecture and Design. Academic
Press, 2012.

[PHBC17] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
Compiler-assisted loop hardening against fault attacks. ACM Trans. Archit.
Code Optim., 14(4):36:1–36:25, December 2017.

P. Kiaei, D. Mercadier et al. 31

[Por] Thomas Pornin. BearSSL, a smaller SSL/TLS library. https://bearssl.org.
Accessed: 2019-01-08.

[Por01] Thomas Pornin. Implantation et optimisation des primitives cryptographiques.
PhD thesis, École Normale Supérieure, 2001.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In Constructive Side-Channel Analysis
and Secure Design - 8th International Workshop, COSADE 2017, Paris,
France, April 13-14, 2017, Revised Selected Papers, pages 282–297, 2017.

[PYGS16] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schau-
mont. Lightweight fault attack resistance in software using intra-instruction
redundancy. In Selected Areas in Cryptography - SAC 2016 - 23rd Inter-
national Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised
Selected Papers, pages 231–244, 2016.

[RBIK12] Francesco Regazzoni, Luca Breveglieri, Paolo Ienne, and Israel Koren. In-
teraction between fault attack countermeasures and the resistance against
power analysis attacks. In Fault Analysis in Cryptography, pages 257–272.
2012.

[RBV17] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code
constant time? In Design, Automation & Test in Europe Conference &
Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017, pages
1697–1702, 2017.

[RCS+09] Francesco Regazzoni, Alessandro Cevrero, François-Xavier Standaert,
Stéphane Badel, Theo Kluter, Philip Brisk, Yusuf Leblebici, and Paolo
Ienne. A design flow and evaluation framework for dpa-resistant instruction
set extensions. In Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9,
2009, Proceedings, pages 205–219, 2009.

[RDB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla Nikova,
Ventzislav Nikov, and Nigel P. Smart. CAPA: the spirit of beaver against
physical attacks. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, pages 121–151, 2018.

[Res18] Cobham Gaisler Research. Leon-3 processor, 2018. https://www.gaisler.
com/index.php/products/processors/leon3.

[RGV17] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. Fast leakage
assessment. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems – CHES 2017, pages 387–399, Cham, 2017.
Springer International Publishing.

[RLK11] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined fault and
side-channel attack on protected implementations of AES. In Smart Card
Research and Advanced Applications - 10th IFIP WG 8.8/11.2 International
Conference, CARDIS 2011, Leuven, Belgium, September 14-16, 2011, Revised
Selected Papers, pages 65–83, 2011.

[RNR+15] Lionrl Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc. Danger, Julien Bringer,
and Lionel Sauvage. High precision fault injections on the instruction cache
of armv7-m architectures. In IEEE International Symposium on Hardware
Oriented Security and Trust, (HOST), pages 62–67, 2015.

https://bearssl.org
https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3

32 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, pages 413–427, 2010.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice imple-
mentation of AES. In Cryptology and Network Security, 5th International
Conference, CANS 2006, Suzhou, China, December 8-10, 2006, Proceedings,
pages 203–212, 2006.

[SBD+18] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro
Maat Costa Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and
Niels Samwel. Towards lightweight cryptographic primitives with built-in
fault-detection. IACR Cryptology ePrint Archive, 2018:729, 2018.

[SI92] CORPORATE SPARC International, Inc. The SPARC Architecture Manual:
Version 8. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[SM15a] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, pages 495–513, 2015.

[SM15b] Tobias Schneider and Amir Moradi. Leakage assessment methodology - a
clear roadmap for side-channel evaluations. In IACR Cryptology ePrint
Archive, 2015.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti: Towards combined
hardware countermeasures against side-channeland fault-injection attacks.
In Proceedings of the ACM Workshop on Theory of Implementation Security,
TIS@CCS 2016 Vienna, Austria, October, 2016, page 39, 2016.

[SMKLM02] Yen Sung-Ming, Seungjoo Kim, Seongan Lim, and Sangjae Moon. A counter-
measure against one physical cryptanalysis may benefit another attack. In
Kwangjo Kim, editor, Information Security and Cryptology — ICISC 2001,
pages 414–427, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and
M4. In Selected Areas in Cryptography - SAC 2016 - 23rd International
Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised Selected
Papers, pages 180–194, 2016.

[TG07] Stefan Tillich and Johann Großschädl. Power analysis resistant AES im-
plementation with instruction set extensions. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 303–319, 2007.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential
fault analysis of the advanced encryption standard using a single fault.
In Claudio A. Ardagna and Jianying Zhou, editors, Information Security
Theory and Practice. Security and Privacy of Mobile Devices in Wireless
Communication, pages 224–233, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[Tri03] Elena Trichina. Combinational logic design for AES subbyte transformation
on masked data. IACR Cryptology ePrint Archive, 2003:236, 2003.

P. Kiaei, D. Mercadier et al. 33

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. CLKSCREW:
exposing the perils of security-oblivious energy management. In 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017., pages 1057–1074, 2017.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for
a secure DPA resistant ASIC or FPGA implementation. In 2004 Design,
Automation and Test in Europe Conference and Exposition (DATE 2004),
16-20 February 2004, Paris, France, pages 246–251, 2004.

[WWM15] Mario Werner, Erich Wenger, and Stefan Mangard. Protecting the control
flow of embedded processors against fault attacks. In Smart Card Research
and Advanced Applications - 14th International Conference, CARDIS 2015,
Bochum, Germany, November 4-6, 2015. Revised Selected Papers, pages
161–176, 2015.

[YGD+16] Bilgiday Yuce, Nahid F Ghalaty, Chinmay Deshpande, Conor Patrick, Leyla
Nazhandali, and Patrick Schaumont. FAME: Fault-attack aware micropro-
cessor extensions for hardware fault detection and software fault response.
In Proceedings of the Hardware and Architectural Support for Security and
Privacy 2016, page 8. ACM, 2016.

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault attacks on
secure embedded software: Threats, design, and evaluation. Journal of
Hardware and Systems Security, 2(2):111–130, Jun 2018.

[YYP+18] Yuan Yao, Mo Yang, Conor Patrick, Bilgiday Yuce, and Patrick Schaumont.
Fault-assisted side-channel analysis of masked implementations. In 2018
IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2018, Washington, DC, USA, April 30 - May 4, 2018, pages 57–64,
2018.

[ZDCT13] Loïc Zussa, Jean-Max Dutertre, Jessy Clédière, and Assia Tria. Power
supply glitch induced faults on FPGA: an in-depth analysis of the injection
mechanism. In 2013 IEEE 19th International On-Line Testing Symposium
(IOLTS), Chania, Crete, Greece, July 8-10, 2013, pages 110–115, 2013.

A Custom instructions details
A.1 TR2 instruction
TR2 rs1, rs2, rd

regrd[31:0] := CONCAT(regrs1[15],regrs2[15],regrs1[14],regrs2[14], ...
regrs1[13],regrs2[13],regrs1[12],regrs2[12], ...
regrs1[11],regrs2[11],regrs1[10],regrs2[10], ...
regrs1[9],regrs2[9],regrs1[8],regrs2[8], ...
regrs1[7],regrs2[7],regrs1[6],regrs2[6], ...
regrs1[5],regrs2[5],regrs1[4],regrs2[4], ...
regrs1[3],regrs2[3],regrs1[2],regrs2[2], ...
regrs1[1],regrs2[1],regrs1[0],regrs2[0])

y[31:0] := CONCAT(regrs1[31],regrs2[31],regrs1[30],regrs2[30], ...
regrs1[29],regrs2[29],regrs1[28],regrs2[28], ...
regrs1[27],regrs2[27],regrs1[26],regrs2[26], ...
regrs1[25],regrs2[25],regrs1[24],regrs2[24], ...

34 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

regrs1[23],regrs2[23],regrs1[22],regrs2[22], ...
regrs1[21],regrs2[21],regrs1[20],regrs2[20], ...
regrs1[19],regrs2[19],regrs1[18],regrs2[18], ...
regrs1[17],regrs2[17],regrs1[16],regrs2[16])

A.2 INVTR2 instruction
INVTR2 rs1, rs2, rd

regrd[31:0] := CONCAT(regrs1[30],regrs1[28],regrs1[26],regrs1[24], ...
regrs1[22],regrs1[20],regrs1[18],regrs1[16], ...
regrs1[14],regrs1[12],regrs1[10],regrs1[8], ...
regrs1[6],regrs1[4],regrs1[2],regrs1[0], ...
regrs2[30],regrs2[28],regrs2[26],regrs2[24], ...
regrs2[22],regrs2[20],regrs2[18],regrs2[16], ...
regrs2[14],regrs2[12],regrs2[10],regrs2[8], ...
regrs2[6],regrs2[4],regrs2[2],regrs2[0])

y[31:0] := CONCAT(regrs1[31],regrs1[29],regrs1[27],regrs1[25], ...
regrs1[23],regrs1[21],regrs1[19],regrs1[17], ...
regrs1[15],regrs1[13],regrs1[11],regrs1[9], ...
regrs1[7],regrs1[5],regrs1[3],regrs1[1], ...
regrs2[31],regrs2[29],regrs2[27],regrs2[25], ...
regrs2[23],regrs2[21],regrs2[19],regrs2[17], ...
regrs2[15],regrs2[13],regrs2[11],regrs2[9], ...
regrs2[7],regrs2[5],regrs2[3],regrs2[1])

A.3 SUBROT instruction
SUBROT rs, imm, rd

IF imm[2:0] = 010
FOR i:=0:15

j := 2*i
regrd[j+1:j] := regrs[j:j+1]

ENDFOR
ELIF imm[2:0] = 100

FOR i:=0:7
j := 4*i
regrd[j+3:j] := CONCAT(regrs[j+2:j],regrs[j+3])

ENDFOR
FI

A.4 RED instruction
RED rs, imm, rd

IF imm[2:0] = 010
regrd[15:0] := regrs[15:0]
regrd[31:16] := regrs[15:0]
y[15:0] := regrs[31:16]
y[31:16] := regrs[31:16]

P. Kiaei, D. Mercadier et al. 35

ELIF imm[2:0] = 011
regrd[15:0] := regrs[15:0]
regrd[31:16] := (NOT regrs[15:0])
y[15:0] := rregrss[31:16]
y[31:16] := (NOT regrs[31:16])

ELIF imm[2:0] = 100
regrd[7:0] := regrs[7:0]
regrd[15:8] := regrs[7:0]
regrd[23:16] := regrs[7:0]
regrd[31:24] := regrs[7:0]
y[7:0] := regrs[15:8]
y[15:8] := regrs[15:8]
y[23:16] := regrs[15:8]
y[31:24] := regrs[15:8]

ELIF imm[2:0] = 101
regrd[7:0] := regrs[7:0]
regrd[15:8] := (NOT regrs[7:0])
regrd[23:16] := regrs[7:0]
regrd[31:24] := (NOT regrs[7:0])
y[7:0] := rs[15:8]
y[15:8] := (NOT regrs[15:8])
y[23:16] := rs[15:8]
y[31:24] := (NOT regrs[15:8])

ELIF imm[2:0] = 110
regrd[7:0] := regrs[23:16]
regrd[15:8] := regrs[23:16]
regrd[23:16] := regrs[23:16]
regrd[31:24] := regrs[23:16]
y[7:0] := regrs[31:24]
y[15:8] := regrs[31:24]
y[23:16] := regrs[31:24]
y[31:24] := regrs[31:24]

ELIF imm[2:0] = 111
regrd[7:0] := regrs[23:16]
regrd[15:8] := (NOT regrs[23:16])
regrd[23:16] := regrs[23:16]
regrd[31:24] := (NOT regrs[23:16])
y[7:0] := regrs[31:24]
y[15:8] := (NOT regrs[31:24])
y[23:16] := regrs[31:24]
y[31:24] := (NOT regrs[31:24])

FI

A.5 ANDC16 instruction
ANDC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] AND regrs2[15:0])
regrd[31:16] := (regrs1[31:16] OR regrs2[31:16])

36 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

A.6 XORC16 instruction
XORC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] XOR regrs2[15:0])
regrd[31:16] := (regrs1[31:16] XNOR regrs2[31:16])

A.7 XNORC16 instruction
XNORC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] XNOR regrs2[15:0])
regrd[31:16] := (regrs1[31:16] XOR regrs2[31:16])

A.8 ANDC8 instruction
ANDC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] AND regrs2[7:0])
regrd[15:8] := (regrs1[15:8] OR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] AND regrs2[23:16])
regrd[31:24] := (regrs1[31:24] OR regrs2[31:24])

A.9 XORC8 instruction
XORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XOR regrs2[7:0])
regrd[15:8] := (regrs1[15:8] XNOR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] XOR regrs2[23:16])
regrd[31:24] := (regrs1[31:24] XNOR regrs2[31:24])

A.10 XNORC8 instruction
XNORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XNOR regrs2[7:0])
regrd[15:8] := (regrs1[15:8] XOR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] XNOR regrs2[23:16])
regrd[31:24] := (regrs1[31:24] XOR regrs2[31:24])

A.11 FTCHK instruction
FTCHK rs, imm, rd

IF imm[3:0] = 1010
FOR i:=0:15

regrd[i] := (regrs[i+16] XOR regrs[i])
regrd[i+16] := (regrs[i+16] XNOR regrs[i])

ENDFOR
ELIF imm[3:0] = 1011

P. Kiaei, D. Mercadier et al. 37

FOR i:=0:15
regrd[i] := (regrs[i+16] XNOR regrs[i])
regrd[i+16] := (regrs[i+16] XOR regrs[i])

ENDFOR
ELIF imm[3:0] = 1100

FOR i:=0:7
regrd[i] := ((regrs[i+8] XOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XNOR regrs[i]) AND ...
(regrs[i+16] XNOR regrs[i]) AND ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XNOR regrs[i]) AND ...
(regrs[i+16] XNOR regrs[i]) AND ...
(regrs[i+24] XNOR regrs[i]))

ENDFOR
ELIF imm[3:0] = 1101

FOR i:=0:7
regrd[i] := ((regrs[i+8] XNOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XOR regrs[i]) AND ...
(regrs[i+16] XNOR regrs[i]) AND ...
(regrs[i+24] XOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XOR regrs[i]) AND ...
(regrs[i+16] XNOR regrs[i]) AND ...
(regrs[i+24] XOR regrs[i]))

ENDFOR
FI

B Efficient C emulation of the custom instructions
We provide here the C codes for emulating some of the custom instructions. We omitted
ftchk, red, tr2 and invtr2, for which the emulation code is the straightforward implementa-
tion of the specification.

#define ANDC8(r,a,b) r = (((a) | (b)) & 0xFF00FF00) | (((a) & (b)) & 0x00FF00FF)
#define XORC8(r,a,b) r = (a) ^ (b) ^ 0xFF00FF00
#define XNORC8(r,a,b) r = (a) ^ (b) ^ 0x00FF00FF
#define ANDC16(r,a,b) r = (((a) | (b)) & 0xFFFF0000) | (((a) & (b)) & 0x000FFFF)
#define XORC16(r,a,b) r = (a) ^ (b) ^ 0xFFFF0000
#define XNORC16(r,a,b) r = (a) ^ (b) ^ 0x0000FFFF

38 SKIVA: Flexible and Modular Side-channel and Fault Countermeasures

C Side-channel analysis results
C.1 CPA results

Table 4: Detailed report of 1st order CPA results on unmasked SubBytes of 1st round
AES

of traces # of key bytes revealed
3K 1
4K 3
9K 5
10K 6
11K 7
12K 8 (half key)
14K 10
18K 11
19K 12
21K 13
22K 14
23K 15
24K 16 (full key)

C.2 TVLA results

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

sample ×10
4

-6

-4

-2

0

2

4

6

t
v
a
lu

e

1st order t-test

(a) Complementary redundancy

1.4 1.6 1.8 2 2.2 2.4

sample ×10
4

-6

-4

-2

0

2

4

6

t
v
a
lu

e

1st order t-test

(b) Direct redundancy

Figure 11: 1st order t-test on 1st order masked AES S-box in complementary and direct
redundancy (25K fixed vs. 25K random)

	Introduction
	Preliminaries
	Attacker Model
	Countermeasures
	Bitsliced software design

	Modular design of countermeasures
	Constant-time programming
	Higher-order masking
	Intra-instruction redundancy
	Temporal redundancy
	Combining higher-order masking, IIR and TR

	Implementation aspects
	Hardware design space
	Hardware support for aggregated bitslice operations

	Results
	Performance evaluation
	Side-channel analysis
	Security analysis of data faults
	Discussion

	Conclusion
	Custom instructions details
	TR2 instruction
	INVTR2 instruction
	SUBROT instruction
	RED instruction
	ANDC16 instruction
	XORC16 instruction
	XNORC16 instruction
	ANDC8 instruction
	XORC8 instruction
	XNORC8 instruction
	FTCHK instruction

	Efficient C emulation of the custom instructions
	Side-channel analysis results
	CPA results
	TVLA results

