
A Cosmology of Datatypes
Reusability and Dependent Types

Pierre-Évariste Dagand

Doctor of Philosophy
2013

University of Strathclyde
Department of Computer and Information Sciences

Declaration

This thesis is the result of the author’s original research. It has been
composed by the author and has not been previously submitted for
examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms
of the United Kingdom Copyright Acts as qualified by University of
Strathclyde Regulation 3.50. Due acknowledgement must always
be made of the use of any material contained in, or derived from,
this thesis.

Abstract

This dissertation defends the idea of a closed dependent type the-
ory whose inductive types are encoded in a universe. Each induc-
tive definition arises by interpreting its description – itself a first-
class citizen in the type theory. Datatype-generic programming
thus becomes ordinary programming. This approach is illustrated
by several generic programs.

We then introduce an elaboration of inductive definitions down
to the universe of datatypes. By elaborating an inductive definition
– a syntactic artefact – to its code – its type theoretic denotation
– we obtain an internalised account of inductive types inside type
theory. This is a small step toward bootstrapping, i.e. implement-
ing the inductive fragment in the type theory itself.

Building upon this universe of datatypes, ornaments let us treat
datatypes as the combination of a structure and a logic: they relate
datatypes through their common structure. We set out to ratio-
nalise this calculus of structures. We study a categorical model of
ornaments, based on Cartesian morphisms of containers. We also
illustrate the adequacy of our model by recasting the standard id-
ioms into the categorical mould, and by translating the discovered
categorical structures into type theoretic artefacts.

Nonetheless, the extreme accuracy of these finely indexed
datatypes is a curse for code reuse. Similar functions must be du-
plicated across similarly structured – but logically incompatible –
indexed datatypes. We shall see how code reuse can be achieved by
ornamenting functions. We thus capture the relationship between
functions such as the addition of natural numbers and the concate-
nation of lists. We also demonstrate how the implementation of the
former informs the implementation of the latter.

Contents

Introduction 9
1.1. Prospectus . 11
1.2. Background . 17
1.3. Structure . 19
1.4. Notational Conventions . 20

I. Terms, Types & Programs 23

2. The Type Theory 25

2.1. A Minimal Calculus . 25
2.2. Enumerations . 35
2.3. Meta-Theoretical Properties . 41

3. A Notation for Programs 47

3.1. Bidirectional Type Checking . 47
3.2. Elaborating Programs . 54
3.3. Abuse of (Programming) Language . 61

II. The Inductive Fragment of Type Theory 65

4. A Universe of Inductive Types 67

4.1. The Universe of Descriptions . 68
4.2. Initial Algebra Semantics . 74
4.3. Extending Type Propagation . 84

5. A Universe of Inductive Families 87

5.1. The Universe of Indexed Descriptions . 87
5.2. Initial Algebra Semantics . 91
5.3. Categorical Semantics of Inductive Families 99

7

Contents

III. Generic Programming 111

6. Bootstrapping Inductive Types 113
6.1. The Art of Levitation . 113
6.2. A Few Generic Constructions . 124
6.3. Modelling Levitation . 135

7. Elaborating Inductive Definitions 145
7.1. Inductive Types . 145
7.2. Inductive Families . 155
7.3. Reflections on Inductive Types . 171

IV. A Calculus of Structures 181

8. Ornaments 183
8.1. Universe of Ornaments . 185
8.2. Categorical Semantics of Ornaments . 198
8.3. Tapping into the Categorical Structure . 204

9. Functional Ornaments 213
9.1. From Comparison to Lookup, Manually 214
9.2. A Universe of Functions and their Ornaments 217
9.3. Lazy Programmers, Smart Constructors 227

Conclusion 239
10.1. Further Work . 240
10.2. Implementation Work . 241
10.3. Epilogue . 242

A. Overloaded Notations 245

Bibliography 247

Index 257

Acknowledgements 261

8

1. Introduction
This thesis stands at the crossroad between mathematics and computer science. At

the origin of this collision is a fascinating inquiry about the nature of mathematics: what
is a mathematical statement? What makes a proof valid or not? By a brutal (and rather
limiting) reduction, a mathematical proof could be understood as a formal derivation
of a new fact from axioms – facts taken for granted – and some general reasoning prin-
ciples. For example, from the axioms that “all men are mortal” and that “all Greeks
are men”, we conclude that “all Greeks are mortal”. The inference rule that allows us to
derive this conclusion from the two premises is called a syllogism, a form of reasoning
developed by Aristotle.

However, it is only through the work of Frege, Hilbert, and Russel that this question-
ing about the rules of mathematics resurfaced in mathematics itself: can we mathemati-
cally characterise a mathematical statement and its proof? Whitehead and Russel’s the-
ory of types [Whitehead and Russell, 1910] was an attempt at building such a system.
In that framework, our syllogism would be described with three types – Man, Greek, and
Mortal – and two assumptions: the major premise asserts that being a man implies being
mortal, denoted Man → Mortal; the minor premise asserts that being Greek implies be-
ing a man, denoted Greek → Man. To prove the conclusion that all Greeks are mortal –
Greek→ Mortal – we construct a proof through logical inferences. For example, to prove
Greek → Mortal, it is sufficient to prove Mortal, provided an abstract inhabitant x of the
type Greek, or formally:

x :Greek ` Mortal
` Greek→ Mortal

To exhibit an inhabitant of Mortal, we can apply our assumption stating that all men
are mortals, thus focusing our effort on finding an inhabitant of Man, or formally:

x :Greek ` Man→ Mortal x :Greek ` Man
x :Greek ` Mortal

We can apply the same inference rule to deduce an inhabitant of Man from the axiom
that all Greeks are mortal and the inhabitant x of the type Greek, or formally:

x :Greek ` Greek→ Man x :Greek ` Greek
x :Greek ` Man

We have thus formally derived that Greek→ Mortal from the assumptions that Man→

9

1. Introduction

Mortal and Greek→ Man.
In effect, type theory is a formalisation of the language of mathematics: it provides

a system of types, with which to express mathematical statements, and inference rules,
with which to establish the truth of these statements. A proof is then merely the com-
bination of deductive steps, such as abstraction, application, or appeal to axioms. If
the daily mathematical practice is far removed from these foundational questions, they
provide interesting insights to programming language designers.

Indeed, similar questions arise in the context of programming: how to specify the
behavior of our programs? What does it mean for a program to satisfy its specification?
In this setting, types are used to classify the inputs and outputs of programs, such as
“being a number”, or “being a character”, or more precise properties such as “being a
positive number”, or “being a well-formed date”. Types provide an ideal specification
language. A program type checks if it corresponds to a valid derivation in a particular
system of inferences: a type system.

This propositions-as-types and proofs-as-programs interpretation of logic is at the
heart of this dissertation. The programming language we shall study is not an ad hoc
software construction: it is in fact a formal system in which mathematical facts can be
stated and formally proved. From a programmer’s perspective, this also means that
precise specifications of programs can be expressed and irrefutably established: well-
typed programs cannot go wrong [Milner, 1978].

This extreme accuracy of types creates some tension. On one hand, types allow pro-
grammers to describe precisely the structure of the objects they manipulate. We thus
obtain stronger guarantees about the behavior of programs. However, precise types
induce code duplication: a program defined over a certain type cannot be used for an-
other one, even if very similar. To account for these subtle variations, boilerplate code
is written that implements the same functionality over and over again. For example,
we must implement a function to traverse lists, another one to traverse 2-dimensional
arrays, etc.

A programmer’s natural reaction to this issue is to automate these repetitive tasks.
This leads to generic programming, in which one writes programs that write programs.
However, to enable generic programming, we need to provide a representation of the
programming language in itself. From a mathematical point of view, this corresponds
to a reflection principle that enables the type theory to describe (part of) itself. The re-
flective capability of a logical system is necessarily limited: little trust can be put in a
fully-introspective system that boldly asserts “I am not a liar”.

These mathematical considerations have informed and strongly influenced this dis-
sertation. First, it is focused on datatypes, a key structuring medium in modern func-
tional programming languages. Second, we design a type theory that reflects the lan-
guage of datatypes in itself. Doing so, we obtain a typed calculus supporting generic
programming from the ground-up. Elaboration bridges the gap between this calculus and
a programming language: our programming artefacts translate to terms in the calculus,
thus providing a semantics to the resulting programming language. This thesis is an
experiment in turning pervasive mathematical structures into programming artefacts.
We now embark on a fascinating apprenticeship to become “mathematical instrument

10

1.1. Prospectus

makers”, wandering in the Glaswegian footsteps of James Watt.

1.1. Prospectus

(1.1) This thesis is an exploration of the predicative fragment of type theory [Martin-Löf,
1984]. Type theory extends the simply-typed lambda calculus with (dependent) quan-
tifiers: Π-types and Σ-types. Read as a proposition, a Π-type (x : A)→ B is a universal
quantifier: it lets us quantify over all the inhabitants – i.e. the terms – of the type A.
Operationally, it embeds terms – that is, computations – in the language of types, thus
enabling us to write precise types that exactly capture the intended behaviors of our
programs.

For example, an ML programmer implementing the zip function1 has to cope with
two logically meaningless cases:

zip (xs : List A) (ys : List B) : List (A× B)
zip nil nil 7→ nil
zip (cons a as) (cons b bs) 7→ cons (a, b) (zip as bs)
zip nil (cons b bs) {?}
zip (cons a as) nil {?}

Simple types do not let us express the invariant that the two input lists have the same
length. Using dependent types, we can express this invariant at the type level and write
the function we intended to:

zip (n : Nat) (xs : Vec A n) (ys : Vec B n) : Vec (A× B) n
zip 0 nil nil 7→ nil
zip (suc n) (cons a as) (cons b bs) 7→ cons (a, b) (zip as bs)

Intuitively, a vector Vec A n is a list of length n. We shall encounter several, equivalent
definitions of vectors below.

(1.2) Read as a proposition, a Σ-type (x : A)× B is an existential quantifier: it asserts the
existence of an object of type A satisfying some property B. This existence is to be
understood in an intuitionistic sense: an existential genuinely contains a witness, i.e. a
term that justifies the validity of a proposition. For instance, we can describe the set of
even natural numbers as those natural numbers that satisfy the isEven predicate:

EvenNat , (n : Nat)× isEven n where
isEven (n : Nat) : SET

isEven 0 7→ 1
isEven (suc 0) 7→ 0
isEven (suc (suc n)) 7→ isEven n

Vectors can also be defined through a Σ-type. They correspond to the lists whose

1This introductory section is illustrated by several functions and datatypes. We rely on our eye for func-
tional programming to grasp these definitions. Their syntax is formally presented in Chapter 3.

11

1. Introduction

length matches the index:

Vec A n , (as : List A)× length as = n

Operationally, Σ-types are a generalisation of pairs: the witness is obtained by taking
the first projection, while the second projection is an inhabitant of a set computed from
that witness. Thanks to Σ-types, we get hold of a rich specification language: we can
write programs over natural numbers or lists, while attaching precise logical invariants
to those objects, such as, respectively, being even or of a certain length. Using these
more precise objects, we are able to write more precise functions. For example, we
specify the list append function as the function that takes two lists of respective lengths
m and n and returns a list of length m + n:

(xs : Vec A m) ++ (ys : Vec A n) : Vec A (m + n)
nil ++ ys 7→ ys
(cons a xs) ++ ys 7→ cons a (xs++ ys)

(1.3) Because terms are entirely reflected in the types, every function in our calculus must
terminate, for type checking to be decidable. Far from being an inconvenience, this
means that such a programming language is also a formal system suitable for math-
ematical developments. Through this duality, type theory offers a uniform language
to write programs and reason about them. Let us reiterate that, despite the expressive
power of its type system, type checking is decidable: from a programmer’s perspective,
we have not stepped very far away from a typed programming language à la ML [Mil-
ner et al., 1997, Peyton Jones, 2003].

(1.4) Datatypes are a key convenience of modern functional programming languages. To-
gether with polymorphism, datatypes are the key contribution of ML over LISP. Intu-
itively, a datatype is a set closed under some operations [Aczel, 1977], which is therefore
endowed with a rich structure. The typical ML program starts with a datatype defini-
tion that encodes the structure of the input problem. This carefully crafted type forms
the backbone of the program. Functions operating on this datatype are then defined
by pattern-matching: for each case and potentially iteratively, the programmer describes
the solution to the input problem.

A typical example of inductive type are the Peano numbers

data Nat : SET where
Nat 3 0

| suc (n : Nat)

that, concretely, provide a structure for counting. Reminiscent from the LISP system,
the datatype of lists is defined as the choice between an empty list or the concatenation

12

1.1. Prospectus

of an element of A to a list of A:

data List [A : SET] : SET where
List A 3 nil

| cons (a : A)(as : List A)

For faster random access, we might consider a less linear structure than lists. To do
so, we modify the cons operation of lists by grafting another recursive argument. Doing
so, we obtain binary trees:

data Tree [A : SET] : SET where
Tree A 3 leaf

| node (lb : Tree A)(a : A)(rb : Tree A)

Whilst these data-structure could be encoded in LISP, ML’s contribution was to inte-
grate them, together with pattern-matching, in the language definition.

(1.5) In type theory, our types are more precise than in ML. The same goes for datatypes:
besides being data-structures, our datatypes also capture the data-logic. We have already
seen vectors, i.e. lists of fixed length. Rather than encoding vectors as the pair of a list
and a proof, we can define a datatype that integrates the constraint on the length in its
definition:

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

For the reader familiar with Agda or Coq, the above definition translates almost lit-
erally to the following Agda code:

data Vec (A : Set) : Nat → Set where

nil : Vec A zero

cons : ∀ {n’} (x : A)(xs : Vec A n’) → Vec A (suc n’)

Similarly, we can define AVL trees [Adelson-Velskii and Landis, 1962] and enforce
the height-balancing invariant by the index:

data AVL (n : Nat) : SET where
AVL (n= 0) 3 leaf
AVL (n= suc n′) 3 nodeE (n′ : Nat)(lb : AVL n′)(rb : AVL n′)

| nodeL (n′ : Nat)(lb : AVL n′)(rb : AVL (suc n′))
| nodeR (n′ : Nat)(lb : AVL (suc n′))(rb : AVL n′)

An inhabitant of AVL is, by construction, well-balanced: at each node, the absolute dif-
ference of height of its subtrees is at most one. Note that, for conciseness, this definition
does not actually store any data. As we shall see later, this definition can easily be
extended into one containing some information.

13

1. Introduction

Another example is the datatype representing finite sets of size at most n. This
datatype is essentially a number – the cardinality of the finite set – whose index en-
forces that it is less than n:

data Fin (n : Nat) : SET where
Fin (n= suc n′) 3 f0 (n′ : Nat)

| fsuc (n′ : Nat)(k : Fin n′)

(1.6) We have introduced datatypes as, essentially, closed sets of operations. In type the-
ory, we restrict ourselves to the least such sets, again to preserve termination of our
calculus: this way, we capture (only) objects of finite depth. We model the operations
by signature functors. By studying the categorical structure of these functors, we ob-
tain an abstract, mathematical toolkit to reason about inductive types [Abbott, 2003,
Gambino and Hyland, 2004, Gambino and Kock, 2013]. In effect, we gain access to a
wealth of mathematical results. Some of these results lead to interesting programming
artefacts, such as the work of McBride [2013] for example.

(1.7) By adding inductive definitions to type theory, we let the user define datatypes
and functions over them. However, as such, inductive types are an external entity:
it is not possible to manipulate inductive definitions from inside the language. By
giving access to the grammar of inductive definitions in our language [Hinze et al.,
2002], we enable datatype-generic programming [Gibbons, 2007]: the programmer can
define functions over all inductive types at once. For example, it becomes possible
to define the catamorphism for all inductive types [Hinze, 2000a]. Similarly, through
symbolic manipulations of the grammar of datatypes, we can define the derivative of a
datatype [Abbott et al., 2005], which is a key component in the definition of the Zipper
data-structure [Huet, 1997].

(1.8) Interestingly, this grammar of inductive definitions is itself nothing but an induc-
tive type, which we can reify internally, i.e. define as an inductive type in the object
language. Usually, a quoting mechanism lets the user access the code of inductive def-
initions. This mechanism mediates the external representation of datatypes – as im-
plemented in the programming language – with their internal representation – their
reification in the programming language. Most systems [Jansson and Jeuring, 1997,
Hinze et al., 2002] use a pre-processor to make these translations transparent to the user.
However, it is tempting to simply collapse this isomorphism and implement inductive
definitions through their internalised encoding: the meta-level inductive definitions
are exactly the ones described in the programming language. This removes the need
for any mediating mechanism, be it a pre-processor or a quoting function.

Doing so, we bootstrap the inductive fragment of type theory. Many operations on
inductive types can now be implemented in type theory itself, instead of requiring
meta-theoretical support. Motivating examples include the generation of specialised
induction and recursion principles, and a Haskell-like deriving mechanism. Another
benefit of this approach is that inductive definitions – the syntactic artefact – are now
translated to type-theoretic objects. This translation defines the semantics of inductive
definitions: at last, we can reason about this syntactic object through its denotation.

14

1.1. Prospectus

(1.9) Because our datatypes precisely capture the invariants of our programs, program-
ming with dependent types leads to an explosion of special-purpose datatypes. In-
deed, our datatypes are a combination of a data-structure and a logic, enforcing the
programmer’s dynamic and static invariants by type checking. Consequently, a single
data-structure will be duplicated in many forms, each time to capture a different static
invariant.

We are thus lead to study the relation between these similarly-structured datatypes.
For example, we notice a relation between natural numbers and lists:

data Nat : SET where
Nat 3 0

| suc (n : Nat)
⇒

data List [A : SET] : SET where
List A 3 nil

| cons (a : A)(as : List A)

Indeed, they share the same linear structure, or put otherwise: for each constructor
of the list datatype, we can find a constructor of natural numbers with the same arity:
• the constructor nil is related to the constructor 0 – both of arity 0;
• the constructor cons is related to the constructor suc – both of arity 1.

In this process, we forget the information attached to the cons constructor: an element
of A.

1.10 Remark. Interestingly, the relation between lists and natural numbers has also been
studied by Okasaki [1998] as an instance of a numerical representation. We leave the
ornamental interpretation of numerical representations to further work.

(1.11) Another example is the relation between natural numbers and finite sets:

data Nat : SET where
Nat 3 0

| suc (n : Nat)
⇒

data Fin (n : Nat) : SET where
Fin (n= suc n′) 3 f0 (n′ : Nat)

| fsuc (n′ : Nat)(k : Fin n′)

This time, we notice that the latter datatype has exactly the same operational content
as the former: it is nothing but a number. Put otherwise, a function provided a finite
set dynamically behaves (i.e. at run-time) exactly as if it were a number. However, it is
logically more discriminative: a finite set is a bounded number. Vectors are yet another
example of a structure-preserving transformation of natural numbers:

data Nat : SET where
Nat 3 0

| suc (n : Nat)
⇒

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

This transformation introduces new information, as in the transformation from num-
bers to lists. It is also logically more discriminative, capturing the length of the vector
in its type.

Studying these examples, it becomes obvious that a general principle is at play be-
hind these transformations. Our categorical tools provide a perfect language to study
this “calculus of structures”, i.e. operations relating datatypes by their structure. This

15

1. Introduction

dissertation focuses on structure-preserving transformations, as they are key to regain
control of the zoo of finely indexed dependent datatypes.

(1.12) However, we should not forget that datatypes are but a structuring means toward an
end: programming. The calculus of structures is a powerful tool to easily create custom
datatypes. Yet, for these new datatypes to be useful, we need to be able to adapt our
programs to account for these transformations. For example, we noticed that natural
numbers evolve into lists. On natural numbers, we implement a comparison function:

(m : Nat)< (n : Nat) : Bool
m < 0 7→ false
0 < suc n 7→ true
suc m < suc n 7→ m< n

On lists, we are lead to implement a strikingly similar operation:

lookup (m : Nat) (xs : List A) : Maybe A
lookup m nil 7→ nothing
lookup 0 (cons a xs) 7→ just a
lookup (suc n) (cons a xs) 7→ lookup n xs

Interestingly, Booleans and the option type are also subject to a structure-preserving
transformation: they both have no recursive structure. At the type level, it is therefore
easy to relate both functions: lookup evolves from −<− by individually transforming
the datatypes in a structure-preserving manner.

The relation is even more interesting at the term level, which describes their oper-
ational behavior. Both definitions follow the same recursive pattern, as witnessed by
their pattern-matching clauses:

(m : Nat)< (n : Nat) : Bool
m < 0 {?}
0 < suc n {?}
suc m < suc n {?}

⇒

lookup (m : Nat) (xs : List A) : Maybe A
lookup m nil {?}
lookup 0 (cons a xs) {?}
lookup (suc n) (cons a xs) {?}

Besides, both definitions return a “related” constructor in the first two cases:

(m : Nat)< (n : Nat) : Bool
m < 0 7→ false
0 < suc n 7→ true
suc m < suc n {?}

⇒

lookup (m : Nat) (xs : List A) : Maybe A
lookup m nil 7→ nothing
lookup 0 (cons a xs) 7→ just a
lookup (suc n) (cons a xs) {?}

This suggests that, as we organise datatypes by their structure, we could lift func-
tions along structure-preserving transformations. We are then interested in characteris-
ing these liftings, both intensionally and categorically. On one hand, we can derive
special-purpose datatypes from general-purpose ones, through structure-preserving
transformations. On the other hand, we can semi-automatically lift functions across

16

1.2. Background

these transformations. The combination of these two techniques is an interesting first
step toward code reuse in a dependently-typed setting. We benefit from finely indexed
datatypes, while avoiding code duplication thanks to our lifting infrastructure.

(1.13) Finally, this thesis is also a report from the front line. Indeed, it sprung as part of
a prototype implementation of the Epigram2 programming language. The Epigram
project aimed at designing a type theory supporting generic programming from the
ground-up. This work is an exploration of the design space opened up by a peculiar
presentation of inductive types. This foray into dependently-typed generic program-
ming leads to novel and interesting programming artefacts. Part of this thesis is an
account of these discoveries.

1.2. Background

(1.14) This thesis stands on the shoulders of giants. The concept of reflection is the cor-
nerstone of Martin-Löf type theory [Martin-Löf, 1984]. This idea appears in the very
definition of the Π and Σ quantifiers. Compared to a strictly stratified logic such as
System Fω, type theory lets us reflect terms at the level of types: the codomain of quan-
tifiers depends on a witness – a term inhabiting the type that is quantified over. Types
describe properties of terms and, in turn, terms influence the meaning of types. This
idea is pushed even further by the hierarchy of types. The ground level type form-
ers have type SET0. SET0 is itself a type former, of type SET1. Again, in SET1, we can
quantify over objects in SET0, as well as their inhabitants. And so on, as far as we wish
to [Palmgren, 1995]. In effect, the hierarchy of types reflects the logic into itself, level
after level. Our work follows this core “design principle” of type theory: we aim at
reflecting inductive types in type theory.

(1.15) The first attempt at internalising inductive definitions comes from Martin-Löf him-
self, in the form of wellorderings [Martin-Löf, 1984], or W-types for short. The idea is
to capture tree-like structures with the pair of a set Op – the set of operations – and an
indexed set Ar – the set of arities of each constructor. The W-type is the least set closed
under Op-nodes

Op : SET Ar : Op→ SET
W Op Ar : SET

whose inhabitants are introduced by choosing a kind of node op and providing its ar-
guments with xs:

op : Op xs : Ar op→W Op Ar
sup op xs :W Op Ar

The elimination principle of W-types corresponds to transfinite induction over such
a tree structure.

(1.16) However, this representation has a strong extensional flavor. For instance, despite

17

1. Introduction

their first-order nature, natural numbers are encoded by:

Nat ,W Bool λ

{
true 7→ 0
false 7→ 1

Consequently, the constructor of Nat relies on functions, respectively from the empty
type and from the unit type:

0 , sup true 0-elim

suc (n : Nat) , sup false λ∗. n

Extensionally, this is not an issue: we can collapse the trivial function spaces X0 ∼= 1
and X1 ∼= X. When programming in an intensional type theory, we only work up to
definitional equality, i.e. the unfolding of definitions. While it is possible to identify all
functions from the unit type up to their return value, it is not safe to identify all func-
tions from the empty set while retaining a sensible definitional equality in a non-empty
context. There is therefore (definitionally) not one “0” but a countable infinitude. In an
intensional setting, wellorderings are inadequate [Dybjer, 1997, Goguen and Luo, 1993].
To be fit for programming, we need a more intensional representation of our inductive
types. In particular, first-order datatypes ought to have a first-order representation.

(1.17) Such an intensional approach has been pioneered by Pfeifer and Ruess [1998] and
further explored by Benke et al. [2003]. To finely capture the structure of subclasses of
inductive definitions, the authors relied on a key type-theoretic concept: universes. A
universe is the data of a code and its interpretation. The code is an intensional charac-
terisation of the object of enquiry. In the case of inductive types, it corresponds to a
grammar of signatures. The interpretation maps the intensional code to its extension
in type theory. In the case of inductive types, we map a code describing a signature
functor to an endofunctor on SET. Taking the fixpoint of that functor gives an ob-
ject extensionally equivalent to a W-type, but, ideally, computationally better behaved.
This approach for inductive types was further refined by Morris [2007]. It was also
used by Dybjer and Setzer [1999] to give a finite axiomatisation of induction-recursion.
Our work on descriptions originates from a combination of these two presentations,
restricted to purely inductive definitions.

(1.18) The Curry-Howard correspondence is at the heart of this work: propositions as
types, proofs as programs, and conversely. By reflecting terms in types, type theory
is built around the Curry-Howard correspondence from the ground-up. The resulting
type theory is not only a system in which to formalise constructive mathematics. It can
also be seen as a powerful language of specifications [Martin-Löf, 1985, Nordström et al.,
1990]. Under this interpretation, cut elimination becomes evaluation. Type theory thus
automatically provides a static and dynamic semantics for programs. It is very tempt-
ing to develop a full-fledged programming language on top of this minimal calculus.

(1.19) McBride and McKinna [2004] systematised this approach by presenting the elabora-
tion of a language with pattern-matching to such a minimal type theory. In their system,
the user writes programs that are automatically translated to terms in type theory. The

18

1.3. Structure

static and dynamic semantics of the programming language is thus entirely justified
by the low-level type theory. In their original presentation, inductive definitions were
excluded from the elaboration process: they were part of the meta-theory, in a syntactic
form. Such a presentation precluded the type theory from manipulating inductive defi-
nitions. This thesis takes the next step and reflects the grammar of inductive definitions
in type theory. We gain the ability to elaborate inductive definitions down to type the-
ory, thus swallowing the entire programming language in type theory. Our objective
to support elaboration disciplines the very definition of the type theory: types are not
merely policing what terms can be, they also describe their presentation, so as to convey
our high-level intents.

(1.20) Having reflected inductive types in type theory, we can write new programs: poly-
typic programs, or datatype-generic programs [Pfeifer and Ruess, 1998, 1999, Benke et al.,
2003, Gibbons, 2007]. Indeed, since the grammar of datatypes is fixed in advance, we
can write programs on all datatypes definable in the system by proceeding over the code
of inductive types. This kind of program is thus defined “generically” for all datatypes
at once. This thesis describes the design of a type theory for generic programming. Apart
from LISP and its reflexive derivatives, this is – to our knowledge – the first attempt at
designing a typed language that supports generic programming from the ground-up.

1.3. Structure

(1.21) This thesis is organised as follows. In Part I, we walk through the foundations. We
study a minimal type theory closed under Π-types, Σ-types, and finite sets. This type
theory is strongly inspired by Martin-Löf intensional type theory. Upon this minimal
calculus, we grow a programming language. By setting up a bidirectional type checker,
we take advantage of the type information to simplify our term language. We also
clarify the notations for function definitions and inductive definitions. This provides
an account of the syntactic conventions this thesis relies upon.

(1.22) In Part II, we extend our base calculus with inductive types. We do so by giving a
presentation of datatypes based on a universe construction. The universe reflects the
syntax of inductive definitions within type theory. Being closed, we can write generic
programs over the structure of inductive types. We shall study a few examples of
generic programs. Our presentation captures strictly-positive families. We prove this
claim by showing an equivalence between our universe and containers, a widely stud-
ied categorical object. As a result, we obtain a more abstract characterisation of our
datatypes and some powerful mathematical tools to reason about them.

(1.23) In Part III, we turn our universe of datatypes into a first-class object: we describe
the code of the universe in the universe itself. As a consequence, we can manipulate
the code of inductive definitions just like any datatype: generic programming is just pro-
gramming! We are then able to write programs over the universe of datatypes itself,
or even derive new datatypes from others. We study a few examples of such generic
operations. We also elaborate inductive definitions down to codes in our universe of
types. This is a necessary step to make the universe-based approach practical. Indeed,

19

1. Introduction

in a programming language, we cannot expect the users to define inductive types by
coding them in a universe. We formally specify this translation of inductive definitions
and prove that the resulting code type checks, by construction. We also present a few
extensions that participate to the bootstrapping of the inductive fragment.

(1.24) In Part IV, we further explore the mathematical structure of datatypes. We start by
adapting the notion of ornaments [McBride, 2013] to our universe. Ornaments let us re-
late datatypes by their common structure. We shed some light on their definition in type
theory. We also present a categorical model. This model gives us a another perspective
on the type-theoretic definitions. It also points to novel ornamental constructions. We
then introduce functional ornaments. Functional ornaments put ornaments at work by
relating structure-preserving functions. By identifying, in type theory, the commonal-
ity between two functions, we can use one to define the other. We thus present some
machinery that lets us semi-automatically lift a function across its ornament.

(1.25) This dissertation makes the following contributions:
• It gives an intensional presentation of inductive types in type theory, which is or-

thogonal to propositional equality ;
• It reflects inductive types within type theory itself, allowing us to conflate generic

programming with mere programming ;
• It is organised around the elaboration of high-level programming concepts down

to low-level type theoretic constructions, which strongly influences our design of
the type theory ;
• It adapts the concept of ornament to our presentation of inductive types and give

a generalisation to functions, demonstrating how code reuse could be achieved in
a dependently-typed setting ;
• It benefits from and is justified by the categorical study of the structures at play,

which lets us grasp the essence of our type-theoretic constructions.

1.4. Notational Conventions

(1.26) This thesis is subject to the following conventions. First of all, it has been produced in
technicolor: for an optimal experience, it should therefore be printed in colour. Colours
are mainly used to classify the terms of type theory. Their meaning together with our
type theoretic notations are described separately in Part I.

(1.27) For ease of reference, every block of text that stands for a single logical unit is num-
bered. This shall help the reader to refer to a precise point of the thesis. This also
gives a Deleuzian dimension to it: through these cross-references, parts of the text echo
each other. We have tried to reflect these non-linear narratives – the rhizome [Deleuze
and Guattari, 1987] – without overwhelming the reader with cross-references. The elec-
tronic version of this document contains hyperlinks that make navigation easier.

(1.28) For the sake of illustration, we sometimes consider incorrect statements. To visually
distinguish these statements as erroneous, they are crossed(((((

(as follows.
(1.29) For pedagogical reasons, we shall develop the type theory incrementally, spreading

its definition across the first two parts. It consists of three major components: the syn-

20

1.4. Notational Conventions

tax, the dynamic and static semantics, and the elaboration of programming constructs
into type theory. It is therefore crucial to mark which definitions belong to which com-
ponents, and to differentiate them from standard definitions within type theory. To this
effect, these definitions are enclosed in frames, as follows:

The three components correspond to the following frames:
• SYNTAX frames define the syntax of terms ;
• META-THEORY frames define the typing judgments and judgmental

equality ;
• ELABORATION frames define the elaboration judgments, mapping expres-

sions to terms.
Some frames that one would usually present as part of the meta-theory are here
only specified in Part II to be bootstrapped in Part III. Both cases are marked with
the frames:
• SPECIFICATION frames specify the type signatures of the objects that shall

be implemented within type theory in Part III ;
• LEVITATION frames provide the implementations – in type theory – of the

objects specified earlier in Part II.

KINDS OF FRAMES

(1.30) We specify the syntax of terms and expressions in Backus-Naur Form (BNF). For
example, the syntax of Peano numbers is captured by the grammar:

〈n〉 ::= 0
| suc 〈n〉

where 〈n〉 denotes a non-terminal symbol “n”, suc denotes to a terminal symbol “suc”,
and the vertical bar “|” indicates a choice.

(1.31) Categorical conventions. Our categorical notations follow standard practice. For the
sake of completeness, here are the notational conventions we have adopted throughout
this thesis:

• Category: C, D, . . .
• Objects of a category C: |C|
• Hom-set of a category C: C(A, B)
• Category of morphisms: C→

• Slice category: C/I
• Adjunction: L a R, or R ` L

These categorical concepts are folklore, and their definition can be found in Mac Lane’s
textbook [Mac Lane, 1998]. To distinguish the categorical concepts from their type-
theoretic incarnations, categorical notations are always typeset in mathematical mode,
without special colour or font face.

(1.32) Morphisms in slices. The morphisms of families of sets X, Y : I→ SET – or equiva-

21

1. Introduction

lently, morphisms of predicates – are defined pointwise by

X →̇Y , ∀i : I. X i→Y i

where the index i is kept implicit.

Published Material

(1.33) This thesis builds upon four papers published in peer-reviewed conferences:
1. Chapters 4, 5, and 6 give an extended presentation of the ideas developed in an

ICFP paper [Chapman et al., 2010] ;
2. Chapter 7 generalises the elaboration of inductive types given in a JFLA paper [Da-

gand and McBride, 2013b] to inductive families ;
3. Chapter 8 is an expounded version of a LICS paper [Dagand and McBride, 2013a] ;
4. Chapter 9 gives a slower paced presentation of the techniques presented in a sec-

ond ICFP paper [Dagand and McBride, 2012].
My contributions to the publications are respectively:
1. The article sprung from a prototype implemented by James Chapman and Peter

Morris. I wrote the entire article, which was later edited by Conor McBride, and
developed the Agda models from the prototype ;

2. I wrote the entire article and did the research on my own ;
3. I wrote the entire article and did the research on my own ;
4. Following an initial idea from Conor McBride, I developed it and wrote the entire

article.
1.34 Remark (Agda model). An Agda model of the various constructions presented in
this thesis can be found on the author’s website. To relate our pen and paper presen-
tation with its mechanised model, the modelled sections (e.g. Section 4.1) are followed
by a MODEL subheading pointing to a specific file (or directory) of the model. In the
electronic version of this document, these entries are hyperlinks.

The research presented in this thesis was supported by a grant of the Engineering and Physical
Sciences Research Council (EPSRC, Grant EP/G034699/1).

22

Part I.

Terms, Types & Programs

In this first part, we introduce a dependently-typed calculus
(Chapter 2). Seen as programming language, this calculus pro-
vides the computational foundations of this thesis. Seen as a proof
system, it is a framework for constructive mathematics.

We then grow a programming language on top of this core cal-
culus (Chapter 3): this affords us a more convenient syntax for de-
scribing type-theoretic objects. We take this opportunity to present
the syntax used throughout this thesis.

23

2. The Type Theory
(2.1) We now introduce the type theory this thesis is built upon. We start in Section 2.1

by presenting a basic calculus. This calculus provides dependent types, in the form of
Π-types and Σ-types, an infinite hierarchy of types, and some basic set formers.

In Section 2.2, we extend this initial setup with enumerations, i.e. finite sets. Doing
so, we follow a long tradition [Martin-Löf, 1984, Nordström et al., 1990] that consists in
introducing a full-blown type theory by small increments. In particular, this extension
strengthens our calculus with the first infinite ordinal. This lets us, in the calculus, rep-
resent finite sets, the well-ordered sets that belong to this ordinal class. It also enables
us to index into these sets. Put in more operational terms, this extension lets us describe
(finite) enumerations of objects and index into such enumerations.

Finally, in Section 2.3, we recall the meta-theoretical properties of such a logical sys-
tem. We prove a few lemmas about structural rules. We also state the expected proof-
theoretic properties of our system, in light of previous models of similar type theories.

2.1. A Minimal Calculus

2.2 Definition (Terms). The syntax of terms is defined by the following grammar:

〈t〉, 〈T〉 ::= x
| SET`
| 0 | 0-elim 〈t〉
| 1 | ∗
| (x : 〈T1〉)→〈T2〉 | λx : 〈T〉. 〈t〉 | 〈t1〉 〈t2〉
| (x : 〈T1〉)× 〈T2〉 | (x =〈t1〉, 〈t2〉 : 〈T2〉) | π0 〈t〉 | π1 〈t〉

〈Γ〉 ::= ε
| 〈Γ〉; x : 〈T〉

SYNTAX

By convention, the non-terminal 〈T〉 ranges over types – i.e. 〈T〉 has type SET` –
while 〈t〉 ranges over terms – i.e. 〈t〉 has type 〈T〉, a type. Because our language is
dependently-typed, terms and types belong to the same syntactic category: the non-
terminals 〈t〉 and 〈T〉 are identical and the difference in case is only an aesthetic conve-
nience. The terminal x ranges over variable names. By convention, the literal ` denotes
a universe level. Π-types are denoted (x : A)→ B and Σ-types are denoted (x : A)× B,

25

2. The Type Theory

where x is bound in B. Similarly, abstraction is denoted λx : T. b, where x is bound in b .
The unit type is denoted 1.

2.3 Remark (Color convention). In a style reminiscent of Epigram [McBride and McK-
inna, 2004], our syntax of terms is subject to the following colour and font face conven-
tions:

• Bound variables are written in purple, e.g. x ;
• The hierarchy of types is written in blue capital letters, e.g. SET` ;
• Canonical objects, i.e. inhabitants of SET, are written in blue as well, e.g. T ;
• Value constructors are written in red and sans serif, e.g. cons ;
• Computations, and therefore eliminators, are written in green and sans serif, e.g.

func.

2.4 Remark (Abbreviations). When x is not free in B, we use the following abbreviations

(x : A)→ B , A→ B

(x : A)× B , A× B

hence obtaining the (non-dependent) implication and conjunction from the dependent
quantifiers.

2.5 Remark (Telescope notation). We also use a telescope notation for right-nested Π-
types and Σ-types:

(x1 : A1)(x2 : A2) . . . (xn : An)→ B , (x1 : A1)→ (x2 : A2)→ . . .→ (xn : An)→ B

(x1 : A1)(x2 : A2) . . . (xn : An)× B , (x1 : A1)× (x2 : A2)× . . .× (xn : An)× B

Following standard practice, the arrow and product (be they dependent or not) scope
as far right as possible. When mixing Π-types and Σ-types, we expect the arrow to bind
more tightly than the product:

A× B→C , (A× B)→C

(a : A)× B→C , ((a : A)× B)→C

2.6 Definition (Substitution). We denote t[x/s] the substitution of the variable x for the
term s in t. We shall always consider terms up to α-conversion: for example, λx : T. x
and λy : T. y denote the same terms.

(2.7) Our type theory is presented through three mutually defined systems of judgments:
context validity, typing, and equality, with the following forms:

〈Γ〉 ` VALID Γ is a valid context, giving types to variables and definitions
〈Γ〉 ` 〈t〉 : 〈T〉 the term t has type T in context Γ
〈Γ〉 ` 〈s〉 ≡ 〈t〉 : 〈T〉 the terms s and t are equal at type T in context Γ

26

2.1. A Minimal Calculus

〈Γ〉 ` VALID

` VALID
CTXT-EMPTY

Γ ` VALID

x 6∈ Γ Γ ` S : SET`
Γ; x : S ` VALID

CTXT-VAR

Γ ` VALID

x 6∈ Γ
Γ ` S : SET`
Γ ` s : S

Γ; x 7→ s : S ` VALID
CTXT-DEF

META-THEORY

Figure 2.1.: Context validity

2.1.1. Context validity

2.8 Definition (Context validity). Context validity (Figure 2.1) ensures that variables
inhabit well-formed sets. A context is either:
• empty ; or
• the extension of a context Γ with a variable x of type S ; or
• the extension of a context Γ with a definition x that stands for a term s of type S

2.9 Remark (Use of definitions). From a proof-theoretic standpoint, the rule CTXT-DEF,
which introduces definitions in the context, is unnecessary. Indeed, we can always
translate a derivation using a definition to one relying solely on a function application:

Γ; x 7→ s : S ` t : T ⇒ Γ ` (λx : S. t) s : T

However, from a programming standpoint, this rule corresponds to having local def-
initions, akin to the let binding in a simply-typed (but not polymorphic) setting. We
shall use this convenience in Chapter 7, as we define type-theoretic objects from high-
level inductive definitions.

2.1.2. Typing judgments

2.10 Definition (Typing judgments). The typing judgments (Figure 2.2) for this depen-
dent calculus are standard. We introduce an infinite hierarchy of types SET`, each of
which is closed under the empty type, the unit type, Σ-types, and Π-types.

2.11 Remark (Cumulativity). Cumulativity of universes (rule CUML) lets us shift types
to higher universes [Luo, 1994]. This rule captures the inclusion of universes SET0 ⊂

27

2. The Type Theory

〈Γ〉 ` 〈t〉 : 〈T〉

Γ; x : S; ∆ ` VALID
Γ; x : S; ∆ ` x : S VAR Γ; x 7→ t : S; ∆ ` VALID

Γ; x 7→ t : S; ∆ ` x : S DEF

Γ ` VALID
Γ ` SET` : SET`+1

SORT
Γ ` S : SET`

Γ ` S : SET`+1
CUML

Γ ` VALID
Γ ` 0 : SET`

BOTTOM
Γ ` b :0 Γ ` A : SET`

Γ ` 0-elim b : A ABSURD

Γ ` VALID
Γ ` 1 : SET`

UNIT Γ ` VALID
Γ ` ∗ :1 VOID

Γ ` S : SET` Γ; x : S ` T : SET`
Γ ` (x : S)→ T : SET`

PI

Γ ` S : SET`
Γ; x : S ` t : T

Γ ` λx : S. t : (x : S)→ T LAM

Γ ` f : (x : S)→ T
Γ ` s : S

Γ ` f s : T[s/x] APP

Γ ` S : SET` Γ; x : S ` T : SET`
Γ ` (x : S)× T : SET`

SIGMA

Γ ` s : S Γ; x : S ` T : SET` Γ ` t : T[s/x]
Γ ` (x = s, t : T) : (x : S)× T PAIR

Γ ` p : (x : S)× T
Γ ` π0 p : S FST

Γ ` p : (x : S)× T
Γ ` π1 p : T[π0 p/x] SND

Γ ` s : S Γ ` S ≡ T : SET`
Γ ` s : T CONV

META-THEORY

Figure 2.2.: Typing judgments

28

2.1. A Minimal Calculus

〈Γ〉 ` 〈s〉 ≡ 〈t〉 : 〈T〉

Γ ` S : SET`
Γ ` s : S Γ; x : S ` t : T

Γ ` (λx : S. t) s ≡ t[s/x] : T[s/x] BETA

Γ ` s : S
Γ; x : S ` T : SET`
Γ ` t : T[s/x]

Γ ` π0 (x = s, t : T) ≡ s : S BETA-FST

Γ ` s : S
Γ; x : S ` T : SET`
Γ ` t : T[s/x]

Γ ` π1 (x = s, t : T) ≡ t : T[s/x] BETA-SND

Γ; x 7→ t : S; ∆ ` VALID
Γ ` x ≡ t : S DELTA

Γ ` x : T
Γ ` x ≡ x : T REFL

Γ ` x ≡ y : T
Γ ` y ≡ x : T SYM

Γ ` x ≡ y : T
Γ ` y ≡ z : T
Γ ` x ≡ z : T TRANS

META-THEORY

Figure 2.3.: Judgmental equality

29

2. The Type Theory

SET1 ⊂ . . . For example, it enables us to write the type-polymorphic identity function:

id (X : SET) (x : X) : X
id X x 7→ x

However, it is not syntactic and thus significantly complicates type checking [Harper
and Pollack, 1989, Courant, 2002]. As our calculus grows closer to a programming
language, we shall come back to cumulativity (¶ 3.61). Also, Chapter 6 sits on the edge
of a self-referential paradox: in that chapter, we avoid cumulativity altogether and we
will be fully explicit about the universes of our constructions.

2.12 Remark (Church-style typing). Our syntax is presented in Church-style: pairs and
λ-abstraction are explicitly annotated by types. This information is needed for type
inference. When obvious from the context, we informally skip these annotations to
improve readability. In Section 3.1, we present an equivalent system in Curry-style:
by setting up a bidirectional type checker, we show how local type information can be
used to deduce these annotations, without any guesswork or appeal to unification.

2.1.3. Judgmental equality

(2.13) Unlike traditional presentations [Luo, 1994] based on Pure Type Systems (PTS), we
do not define our notion of definitional equality as the transitive, reflexive closure of an
(untyped) reduction rule. Instead, we choose to specify definitional equality according
to our needs and expectations. Such an axiomatic presentation is called a judgmental
equality, or typed conversion [Martin-Löf, 1996]. This presentation should adapt eas-
ily to regional variations, as implemented by Coq [The Coq Development Team] or
Agda [Norell, 2007].

2.14 Definition (Judgmental equality). The judgmental equality (Figure 2.3) comprises
the computational rules (rules BETA, BETA-FST, BETA-SND), the unfolding of defini-
tions (rule DELTA), and it is closed under reflexivity (rule REFL), symmetry (rule SYM),
transitivity (rule TRANS), and structural congruences. We do not recall the mundane
rules which ensure these structural congruences, typical examples include:

Γ ` s1 ≡ s2 : S
Γ ` t1 ≡ t2 : T[x/s1]

Γ ` (x = s1, t1 : S) ≡ (x = s2, t2 : S) : (x : S)× T

Γ ` f1 ≡ f2 : (x : S)→ T
Γ ` s1 ≡ s2 : S

Γ ` f1 s1 ≡ f2 s2 : T[x/s1]

(2.15) By specifying equality as a judgment, we leave open the problem of implement-
ing equality, requiring only a congruence including ordinary computation (β-rules).
Such an equality can be decided, for example, by testing β-normal forms up to α-
equivalence [Adams, 2006]. Richer equalities, involving various degrees of η-expansion
and/or proof-irrelevance, can be supported by our calculus [Coquand, 1996, Abel et al.,
2008]. Agda implements such features, Coq currently does not. Decidability of equality
induces decidability of type checking, as we shall see in Section 2.3.

30

2.1. A Minimal Calculus

2.16 Remark (Polarity of types). In the Martin-Löf tradition [Martin-Löf, 1996], type
theory is introduced through a Logical Framework (LF). The logical framework is a
meta-language for specifying logical systems, such as type theory. The object language,
in our case type theory, is thus specified in an inductive manner: the types of our logic
are characterised by their constructors. Thus, quoting Nordström et al. [1990, §7.2], “for
most sets, the non-canonical forms and their computation rules are based on the princi-
ple of structural induction. This principle says that to prove that a property B(a) holds
for an arbitrary element a in the set A, prove that the property holds for each of the
canonical elements in A”. In modern, proof-theoretic terms, the types thus specified are
positive, i.e. characterised by their constructors. Formally, a type is positive if its elimi-
nation form is invertible: from the conclusion of the elimination rule, we can derive its
premises. Being invertible, the elimination form only plays an administrative rôle: the
logical contribution of the type is entirely contained in the (non-invertible) introduction
form. For example, the (additive) disjunction is positive1:

Γ ` u : A→C Γ ` v : B→C
Γ ` 〈u, v〉 : A+ B→C

A type theory presented in the LF-style will thus have a slightly different flavour of
Σ-types than ours: its elimination principle will be the sigma-split rule that, intuitively,
corresponds to pattern-matching a pair, i.e. currying:

Γ ` p : (s : S)× T
Γ ` f : (s : S)(t : T)→ P (s, t)
Γ ` sigma-split f p : P p

This corresponds to a positive presentation of Σ-types. Similarly, one could treat Π-
types as positive types and eliminate them through the funsplit rule [Nordström et al.,
1990, §7.2][Garner, 2009].

Perhaps controversially, our presentation (Figure 2.2) is entirely negative: our types
are characterised by their observations, i.e. elimination forms. Formally, a type is neg-
ative if its introduction form is invertible. The exponential is the typical example of a
negative type in intuitionistic logic:

Γ; x : A ` b : B
Γ ` λx. b : A→ B

In our type theory, we adopt this traditional presentation of functions for Π-types,
eliminating a function by observing its behavior on an argument. Similarly, we treat Σ-
types negatively, by defining them through their two observations, the first and second
projections. The respective introduction forms are invertible.

Negative types can sometimes enjoy a richer definitional equality than positive types:

1The use of a double line, reminiscent of the categorical notation for adjunctions, to signify the invertibil-
ity of a connective is not a coincidence.

31

2. The Type Theory

with relative ease, the type theory can be extended to support the so-called η-laws for
our Π-type, Σ-type, and unit [Abel et al., 2008, 2009]:

Γ ` S : SET` Γ ` f : (x : S)→ T
Γ ` f ≡ λx : S. f x : (x : S)→ T ETA-LAM

Γ ` S : SET` Γ ` p : (x : S)× T
Γ ` p ≡ (x =π0 p, π1 p : S) : (x : S)× T ETA-PAIR

Γ ` t :1
Γ ` t ≡ ∗ :1 ETA-VOID

The rule ETA-PAIR is also called surjective pairing. Again, these rules are not a re-
quirement for the constructions presented in this thesis. They are merely a convenience,
hence our choice for a negative presentation of types. In particular, as we shall see in
Part II, our datatype constructors are ultimately nothing but nested pairs terminated by
a unit type. Having η-laws for Σ-types and unit allows us to transparently – i.e. without
any proving – unpack and repack these tuples.

2.17 Example. In a system supporting ETA-LAM, ETA-PAIR, and ETA-VOID, we have
that the function

swap (p : A× B) : B× A
swap p 7→ (π1 p, π0 p)

is definitionally equal to the identity function when A and B are taken to be the unit type,
i.e. we have:

Γ ` swap ≡ id :1× 1→ 1× 1

2.1.4. Propositional equality

(2.18) Definitional equality captures the equalities that hold by definition, i.e. by unfolding
of definitions. Its concrete nature leaves no place for reasoning: it cannot be manipu-
lated within the logic. This design choice has the benefit of decidability: we can always
decide whether two objects are definitionally equal or not. However, more objects are
equal than a computer can decide. Whilst we cannot decide equality, we can define a
language of equality certificates that the computer can check: we work around the unde-
cidability of equality by defining a checkable language for human-generated evidence.
Propositional equality is this language of evidences in type theory. As such, it can be
assumed in context, for hypothetical reasoning, and propositional equalities can be es-
tablished using type-theoretic reasoning principles, such as induction.

Notions of propositional equality differ between systems. Recent work on homotopy
type theory [Hofmann and Streicher, 1994, Awodey and Warren, 2009] seem to suggest
that there is more to equality than we might have initially thought [Altenkirch et al.,
2007]. From a programmer’s point of view, the dispute revolves around whether Unic-
ity of Identity Proof (UIP, defined below ¶ 2.22) holds in general or only in restricted
cases. However, despite these singularities, propositional equality is organised around
some core functionalities which are relatively uncontroversial. In order to remain as

32

2.1. A Minimal Calculus

Γ ` A : SET`
Γ ` x : A Γ ` y : A

Γ ` x = y : SET`
PROP-EQUAL

Γ ` A : SET` Γ ` x : A
Γ ` refl : x = x REFL

Γ ` P : A→ SET`
Γ ` x : A Γ ` y : A

Γ ` subst : x = y→ P x→ P y SUBST

Γ ` x : A
Γ ` absorb : subst refl x = x ABS

META-THEORY

Figure 2.4.: Axiomatic propositional equality

equality-agnostic as possible, we shall again adopt an axiomatic approach, following
Coquand [2011]’s recent work. The axioms we choose are quite natural and are satis-
fied by all flavours of propositional equality to date.

2.19 Definition (Propositional equality). Let A : SET` be a type, let x : A and y : A be two
inhabitants of A.

We extend our type theory with a new set former x = y :, which inhabits the type
SET`. The terms x and y are said to be propositionally equal if the set x = y is inhabited.

The equality type is subject to the axioms given in Figure 2.4:
Identity: for any x : A, we have a proof that x = x (axiom REFL) ;
Substitutivity: given a proof that x equals y, we have an operator subst that substitutes

x for y in a proposition (axiom SUBST) ;
Absorption: substitution by reflexivity is, essentially, an identity (axiom ABS).

2.20 Remark. Because of the Identity axiom, propositional equality is reflexive and thus
embeds the judgmental equality. In other words, the following rule is admissible:

Γ ` a ≡ b : A
Γ ` refl : a = b

The converse is not true, since propositional equalities can be established under in-
consistent hypothesis. For example, the following judgment is derivable:

b :0 ` 1 = 0 : SET

We might be reluctant to have the corresponding equation to hold definitionally. Ex-

33

2. The Type Theory

tensional type theories have this power. We come back to this point in Remark 5.51.

2.21 Remark (Models). Whilst we are careful to loosely specify our propositional equal-
ity, it is reassuring to check that our definition admits several, distinct models:
• A Martin-Löf type theory equipped with the identity type [Martin-Löf, 1984] pro-

vides an intensional model for which type checking is decidable ;
• At the other end of the spectrum, a type theory à la NuPRL [Constable, 1986]

offers an extensional model, at the cost of the decidability of definitional equality ;
• As an intensional middle ground, an observational type theory [Altenkirch et al.,

2007] offers a model that admits function extensionality without sacrificing de-
cidability of type checking.

2.22 Definition (Unicity of Identity Proofs (UIP)). UIP states that there is only one proof
of equality, i.e. we add an extra axiom identifying all proofs of equality:

UIP : (α : a = b)(β : a = b)→ α = β

Not every model of type theory satisfies UIP [Hofmann and Streicher, 1994]. None-
theless, every type enjoying a decidable equality also satisfies UIP, by Hedberg’s theo-
rem [Hedberg, 1998].

(2.23) The reduction of pattern-matching to elimination principles [McBride, 1999] relies
crucially on UIP. We shall conservatively assume that all the definitions by pattern-
matching given in this thesis rely on UIP. Arguably, even a homotopic type theory is
likely to offer UIP in a “programming” subuniverse [Licata and Harper, 2011]: our
pattern-matching definitions would comfortably live in such a fragment. Aside from
the programming fragment, our presentation is not tied to a particular equality. In par-
ticular, this system has been modelled in Agda, which features an intensional equality
extended with UIP. On the other hand, it has been implemented in an experimental
version of Epigram, whose equality has a slightly extensional flavor [Altenkirch et al.,
2007]. We expect users of fully extensional systems to also find their way through this
presentation.

2.24 Remark (Rewriting vs. computing). Because our presentation is purely axiomatic,
it does not compute. The ABS rule only tells us that (propositionally) a substitution on
a reflexivity proof is an identity. By contrast, systems like Coq and Agda enforce this
equality definitionally: substituting through a reflexivity proof computes to an identity.
A type theory like Observational Type Theory (OTT) [Altenkirch et al., 2007] offers an
even more computational equality, for the user’s convenience. To mimic these com-
putational behaviors, we must explicitly rewrite our types using subst. However, these
substitutions would needlessly clutter our programs: we shall therefore keep them im-
plicit. A formal treatment of such a translation has been given by Oury [2006], in which
he translated the computational equality provided by an extensional type theory to
rewritings in an intensional system, the Calculus of Constructions extended with UIP.

2.25 Remark (Design choice (1)). We chose to present an intensional type theory: we
have designed decidability into definitional equality. Alternatively, some systems, such
as NuPRL [Constable, 1986], lift that restriction and collapse propositional equality into

34

2.2. Enumerations

the definitional one, at the expense of the decidability of type checking. The means to
achieve this is discussed in Remark 5.51. By keeping both notions apart, we can rely on
definitional equality to transparently dispose of tedious, decidable equalities, while we
have access to propositional equality for establishing non-trivial identities.
2.26 Remark (Design choice (2)). In systems such as Agda and Coq, the notion of in-
ductive family allows the definition of the least reflexive relation, the so-called identity
type

data = {A : Set} (x : A) : A → Set where

refl : x = x

whose elimination principle justifies the following (computational, but not excitingly
so) definition of substitution:

subst : {A : Set}{P : A → Set}{x y : A} (x = y) → P x → P y

subst refl p = p

Our approach differs in that we strive to maintain equality orthogonal from the no-
tion of datatypes. This leaves us free to merely specify our requirements on equality,
without committing ourselves on how propositional equality must be defined. In par-
ticular, in our system, we cannot define equality inductively. We shall come back to this
point as we present inductive families (Remark 3.48).

(2.27) In this section, we have presented our minimal calculus. We took this opportunity
to recall the key concepts of Martin-Löf type theory and familiarise ourselves with the
syntax, notation, and colour conventions. From this common ground, we now extend
our minimal calculus in various directions. In the next section, we introduce a universe
of enumerations. In Part II, we introduce a universe of inductive types followed by a
universe of inductive families. At every stage, we extend the term language, the typing
and equality judgments.

2.2. Enumerations

(2.28) This section extends our minimal calculus with a notion of enumeration, i.e. finite
collection of tags. When coding inductive objects (i.e. datatypes) within type theory, say
using W-types [Martin-Löf, 1984], we need to conveniently represent the (finite) choice
of operations (i.e. the datatype constructors). While such finite choice can be encoded
with the unit type and binary sums, it is a rather primitive interface. In particular, the
inability to name the elements of the collection hinders readability.

Informally, we want to be able to declare a collection {’a ’b ’c} of tags ’a, ’b, and ’c.
Then, we want to be able to index into such collection by name, for example pointing
to the element ’b – second element – of the collection. Finally, we want to be able to
eliminate such collection by mapping each tag to a return value, e.g.

{’a 7→ ea ; ’b 7→ eb ; ’c 7→ ec}

35

2. The Type Theory

We shall make these notations formal in Section 3.1.

2.29 Remark. Our definition of enumerations as lists of tags is motivated by practical
considerations. From a logical standpoint, an enumeration is nothing but an initial
sequence of natural numbers: the cardinality of a finite set. However, from a pro-
gramming perspective, an enumeration also plays a presentational rôle: tags allow us
to meaningfully interact with enumerations, by rationalising the typing information
obtained through bidirectional type checking (¶ 3.16, ¶ 3.18, ¶ 3.21).

This follows a key design principle of this thesis. To support low-level representations
of data, such as enumerations, or inductive types, we extend the type theory with a
few fundamental components. However, we engineer these extensions in such a way
that they provide enough presentational information in their types and therefore support
readability through elaboration.

(2.30) Enumerations are introduced into type theory through a universe. This universe is
specified by the signature:

EnumU : SET` EnumT (E : EnumU) : SET`

Inhabitants of EnumU are finite collections of tags, the so-called enumerations. For
an enumeration E : EnumU, EnumT E is the set of (valid) indices into that enumeration.

2.2.1. Tags

2.31 Definition (Tags). To represent named entities, we extend the type theory with tags,
i.e. identifiers, quoted to indicate that they are pure data.

〈t〉, 〈T〉 ::= . . . | UId | ’ident

SYNTAX

Γ ` VALID
Γ ` UId : SET`

Γ ` VALID
Γ ` ’s : UId

s a valid identifier

META-THEORY

In particular, tags are not variables and are therefore not substitutable.

2.32 Example. A tag is any valid identifier. The following are therefore valid tags: ’a,
’true, ’false, ’0, ’suc, ’Σ.

(2.33) Tag equality is nominal: two tags are equal if and only if their identifiers are the

36

2.2. Enumerations

same. We extend judgmental equality accordingly:

Γ ` VALID
Γ ` ’s ≡ ’s : UId

META-THEORY

2.34 Example. Hence, for instance, we have that 6` ’true ≡ ’false : UId.

2.2.2. Enumerations

2.35 Definition (EnumU). To specify an enumeration, all we need is to list its defining
tags. This naturally leads to the following formation and introduction rule:

〈t〉, 〈T〉 ::= . . . | EnumU | nilE | consE 〈t1〉 〈t2〉

SYNTAX

Γ ` VALID
Γ ` EnumU : SET`

Γ ` VALID
Γ ` nilE : EnumU

Γ ` t : UId Γ ` E : EnumU
Γ ` consE t E : EnumU

SPECIFICATION

Intuitively, an EnumU is a list of tags. By construction, this inductive object describes
a finite collection of tags.

2.36 Remark (Specification). Here, we only specify the type of enumerations: in one
way or another, we intend to provide a set former EnumU and the introduction rule
nilE and consE. However, at this stage, we refrain from extending the type theory with
these rules. Instead, we treat this specification as an abstract interface. We rely on this
interface to further describe the type theory, but we do not make any assumption on its
realisation. We shall fulfil this specification in Chapter 6, where we show that, being an
inductive type, EnumU can be introduced as an inductive type.

2.37 Example (Coding Booleans). To describe the Booleans, we code a collection with
two elements:

{’true ’false} , consE ’true (consE ’false nilE)

(2.38) Again, equality of enumerations is nominal and is also ordered. In particular, it is
not solely based on cardinality. Two enumerations are equal if and only if the same

37

2. The Type Theory

names appear in the same order:

Γ ` VALID
Γ ` nilE ≡ nilE : EnumU

Γ ` t1 ≡ t1 : UId
Γ ` E1 ≡ E2 : EnumU

Γ ` consE t1 E1 ≡ consE t2 E2 : EnumU

SPECIFICATION

2.39 Example. The following collections are therefore not equal:

6` {’a ’b} ≡ {’a ’b ’c} : EnumU

6` {’a ’b} ≡ {’c ’d} : EnumU

6` {’a ’b} ≡ {’b ’a} : EnumU

2.2.3. Indexing into enumerations

2.40 Definition (EnumT). While we declare collections with EnumU, the set of indices
into a collection E : EnumU – i.e. its elements – is described by EnumT E. We represent
the choice of a tag as a numerical index into E:

〈t〉, 〈T〉 ::= . . . | EnumT 〈t〉 | 0 | 1+ 〈t〉

SYNTAX

Γ ` E : EnumU
Γ ` EnumT E : SET`

Γ ` VALID
Γ ` 0 : EnumT (consE t E)

Γ ` n : EnumT E
Γ ` 1+ n : EnumT (consE t E)

META-THEORY

2.41 Remark. The reader familiar with the datatype Fin n of finite sets of size n : Nat will
notice a striking similarity. Indeed, inhabitants of Fin n can be understood as indexing
into n, in the same way that inhabitants of EnumT E index into a collection E. The only
difference being that collections have an extra structure – the tags – whereas, for natural
numbers, only cardinality matters.

38

2.2. Enumerations

2.42 Example. The set Bool , EnumT {’true ’false} is therefore the set of Booleans:

true , 0 : Bool

false , 1+ 0 : Bool

We check that for any k : EnumT E, 6` 1+ (1+ k) : Bool. That is, Bool has indeed only
two inhabitants.

(2.43) Equality of indices is the expected congruence:

Γ ` VALID
Γ ` 0 ≡ 0 : consE t E

Γ ` n1 ≡ n2 : E
Γ ` 1+ n1 ≡ 1+ n2 : consE t E

META-THEORY

2.44 Example. We thus (reassuringly) cannot identify true and false:

6` true , 0 ≡ 1+ 0 , false : EnumT {’true ’false}

2.45 Remark (Notation). In practice, we would rather refer to inhabitants of collections
by their name. So far, we refer to them by their position in the collection. In Chapter 3,
we shall see that the type information can be used to achieve this. In the meantime,
we shall informally write, say, false when referring to an inhabitant of the type Bool,
with the confidence that it can be automatically desugared to 1+ 0. Intuitively, desug-
aring a name simply consists in finding the position of the corresponding tag in the
enumeration.

2.46 Remark. When defining an enumeration, we do not enforce that its defining tags
are distinct. Indeed, indexing in an enumeration is purely positional: whether tags
are distinct or not makes no difference in the low-level type theory. For instance, it is
perfectly valid to define the enumeration:

{’this ’this} , consE ’this (consE ’this nilE)

It is in fact isomorphic (but not equal, equality being nominal) to the enumeration
defining Bool. Indeed, it is inhabited by two terms: 0 that indexes the first ’this in the
enumeration and 1+ 0 that indexes the second one. For obvious usability reasons, this
kind of definition is best avoided: the high-level notation we present in Chapter 3 will
not work on such a definition. This forces the programmer to use the low-level, hence
less readable, positional interface.

2.2.4. Eliminating indices

(2.47) The function space (e : EnumT {’a1 . . . ’an})→ T is an interesting object: it is finite,
isomorphic to the (right-nested) tuple T a1× . . .× T an× 1. Being first-order, we shall

39

2. The Type Theory

favour this representation. We thus introduce a first-order function space for enumera-
tions. We then eliminate indices into an enumeration by looking up the corresponding
value in the tuple, in effect using it as a lookup table.

2.48 Remark (Notation). So far, we have specified the computational behavior of our
type theory through judgmental equality. However, this definition style is rather te-
dious. For compactness and readability, we shall now specify our operators as func-
tional programs – much as we model them in Agda. These meta-definitions will be
distinguished from standard definitions by the use of the META-THEORY frame, as for
π below.

2.49 Definition (Small Π-type). We first define the small function space using the π
operator, which computes the (first-order) tuple isomorphic to (e : EnumT E)→ P e:

π (E : EnumU) (P : EnumT E→ SET`) : SET`
π nilE P 7→ 1
π (consE t E) P 7→ P 0×π E λe. P (1+ e)

META-THEORY

This builds a right-nested Σ-type, packing a witness P i for each i in the domain E.
These tuples are lookup tables, tabulating dependently-typed functions.

2.50 Remark (Notation). The step case of π exposes our notational convention that
binders scope rightwards as far as possible.

2.51 Example. Let P : Bool→ SET. The finite function space from b : Bool to P b unfolds
to:

π {’true ’false} P ; P true× P false× 1

That is, it is a pair of an inhabitant of P true and an inhabitant of P false.

2.52 Definition (Elimination of enumeration). The elimination principle switch takes
us from the small function space π E P – a first-order lookup table – to its functional
interpretation (e : EnumT E)→ P e. In effect, switch simply peels off the lookup table
based on the index e:

switch (ps : π E P) (e : EnumT E) : P e
switch b 0 7→ π0 b
switch b (1+ e) 7→ switch (π1 b) e

META-THEORY

40

2.3. Meta-Theoretical Properties

2.2.5. Sum type

(2.53) Using a finite set of cardinality n in the domain of a Σ-type, we obtain an encoding
of n-ary sums. In the binary case, using Bool in the domain, we obtain an encoding of
the usual intuitionistic disjunction:

A+ B , (b : Bool)×
{

’true 7→ A
’false 7→ B

}
b

We can then derive the usual introduction and elimination forms of disjunction by
falling back to the introduction and elimination forms of Σ-types and enumerations.
Alternatively, we could have introduced binary sums as part of our type theory. Either
way, the resulting sum type satisfies the following axiomatisation:

Γ ` A : SET` Γ ` B : SET`
Γ ` A+ B : SET`

SUM

〈(u : A→C), (v : B→C)〉 (s : A+ B) : C
〈u, v〉 (injl a) 7→ u a
〈u, v〉 (injr b) 7→ v b

Γ ` a : A
Γ ` injl a : A+ B INJ-LEFT

Γ ` b : B
Γ ` injr b : A+ B INJ-RIGHT

SPECIFICATION

2.3. Meta-Theoretical Properties

(2.54) In this section, we give the key meta-theoretic results that underpin our type theory.
Following a Swedish tradition [Nordström et al., 1990], we gave a judgmental presen-
tation of conversion. This has the benefit of conceptual simplicity [Goguen, 1994]. It
also affords us the freedom of choosing, in an implementation, by which operational
means we decide conversion.

However, most of the meta-theoretic results on type theory have been developed on
Pure Type Systems (PTS), where conversion is untyped. Using an untyped conversion
follows a more syntactic approach initiated by Tait [1967], and pursued by Girard [1972]
and Martin-Löf [1984]. It also generalises to inductive types [Luo, 1994, Werner, 1994].

Trying to relate the two, Adams [2006] and Siles [2010] have demonstrated that some
PTS can be equivalently presented with a typed or untyped conversion. The PTS they
consider are not necessarily normalising. Consequently, they do not support conver-
sion up-to η-laws, or Σ-types. Nonetheless, by making a normalisation assumption,
Werner [1994] has shown how to regain these η-laws with an untyped conversion. Con-
versely, Goguen [1994] has shown that a typed conversion can be faithfully modelled
by an underlying, untyped conversion.

41

2. The Type Theory

(2.55) Confident that these techniques apply to our type theory, we now state the funda-
mental properties of this logic. They fit into three groups. First, the structural properties
let us juggle with the context. Second, the correctness properties are a first sanity-check
that our logic does indeed behave like one. Third, the strong normalisation theorem
establishes that our system is a viable logic: it supports cut elimination. This theorem
is also crucial in establishing our system as a programming language: this guarantees
decidability of type checking. This section is largely inspired by the work of Siles [2010]
and Barras [2013].

2.3.1. Structural properties

2.56 Lemma (Weakening [Siles, 2010]). Weakening allows us to introduce more hypoth-
esis in the context, making terms available to larger contexts:

1. If

Γ; ∆ ` VALID

Γ ` A : SET`
x 6∈ Γ; ∆

, then Γ; x : A; ∆ ` VALID

2. If

Γ; ∆ ` t : T
Γ ` A : SET`
x 6∈ Γ; ∆

, then Γ; x : A; ∆ ` t : T

3. If

Γ; ∆ ` s ≡ t : T
Γ ` A : SET`
x 6∈ Γ; ∆

, then Γ; x : A; ∆ ` s ≡ t : T

Proof. By simultaneous induction on derivations of context validity, typing judgment,
and the equality judgment.

2.57 Lemma (Substitution [Siles, 2010]). Substitution lets us cut a judgment making an
assumption A against a proof of A:

1. If
{

Γ; x : A; ∆ ` VALID

Γ ` a : A , then Γ; ∆[a/x] ` VALID

2. If
{

Γ; x : A; ∆ ` t : T
Γ ` a : A , then Γ; ∆[a/x] ` t[a/x] : T[a/x]

3. If
{

Γ; x : A; ∆ ` s ≡ t : T
Γ ` a : A , then Γ; ∆[a/x] ` s[a/x] ≡ t[a/x] : T[a/x]

Proof. By simultaneous induction on derivations of context validity, typing judgment,
and the equality judgment.

2.58 Definition (Context conversion [Siles, 2010]). Conversion naturally extends from
types to contexts: a context is seen as a list of types, themselves subject to conversion.
Two contexts are convertible if their types are convertible. Put otherwise, the empty

42

2.3. Meta-Theoretical Properties

contexts are convertible, and, inductively, if two types are convertible in convertible
contexts, they form a convertible context:

ε ≡ ε ` VALID
Γ ≡ ∆ ` VALID Γ ` S ≡ T : SET`

Γ; x : S ≡ ∆; x : T ` VALID

2.59 Lemma (Substitution of context). We can naturally transport judgments along con-
vertible contexts:

1. If

Γ ` t : T
Γ ≡ ∆ ` VALID

∆ ` VALID

, then ∆ ` t : T

2. If

Γ ` s ≡ t : T
Γ ≡ ∆ ` VALID

∆ ` VALID

, then ∆ ` s ≡ t : T

Proof. By simultaneous induction on the typing judgment and the equality judgment.
On the variable case, we do an extra conversion – justified by the context conversion
between Γ and ∆ – to match up the type in the new context ∆.

2.3.2. Correctness properties

(2.60) The following lemmas are sanity-checks that our type theory is not grossly defective.
Proof theoretically, they offer little reassurance. However, these lemmas are key to
establish more interesting properties.

2.61 Lemma (Validity of context). From a derivation that a term is well-typed in a con-
text Γ, we can deduce that its context itself is well-formed: if Γ ` t : T, then Γ ` VALID.

Proof. By induction of the typing judgment.

2.62 Lemma (Type correctness and reflexivities [Siles, 2010]). Similarly, from the deriva-
tion of a typing or equality judgment, we can deduce that the type is a sort. Also, from
the derivation of an equality judgment, we can deduce that the terms are well-typed:

1. If Γ ` t : T, then either T is a sort SET`, or Γ ` T : SET`
2. If Γ ` s ≡ t : T, then either T is a sort SET`, or Γ ` T : SET`
3. If Γ ` s ≡ t : T, then Γ ` s : T and Γ ` t : T

Proof. By simultaneous induction on typing judgment and equality judgment.

2.3.3. Proof-theoretic properties

(2.63) In a first approximation, a formal system deserves the name of logic if it satisfies a
cut-elimination theorem: from a proof making some assumptions, and proofs that these

43

2. The Type Theory

assumptions hold, we can derive a proof making no assumption at all. Computation-
ally, this corresponds to normalising a function – a proof relying on some assumptions –
applied to some terms – the proofs of these assumptions. The result is a self-contained
proof, i.e. a term in normal form.
2.64 Conjecture (Strong normalisation [Barras, 2013, Lemma 6.17]). Our type theory
admits a strong normalisation model in which reduction is definable and for which
every well-typed term reduces to a unique normal form.

(2.65) We refer the reader to Barras [2013] for an elegant (and machine checked!) proof of
strong normalisation for the Calculus of Constructions. We are confident that Barras’
proof could be adapted to our setting. Indeed, our type theory is a strict subset of the
Calculus of Constructions: we restrict ourselves to predicative sorts equipped with a
few standard quantifiers. Thus, if our calculus was not strongly normalising, then a
fortiori would the Calculus of Constructions fail to be strongly normalising.
2.66 Corollary (Decidability of conversion). It can be mechanically decided whether or
not two terms are definitionally equal: for any Γ, s, t, and T, we can decide whether the
judgment Γ ` s ≡ t : T holds or not.

Proof. By application of the strong normalisation theorem: we can simply normalise
the two terms, and compare their (unique) normal form.

2.67 Corollary (Decidability of type checking). It can be mechanically decided whether
or not a given term is well-typed in a given context: for any Γ, t, and T, we can decide
whether the judgment Γ ` t : T holds or not.

Proof. The typing judgment is entirely syntax directed, except for conversion. By Corol-
lary 2.66, we have that convertibility is decidable. Hence, type checking itself is decid-
able.

44

2.3. Meta-Theoretical Properties

Conclusion

(2.68) In this introductory chapter, we have set up the type theory in which this thesis is
developed. We started with a minimal calculus based on a standard Martin-Löf intu-
itionistic type theory. Seen as a logical system, this calculus corresponds to a construc-
tive predicate logic. Seen as a programming language, it offers a uniform language of
terms to denote programs, their specifications, and their proofs.

(2.69) We have extended this basic calculus with enumerations, which allow us to represent
finite sets. From a programming perspective, this lets us conveniently manipulate finite
collections through an intelligible interface, namely sets of names. It is also our first
example of a universe, even if very rudimentary.

(2.70) We also recalled the meta-theory of such a type theory, which we divide in 3 classes:
the structural properties of the typing judgments, some key administrative lemmas,
and the strong normalisation theorem. Our objective in doing this is twofold: first, re-
assuring the reader that our type theory is indeed a proper logical system ; and second,
reassuring the reader that our type theory is also a programming language for which
type checking is decidable. Besides, we have been careful to remain agnostic in the un-
derlying notions of equality, both definitional and propositional. This shall make the
following developments more widely applicable.

(2.71) At this stage of development, our calculus is able to represent finite collections of
objects using enumerations, record-like structures by combining enumerations with Σ-
types, and functions using Π-types. Whilst we cannot yet describe datatypes, we can
nonetheless describe their signature: all we need is to be able to “tie the knot”, which
we shall do in Part II.

Related work

(2.72) Our type theory is a direct descendant of Martin-Löf type theory [Martin-Löf, 1984,
Nordström et al., 1990], with influences from Coquand’s Calculus of Constructions [Co-
quand and Huet, 1988] and Luo’s Unified Type Theory [Luo, 1994]. Technically, our
presentation is unsurprisingly conventional. For example, enumerations are but a very
weak extension of the type theory, largely subsumed by W-types for examples. We only
introduce them for practical reasons.

(2.73) Similarly, the meta-theoretic results are standard. Having adopted a judgmental ap-
proach to equality, we rely on the work of Siles [2010] to establish the structural prop-
erties and the administrative lemmas that safe-guard our type theory against some op-
erational aberrations. We conjectured strong normalisation, based on an abstract for-
mulation due to Barras [2013], from which we easily derive the decidability of type
checking. Although our presentation is strongly based on Siles and Barras presenta-
tions, the work of Adams [2006] and Goguen [1994] have also been instrumental in the
development of meta-theories for type theories based on judgmental equality.

45

3. A Notation for Programs
(3.1) From the early days of Martin-Löf type theory, it was clear that dependent types

gave more than a framework for constructive mathematics. Martin-Löf [1985] explicitly
drew the connection with programming languages. In practice, this analogy has been
the driving force behind the Swedish programming languages Alf [Magnusson and
Nordström, 1993], Alfa [Hallgren and Ranta, 2000], Agda1 [Coquand and Coquand,
1999], Cayenne [Augustsson, 1998], and more recently Agda [Norell, 2007]. This the-
sis builds upon the foundation laid by the Epigram school [McBride and McKinna,
2004, Brady et al.]. The key precept of this school is that a dependently-typed pro-
gramming language should elaborate to a minimal, trusted type theory. Or, seen from
the ground-up, McBride and McKinna advocate that we should grow our programming
language [Steele, 1999] upon a minimal calculus, such as the one presented in Chapter 2.
We recapitulate this approach in this chapter.

Another objective of this chapter is to present the notations used in this thesis. Our
programming syntax being close to the functional programming canon, we expect the
readers familiar with Haskell or Agda to make their way through this chapter without
surprise. However, we shall strive to formally relate the high-level constructs to their
representation in the base calculus, thus giving their semantics by translation.

3.1. Bidirectional Type Checking

(3.2) The idea of bidirectional type checking [Pierce and Turner, 2000] is to capture, in
the specification of the type checker, the local flow of typing information. On the one
hand, we synthesise types from variables and function applications while, on the other
hand, we check terms against these synthesised types. By checking the terms against
their types, we can use types to structure the term language: for example, to deduce
the type annotation in an abstraction, or to deduce the type of the second element of a
pair. Doing so, we obtain a calculus in Curry-style, i.e. freed from typing annotation.

3.3 Example (Type synthesis). A typical example of type synthesis is a variable in con-
text. Because the context stores the type of variables, we can deduce its type whenever
a variable is used. We thus orient the original VAR rule (on the left) as a synthesis rule
(on the right):

Γ; x : S; ∆ ` VALID
Γ; x : S; ∆ ` x : S ⇒ Γ; x : S; ∆ ` VALID

Γ; x : S; ∆ ` x
Syn
; x ∈ S

47

3. A Notation for Programs

3.4 Example (Type checking). The typing rule of λ-abstraction requires an annotation
specifying the domain. However, if we orient that rule as a checking rule, we can
read the domain – and, hence, deduce the annotation – off the Π-type that the term is
checked against. We transform the original inference rule (on the left) into a checking
rule (on the right):

Γ ` S : SET Γ; x : S ` t : T
Γ ` λx : S. t : (x : S)→ T ⇒ Γ; x : S ` T 3 t Chk; t′

Γ ` (x : S)→ T 3 λx. t Chk; λx : S. t′

3.5 Remark (Terminology). To avoid confusion, we settle on the following terminology:
• The judgment 〈Γ〉 ` 〈t〉 : 〈T〉 specifies typing (Figure 2.2) ;

• The judgment 〈Γ〉 ` 〈T〉 3 〈exprCheck〉 Chk;〈t〉 specifies type checking ;

• The judgment 〈Γ〉 ` 〈exprSynth〉 Syn
;〈t〉 ∈ 〈T〉 specifies type synthesis.

During type synthesis, we actually deduce a type T from an expression exprSynth. How-
ever, unlike Hindley-Milner systems, no constraint solving takes place: we merely take
advantage of the local flow of type information.

3.1.1. Type synthesis and type checking

(3.6) Following Harper and Stone [2000], we distinguish two syntactic categories. First,
the core type theory defines the language of terms (Definition 2.2). Then, the bidirec-
tional approach lets us extend this core language into a more convenient language of ex-
pressions. As we saw in Example 3.3 and Example 3.4, we expect expressions to translate
to terms: this is the so-called elaboration of the high-level expressions into well-typed
terms in the low-level type theory. This way, we obtain a semantics for our expression
language by translation to the minimal calculus.

3.7 Definition (Expression language). We further divide the expression language into
two syntactic categories: exprCheck expressions – into which types are pushed – and
exprSynth expressions – from which types are extracted (Figure 3.1). In the bidirectional
spirit, the exprCheck expressions are subject to type checking. We can afford to enrich
it with new term formers: we rely on the typing information to elaborate them. On
the other hand, the exprSynth expressions – variables and elimination forms – admit
type synthesis. We embed exprSynth into exprCheck, where we shall demand that the
synthesised type coincides with the type proposed. The other direction – introducing
cuts – takes the form of a type annotation.

3.8 Remark. The non-terminal 〈t〉must be understood as a term (Definition 2.2) whose
subterms can be expressions as well as terms. In effect, this includes the language of
terms into the language of expressions. The reader will also notice the absence of the
elimination principles associated with enumerations (π and switch). We expose these
operators as (defined) variables. Doing so, we avoid cluttering our definition of the
expression language.

48

3.1. Bidirectional Type Checking

〈exprSynth〉 ::= x (variable)
| (〈exprCheck1〉 : 〈exprCheck2〉) (type annotation)
| 〈exprSynth〉 〈exprCheck〉 (application)
| π0 〈exprCheck〉 | π1 〈exprCheck〉 (projections)

〈exprCheck〉 ::= 〈exprSynth〉 (synthesis mode)
| λx. 〈exprCheck〉 (abstraction)
| (〈exprCheck1〉, 〈exprCheck2〉) (pair)

| 〈t〉 (term)

| [〈exprCheck0〉 . . . 〈exprCheckn〉] (tuple, ¶ 3.12)
| {〈exprCheck0〉 . . . 〈exprCheckn〉} (enumeration, ¶ 3.16)

|

〈exprCheckI

0〉 7→ 〈exprCheckO
0 〉

. . .
〈exprCheckI

n〉 7→ 〈exprCheckO
n 〉

 (enum. elimination, ¶ 3.18)

ELABORATION

Figure 3.1.: Expression language

3.9 Definition (Type synthesis). Type synthesis (Figure 3.2a) is the source of type infor-
mation. It is directed by the syntax of exprSynth expressions, delivering both a term
and its type. Terms and expressions never mix: e.g., for application, we instantiate the
domain with the term delivered by checking the argument expression.

3.10 Definition (Type checking). Dually, type checking (Figure 3.2b and Figure 3.2c)
receives the flow of types and puts it at work. From an exprCheck expression and a
type checked against it, the type checking judgment elaborates a term, using whatever
information is available from the type. Canonical set formers are checked. Note that
abstraction and pairing are free of annotation, as promised. Most of the propagation
rules are unremarkably structural: for the sake of illustration, some of them are given
in Figure 3.2c.

3.11 Remark (Normalising substitution). Because type checking is governed by the
structure of types, we must ensure that terms are checked against types that are – at
the very least – in head-normal form. During type checking and type synthesis, the
only instances were this invariant might not be preserved is when we apply a substitu-
tion, which may introduce a redex. We rely on substitution when:
• synthesising the application ;
• synthesising the second projection ;
• checking the second component of a pair.

Hence, instead of applying a mere substitution (Definition 2.6), we rely on a nor-

49

3. A Notation for Programs

〈Γ〉 ` 〈exprSynth〉 Syn
;〈t〉 ∈ 〈T〉

Γ; x : S; ∆ ` VALID

Γ; x : S; ∆ ` x
Syn
; x ∈ S

Γ ` SET` 3 T Chk; T′ Γ ` T′ 3 t Chk; t′

Γ ` (t : T)
Syn
; t′ ∈ T′

Γ ` f
Syn
; f ′ ∈ (x : S)→ T

Γ ` S 3 s Chk; s′

Γ ` f s
Syn
; f ′ s′ ∈ T{s′/x}

Γ ` p
Syn
; p′ ∈ (x : S)× T

Γ ` π0 p
Syn
; π0 p′ ∈ S

Γ ` p
Syn
; p′ ∈ (x : S)× T

Γ ` π1 p
Syn
; π1 p′ ∈ T{π0 p′/x}

(a) Type synthesis

〈Γ〉 ` 〈T〉 3 〈exprCheck〉 Chk;〈t〉

Γ ` s
Syn
; s′ ∈ S Γ ` S ≡ T : SET`

Γ ` T 3 s Chk; s′

Γ; x : S ` T 3 t Chk; t′

Γ ` (x : S)→ T 3 λx. t Chk; λx : S. t′

Γ ` S 3 s Chk; s′ Γ ` T{s′/x} 3 t Chk; t′

Γ ` (x : S)× T 3 (s, t) Chk; (x = s′, t′ : T)

(b) Type checking

Γ ` VALID

Γ ` SET`+1 3 SET`
Chk; SET`

Γ ` SET` 3 S Chk; S′

Γ; x : S′ ` SET` 3 T Chk; T′

Γ ` SET` 3 (x : S)→ T Chk; (x : S′)→ T′

Γ ` SET` 3 S Chk; S′

Γ; x : S′ ` SET` 3 T Chk; T′

Γ ` SET` 3 (x : S)× T Chk; (x : S′)× T′

Γ ` VALID

Γ ` SET` 3 1
Chk; 1

Γ ` VALID

Γ ` 1 3 ∗ Chk; ∗

...
(c) Type checking (structural rules)

ELABORATION

Figure 3.2.: Bidirectional type checker

50

3.1. Bidirectional Type Checking

malising substitution, denoted {−}. A typical example of normalising substitution is
hereditary substitution [Watkins et al., 2004], which substitutes and (fully) normalises
at the same time.

3.1.2. Extending type checking

While the type checker we have specified so far only allows untyped pairs and abstrac-
tions, we extend it with some convenient features.

(3.12) Elaboration of tuples. By design of our universe of enumerations, we are often going
to build inhabitants of Σ-telescope of the form (a : A)× (b : B)× . . .× (z : Z)× 1. To
reduce the syntactic burden of these nested pairs, we elaborate a tuple notation inspired
by LISP:

Γ ` 1 3 []
Chk; ∗

Γ ` A 3 x Chk; x′ Γ ` B{x′/a} 3 [xs] Chk; xs′

Γ ` (a : A)× B 3 [x xs] Chk; (a= x′, xs′ : B)

ELABORATION

3.13 Example. First, we remark that we have introduced an alternative notation for the
inhabitant of the unit type: we can either write the term ∗, or the expression []. Both
elaborates to the term ∗:

Γ ` 1 3 ∗ Chk; ∗ Γ ` 1 3 []
Chk; ∗

3.14 Example. Let A : SET, B : A→ SET, and C : (x : A)→ B x→ SET.
The tuple [a b c] checked against the Σ-telescope (x : A)(y : B x)(z : C x y)× 1 elaborates

to the expected right-nested tuple:

...
` A 3 a Chk; ta

...
` B ta 3 b Chk; tb

...
` C ta tb 3 c Chk; tc ` 1 3 []

Chk; ∗

` (z : C ta tb)× 1 3 [c] Chk; (z= tc, ∗ :1)

` (y : B ta)(z : C ta y)× 1 3 [b c] Chk; (y= tb, (z= tc, ∗ :1) : C ta y)

` (x : A)(y : B x)(z : C x y)× 1 3 [a b c] Chk; (x = ta, (y= tb, (z= tc, ∗ :1) : C ta y) : B x)

3.15 Example. In Part II, we shall set-up our datatypes in such a way that datatype
constructors are nothing but right-nested tuples starting with a tag, which marks the
constructor name. For instance, given l : Tree A, a : A, and r : Tree A, the node constructor
of the binary tree Tree A is essentially encoded by the tuple [’node l a r].

51

3. A Notation for Programs

(3.16) Elaboration of enumerations. To define enumerations, we have used the informal
notation {’a ’b ’c}. We support this notation by extending elaboration with the judg-
ments:

Γ ` EnumU 3 {} Chk; nilE

Γ ` UId 3 t Chk; t′ Γ ` EnumU 3 {ts} Chk; E

Γ ` EnumU 3 {t ts} Chk; consE t′ E

ELABORATION

3.17 Example. Our example thus elaborates to the desired list of tags:

` UId 3 ’a Chk; ’a

` UId 3 ’b Chk; ’b

` UId 3 ’c Chk; ’c ` EnumU 3 {} Chk; nilE

` EnumU 3 {’c} Chk; consE ’c nilE

` EnumU 3 {’b ’c} Chk; consE ’b (consE ’c nilE)

` EnumU 3 {’a ’b ’c} Chk; consE ’a (consE ’b (consE ’c nilE))

(3.18) Elaboration of enumeration elimination. Similarly, to eliminate an enumeration,
we have used a more natural case analysis syntax:

{’a 7→ ea ; ’b 7→ eb ; ’c 7→ ec} : (e : EnumT {’a ’b ’c})→ P e

Elaborating this syntax is simply a matter of collecting the cases ei in a tuple and
elaborating that tuple against the small function space:

Γ ` EnumU 3 {’l0 . . . ’lk}
Chk; E Γ ` π E P 3 [e0 . . . ek]

Chk; ts

Γ ` (e : EnumT E)→ P e 3 {’l0 7→ e0 ; . . . ; ’lk 7→ ek}
Chk; switch ts

ELABORATION

Note that to ensure that the case analysis is meaningful, the collection of matched labels
{’l0 . . . ’lk}must elaborate to E, the enumeration we are checked against.

3.19 Example. On our running example, for E , consE ’a (consE ’b (consE ’c nilE)), this
definition unfolds to:

` EnumU 3 {’a ’b ’c} Chk; E ` π E P 3 [ea eb ec]
Chk; (ta, (tb, (tc, ∗)))

` (e : EnumT E)→ P e 3 {’a 7→ ea ; ’b 7→ eb ; ’c 7→ ec}
Chk; switch (ta, (tb, (tc, ∗)))

52

3.1. Bidirectional Type Checking

Note that, formally, the elaborated pairs ought to be annotated. For readability, we
have dropped these annotations.
3.20 Remark (Notation). We sometimes vertically break the eliminator of an enumera-
tion. In this case, we do not write the separating semicolon. For example, the above
example could (equivalently) be written:

` (e : EnumT E)→ P e 3

’a 7→ ea
’b 7→ eb
’c 7→ ec

 Chk; switch (ta, (tb, (tc, ∗)))

(3.21) Elaboration of indices into enumerations. Also, rather than indexing into enumera-
tions through the EnumT codes, we directly write the corresponding tag. The following
rule shows how to elaborate tags to their index:

Γ ` consE ’t E 3 ’t Chk; 0

u 6= t

Γ ` E 3 ’t Chk; n

Γ ` consE ’u E 3 ’t Chk; 1+ n

ELABORATION

The idea is to lookup the tag in the enumeration, which is provided by the type
checker.
3.22 Example. For example, we can index the tag ’a – the 0th element – in the enumera-
tion {’a ’b ’c}:

` consE ’a (consE ’b (consE ’c nilE)) 3 ’a Chk; 0

3.23 Example. Similarly, we can index the tag ’b – the 1st element – in the enumera-
tion {’a ’b ’c}:

` consE ’b (consE ’c nilE) 3 ’b Chk; 0

` consE ’a (consE ’b (consE ’c nilE)) 3 ’b Chk; 1+ 0

3.1.3. Soundness

(3.24) Our elaboration procedure is sound if:
• The term elaborated by checking an expression exprCheck against a type T is in-

deed of type T ;
• The pair of a term and its type elaborated from the synthesis of an expression

exprSynth is indeed well-typed.
That is, elaboration of expressions produces well-typed terms in the minimal calculus.
3.25 Theorem (Soundness of bidirectional type checking).

53

3. A Notation for Programs

• If Γ ` exprSynth
Syn
; t′ ∈ T, then

there exists a level ` such that Γ ` T : SET` and Γ ` t′ : T.
• If Γ ` T 3 exprCheck

Chk; t′, then Γ ` t′ : T.

Proof. By mutual induction on the type synthesis and type checking judgments.

3.26 Remark. This soundness result might seem limited: we are merely enforcing well-
typedness. For instance, when elaborating a tag in an enumeration (¶ 3.21), we could
have (erroneously) defined

((((
((((

(((
((((

(((
((((

(((

Γ ` consE ’t E 3 ’t Chk; 0 Γ ` consE ’u E 3 ’t Chk; 0

without compromising the soundness theorem.
However, we must bear in mind that elaboration defines the semantics of expressions:

the above definition is erroneous in as much as it does not convey our intentions. Elab-
oration is the translation of our intentions into a formal system. We must therefore be
cautious that our definitions make sense. In that respect, the soundness theorem is a
welcome safeguard against an absolutely non-sensical definition.

3.27 Remark (Functional judgments). We recall that a relation R ⊆ X × Y is functional
if for all x ∈ X, and y, z ∈ Y, if xR y and xR z then y = z. Put otherwise, it is the graph
of a partial function.

The type synthesis and type checking judgments are functional: they are entirely
syntax directed. From our judgmental presentation, we can therefore extract an elabo-
ration algorithm: provided a decision procedure for equality of terms (Corollary 2.66),
we have a decision procedure for elaboration.

3.2. Elaborating Programs

(3.28) In the previous section, we have enriched our minimal type theory with an expres-
sion language, supporting a more convenient, type-directed syntax for terms. In this
section, we present some notational convenience for writing programs, i.e. function def-
initions and datatype definitions. The programming language we describe is similar to
those in functional programming canon, such as Haskell or Agda.

3.2.1. Function definitions

3.29 Example (Motivation). Let us consider the implementation of addition by induc-
tion over Nat. Recall that the induction principle over natural numbers has type:

Nat-elim : (P : Nat→ SET)(n : Nat)→ P 0→((m : Nat)→ P m→ P (suc m))→ P n

54

3.2. Elaborating Programs

After setting up the induction, we have the following code:

+ : Nat→Nat→Nat , λm n. Nat-elim (λm′. Nat) m
{? : Nat}
{? : Nat→Nat→Nat}

3.30 Remark. To represent a development in progress, we use a “hole”:

f (n : Nat) : Nat
f n 7→ {?}

Users of Epigram2, Agda, and, lately, Haskell are already familiar with this object,
which was initially introduced in the Alf programming language [Magnusson and
Nordström, 1993]. Formally, it corresponds to a meta-variable [McBride, 1999, Jojgov,
2004]. We sometimes use an annotated version that displays the type of the hole:

vs : Vec Nat (fib 14)
vs 7→ {? : Vec Nat 377}

(3.31) Looking at these proof-goals, it is hard to relate their type with our high-level intent,
which is to implement addition and not any function of type Nat→Nat→Nat. This is a
fundamental difference between proving and programming: when programming, our
intents matter. We therefore extend our type theory with labelled types [McBride and
McKinna, 2004]. Their purpose is to label a low-level term with its high-level meaning.
We shall employ a labelled type Hf t0 . . . tk : TI to indicate that a term participates in
“defining the function f applied to a spine of arguments t0 . . . tk”. In essence, a labelled
type is a phantom type [Cheney and Hinze, 2003].

3.32 Definition (Labelled type). We extend the term syntax with labels:

〈t〉 ::= . . . | f
−→
〈t〉

META-THEORY

Here, f is any (valid) identifier. A label is simply a name – the name of a function –
applied to a spine of arguments.

The formation, introduction, and elimination of programming labels is presented in
Figure 3.3. A labelled type Hl : TI is just a phantom type around T: we pack a term t : T
with return, and unpack it with callHl : TI.

3.33 Example. Pursuing Example 3.29, we can express our intention of defining addi-

55

3. A Notation for Programs

Γ ` T : SET`
Γ ` Hl : TI : SET`

Γ ` t : T
Γ ` return t :Hl : TI

callHl : TI (c :Hl : TI) : T
callHl : TI (return t) 7→ t

META-THEORY

Figure 3.3.: Programming labels

tion using the label H+ m n : NatI:

+ : (m : Nat)(n : Nat)→ H+ m n : NatI
, λm n. Nat-elim (λm′. H+ m′ n : NatI) m

{? :H+ 0 n : NatI}
{? : (m : Nat)→ H+ m n : NatI→ H+ (suc m) n : NatI}

Thus, from the type of the proof-goals, we know that we have to give the result of 0 + n
in the first hole, and, in the second hole, the result of suc m + n provided the result of
m + n (induction hypothesis).

In an implementation, the label H + m n : NatI could easily be rendered as m + n.
Doing so, we hide the low-level type-theoretic plumbing to the programmer whilst
making eliminator-based programming an affordable alternative to pattern-matching.

(3.34) We adopt the following syntax for defining functions:

f (x : X) (y :Y) · · · : Z
f x y · · ·

That is, we specify the type of the function f on the first line, through a telescope of
arguments x, y, etc. terminated by the result type Z. On the second line, we proceed
with the actual definition. When convenient, we use a mix-fix notation, as we do in
Example 3.35 below.

3.35 Example. In the programming fragment, the definition of addition is initiated by:

(m : Nat) + (n : Nat) : Nat
m + n · · ·

(3.36) Following McBride and McKinna [2004], the construction of a function is captured
by a specific grammar. At any stage of a development, we can either:
• Return a value, using the “return” (7→) gadget ; or
• Eliminate an argument, using the “by” (⇐) gadget ; or
• Introduce an argument under the function’s scrutiny, using the “with” (|) gadget.

56

3.2. Elaborating Programs

The “return” gadget corresponds to the usual right-hand side of a pattern definition.
The “by” gadget applies an elimination principle. Doing so, with a bit of syntactic
sugar, we regain a pattern-matching notation while remaining explicit about the recur-
sive structure of definitions. The “with” gadget allows to (transparently) add the result
of a computation to the scrutiny of the function being defined. It merely desugars to
an helper function extended with an argument, which is immediately applied to the
desired computation.

3.37 Example. To define addition (Example 3.35), we proceed by induction over m and
return n in the base case, i.e. for m = 0:

(m : Nat) + (n : Nat) : Nat
m + n ⇐ Nat-elim m

0 + n 7→ n
suc m + n {?}

(3.38) When returning a value, recursive calls turn into context lookups: there must be a
term in the context whose labelled type matches the recursive call. Put otherwise, there
must be an induction hypothesis in the context – introduced by an elimination principle
– that justifies the well-foundedness. Otherwise, the definition is rejected.

3.39 Example. We conclude our implementation of addition (Example 3.37) by recur-
sively appealing to addition through the induction hypothesis:

(m : Nat) + (n : Nat) : Nat
m + n ⇐ Nat-elim m

0 + n 7→ n
suc m + n 7→ suc (m + n)

Indeed, the inductive step of the induction principle introduces a hypothesis of type
H+ m n : NatI in the context. The recursive call is therefore justified by this witness.

3.40 Remark. In this section, we have presented the syntax of function definitions and
informally motivated its semantics. We refer the reader to McBride and McKinna [2004]
for the details. In particular, we did not dwell upon the elaboration of these high-level
definitions down to low-level terms in the core calculus. We shall assume the existence
of such a mechanism.

The idea to take away from this section is the use of labelled type to reflect the high-
level intents of the programmer back into the low-level type theory. We shall adapt this
technique in Chapter 7 to give a translation semantics to inductive definitions.

3.2.2. Datatype definitions

(3.41) Our notation for declaring datatypes is strongly inspired by Agda’s declarations. In
this section, we informally motivate our syntax. In Chapter 7, we shall give a formal
semantics to these objects.

3.42 Remark (Notation). Conventionally, for a datatype T, we denote:

57

3. A Notation for Programs

• T-elim the elimination principle of T ;
• T-case the case analysis over T ; and
• T-rec the strong induction principle over T.

3.43 Example. For Peano numbers (i.e. the natural numbers Nat), these induction prin-
ciples correspond to the propositions:

Nat-elim : (P : Nat→ SET)(n : Nat)→ P 0→((m : Nat)→ P m→ P (suc m))→ P n
Nat-case : (P : Nat→ SET)(n : Nat)→ P 0→((m : Nat)→ P (suc m))→ P n

Nat-rec : (P : Nat→ SET)(n : Nat)→
((m : Nat)→((k : Nat)→ k≤m→ P k)→ P (suc m))→ P n

(3.44) Our syntax for inductive definitions is intuitive enough to be understood with a few
examples. Three key ideas are at play, one of which is novel:
• Constructors are presented as sums of products, à la ML (Example 3.45)
• Indices can be constrained by equality, à la Agda and Coq (Example 3.47)
• Indices can be matched upon (Examples 3.49)

3.45 Example (Sums of products, following the ML tradition). We name the datatype
and then comes a choice of constructors. Each constructor is then defined by a Σ-
telescope of arguments. For example, List is defined by:

data List [A : SET] : SET where
List A 3 nil

| cons (a : A)(as : List A)

Ordinals also follow this pattern:

data Ord : SET where
Ord 3 0

| suc (o : Ord)
| lim (l : Nat→Ord)

3.46 Remark. We declare datatype parameters in brackets – e.g. [A : SET] in the defini-
tion of List above (¶ 3.45) – and datatype indices in parentheses – e.g. (n : Nat) in the
definition of Fin below (¶ 3.47). We make equational constraints on the latter only when
needed, and explicitly – e.g. (n= suc n′). The use of explicit equality constraints is remi-
niscent of the original syntax for GADTs1 [Cheney and Hinze, 2003] and aim at convey-
ing the fact that these constraints turn into propositional equalities (Remark 3.48). This
difference of treatment between parameters and indices will be justified in Chapter 5,
where we extend our type theory with indexed datatypes.

3.47 Example (Indexing, following the Agda convention). Indices can be constrained to
some particular value. For example, vectors can be defined by constraining the index

1GADTs are a subset of inductive families for which the principal-types property is preserved [Cheney
and Hinze, 2003, Schrijvers et al., 2009], thus enabling modular (local) type inference.

58

3.2. Elaborating Programs

to be 0 in the nil case and suc n′ for some n′ : Nat in the cons case:

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

In the same vein, finite sets can be defined by constraining the upper-bound n to be
always strictly positive, and indexing the argument of fsuc by the predecessor:

data Fin (n : Nat) : SET where
Fin (n= suc n′) 3 f0 (n′ : Nat)

| fsuc (n′ : Nat)(k : Fin n′)

3.48 Remark (Constraints and equality). In our semantics of inductive definitions, we
intend to capture these constraints on indices by falling back to propositional equal-
ity (Chapter 7). This is in line with our discipline of remaining equality agnostic. In
particular, we do not introduce propositional equality through the inductive fragment.

This is unlike systems such as Coq or Agda, where propositional equality is intro-
duced by the identity type

(((
((((

(((
((((

((
data Id [a1 : A](a2 : A) : SET where

Id a1 (a2 = a1) 3 refl

whose elimination principle gives the J-rule, sometimes strengthened to K [McBride,
1999, Hofmann and Streicher, 1994].

3.49 Example (Computing over indices). We can also use the crucial property that a
datatype definition is, in effect, a function from its indices to a choice of datatype con-
structors. Our notation should reflect this ability. For instance, inspired by Brady et al.
[2003], we give an alternative presentation of vectors that matches on the index to de-
termine the constructor to be presented, hence removing the need for constraints:

data Vec [A : SET](n : Nat) : SET where
Vec A n ⇐ Nat-case n

Vec A 0 3 nil
Vec A (suc m) 3 cons (a : A)(vs : Vec A m)

In order to be fully explicit about computations, we use here the “by” (⇐) gadget,
which lets us appeal to any elimination principle. For simplicity, we shall use a pattern-
matching style when the recursion pattern is unremarkable. Using pattern-matching,
we define the computational counterpart of finite sets by matching on n, offering no

59

3. A Notation for Programs

constructor in the 0 case, and the two expected constructors in the suc n case:

data Fin (n : Nat) : SET where
Fin 0 3
Fin (suc n) 3 f0

| fsuc (k : Fin n)

(3.50) This last definition style departs radically from the one adopted by Coq, Agda, or
generalised algebraic datatypes (GADTs). It is crucial to understand that this is but
reflecting the actual semantics of inductive families (as presented in Chapter 5): we can
compute over indices, not merely constrain them. With our syntax, we give the user the
ability to write these functions: the reader should now understand a datatype defini-
tion as a special kind of function definition, taking indices as arguments, potentially
computing over them, and eventually emitting a choice of constructors.

3.51 Example. We can sensibly mix these definition styles. An example that benefits
from this approach is the presentation of minimal logic – i.e., from the other side of
Curry-Howard, the simply-typed lambda calculus [Benton et al., 2012] – given as an
inductively-defined inference system. We express the judgment Γ ` T through an in-
ductive family indexed by a context Γ of typed variables and a type T:

data (Γ : Context)` (T : Type) : SET where
Γ ` T 3 var (v : T ∈ Γ)

| app (S : Type)(f : Γ ` S⇒ T)(s : Γ ` S)
Γ ` T ⇐ Type-case T

Γ ` unit 3 ∗
Γ ` A⇒ B 3 lam (b : Γ ; A ` B)

where, for simplicity, we have restricted the language of types to the unit and the expo-
nential:

data Type : SET where
Type 3 unit

| (A : Type)⇒ (B : Type)

data Context : SET where
Context 3 ε

| (Γ : Context) ; (T : Type)

and for which we can define (inductively, in fact) a predicate Γ∈ T that indexes a vari-
able of type T in context Γ.

Crucially, the variable and application rules take the index as is, without constraint
or computation. The remaining rules depends on the index: if it is an exponential, we
give the abstraction rule ; if it is the unit type, we give the (only) inhabitant of that type.

3.52 Remark (Order of constructors). By convention, we always first define the con-
structors that are index-independent, and then define the constructors whose availabil-
ity depends on the index. This definition style suits our low-level encoding of indexed
datatypes (Definition 5.44).

60

3.3. Abuse of (Programming) Language

3.3. Abuse of (Programming) Language

(3.53) Throughout this thesis, we shall write many “programs”. In this chapter, we have
grown our programming language from a minimal calculus. We aimed at defining –
as rigorously as possible – the meaning of the programs defined in this system. While
rigour is primordial, our primary objective is to convey ideas to the reader. We shall
therefore indulge in a “fundamental and long established mathematical practice – abuse of
language. [Since] without it, we would be stuck in a mass of unnecessary precision and a
superfluity of significance.” [Wraith, 1975]

Hence, we shall rely on the reader’s ability to cope with ambiguity, a task that com-
puters are very bad at. Below, we describe the notational conventions we have followed
throughout the thesis. We do not expect these notations to be intelligible for a computer:
ambiguity is a luxury that only humans can afford.

(3.54) As in ML, unbound variables in type definitions are implicitly universally quanti-
fied. For example, we do not explicitly quantify over n : Nat or A : SET in the definition
of vector lookup:

vlookup (m : Fin n) (vs : Vec A n) : A
· · ·

(3.55) While this dramatically reduces the burden of quantifiers, this does not cover all
the cases where one would want to declare an argument as implicit. Case in point
are higher-order type signatures. To indicate that an argument is implicit, we use the
quantifier ∀ x. (. . .) – or its annotated variant ∀ x : T. (. . .) – as follows:

example (op :∀ n. Vec A n→ 1) (xs : Vec A k) (ys : Vec A l) : op xs = op ys
· · ·

(3.56) Following mathematical usage, we shall extensively use mixfix operators, i.e. op-
erators in prefix, infix, postfix, or closed form. We shall not be concerned with the
practicality of parsing such definitions: we rely on the reader’s eye for mathematical
definitions. For instance, we write:

(m : Nat)+ (n : Nat) : Nat
. . .

Similarly, we will not concern ourselves with operator precedence: it should always be
clear from the context.

(3.57) Formally, instead of pattern-matching, we use the “by” gadget that lets us apply
any elimination principle. However, when the recursive structure of a definition is
unimportant and the elimination principle itself is unsurprising, we use a standard
pattern-matching notation [Coquand, 1992, Norell, 2007, Sozeau, 2010]. We shall there-

61

3. A Notation for Programs

fore define addition (Example 3.39) more concisely by:

(m : Nat) + (n : Nat) : Nat
0 + n 7→ n
suc m + n 7→ suc (m + n)

This also applies to computations in datatypes definitions, where Example 3.51 be-
comes:

data (Γ : Context)` (T : Type) : SET where
Γ ` T 3 var (v : T ∈ Γ)

| app (S : Type)(f : Γ ` S⇒ T)(s : Γ ` S)
Γ ` unit 3 ∗
Γ ` A⇒ B 3 lam (b : Γ ; A ` B)

Additionally, we shall sometimes use pattern-matching to define anonymous func-
tions by case analysis, such as for instance:

λ

{
true 7→ false
false 7→ true

: Bool→Bool

(3.58) With dependent types, a branch of a pattern-matching tree might simply be unreach-
able. However, whether a branch is reachable or not is undecidable. We shall simply
ignore those branches, leaving to the reader the verification that the missing branches
are indeed impossible. For example, we can ignore the nil case when taking the tail of a
non-empty vector:

tl (vs : Vec A (suc n)) : Vec A n
tl (cons a vs) 7→ vs

(3.59) Because we implicitly quantify over unbound type variables (¶ 3.54), these variables
are not explicitly in scope. We shall rely on the convention that, unless the variable
name is shadowed, these implicit arguments are automatically in scope of the defini-
tion, using the same variable name. For example, in the following definition, n is uni-
versally quantified in the type declaration and is in scope in the definition of lengthVec:

lengthVec (vs : Vec A n) : Nat
lengthVec vs 7→ n

(3.60) By design, pattern variable must be linear, i.e. in a pattern, a variable appears only
once. However, with dependent pattern-matching, some terms might be definitionally
equal to each others: thus the same pattern variable may appear several time in a pat-
tern. In Agda, linearity is regained by distinguishing these “forced arguments” with a
dot preceding the variable. In our case, we write apparently non-linear patterns: we
leave it to the reader to check that appearances are deceptive. For example, we write:

patt (m : Nat) (n : Nat) (q : m = n) : 1
patt m m refl 7→ ∗

62

3.3. Abuse of (Programming) Language

(3.61) As mentioned in Remark 2.11, being a non-syntactic rule, cumulativity complicates
type checking. Several systems exist that engineer decidable type checkers for cumu-
lative theories, including some forms of typical ambiguity [Harper and Pollack, 1989,
Luo, 1994, Courant, 2002]. Rather than burdening our presentation with such technical-
ities, we adopt a lightweight (but informal) convention. When giving a type signature,
we shall assign the lowest possible levels to the sets involved but transparently shift its
type level if needs arise. For example, we would define the powerset as

Pow (X : SET) : SET1
Pow X 7→ X→ SET

and we would then be able to apply the powerset construction to an hypothetical T :
SET2, which shifts the resulting type uniformly:

Pow T : SET3

Using this informal convention, we thus write a single definition while supporting
its (uniform) use at higher universe levels. We leave it to the reader to check that the
definitions obtained following this convention are well stratified.

63

3. A Notation for Programs

Conclusion

(3.62) In this chapter, we have grown our earlier calculus closer to an actual programming
language. The first step was to declutter the term language, using bidirectional type
checking. Doing so, we benefit from a Curry-style type system, in which terms are freed
from type annotations. Besides, by putting the flow of typing information at work, we
can use types to guide the presentation of terms: we obtain a slightly more high-level,
and yet unambiguous (even for a type checker) expression language. This expression
language subsumes the minimal calculus of the first Chapter, and forms the basis of the
programming language used throughout this thesis.

(3.63) We have introduced this larger programming language by way of examples. Two
key components are at play: the definition of functions, and the definition of datatypes.
In both cases, we expect an actual system to translate these high-level definitions to
elaborate to the our earlier minimal calculus. The former has been treated by McBride
and McKinna [2004], while the latter is the topic of Chapter 7. This section was also an
opportunity to introduce the syntax used in this thesis.

(3.64) Our extensive use of programs to describe mathematical objects creates a tension:
our notation must be sufficiently formal to be meaningful, yet not too cluttered with
syntactic details so as to be intelligible by the reader. We therefore took the liberty of
introducing ambiguity in our notations, thus making the type-theoretic definitions less
bureaucratic. We have listed our abuses and, again, illustrated these with examples.

Related work

(3.65) Using a bidirectional approach in a dependently-typed setting is not a novel idea: for
instance, it is the basis of Epigram’s type checker [Chapman et al., 2005] and Matita’s
refinement system [Asperti et al., 2012]. The rationale behind a particular orientation
of rules remain mostly unexplained. Bidirectional type checking originated from an
experimental analysis of Standard ML code. This might explain the perhaps dogmatic
tone of this chapter: we observe the rule of thumb that canonical objects are checked
against their types, while types are synthesised from elimination forms. Besides, cuts
must be annotated by their type, so as to participate to type synthesis. Nonetheless,
Puech [2013] recently gave a systematic construction of a bidirectional type theory from
a presentation in natural deduction. The future will tell whether his findings adapt to
our richer setting, and whether they provide a satisfactory explanation as to the specific
orientation of rules.

64

Part II.

The Inductive Fragment
of Type Theory

This second part is organised as follows. In Chapter 4, we inter-
nalise a presentation of inductive types in type theory. Relying on
our intuition of ML datatypes, we develop a general methodology
for extending a type theory with inductive types and their elimina-
tion principle.

This lays the foundation for Chapter 5 where we extend our type
theory with inductive families. Inductive families subsumes induc-
tive types by supporting a notion of indexing. Indices let us enforce
logical invariants on top of our data-structures. We also recall a
categorical semantics of inductive families based on the theory of
containers. Doing so, we establish a back-and-forth between type-
theoretic objects and categorical concepts.

65

4. A Universe of Inductive Types

(4.1) In this chapter, we extend our type theory to support inductive types as we know
them from ML. In particular, we are not concerned with indexing, i.e. inductive fam-
ilies, at this stage. This is for purely pedagogical reasons. First, this lets us build our
presentation on our intuition of ML datatypes. Second, a simpler framework makes
for a better experimental platform, in which we can easily try new ideas. Finally, as
we shall see in the next chapter, our constructions on non-indexed structures lift almost
immediately to indexed ones, at the cost of some indexing noise. This chapter is thus a
first step toward understanding inductive families and constructions on them.

(4.2) In dependently-typed languages, Σ-types can be interpreted as two different gener-
alisations of propositional connectives. This duality is reflected in the notation we can
find in the literature. On the one hand, the notation ∑x:AB x highlights the view that
Σ-types are “dependent sums”, generalising sums over arbitrary arities, where simply-
typed languages have only finite sums. On the other hand, our choice, (x : A)× B x,
puts the emphasis on Σ-types as generalised products, with the type of the second com-
ponent depending on the value of the first.

(4.3) In the ML family, datatypes are presented as a sum-of-products. A datatype is defined
by a finite sum of constructors, each carrying a product of arguments. Formally, this
structure is reflected by their signature functors, such as

Nat X = 1 + X
ListA X = 1 + A× X
TreeA X = 1 + A× X× X

Ordinal X = 1 + X + XN

where the sums encode the choice of constructors and the products encode the con-
structors’ arguments. We have used an exponential notation XN to denote the function
space N→ X.

(4.4) With dependent types, the notion of sum-of-products translates to sigmas-of-sigmas.
The sum of constructors is but a dependent sum over a finite enumeration of construc-
tors. The product of arguments is then a telescope of dependent products. Conse-
quently, we obtain a simple model of inductive types within type theory: we give their
semantics by means of endofunctor on SET. For instance, the earlier examples are mod-

67

4. A Universe of Inductive Types

elled by the following functions on SET

Nat X , ∑
Bool

{
’true 7→ 1
’false 7→ X

}
ListA X , ∑

Bool

{
’true 7→ 1
’false 7→ (a : A)×X

}
TreeA X , ∑

Bool

{
’true 7→ 1
’false 7→ (a : A)× (x : X)×X

}

Ordinal X , ∑
EnumT {’0 ’suc ’lim}

’0 7→ 1
’cons 7→ X
’lim 7→N→X

where we have artificially used the two notations for Σ-types to highlight the distinct
role of the (unique!) Σ-type.

4.1. The Universe of Descriptions

MODEL: Chapter4.Desc1

(4.5) Sigmas-of-sigmas provide a type-theoretic semantics for inductive types. This char-
acterisation by signature functors is extensional, akin to W-types in extensional type
theory. However, in our (intensional) type theory, we must adopt a more intensional
approach for our definition to be practical. We obtain such an intensional definition
through a universe construction [Martin-Löf, 1984]. A universe is composed of a code
– an intensional object – and an interpretation function that computes the extension of
the codes. Universes are ubiquitous in dependently-typed programming [Benke et al.,
2003, Oury and Swierstra, 2008].

In this thesis, we inductively capture the grammar of (strictly-positive) signature
functors. The resulting codes are then interpreted to the desired extension: endofunc-
tors on SET. Consequently, we extend our type theory with a universe of descriptions.
The codes describe the signature functors we are interested in. Such an object is purely
syntactic, and thus intensional. We obtain the extension of a description, i.e. its functo-
rial semantics, by interpretation.

4.6 Definition (Universe of descriptions). The universe of descriptions is defined in Fig-
ure 4.1. The meaning of codes is given by their interpretations on SET:
• Σ codes Σ-types – to build sigmas-of-sigmas;
• × codes products – the first-order, finitary counterpart of Π;
• Π codes Π-types – to capture higher-order arguments ;
• 1 codes the unit type – to terminate codes ;

1Following Remark 1.34, this marker indicates that the content of this section has been modelled in the
corresponding Agda file, which is available on the author’s website.

68

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter4.Desc.html

4.1. The Universe of Descriptions

Γ ` VALID
Γ ` Desc : SET1

Γ ` VALID
Γ ` 1 : Desc

Γ ` VALID
Γ ` var : Desc

Γ ` A : Desc Γ ` B : Desc
Γ ` A× B : Desc

Γ ` S : SET Γ ` D : S→Desc
Γ ` Σ S D : Desc

Γ ` S : SET Γ ` D : S→Desc
Γ ` Π S D : Desc

SPECIFICATION

(a) Code

J(D : Desc)K (X : SET) : SET

J1K X 7→ 1
JvarK X 7→ X
JA× BK X 7→ JAK X× JBK X
JΣ S TK X 7→ (s : S)× JT sK X
JΠ S TK X 7→ (s : S)→ JT sK X

META-THEORY

(b) Interpretation

Figure 4.1.: Universe of Descriptions

• var codes the identity functor – to introduce the recursive argument (X in our
examples).

We call an object D : Desc a description.

4.7 Remark (First-order representations). Up to isomorphism, × is subsumed by Π, i.e.
we extensionally have that:

JA× BK X ≡ JAK X× JBK X

∼= (b : Bool)→
{

’true 7→ JAK X
’false 7→ JBK X

}
b

∼= JΠ Bool

{
’true 7→ A
’false 7→ B

}
K X

However, this apparent duplication has some value. Unlike its counterpart, × is
first-order. First-order representations are finitary by construction, and thus admit a
richer decidable equality than higher-order representations may in general possess. For
example, extensionally, there is a unique function in 0→Nat. However, intensionally,
there is a countable infinitude of such functions that cannot be identified definitionally.
In this case, we can expect a stronger definition equality for pairs (i.e. surjective pairing)
than we can hope for functions (Remark 2.16).

4.8 Remark. Our original presentation of descriptions [Chapman et al., 2010] was based
on a stripped-down version of induction-recursion [Dybjer and Setzer, 1999], where the

69

4. A Universe of Inductive Types

code δ was restricted to a constant set-domain H. The universe was the following:

Γ ` VALID
Γ ` ι : Desc

Γ ` S : SET

Γ ` T : S→Desc
Γ ` σ S T : Desc

Γ ` H : SET

Γ ` D : Desc
Γ ` δ H D : Desc

J(D : Desc)K (X : SET) : SET

JιK X 7→ X
Jσ S TK X 7→ (s : S)× JT sK X
Jδ H DK X 7→ (H→X)× JDK X

While in essence equivalent, the presentation we adopt in this thesis is more alge-
braic. It reflects more faithfully the underlying categorical structure of signature func-
tors. Consequently, developing the algebra of descriptions within type theory is more
natural. In Section 5.3.2, we shall present a few such constructions, namely composi-
tion of functors, but also the reindexing functor and its adjoints (these operations are
defined in Remark 5.66).
4.9 Definition (Strictly-positive functor). A functor F is said to be strictly positive if the
variable X does not appear in the domain of an exponential in F X.
4.10 Lemma. Descriptions define strictly-positive functors.

Proof. By induction on the codes and analysis of their interpretation. Intuitively, this
is straightforward: the code for Π – which is the only code interpreting to an arrow –
takes a constant SET in its domain. The resulting code has therefore only constant sets
in the domains of the exponentials.

4.11 Remark. If we were to take S : Desc in the domain of the Π code, our functors would
therefore fail to be strictly-positive by construction. We would not be able to take their
initial algebras. With some (non-trivial) massaging, we could take the domain of the
Σ code to be a S : Desc: the resulting coding system would be at least as expressive as
induction-recursion. We do not consider this generalisation here.
4.12 Remark (Limitations). In our definition of (indexed) descriptions, simplicity has
primed over exhaustiveness. Indeed, we have chosen to focus our efforts on building
infrastructure – such as generic programming (Part III), and ornaments (Part IV) – on
top of a universe of datatypes. To this end, the simpler the universe, the better.

While any strictly-positive family is expressible through encodings, our universe does
not explicitly support:
• Nested fixpoints, unlike the universe given by Morris et al. [2009] ;
• Parametric arguments, unlike the presentation given by Jansson and Jeuring [1997] ;
• Mutually-inductive definitions (Example 5.34) ; and
• Nested types [Bird and Meertens, 1998], unlike the presentation given by Matthes

[2009]

70

4.1. The Universe of Descriptions

(4.13) Being monotone, strictly-positive functors admit a least fixpoint [Smyth and Plotkin,
1977]. Categorically, this translates into the existence of an initial algebra. We shall
develop the initial algebra semantics of descriptions in Section 4.2.
4.14 Remark. As for enumerations (Remark 2.36), we only specify the code of descrip-
tions. This specification must be read as a type signature. A viable approach would be
to simply extend the theory with constants for these constructors and an operator to
reason by induction over the codes of Desc. In Chapter 6, we present a more economi-
cal alternative: we implement Desc by bootstrapping it within the universe of datatypes
itself.

(4.15) The benefits of a universe-based approach are manifold. First, we obtain a concrete
– indeed, syntactic – representation of strictly-positive functors within type theory. Ac-
cordingly, our type theory can be extended with the associated functorial structure –
such as its action on objects J− K (Figure 4.1b) and morphisms J− K→ :

J(D : Desc)K→ (f : X→Y) (xs : JDK X) : JDK Y
J1K→ f ∗ 7→ ∗
JvarK→ f x 7→ f x
JA× BK→ f (a, b) 7→ (JAK→ f a, JBK→ f b)
JΣ S TK f (s, t) 7→ (s, JT sK→ f t)
JΠ S TK→ f t 7→ λs. JT sK→ f (t s)

META-THEORY

In Section 4.2, we further extend our type theory with fixpoints and the associated
initial algebra semantics.

Second, having internalised the grammar of datatypes, we can – in type theory –
manipulate datatype definitions. We are able to inspect an earlier definition and derive
a new one from it. Also, we are able to define programs over all (or a subclass of)
datatypes in the system: since the description codes are type-theoretic objects, we ought
to be able to reason and compute over them. Such definitions over the grammar of
datatypes are an example of datatype-generic programming [Gibbons, 2007].

4.1.1. Examples

MODEL: Chapter4.Desc.Examples, Chapter4.Desc.Tagged

(4.16) In this section, we build our intuition for the universe of descriptions. To do so, we
present a few examples of signature functors from the ML world and describe them in
our universe.
4.17 Remark. We shall work in the high-level expression language of Section 3.1, ex-
ploiting type checking to declutter our term language. This convenience affords us a
natural syntax for enumerations: we use enumerations to list datatype constructors and
to map each constructor to its code.

71

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter4.Desc.Examples.Main.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter4.Desc.Tagged.html

4. A Universe of Inductive Types

4.18 Example (Description: natural numbers). We begin with the natural numbers, of
signature functor X 7→ 1 + X:

NatD : Desc

NatD 7→ Σ EnumT

{
’0

’suc

}{
’0 7→ 1
’suc 7→ var× 1

}
This construction reads as follow. First, we use Σ to give a choice between the ’0 and

’suc operations. What follows depends on this choice, so we then match each case and
give the corresponding code. In the ’0 case, we simply terminate with the unit type. In
the ’suc case, we attach one recursive argument and terminate the description. Trans-
lating the Σ-type to a binary sum, we have effectively described the desired functor:

JNatDK X ∼= 1+ X

4.19 Remark. The code describing the successor is terminated by a multiplication by
unit, coded by −× 1. Extensionally, this multiplication is superfluous. However, we
will be particularly careful to always terminate the constructor’s code with this unit
type. As hinted at in Example 3.15, this definition style allows us to rely on the tuple
notation for right-nested tuples, which are, by design, terminated by unit (¶ 3.12).

We shall come back to this point more concretely when define the datatypes’ con-
structors (Remark 4.42) and when we extend elaboration to support constructor expres-
sions (Remark 4.69).

4.20 Example (Description: lists). The signature functor for lists is X 7→ 1+ A×X, thus
its description is but slightly different from NatD:

ListD (A : SET) : Desc

ListD A 7→ Σ EnumT

{
’nil

’cons

}{
’nil 7→ 1
’cons 7→ Σ A λ− . var× 1

}
The suc constructor becomes cons, taking an A followed by a recursive argument. By

unfolding the definition of the interpretation J− K on ListD A, we verify that this code
indeed describes the intended functor:

JListD AK X ∼= 1+ A×X

4.21 Example (Description: trees). Of course, we are not limited to one recursive ar-
gument. For instance node-labelled binary trees are captured by the signature X 7→
1 + X× A× X. This is described by:

TreeD (A : SET) : Desc

TreeD A 7→ Σ EnumT

{
’leaf

’node

}{
’leaf 7→ 1
’node 7→ var×Σ A λ− . var× 1

}
Again, we are only one evolutionary step away from ListD. However, instead of a

72

4.1. The Universe of Descriptions

single call to the induction code, we add another one. The interpretation of this code is
isomorphic to the expected functor:

JTreeD AK X ∼= 1+ X× A×X

4.22 Example (Description: option type). Of course, descriptions also capture datatypes
with no recursive arguments, such as the option type. The option type can be rep-
resented by the somewhat trivial signature functor X 7→ A+ 1. In our system, this
translates to:

MaybeD (A : SET) : Desc

MaybeD A 7→ Σ EnumT

{
’just

’nothing

}{
’just 7→ Σ A λ− . 1
’nothing 7→ 1

}
As before, we let the reader verify that the interpretation of this code is isomorphic to
the expected functor:

JMaybeD AK X ∼= A+ 1

4.23 Definition (Tagged description). From the examples above, we observe that a typ-
ical datatype definition consists of a Σ code whose first argument enumerates the con-
structors. Codes fitting this pattern are called tagged descriptions. Again, this is a clear
heritage of the sum-of-products style. To capture this constructor-oriented form in type
theory, we define tagged descriptions as pairs of an enumeration of constructors and,
for each constructor, its code:

tagDesc : SET1
tagDesc 7→ (E : EnumU)×π E λ− . Desc

A tagged description naturally defines a description in sum-of-products form:

toDesc (D : tagDesc) : Desc
toDesc (E, cs) 7→ Σ (EnumT E) (switch cs)

(4.24) We have seen that tagged descriptions are but descriptions with some more struc-
ture. Conversely, any description can be forced into this style by taking a single con-
structor:

toTagDesc (D : Desc) : tagDesc
toTagDesc D 7→ (EnumT {’con}, (D, ∗))

Adopting a tagged approach does not reduce our expressive power. Beside, by
enforcing a constructor-oriented form of datatypes, we ease the implementation of
datatype transformations. The free monad construction (Section 6.2.2) is such an ex-
ample.

4.25 Remark (Notation). Our definition of tagDesc forces a low-level definition style
upon us: we must give a pair of an enumeration and the tuple of their codes. We infor-
mally adopt a more natural syntax that consists in listing each constructor tag paired

73

4. A Universe of Inductive Types

with its code. For natural numbers, we thus write:

NatD : tagDesc

NatD 7→
{

’0 : 1
’suc : var× 1

We shall rely on the concatenative structure of tagged descriptions later. Given two
tagged descriptions D1 , (E1, C1) and D2 , (E2, C2), we can define a tagged descrip-
tion D = D1 + D2 by concatenating the constructor enumerations E1 + E2 and gluing
their codes C1 and C2 accordingly. Informally, we capture this concatenative structure
by vertical juxtaposition, thus writing:

D ,
{

E1 : C1
E2 : C2

Finally, we shall transparently switch from tagged descriptions to descriptions, and
back. The coercions toDesc and toTagDesc will therefore be kept silent, so as to remove
such needless noise from our definitions. It will be clear, by the types, when to apply
one or the other.

4.2. Initial Algebra Semantics

(4.26) The universe of description lets us build the signature functor of ML-like datatypes.
However, there is a step missing between these signatures and the actual datatypes. A
datatype is the least set closed under a signature, or put otherwise, it is the least fixpoint
of the signature functor. To capture datatypes, we need to extend our type theory with
a fixpoint operator. In categorical terms, we aim at giving an initial algebra semantics to
our signatures. For a signature functor F, the least fixpoint is given by the carrier of the
initial F-algebra, denoted µF. In this framework, the unique algebra homomorphism
from the initial algebra to a given algebra α : F X → X corresponds to a function from
µF to X, which recursively applies α bottom-up on the inhabitant of µF.

However, not every signature functor admits an initial algebra. Typical examples in-
clude the powerset functor X 7→ X → Bool [Awodey, 2006], or, in a predicative setting,
the functor X 7→ (X → Bool) → Bool [Reynolds, 1984, Pitts, 1987]. This is why we
restrict ourselves to descriptions, which define only strictly-positive functors (¶ 4.13).
Being strictly positive, these functors are monotone and always admit an initial algebra.
We can legitimately extend our type theory with the least fixpoint of descriptions and
the associated induction principle.

4.2.1. Least fixpoint

MODEL: Chapter4.Desc.Fixpoint, Chapter4.Desc.InitialAlgebra

74

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter4.Desc.Fixpoint.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter4.Desc.InitialAlgebra.html

4.2. Initial Algebra Semantics

Since we shall cast our constructions in a categorical framework, we first recall the
categorical concepts we rely on. We give the definition of the algebra of a functor,
organise algebras in a category, and focus on the initial objects of this category. We then
relate these initial algebras with inductive definitions.

4.27 Definition (F-algebra). Let F be an endofunctor on a category C.
An F-algebra is the pair of a carrier C ∈ |C| and a morphism α : F C → C in C.

4.28 Remark (Notation). When clear from the context, we shall leave out the signature
functor and simply talk about an algebra. Also, we shall talk about an algebra on C,
meaning an algebra whose carrier is C.

4.29 Example (ListA-algebra). Let ListA X 7→ 1 + A× X be the signature functor of lists.
An example of a ListA-algebra on Nat is:

α (xs :ListA Nat) : Nat
α (injl ∗) 7→ 0
α (injr (a, n)) 7→ suc n

4.30 Definition (Category of F-algebras). We organise the F-algebras in a category, de-
noted F−alg, whose objects are F-algebras (C, α), and for which a morphism from (C, α)
to (D, β) is a morphism f : C → D in C such that the following diagram commutes:

F C F D

C D

F f

f

α β

4.31 Definition (Initial F-algebra). The initial F-algebra is the initial object in the cate-
gory F−alg. Concretely, the initial algebra is the algebra (µF, in : F µF → µF) such that,
for any algebra (X, α : F X → X), there exists a unique morphism LαM in C making the
following diagram commute:

F (µF) F X

µF X

in α

F LαM

LαM

4.32 Remark (Terminology). In the functional programming community, the morphism
LαM is called the catamorphism, or fold.

4.33 Example. Applied to Example 4.29, initiality gives us a (unique) morphism LαM :

75

4. A Universe of Inductive Types

µListA→Nat that satisfies:

ListA µListA ListA Nat

µListA Nat

in α

ListA LαM

LαM

That is, we have the equation:

∀xs :ListA µListA. LαM(in xs) = α(ListA LαM xs) (4.1)

By definition of ListA, xs is either injl ∗ or injr (a, ys) with a : A and ys : µListA. The car-
rier of the initial algebra thus contains two kinds of objects, which correspond exactly
to the constructors of the List datatype:

nil , in (injl ∗)
cons a ys , in (injr (a, ys)) for a : A and ys : µListA

Further, we can split the equation (4.1) along these two cases:

LαM nil = LαM (in (injl ∗))
= α(injl ∗)
= 0

LαM (cons a ys) = LαM(in (injr (a, ys)))
= α(injr (a, LαM ys))
= suc (LαM ys)

That is, we have defined the function that computes the length of a list:

LαM List A : Nat
LαM nil 7→ 0
LαM (cons a xs) 7→ suc (LαM xs)

(4.34) Computational interpretation. As hinted at in the previous example, the existence
of an initial F-algebra gives rise to the constructors of the µF datatype: they are the
inhabitants of the carrier algebra given by in – such as nil and cons in Example 4.33.

Besides, the initiality of (µF, in) gives a catamorphism, of type

L(α : F X→X)M : µF→X

satisfying the recursive equation:

∀xs : F µF. LαM(in xs) = α(F LαM xs)

This equation captures the computational behavior of the catamorphism: it applies α
recursively, i.e. from the datatypes leaves – such as nil in Example 4.33 – bubbling up

76

4.2. Initial Algebra Semantics

along the recursively-defined constructors – such as cons in Example 4.33.

If the initial algebra exists, Lambek’s lemma establishes a correspondence between
the categorical concept of initial algebra and the type-theoretic notion of datatype con-
structor:

4.35 Lemma (Lambek [1968]). Let F : C → C be a functor that admits an initial algebra
(µF, in).

The initial algebra in : F µF→ µF is an isomorphism.

(4.36) Computational interpretation. In particular, Lambek’s lemma tells us that the only
inhabitants of the carrier µF are the constructors obtained from F µF. The initial algebra
in is the generic datatype constructor. Applied to our Example 4.33, this means that the
only constructors of List are nil and cons.

(4.37) So far, we have used descriptions to represent signature functors in type theory.
Putting our type-theoretic hat and our categorical glasses on, we now interpret the
categorical concept of initial algebra (Definition 4.31) in type theory. Instead of consid-
ering any functor F, we now focus on the functor JDK, for D a description. Being strictly
positive, these functors admit an initial algebra. We can therefore legitimately extend
our type theory with an operator taking the least fixpoint of a description.

4.38 Definition (Least fixpoint). We extend our type theory with a new type former
µ taking a description and returning its least fixpoint. Following Definition 4.31, the
inhabitants of the least fixpoint are the inhabitants of JDK (µ D), mapped through the
initial algebra in that plays the rôle of a generic datatype constructor:

Γ ` D : Desc
Γ ` µ D : SET

Γ ` xs : JDK(µ D)
Γ ` in xs : µ D

META-THEORY

(4.39) Computational interpretation. In effect, this definition “ties the knot”: an inhabitant
of µ D is a JDK-structure for which every subnode – described by a var code – is a µ D
itself. If one reads the functor JDK as describing the signature of a datatype, the least
fixpoint of that functor corresponds to the least set closed under this signature, or put
otherwise, it is the set of tree-like structures (of finite depth) built from such nodes.

4.2.2. Examples

(4.40) We can now define some actual datatypes and their constructors. We take this oppor-
tunity to recast our earlier examples as tagged descriptions. The resulting description
code is exactly the same, but the tagged syntax is more palatable.

77

4. A Universe of Inductive Types

4.41 Example (Natural number, Example 4.18).

Nat : SET

Nat 7→ µ

{
’0 : 1
’suc : var× 1

0 : Nat
0 7→ in [’0]

suc (n : Nat) : Nat
suc n 7→ in [’suc n]

4.42 Remark (Notation). In the definition of constructors, we use the more lightweight
tuple notation instead of pairs. Recall that this notation elaborates to the expected right-
nested pairs terminated by the inhabitant of unit (¶ 3.12), i.e. we have:

[’0] , (’0, ∗)
[’suc n] , (’suc, (n, ∗))

Note that the tuple [’suc n] must not be confused with the constructor suc n: the former
inhabits JNatDK Nat, while the latter inhabits Nat. The isomorphism in mediates the two
sides. In effect, compared to the representation X 7→ 1+ X based on sums, the tuple [’0]
corresponds to the more primitive injl ∗, while the tuple [’cons n] corresponds to injr n.

4.43 Example (List, Example 4.20). Lists follow exactly the same pattern, apart from the
presence of a parameter A and, for the cons constructor, the presence of a non-recursive
argument of type A:

List(A : SET) : SET

List A 7→ µ

{
’nil : 1
’cons : Σ A λ− . var× 1

nil : List A
nil 7→ in [’nil]

cons (a : A) (xs : List A) : List A
cons a xs 7→ in [’cons a xs]

4.44 Example (Tree, Example 4.21). Binary trees, on the other hand, take an extra recur-

78

4.2. Initial Algebra Semantics

sive argument in the ’node case:

Tree (A : SET) : SET

Tree A 7→ µ

{
’leaf : 1
’node : var×Σ A λ− . var× 1

leaf : Tree A
leaf 7→ in [’leaf]

node (lt : Tree A) (a : A) (rt : Tree A) : Tree A
node lt a rt 7→ in [’node lt a rt]

4.2.3. Induction

MODEL: Chapter4.Desc.Induction, Chapter4.Desc.Lifting

(4.45) Categorically, for an algebra (X, α), we know that the existence of an initial algebra
induces a (unique) morphism – the catamorphism – from µ D to X. Type theoretically,
this property corresponds to an operator taking an algebra and iterating the algebra
over the recursive structure:

L(α : JDK X→X)M : µ D→X

(4.46) However, the catamorphism is inadequate for dependent computation. The catamor-
phism is simply typed and, as such, does not let us work on predicates. We need induc-
tion to write functions whose type depends on inductive data. The two notions are not
estranged from each other: categorically, one can define induction from the catamor-
phism [Hermida and Jacobs, 1998, Fumex, 2012]. In intensional type theory, we must
provide induction in the meta-theory [Paulin-Mohring, 1996, Geuvers, 2001]. To do so,
we follow the guideline provided by the categorical construction – from which we shall
reuse the notation and vocabulary – and, unsurprisingly, obtain an induction principle
akin to the one known by type theorists [Dybjer, 1994, Benke et al., 2003].

4.47 Remark (Order of presentation). In the following, we define induction in a top-
down manner. We choose to focus on giving the big picture before pitching into the
nitty-gritty details. We start by defining induction (Definition 4.48). This definition
depends on a canonical lifting �D (Definition 4.52) and its associated lifting map �→D
(Definition 4.59). We define these two operators a posteriori, building on our intuition
of induction to ease our way into the overall construction.

4.48 Definition (Induction). The induction principle is the dependent version of the
catamorphism: given a predicate P : µ D→ SET and an x : µ D, it establishes P x. To do

79

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter4.Desc.Induction.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter4.Desc.Lifting.html

4. A Universe of Inductive Types

so, the user must provide the inductive step α:

induction (α :�D P →̇ P ◦ in) (x : µ D) : P x
induction α (in xs) 7→ α (�→D (induction α) xs)

META-THEORY

Intuitively, �D – pronounced “everywhere in D” – represents the induction hypoth-
esis (Definition 4.52): �D P xs states that P holds in all subnodes of xs, i.e. P holds
everywhere in D. Following this reading, the function α of type �D P →̇ P ◦ in builds
a proof of P from the induction hypothesis: in a proof by induction, this corresponds
exactly to the inductive step. The canonical lifting map �→D (Definition 4.59) populates
the induction hypothesis �D by recursively calling induction on the subnodes of xs.

4.49 Remark (Type of the inductive step). To convey the idea that α is (actually) a �D -
algebra, we have used a compact notation for morphisms between predicates (¶ 1.32)
and wrote:

α :�D P →̇ P ◦ in

Put explicitly, this type signature unfolds to:

α : (xs : JDK (µ D))→�D P xs→ P(in xs)

That is, given an inhabitant xs of JDK (µ D) ∼= µ D for which P holds in all subnodes,
we must prove that P holds for the entire node in xs.

(4.50) Computational interpretation. The induction principle applies the inductive step α
once, and then calls itself recursively on all subelements of xs using the canonical lifting
map �→D . In essence, this is nothing but recursion: we traverse the datatype xs in a
bottom-up manner, collecting the result along the way. It is however not just recursion:
this computation also carries a logical content. Transporting this logical content across
our datatype is what differentiates induction from the catamorphism.

(4.51) To represent the induction hypothesis, we rely on the operator �D , called the canon-
ical lifting. Intuitively, given an xs : JDK X and a predicate P : X→ SET, the canonical
lifting states that all x : X stored in the subbranches of xs satisfy the predicate P. This
corresponds exactly to the mathematical concept of an induction hypothesis.

4.52 Definition (Canonical lifting �D). The canonical lifting is defined in Figure 4.2 by
cases over the grammar of descriptions. It is reminiscent of the categorical presentation
of Hermida and Jacobs [1998] and the algebraic study of Fumex [2012, §3.2].

(4.53) Computational interpretation. The definition of the canonical lifting follows the def-
inition of the interpretation J − K closely: indeed, it merely lifts the interpretation of
descriptions – defining endofunctors on SET – over to functors on predicates. On all
codes but var, it is identical and thus builds a D-structure. The key difference is in the
treatment of the var code, where �var P takes an x : X and returns the set P x of wit-
nesses. In effect, �D P is a D-structure whose leaves contain witnesses that P holds on

80

4.2. Initial Algebra Semantics

�(D:Desc) (P : X→ SET) (xs : JDK X) : SET

�1 P ∗ 7→ 1
�var P x 7→ P x
�A× B P (a, b) 7→ �A P a×�B P b
�Σ S D P (s, d) 7→ �D s P d
�Π S D P f 7→ (s : S)→�D s P (f s)

META-THEORY

Figure 4.2.: Canonical lifting

the corresponding subnodes of xs.
(4.54) The canonical lifting �D can be seen as a monotonic predicate transformer, taking a

predicate P : X→ SET on X – asserting a certain property on X – to the predicate �D :
JDK X→ SET on JDK X. That latter predicate asserts that P holds on all subelements of
JDK X. Interestingly, �D can be understood as an indexed refinement of D: we shall
clarify that connection in the indexed setting (Definition 5.23).

4.55 Example (Canonical lifting: natural numbers). The canonical lifting applied to the
description of natural numbers unfolds to two cases. First, in the base case ’0, we have:

�NatD P [’0]; 1

That is, there is no induction hypothesis. On the inductive step ’suc from n, we have:

�NatD P [’suc n]; P n× 1

That is, the induction hypothesis gives us P n. During induction, from this proof of
P n, we have to prove P (in [’suc n]), i.e. P (suc n).

4.56 Example (Canonical lifting: lists). Applied to the description of lists, the canonical
lifting also gives rise to two cases. First, in the base case ’nil, we have, as expected, no
induction hypothesis:

�ListD A P [’nil]; 1

In the inductive step ’cons from xs, we have:

�ListD A P [’cons a xs]; P xs× 1

That is, the induction hypothesis gives us P xs. During induction, from this P xs, we
have to prove P (in [’cons a xs]), i.e. P (cons a n).

4.57 Example (Canonical lifting: trees). Applied to the description of trees, the canon-
ical lifting also gives rise to two cases. In the base case ’leaf, we have no induction

81

4. A Universe of Inductive Types

�→(D:Desc) (p : (x : X)→ P x) (xs : JDK X) : �D P xs
�→1 p ∗ 7→ ∗
�→var p x 7→ p x
�→A× B p (a, b) 7→ (�→A p a,�→B p b)
�→Σ S D p (s, d) 7→ �→D s p d
�→Π S D p f 7→ λs.�→D s p (f s)

META-THEORY

Figure 4.3.: Lifting map

hypothesis:
�TreeD A P [’leaf]; 1

In the inductive step ’node from xs, we have:

�TreeD A P [’node lt a rt]; P lt× P rt× 1

That is, the induction hypothesis tells us that P holds on the left branch lt and the
right branch rt. During induction, we then prove P (in [’node lt a rt]), i.e. P (node lt a rt).

(4.58) To describe the operational behavior of induction, we use the �→D operator. This
operator lets us lift a decision procedure for a predicate P, i.e. a function p : (x : X)→ P x,
to a decision procedure proving that P holds in all subbranches of a D-structure, i.e. a
function �→D p : (xs : JDK X)→�D P xs.

4.59 Definition (Lifting map �→D). The lifting map is defined in Figure 4.3, again by
cases over the grammar of descriptions. Following the definition of �D , it simply tra-
verses the D-structure, only to apply p on the subnodes coded by var.

(4.60) Computational interpretation. Applying �→D p corresponds to taking a recursive
step over a D-structure, applying p to all subnodes.

4.61 Remark (Categorical origin of�→D). We have presented�→D as the functorial action
of�D. We reflected this idea in our denomination and notation. From the type-theoretic
definition, it might not be clear that this is indeed a functorial action. Recall that we
presented�D as a predicate transformer from predicates P : X→ SET on X to predicates
�D P : JDK X→ SET on JDK X (¶ 4.54). �D is therefore the object part of a functor on
predicates.

The morphism part of �D takes a morphism of predicate

Q →̇ P , ∀ x : X. Q x→ P x

82

4.2. Initial Algebra Semantics

to a morphism of type

�D Q →̇�D P , ∀ xs : JDK X.�D Q xs→�D P xs

Looking closely at the type of �→D , we observe a similar pattern:

�→D (f : (x : X)→ P x) : (xs : JDK X)→�D P xs

Massaging the type of f and the type of the result, we have

�→D (f : 1 X →̇ P) : 1 JDK X →̇�D P

where 1 X , λx : X. 1 is the trivial predicate over X, called the terminal object func-
tor [Fumex, 2012, Definition 1.2.13]. By unfolding the arrow of predicates (¶ 1.32), the
reader will check that this transformation is purely notational.

Because �D is a canonical lifting, we have that �D (1 X) ∼= 1 (JDK X) [Fumex, 2012,
Definition 3.1.8]. We thus obtain the following equivalent type for �→D

�→D (f : 1 X →̇ P) :�D (1 X) →̇�D P

thus justifying the name of lifting map for �→D : it corresponds exactly to the morphism
part of �D applied to a predicate morphism whose domain is the trivial predicate 1 X.

Note that we could provide the morphism part of �D in full generality, and then
specialise it to predicates of trivial domain. We refrained from doing so to keep our
presentation simpler. We will not need the morphism part in its full generality.

4.62 Remark (Categorical interpretation [Hermida and Jacobs, 1998, Fumex, 2012]). As
hinted at by the previous remark, our definition of induction is but an instance of a
more general categorical pattern. In order to put our presentation into perspective, let
us clarify the correspondence between the categorical structures and our type-theoretic
definitions. First, we have already pointed out that �D (Definition 4.52) defines the
object part of a functor from the slice over X to the slice over JDK X. This functor is
known in the literature as the canonical lifting [Fumex, 2012, Theorem 3.1.13]. We also
remarked that�→D (Definition 4.59) is the morphism part of that functor on a subclass of
predicate morphisms. From the canonical lifting, we have defined the induction princi-
ple (Definition 4.48). We remarked that the inductive step is nothing but a �D-algebra
in disguise (Remark 4.49). This is justified categorically by the fact that induction is
derivable from the initial algebra semantics of �D -algebras [Fumex, 2012, Corollary
4.3.3].

(4.63) The induction principle is a generic operation. For any datatype we describe, it auto-
matically comes equipped with an induction principle. Induction is a datatype-generic
function: it is defined once and for all datatypes to come. Note that we had to ex-
tend the meta-theory to provide it. Indeed, induction is not derivable within the type
theory [Geuvers, 2001], or even realisable [Paulin-Mohring, 1989]. In other words, we
cannot write induction as a generic program in the type theory: it must be provided by
the meta-theory. Having bitten the bullet and introduced a generic induction principle,

83

4. A Universe of Inductive Types

we are then able to derive generic programs without further extending the type theory.

4.64 Remark (Greatest fixpoint and terminal algebra semantics). The very same func-
tors JDK also admit greatest fixpoints [Morris, 2007]. We could legitimately extend our
type theory to support coinduction, i.e. their terminal algebra semantics [McBride, 2009,
Fumex, 2012]. The treatment of coinduction is beyond the scope of this thesis.

4.3. Extending Type Propagation

(4.65) The universe-based approach offers many benefits. First, its meta-theory is clearly
delimited, unlike a generative approach à la Coq and Agda. Indeed, in those provers, a
positivity checker verifies the validity of the user’s inductive definition and axiomatically
extends the type theory with the corresponding set former, constructors, and elimination
principle: such a type theory is thus open-ended, unlike ours. Second, it is strongly
tied to the categorical concept of initial algebra. Third, for the programmer, it provides
a generic programming system: one can write functions that are defined over all – or
particular subclasses of – descriptions.

However, we should not lose usability from sight: while we expect generic pro-
grams to explicitly manipulate the inner-codings of inductive types, we must make
sure that programming with specific datatypes is natural. In particular, during datatype-
specific programming, a programmer should not be faced with the low-level encoding of
datatypes.

(4.66) A first obstacle to specific programming is the inherently low-level presentation of
constructors. Our type theory has a unique, generic constructor in, from which all other
constructors are coded. For instance, in Example 4.41, we had to manually define the
constructors of the Nat datatype. By extending the bidirectional type checker, we can
add constructors to our expression language. The type checker automatically elaborates
the constructor expression to its low-level representation as nested tuples.

(4.67) Elaboration of constructors. Upon elaborating an expression c a0 . . . ak against the
fixpoint of a tagged description, we replace this elaboration problem with the one con-
sisting in elaborating the tuple of the constructor tag and the arguments:

Γ ` µ (Σ (EnumT E) T) 3 in [’c a0 . . . ak]
Chk; t

Γ ` µ (Σ (EnumT E) T) 3 c a0 . . . ak
Chk; t

ELABORATION

4.68 Example (Elaborating the constructors of Nat). Now we can write the constructors

84

4.3. Extending Type Propagation

of Nat directly, knowing that they are elaborated to the desired terms:

` Nat 3 in [’0] Chk; in (’0, ∗)
` Nat 3 0

Chk; in (’0, ∗)
` Nat 3 in [’suc n] Chk; in (’suc, (n, ∗))
` Nat 3 suc n Chk; in (’suc, (n, ∗))

The type explains the legible presentation, the constructor form, as well as the low-
level representation, a right-nested tuple.
4.69 Remark. The elaboration of constructor expressions justifies our care in always ter-
minating the telescopes of constructors’ arguments with a unit type. Indeed, we elabo-
rate a constructor as a tuple of its tag and arguments. Recall that tuples are elaborated
as Σ-telescopes terminated by a unit type (¶ 3.12). The presence of this terminating unit
type is therefore key to our ability to use the constructor expressions.

(4.70) A second obstacle to usability is the definition of datatypes. At the moment, to de-
fine an inductive type, we have to code its signature functor with a description. Then,
we must manually build its least fixpoint. In Chapter 7, we present an elaboration of
inductive definitions down to these codes. In the meantime, we freely use the high-
level notation introduced in Section 3.2.2, with the confidence that it can be elaborated
to descriptions.

(4.71) We believe that, with these two devices, a universe-based presentation of induc-
tive types is usable for specific programming. Thanks to constructor expressions, the
programmer can write standard constructors, instead of using the generic in construc-
tor. Inductive definitions ought to automatically and transparently translate to descrip-
tions. And finally, using the by (⇐) gadget, we can readily appeal to induction on in-
ductive types. In other words, we can already write programs manipulating datatypes.

85

4. A Universe of Inductive Types

Conclusion

(4.72) In this chapter, we have extended our type theory with a universe of descriptions,
Desc, that captures inductive types. Using this toy universe, we have presented the
standard equipment of data-types: constructors and induction. We gained an intuition
for descriptions by developing a few examples and relating our constructions to cate-
gorical concepts. While this universe does not let us describe dependent inductive types,
its simplicity makes it an excellent platform for experimentation.

Related work

(4.73) The use of universes to internalise inductive definitions goes back to Martin-Löf’s
wellorderings [Martin-Löf, 1984], or W-types for short. However, this presentation was
meant for an extensional type theory. More intensional characterisations of inductive
definitions were later given by Pfeifer and Ruess [1998] and Benke et al. [2003], with
– already – an eye for generic programming. Our presentation is itself inspired by
the work of Morris [2007], where we have left aside the internal fixpoints. Our origi-
nal universe [Chapman et al., 2010] was a restricted version of the coding scheme for
inductive-recursive definitions [Dybjer and Setzer, 1999]. In this thesis, influenced by
the work of Gambino and Kock [2013] and Gambino and Hyland [2004], we directly
gave an algebraic presentation organised around the Π and Σ codes. As we shall see in
the next chapter, the interpretation of descriptions computes containers and therefore,
extensionally, the datatypes described by our universe are equivalent to the W-types.
Our system is therefore as expressive as W-types, whilst being suitable for an inten-
sional type theory.

86

5. A Universe of Inductive Families
(5.1) So far, we have explored the realm of inductive types, building on intuitions from

ML datatypes, using type dependency as a descriptive tool in Desc and its interpreta-
tion. Let us now make dependent types the object of our study. Dependent datatypes
provide a way to work at higher level of precision a priori, reducing the sources of failure
we might otherwise need to manage. For the perennial example, consider vectors – lists
indexed by length. By making length explicit in the type, we can prevent hazardous
operations (the type of head demands vectors of length suc n) and offer stronger guar-
antees (pointwise addition of n-vectors yields an n-vector). However, these datatypes
are not individually inductive. For instance, we have to define the whole family of vec-
tors mutually, in one go:

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

The definition of vectors indexed by suc n depends on the definition of vectors indexed
by n, and so on until reaching the empty vector indexed by 0. On the other hand, we
could instantiate the parameter A to, say, Booleans and such a specialised definition
would be perfectly valid: parameters are used uniformly in the datatype definition,
unlike indices. In dependently-typed languages, the basic grammar of datatypes is
that of inductive families. To capture this grammar, we must account for indexing.

5.1. The Universe of Indexed Descriptions

MODEL: Chapter5.IDesc

(5.2) We presented the Desc universe as a grammar of strictly-positive endofunctors on
SET and developed inductive types by taking a fixpoint. To describe inductive families
indexed by I : SET, we play a similar game with endofunctors on the category SET I ,
whose objects are families of sets X, Y : I→ SET, and whose morphisms are families of
functions in X →̇Y , ∀ i : I. X i→Y i (where the index i is kept implicit, as per ¶ 3.55).

5.3 Remark (Slices and exponentials). Let C be a category. Let I be an object of C.
The slice category C/I is defined as follows:

Objects: the functions P, Q of codomain I
Morphisms: A morphism from P to Q is a function f : dom(P)→dom(Q) such that

P = Q ◦ f

87

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.IDesc.html

5. A Universe of Inductive Families

The category SET I – i.e. the functor category from the discrete category I to SET – and
the slice category SET/I are equivalent. We shall therefore conflate the two categories
and talk mainly about slices of sets, by categorical habits, even though we often work
with the exponential presentation in type theory.

(5.4) At the level of signature functors, this change of category gives access to a richer
language of signatures. Endofunctors on SET let us describe mono-sorted signatures:
there is only one sort of operation. When defining a signature functor from SET/I
to SET/J, the inhabitants of the index I, J can be understood as sorts. By picking a
particular index i : I at a recursive argument, we statically enforce that subnodes at that
argument must be of sort i. By restricting which operations are exposed at index j : J,
we make sure that only operations of sort j are available.

5.5 Example (Vectors). A typical example of a Nat-sorted signature are vectors. The nil
operation is only available for vectors of sort 0. On the other hand, the cons operation
is only available for vectors of strictly-positive sort suc n and it recursively requires a
vector of sort n. Thanks to this indexing discipline, we guarantee that a vector of sort n
is exactly of length n.

5.6 Remark. We are interested in describing functors from SET I to SET J . However, we
have that

[SET I , SET J] ∼= [SET I , SET]J

where [C, D] denotes the category of functors from C to D. In type theory, this corre-
sponds to a straightforward currying-uncurrying:

(I→ SET)→(J→ SET) ∼= J→(I→ SET)→ SET

This isomorphism lets us focus on describing functors from SET I→ SET, with the
J-indexing being pulled out in the exponential.

(5.7) As for descriptions (Definition 4.6), we obtain an intensional presentation of multi-
sorted signature through a universe construction. Following Remark 5.6, we focus first
on describing signature functors in the category [SET I , SET]. In Definition 5.12, we shall
lift this universe to endofunctors on slices of SET. Our universe is thus defined by a set
of codes IDesc and its extension J− K, whose types are:

IDesc (I : SET) : SET J− K : IDesc I→(I→ SET)→ SET

An IDesc code is a syntactic object describing a functor from SET I to SET. To compute
its extension, we interpret the code with J− K.

5.8 Definition (Indexed descriptions IDesc). The universe of indexed descriptions is de-
fined in Figure 5.1. It is closed under the monotonic type formers:
• 1 codes the unit type ;
• Σ and Π respectively code Σ-types and Π-types of constant domain ;
• σ and × respectively code n-ary sum and binary product, using a first-order rep-

resentation ;
• var codes a recursive argument, taken at a given sort i : I.

88

5.1. The Universe of Indexed Descriptions

5.9 Remark (First-order representations). In Remark 4.7, we discussed the benefits of
having first-order representation in Desc. The same remark applies here: besides the
general-purpose connectives Π and Σ, we offer their first-order counterparts × and σ.
Extensionally, we have:

JA× BK X ∼= JΠ Bool

{
’true 7→ A
’false 7→ B

}
K X

Jσ E TK X ∼= JΣ (EnumT E) λe. switch T eK X

However, intensionally, σ and × are more prescriptive: they encode the first-order
nature of the resulting datatype, this structure being then exploitable inside type theory.
For example, any datatype described through a combination of 1, σ, ×, and var admits
a decidable equality (Example 7.96).

5.10 Remark (IDesc is an inductive definition). The code IDesc I (Definition 5.1a) is not
obviously inductive. Indeed, the argument T of the σ code has type π E (λ− . IDesc I).
We must make sure that π computes to a type where IDesc I does not occur to the left
of an arrow, so as to ensure the strict positivity of this definition. A closer inspection of
π (Definition 2.49) reveals that π is indeed strictly positive in the predicate.

(5.11) So far, we have given an intensional characterisation of the signature functors on
[SET I , SET]. To capture functors between slices of SET, we apply the isomorphism pre-
sented earlier (Remark 5.6) and obtain a universe describing multi-sorted signatures.

5.12 Definition (Universe of indexed descriptions func). We obtain the universe of (in-
dexed) descriptions func by simply pulling the J-index to the front. The interpretation
of indexed descriptions extends pointwise to func:

func (I : SET) (J : SET) : SET1
func I J 7→ J→ IDesc I

J(D : func I J)K (X : I→ SET) : J→ SET

JDK X 7→ λj. JD jK X

Inhabitants of the func type are called descriptions, or indexed descriptions when the
context is ambiguous.

5.13 Example (Indexed description: vectors). We are now able to express the signature
functor of vectors (Example 5.5) as a description. Recall that nil is only available at
index 0, while cons is only available at index suc n and requires an argument of index
n. The most natural way to define this signature is by pattern-matching on the index:
if it is 0, we describe the nil constructor ; if it is strictly positive, we describe the cons
constructor:

VecD(A : SET) : func Nat Nat
VecD A 0 7→ 1
VecD A (suc n) 7→ Σ A λ− . var n× 1

5.14 Remark (Strictly-positive family). By induction on the interpretation function, we
observe that the functors captured by the func universe are strictly positive, by con-
struction [Morris et al., 2009]. In Section 5.2, we develop their initial algebra semantics.
In Section 5.3.2, we prove that the class of descriptions is exactly equivalent to contain-

89

5. A Universe of Inductive Families

Γ ` I : SET
Γ ` IDesc I : SET1

Γ ` i : I
Γ ` var i : IDesc I

Γ ` VALID
Γ ` 1 : IDesc I

Γ ` A : IDesc I Γ ` B : IDesc I
Γ ` A× B : IDesc I

Γ ` E : EnumU Γ ` T : π E (λ . IDesc I)
Γ ` σ E T : IDesc I

Γ ` S : SET Γ ` T : S→ IDesc I
Γ ` Π S T : IDesc I

Γ ` S : SET Γ ` T : S→ IDesc I
Γ ` Σ S T : IDesc I

SPECIFICATION

(a) Code

J(D : IDesc I)K (X : I→ SET) : SET

Jvar iK X 7→ X i
J1K X 7→ 1
JA× BK X 7→ JAK X× JBK X
Jσ E TK X 7→ (e : EnumT E)× Jswitch T eK X
JΠ S TK X 7→ (s : S)→ JT sK X
JΣ S TK X 7→ (s : S)× JT sK X

META-THEORY

(b) Interpretation

Figure 5.1.: Universe of indexed descriptions

90

5.2. Initial Algebra Semantics

ers [Abbott, 2003, Morris and Altenkirch, 2009].

5.2. Initial Algebra Semantics

(5.15) At a high-level, the following development matches point by point our presentation
of induction for (non-indexed) descriptions in Section 4.2. Indeed, categorically, adding
indices requires but a mild generalisation of the non-indexed framework [Fumex, 2012,
Chapter 5] to justify, for example, computations over inductive families that simulta-
neously compute over the index [Fumex, 2012, Example 5.2.3]. We shall not dwell on
the categorical aspects here. However, when faced with an overwhelmingly indexed
definition, the reader should not hesitate to confront it to its non-indexed counterpart
to grasp its essence.

5.2.1. Least fixpoint

MODEL: Chapter5.IDesc.Fixpoint, Chapter5.IDesc.InitialAlgebra

5.16 Definition (Least fixpoint). We extend the type theory with a fixpoint operator.
Given the description of an endofunctor on SET I , we compute the fixpoint at some
index i and tie the knot with the fixpoint µ D:

Γ ` I : SET Γ ` D : func I I
Γ ` µ D : I→ SET

Γ ` i : I Γ ` x : JDK (µD) i
Γ ` in x : µ D i

META-THEORY

This is a generalisation of the least fixpoint of descriptions (Definition 4.38).

5.17 Remark (Indexed catamorphism). Categorically, we know that, for an indexed al-
gebra JDK X →̇X, there exists a (unique) function from µ D i to X i. In type theory, this
corresponds to the catamorphism:

L(α : JDK X →̇X)M : µ D →̇X

In this section, we focus on induction, which provides dependent computation. The
catamorphism is derivable from induction, as we shall see in Section 6.2.1.

5.2.2. Induction

MODEL: Chapter5.IDesc.Induction, Chapter5.IDesc.Lifting

(5.18) We equip these initial algebras with a generic induction principle. Again, the follow-
ing definition of induction mirrors the non-indexed one (Definition 4.48). The (only)

91

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.IDesc.Fixpoint.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.IDesc.InitialAlgebra.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.IDesc.Induction.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.IDesc.Lifting.html

5. A Universe of Inductive Families

difference is that predicates are defined on the pair of an index and an element of the
inductive type at that index.

5.19 Remark (Overloaded notation). Following the non-indexed presentation, indexed
induction is defined by a canonical lifting and its associated map. We shall overload
notation and write �D for the canonical lifting of an indexed description D (Defini-
tion 5.23), and �→D for its maps (Definition 5.27). Thanks to the type of D, it always
clear which of the indexed or non-indexed liftings we are referring to.

5.20 Definition (Induction). For a predicate P : µ D i→ SET and a term x : µ D i, the
induction principle lets us prove P x. To do so, we must prove the inductive step α:

iinduction (α :�D P →̇ P ◦ in) (x : µ D i) : P x
iinduction α (in xs) 7→ α (�→D (iinduction α) xs)

META-THEORY

Computationally, we take an inductive step α and, then, recursively apply induction
on the substructures through the lifting map �→D .

5.21 Remark (Inductive step, explicitly). Following Remark 4.49, we have written the
inductive step using the more concise arrow of predicates:

α :�D P →̇ P ◦ in

It is a good exercise to desugar this definition. We obtain:

α : (i : I)(xs : JDK (µ D) i)→�D P xs→ P (in xs)

That is, the inductive steps takes, for an index i, an inhabitant xs of the least fixpoint
at i for which the induction hypothesis holds, i.e. P holds in all subelements of xs. We
then have to prove that P holds for in xs.

(5.22) To define the inductive step, we use the canonical lifting operator �D . Its role (and
definition) is akin to the non-indexed canonical lifting (Definition 4.52). Following Re-
mark 4.54, �D can be understood as a monotone predicate transformer, i.e. a functor,
from a predicate P : (i : I)×X i→ SET on (i : I)×X i to a predicate �D P : JDK X→ SET

on JDK X. Interestingly, we can represent this functor with an indexed description. We
thus define D�D , a description indexed by (i : I)×X i and JDK X. We obtain the canon-
ical lifting �D by interpreting D�D at P.

5.23 Definition (Canonical lifting �D). The (internalised) definition of �D is given in
Figure 5.2. In the non-indexed case (Definition 4.52), we have defined the canonical lift-
ing with set formers: here, we simply replace these connectives by the corresponding
IDesc codes. Apart from this specificity, the definition is exactly the same. This defini-
tion then lifts pointwise to func. Overloading notation, we obtain a description indexed

92

5.2. Initial Algebra Semantics

D�(D:IDesc I) (xs : JDK X) : IDesc ((i : I)×X i)
D�1 ∗ 7→ 1
D�var i x 7→ var(i, x)
D�A× B (a, b) 7→ D�A a×D�B b
D�σ E D (e, d) 7→ D�switch D e d
D�Π S D f 7→ Π S λs. D�D s (f s)
D�Σ S D (s, d) 7→ D�D s d

META-THEORY

Figure 5.2.: Canonical lifting (internalised)

from predicates on (i : I)×X i to predicates on (j : J)× JDK X j:

D�(D:func I J) : func ((i : I)×X i) ((j : J)× JDK X j)

from which we derive the predicate transformer �D , by interpreting the description:

�(D:func I I) (P : (i : I)× µ D i→ SET) (xs : JDK (µ D) i) : SET

�D P xs 7→ JD�DK P xs

5.24 Example (Canonical lifting: vectors). Applied to the description of vectors (Exam-
ple 5.13), the canonical lifting gives rise to two cases depending on the value of the
index n : Nat. First, for a vector of length 0, i.e. the empty vector, the lifting provides no
induction hypothesis:

�VecD A P [’nil]; 1

For a vector of length suc n, i.e. a constructor node, the lifting unfolds to:

�VecD A P [’cons a xs]; P (n, xs)× 1

That is, the induction hypothesis gives us P xs.
5.25 Remark. This definition of the canonical lifting is an example of internalising the
definition of (part of) the type theory into itself. This is made possible by our universe-
based approach: because descriptions and, therefore, monotone functors are syntacti-
cally reifed in our type theory, we can reuse these basic blocks in its own definition.
5.26 Remark (A generic program). Beyond the definition of the induction principle, the
canonical lifting is useful on its own. It is indeed a generic program that asserts that a
property P holds everywhere in the subnodes of xs : JDK X. For instance, we rely on the
canonical lifting to define algebraic ornaments (Definition 8.41).
5.27 Definition (Lifting map�→D). Following the non-indexed lifting map (Definition 4.59),
we define the lifting map in Figure 5.3. It consists of a case analysis on the indexed de-

93

5. A Universe of Inductive Families

�→(D:IDescI) (p : (x : X i)→ P x) (xs : JDK X) : �D P xs
�→1 p ∗ 7→ ∗
�→var i p x 7→ p x
�→A× B p (a, b) 7→ (�→A p a,�→B p b)
�→σ E D p (e, d) 7→ �→switch D e p d
�→Π S D p f 7→ λa.�→D a p (f a)
�→Σ S D p (s, d) 7→ �→D s p d

META-THEORY

Figure 5.3.: Lifting map

scription. Again, the construction is essentially the same, modulo some indexing noise.
This definition lifts pointwise to func and we overload notation.
5.28 Remark (Categorical origin of�→D). In the non-indexed setting, we explained how
the type of�→D can be massaged to reveal its functorial origin (Remark 4.61). The same
reasoning can be carried out on �→D .

(5.29) Building on our study of induction for descriptions, we have extended our type
theory with least fixpoints of indexed descriptions. We then provided induction on
such fixpoints, based on the canonical lifting and its action map. We thus obtain a
generic elimination principle for inductive families: we can program with inductive
families.

5.2.3. Examples

MODEL: Chapter5.IDesc.Examples

(5.30) In this section, we show some examples of inductive families and their encoding in
our universe.
5.31 Example (From Desc to IDesc 1). First of all, indexed descriptions subsume non-
indexed descriptions. A non-indexed description is but a description indexed by the
unit set. We could manually recast our earlier examples of descriptions (Section 4.1.1)
in the indexed setting. Better still, we can write a generic program that computes the
indexed code from the non-indexed one:

toIDesc (D : Desc) : IDesc 1
toIDesc 1 7→ 1
toIDesc var 7→ var ∗
toIDesc (A× B) 7→ (toIDesc A)×(toIDesc B)
toIDesc (Σ S D) 7→ Σ S λs. toIDesc (D s)
toIDesc (Π S D) 7→ Π S λs. toIDesc (D s)

94

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.IDesc.Examples.Main.html

5.2. Initial Algebra Semantics

5.32 Remark. Formally, we are not yet able to write toIDesc in our type theory. It is
defined by induction over Desc codes but we have not provided an induction principle
for the inductively-defined type Desc! In Chapter 6, we show that it is not necessary to
add such an induction principle to the meta-theory. By presenting Desc as the fixpoint
of a description, we can use induction to define functions over the code of descriptions
itself. In such a system, toIDesc is natively implementable.
5.33 Example (Natural numbers). For instance, our definition of natural numbers as a
description (Example 4.18) lifts to:

toIDesc NatD ; Σ EnumT

{
’0
’suc

}{
’0 7→ 1
’suc 7→ var ∗× 1

}
We can similarly lift any inductive type to a trivially indexed inductive family.

5.34 Example (Mutually-inductive definition). With indexed descriptions, we can rep-
resent mutually-inductive datatypes. For, say n mutually inductive definitions, the
trick consists in writing a single description that is indexed by an enumeration of size
n [Paulin-Mohring, 1996, Yakushev et al., 2009]. For example, the mutual definition of
trees and forests

data NTree [A : SET] : SET where
NTree A 3 node (a : A)(ts : NForest A)

data NForest [A : SET] : SET where
NForest A 3 nil

| cons (t : NTree A)(ts : NForest A)

is described by the following code:

TreeKind : SET

TreeKind 7→ EnumT {’NTree ’NForest}
NTreesD (A : SET) : func TreeKind TreeKind
NTreesD A ’NTree 7→

{
’node : Σ A λ− . var ’NForest× 1

NTreesD A ’NForest 7→
{

’nil : 1
’cons : var ’NTree× var ’NForest× 1

NTree (A : SET) : SET

NTree A 7→ µ (NTreesD A) ’NTree

NForest (A : SET) : SET

NForest A 7→ µ (NTreesD A) ’NForest

(5.35) So far, our examples are mere inductive types, with no or very little indexing. We
now consider some actual inductive families.
5.36 Example (Vectors, with constraints). In Example 5.13, we gave the signature func-
tor of vectors. This definition style, by pattern-matching on the index, is not supported
by mainstream theorem provers, such as Agda or Coq. In these systems, one would

95

5. A Universe of Inductive Families

write a definition like:

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

This definition style is sometimes referred to as the “Henry Ford principle” [McBride,
1999]: the datatype is defined for any index n, as long as it satisfies some constraints.
Thus, each constructor imposes its constraints – here using propositional equality –
on the legitimate values of the index. For vectors, this corresponds to the following
description:

VecD(A : SET) : func Nat Nat

VecD A 7→ λn. Σ EnumT

{
’nil
’cons

}
’nil 7→ Σ (n = 0) λ− . 1
’cons 7→ Σ Nat λm. Σ (n = suc m) λ− .

Σ A λ− . var m× 1

Vec (A : SET) (n : Nat) : SET

Vec A n 7→ µ (VecD A) n

That is, we may choose nil for any index we like as long as that index is 0; in the cons
case, the index must be a successor of some number m and the recursive argument is
taken at m , n− 1.

5.37 Remark (Choice of equality). In Remark 3.48, we hinted at the fact that our presen-
tation of inductive families is orthogonal to a particular choice of propositional equality.
The above example further illustrates our stance. We capture constraints on indices by
falling back to propositional equality. Doing so, we remain agnostic about the actual
definition of propositional equality: any will do. In this particular example, since equal-
ity of natural numbers is decidable, we could rely on the recursively-computed equality
of natural numbers. Doing so, we entirely sidestep the question of propositional equal-
ity by using a decision procedure.

Conversely, our presentation of inductive families cannot be used to introduce a no-
tion of propositional equality: one has to pre-exist for equations on indices to be ex-
pressible. However, to ensure backward compatibility, one could certainly expose an
underlying propositional equality through the identity (data)type. This would be but a
presentation trick.

5.38 Example (Vector, with computation). However, sometimes, equations are redun-
dant. Looking back at Vec A, we find that the equations constrain the choice of con-
structor and stored the tail index retrospectively. But inductive families need not store
their indices [Brady et al., 2003]! Indeed, recall that our indexed functors are built on
[SET/I, SET]J : we are actually defining a function of domain J. We can therefore com-
pute over this index, and in particular perform case analysis.

In our example, analysing the incoming Nat-index, we can tidy up our description of

96

5.2. Initial Algebra Semantics

vectors, as we did in Example 5.13:

VecD(A : SET) : func Nat Nat
VecD A 0 7→

{
nil : 1

VecD A (suc n) 7→
{

cons : Σ A λ− . var n× 1

Vec (A : SET) (n : Nat) : SET

Vec A n 7→ µ (VecD A) n

The choice of constructors and equations have simply disappeared.

5.39 Example (Finite sets, with constraints). A similar example is Fin, the type of finite
sets. It is traditionally presented with constraints:

data Fin (n : Nat) : SET where
Fin (n= suc n′) 3 f0 (n′ : Nat)

| fsuc (n′ : Nat)(k : Fin n′)

This definition is described by the following description:

FinD : func Nat Nat

FinD n 7→
{

’f0 : Σ Nat λm. Σ (n = suc m) λ− . 1
’fsuc : Σ Nat λm. Σ (n = suc m) λ− . var m× 1

5.40 Example (Finite sets, with computation). However, by matching on the index, we
can eliminate the equations (but not the choice of constructors):

FinD : func Nat Nat
FinD 0 7→ Σ 0 0-elim – No constructor

FinD (suc n) 7→
{

’f0 : 1
’fsuc : var n× 1

5.41 Remark (Forcing and detagging [Brady et al., 2003]). This technique of extracting
information by case analysis on indices applies to descriptions exactly where Brady’s
forcing and detagging optimisations apply in compilation. They eliminate just those con-
structors, indices and constraints which are redundant even in open computation.

5.42 Definition (Forcing). Forcing consists in computing an argument x : X of a con-
structor from its index I. Hence, for forcing to apply, we must have a function from I to
X. Our alternative presentation of Fin is obtained by forcing (Example 5.40): instead of
storing an index m, we pattern-match on the index n and use it directly in the recursive
argument.

5.43 Definition (Detagging). Detagging consists in removing the choice of constructors
by matching on the index. For detagging to apply, constructors must be in injective
correspondence with the indices. Our presentation of Vec (Example 5.38) is obtained by
detagging. By noticing whether the index is 0 or suc, we deduce the vector constructor.

5.44 Definition (Tagged indexed descriptions). Let us reflect this index analysis tech-

97

5. A Universe of Inductive Families

nique in the structure of descriptions, thus extending tagged descriptions to an indexed
setting (Definition 4.23). We divide tagged indexed descriptions into two categories:
first, the constructors that do not depend on the index, inhabiting Tags I ; then, the
constructors that do, inhabiting iTags I:

tagIDesc (I : SET) : SET1
tagIDesc I 7→ Tags I× iTags I

The non-dependent part mirrors the definition of non-indexed descriptions:

Tags (I : SET) : SET1
Tags I 7→ (E : EnumU)× (i : I)→π E λ− . IDesc I

The index-dependent part indexes the choice of constructors. Thus, by inspecting the
index, it is possible to vary the choice of constructors:

iTags (I : SET) : SET1
iTags I 7→ (F : I→ EnumU)× (i : I)→π (F i) λ− . IDesc I

(5.45) We have thus reflected our discipline for inductive definitions (Remark 3.52) back
into type theory. As for tagged descriptions (¶ 4.23), this normal form is constructor-
oriented and thus eases the implementation of datatypes transformations, such as the
indexed free monad construction.

5.46 Remark (Notation). As for tagged description (Remark 4.25), we adopt a more in-
tuitive notation for tagged signatures. To do so, we move from a mono-sorted signature
style to a multi-sorted one by indicating the operation’s sort on the left. This affords us
a pattern-matching notation to restrict operations to a certain pattern of indices.

For instance, our definition of Vec (Example 5.38) is more concisely defined as:

VecD(A : SET) : func Nat Nat

VecD A 7→
{

0 ← ’nil : 1
suc n← ’cons : Σ A λ− . var n× 1

Similarly, the signature of the judgments of minimal logic (Example 3.51) is given by:

`D : func (Context×Type) (Context×Type)

`D 7→

(Γ, T) ← ’var : Σ (T ∈ Γ) λ− . 1
(Γ, T) ← ’app : Σ Type λS. var (Γ, S⇒ T)× var (Γ, S)× 1
(Γ, unit) ← ’∗ : 1

(Γ, A⇒ B)← ’lam : var (Γ ; A, B)

5.47 Remark (Notation). We write toIDesc D to denote the description computed from
the tagged indexed description D. Its expansion is similar to the definition of toDesc
for tagged descriptions (Definition 4.23), except that it must also append the dependent
and non-dependent parts. We shall transparently switch from tagged to raw descrip-

98

5.3. Categorical Semantics of Inductive Families

tions, and back. In particular, we write µ D instead of µ (toIDesc D).
5.48 Example (Typed expressions). As a larger example, we define a syntax for a small
language with two types, natural numbers and Booleans:

Ty : SET

Ty 7→ EnumT {’nat ’bool}

This language has values, conditional expression, addition and comparison. Infor-
mally, their signatures are:

val : Val ty→ ty
cond : ’bool→ ty→ ty→ ty

plus : ’nat→ ’nat→ ’nat
le : ’nat→ ’nat→ ’bool

The function Val interprets the object language types in the host language, so that
arguments to val fit their expected type.

Val (ty : Ty) : SET

Val ’nat 7→ Nat
Val ’bool 7→ Bool

We take Nat and Bool to represent natural numbers and Booleans in the host lan-
guage, equipped with addition and comparison:

−+− : Nat→Nat→Nat

−≤− : Nat→Nat→Bool

We express our syntax as a tagged description, indexing over object types Ty:

ExprD : tagIDescTy

ExprD 7→

ty ← ’val : Σ (Val ty) λ− . 1
ty ← ’cond : var ’bool× var ty× var ty× 1

’nat ← ’plus : var ’nat× var ’nat× 1
’bool← ’le : var ’nat× var ’nat× 1

Note that some constructors are always available, namely val and cond. On the other
hand, the plus and le constructors are index-dependent, with plus available only when
building a ’nat, le only for ’bool. The code reflects our specification, with the first two
components uniformly offering val and cond, the next selectively offering plus or le.

5.3. Categorical Semantics of Inductive Families

(5.49) While the universe of descriptions is a good medium for programming in type the-
ory, its syntactic nature hampers abstract reasoning. We would like to be able to rea-
son more extensionally in order to focus on the abstract, algebraic properties of descrip-
tions. To this end, we first recall a few definitions from the theory of (indexed) contain-

99

5. A Universe of Inductive Families

ers [Abbott, 2003, Morris and Altenkirch, 2009]. Containers model strictly-positive fam-
ily in the language of locally Cartesian-closed categories [Seely, 1983] (LCCCs). For a
purely diagrammatic presentation, we refer the reader to the work of Gambino and Hy-
land [2004] and Gambino and Kock [2013] on polynomial functors. We shall seamlessly
use results from the polynomial functor literature, the two approaches being equiva-
lent [Gambino and Kock, 2013, §2.18].

(5.50) Following the standard presentation of containers [Morris and Altenkirch, 2009],
we work exclusively in the internal language of LCCCs: extensional type theory [Hof-
mann, 1995, Curien, 1993]. This allows us to stay within type theory, with the proviso
that, in this section, equality is extensional (Remark 5.51). In this framework, we for-
malise the connection between our universe-based presentation of datatypes and the
theory of containers. In particular, we prove that the functors represented by our uni-
verse corresponds exactly polynomial functors. This key result lets us transparently
switch from our concrete presentation of datatypes to the more abstract containers.

5.51 Remark (Extensional type theory). In extensional type theory, the following equal-
ity reflection rule is admissible

���
���

���Γ ` p : x = y
Γ ` x ≡ y : A EXT

In effect, it collapses the propositional equality x = y into the definitional equality
a ≡ b. Such a type theory was introduced by Martin-Löf [1984] and forms the basis of
the NuPRL system [Constable, 1986]. Note that we have left this rule out of our type
theory: adding it would make type checking undecidable. Indeed, to check whether x
and y are definitionally equal, the type checker may have to generate, out of thin air, a
proof p that x and y are propositional equal. Our logic is too powerful for propositional
equality to be decidable.

Nevertheless, this section is developed in the extensional model of an LCCC. In this
categorical model, equal objects are freely exchangeable, leading to less bureaucratic
proofs. Nonetheless, all the computational objects presented in this thesis have been
implemented in Agda, an intensional type theory.

5.3.1. Containers

MODEL: Chapter5.Container

Chapter5.Container.Examples

(5.52) Containers provide a categorical model for indexed families [Dybjer, 1991] by cap-
turing the signature of inductive definitions. A container is a small, extensional object
that admits a rich algebra. Containers are then interpreted as strong functors – the poly-
nomial functors – between slices of SET. Let us recall the definition of containers, and
their interpretation.

5.53 Definition (Container). Let I, J : SET.

100

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.Container.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.Container.Examples.Main.html

5.3. Categorical Semantics of Inductive Families

A container indexed by I and J is a triple
Op : J→ SET

Ar : Op j→ SET

Sort :Ar op→ I

where Op stands for “operations”, and Ar stands for “arities”. Such a triple is denoted
Op�SortAr. The class of containers indexed by I and J is denoted ICont I J.

(5.54) Intuition. Containers can be understood as multi-sorted signatures. The indices
specify the sorts. The set Op for a given index j specifies the operations available at
that sort. The set Ar for a given operation op specifies the arity of that operation. The
function Sort specifies, for each operation and for each argument of that operation, the
sort of the argument.

5.55 Example (Natural numbers). Natural numbers are described by the signature func-
tor X 7→ 1 + X. The corresponding container is given by:

NatCont,

OpNat (∗ :1) : SET

OpNat ∗ 7→ 1+ 1

ArNat (op : OpNat ∗) : SET

ArNat (injl ∗) 7→ 0
ArNat (injr ∗) 7→ 1

SortNat (ar : ArNat op) : 1
SortNat ar 7→ ∗

There are two operations, one to represent the 0 case, the other to represent the suc-
cessor case, suc. For the arities, none is offered by the operation 0, while the operation
suc offers one. Note that the signature functor is not indexed: the container is therefore
indexed by the unit set and the arguments’ sort is trivial.

5.56 Example (Lists). The signature functor describing a list of parameter A is X 7→
1 + A× X. The container is given by:

ListContA ,

OpList (∗ :1) : SET

OpList ∗ 7→ 1+ A

ArList (op : OpList ∗) : SET

ArList (injl ∗) 7→ 0
ArList (injr a) 7→ 1

SortList (ar : ArList op) : 1
SortList ar 7→ ∗

Note the similarity with natural numbers. There are 1 + A operations, i.e. either the
empty list nil or the list constructor cons of some a : A. The arity of the operation nil is
nil, while the operation cons has arity one. Again, indices are trivial, for this datatype

101

5. A Universe of Inductive Families

is not indexed.

5.57 Example (Vectors). To give an example of an indexed datatype, we consider vec-
tors, i.e. lists indexed by their length. The signature functor of vectors is given by
{Xn | n ∈ Nat} 7→ {n = 0 | n ∈ Nat} + {A× Xn−1 | n ∈ Nat, n 6= 0} where the empty
vector nil requires the length n to be 0, while the vector constructor cons must have a
length n of at least one and takes its recursive argument X at index n− 1. The container
representing this signature is given by:

VecContA ,

OpVec (n : Nat) : SET

OpVec 0 7→ 1
OpVec (suc n) 7→ A

ArVec (n : Nat) (op : OpVec n) : SET

ArVec 0 ∗ 7→ 0
ArVec (suc n) a 7→ 1

SortVec (n : Nat) (op : OpVec n) (ar : ArVec ar) : Nat
SortVec (suc n) a ∗ 7→ n

At index 0, only the operation nil is available while the index suc n offers a choice of
A operations. As for lists, the arity of the operation nil is nil while the operation cons
has arity one. It is necessary to compute the sort (i.e. the length of the tail) only when
the input index is suc n, in which case the sort is n.

5.58 Definition (Interpretation of containers). Following the algebraic intuition (¶ 5.54),
we interpret a container as, first, a choice (Σ-type) of operation ; then, for each (Π-type)
arity, a variable X taken at the sort for that arity:

J(σ : ICont I J)KCont (X : I→ SET) : J→ SET

JOp�SortArKCont X 7→ λj. (op : Op j)× ((ar : Ar op)→X (Sort ar))

5.59 Definition (Polynomial functor). A functor F is called a polynomial functor if it is
isomorphic to the interpretation of a container, i.e. there exists Op, Ar, and Sort such
that

F ∼= λj. λX. (op : Op j)×((ar : Ar op)→X (Sort ar))

This terminology is justified by fact that the interpretation computes a multivariate
polynomial (in J variables) defined as an Op-indexed sum of monomials X taken at
some exponent ar : Ar op, or put informally:

JOp�SortArKCont {Xi | i ∈ I} 7→

 ∑
op∈Opj

∏
ar∈Arop

XSort ar | j ∈ J

(5.60) We leave it to the reader to verify that the interpretation of NatCont (Example 5.55),

ListCont (Example 5.56), and VecCont (Example 5.57) are indeed equivalent to the signa-
ture functors we aimed at representing. With this exercise, one gains a better intuition

102

5.3. Categorical Semantics of Inductive Families

of the respective contribution of operation, arity, and sorts to the encoding of signa-
ture functors. The corresponding datatypes are obtained by taking the initial algebra of
these functors. More generally, the initial algebras of containers are exactly the indexed
W-types [Petersson and Synek, 1989, Morris et al., 2009].

5.3.2. Descriptions are Equivalent to Containers

MODEL: Chapter5.IDesc.Algebra

(5.61) In this section, we set out to prove the equivalence between our presentation of in-
ductive families in type theory (Chapter 5) and containers.

5.62 Definition (Described functor). A F functor is described if it is isomorphic to the
interpretation of an indexed description, i.e. there exists D : func I J such that F ∼= JDK.

(5.63) We first prove that described functors are polynomial (Lemma 5.64), and then prove
that the class of polynomial functors is included in the class of described functors
(Lemma 5.70). From which we conclude with the equivalence (5.71).

5.64 Lemma. The class of described functors is included in the class of polynomial func-
tors.

Proof. Let F : SET I → SET J be a described functor.
By definition of the class of described functor, F is naturally isomorphic to the inter-

pretation of a description. That is, for every j : J, there is a D : IDesc I such that:

λX. F X j ∼= λX. JDK X

We show that JDK is isomorphic to a container, i.e. there exists OpD : SET, ArD :
OpD→ SET, and SortD : ArD op→ I such that JDK X ∼= (op : OpD)× (ar : ArD op)→X (SortD ar).
We proceed by induction over D:
Case D = 1: We have J1K X ∼= 1×X0, which is clearly polynomial.
Case D = var i: We have Jvar iK X ∼= 1× (X i)1, which is clearly polynomial.
Case D = Σ S T: We have JΣ S TK X = (s : S)× JT sK X. By induction hypothesis,

JT sK X ∼= (x : ST s)× (p : PT s x)→X (nT s p). Therefore, we have that:

JΣ S TK X ∼= (s : S)× (x : ST s)× (p : PT s)→X (nT s p)
∼= (sx : (s : S)× ST s)× (p : PT (π0 sx)(π1 sx))→X (nT (π0 sx) p)

This last functor is clearly polynomial.
Case D = Π S T: We have JΠ S TK X = (s : S)→ JT sK X. By induction hypothesis,

JT sK X ∼= (x : ST s)× (p : PT s x)→X (nT s p). Therefore, we have that:

JΠ S TK X ∼= (s : S)→ (x : ST s)× (p : PT s x)→X (nT s p)
∼= (f : (s : S)→ ST s)× (s : S)(p : PT s (f s))→X (nT s p)
∼= (f : (s : S)→ ST s)× (sp : (s : S)× PT s (f s))→X (nT (π0 sp) (π1 sp))

103

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.IDesc.Algebra.Main.html

5. A Universe of Inductive Families

This last functor is clearly polynomial.

(5.65) To prove the other inclusion – that polynomial functors are a subclass of described
functors – we rely on an algebraic characterisation of polynomial functors [Gambino
and Kock, 2013, Corollary 1.14]. This result states that the class of polynomial functors
is the smallest class of functors between slices of SET containing the reindexing functors
and their adjoints (whose definition is recalled in Remark 5.66), closed under compo-
sition and natural isomorphism. We show that described functors include polynomial
functors simply by programming these algebraic operations in func.

5.66 Remark (The reindexing functor and its adjoints). The reindexing functor, and its
adjoints form the cornerstone of many categorical models of type theory [Seely, 1983,
Jacobs, 2001]. While we shall not delve into the categorical details, let us define them in
(extensional) type theory.

As suggested by its name, the reindexing functor reindexes a predicate P : J→ SET

into a predicate over I along a renaming function σ : I→ J:

∆(σ:I→ J) (P : J→ SET) (I : SET) : SET

∆σ P i 7→ P(σ i)

Seen as a functor from SET/J to SET/I, the reindexing functor ∆σ has a left adjoint
Σσ, which generalises Σ-types:

Σ(σ:I→ J) (P : I→ SET) (j : J) : SET

Σσ P j 7→ (i : I)× σ i = j× P i

It also has a right adjoint Πσ, which generalises Π-types:

Π(σ:I→ J) (P : I→ SET) (j : J) : SET

Πσ P j 7→ (i : I)× σ i = j→ P i

We thus have the following string of adjunctions

Σσ a ∆σ a Πσ

5.67 Remark (Inverse image). A crucial ingredient in the following proof is the inverse
image construction. The inverse of a function f is defined by the following inductive
type:

data [f : A→ B] −1 (b : B) : SET where
f −1 (b= f a) 3 inv (a : A)

Equivalently, it can be defined with a Σ-type:

(f : A→ B) −1 (b : B) : SET

f −1 b 7→ (a : A)× f a = b

104

5.3. Categorical Semantics of Inductive Families

5.68 Lemma. Described functors are closed under reindexing and its adjoints.

Proof. We describe the pullback functors and their adjoints by:

D∆(σ:A→ B) : func B A
D∆σ 7→ λa. var (σ a)

DΣ(σ:A→ B) : func A B
DΣσ 7→ λb. Σ σ −1 b λa. var a

DΠ(σ:A→ B) : func A B
DΠσ 7→ λb. Π σ −1 b λa. var a

It is straightforward to check that these descriptions are interpreted to the expected
operation on slices of SET, i.e. that we have:

JD∆σK ∼= ∆σ JDΣσK ∼= Σσ JDΠσK ∼= Πσ

5.69 Lemma. Described functors are closed under composition.

Proof. We define composition of descriptions by:

(D : func B C) ◦D (E : func A B) : func A C
D ◦D E 7→ λc. compose (D c) E

Which relies on the Kleisli extension:

compose (D : IDesc B) (E : func B A) : IDesc A
compose (var b) E 7→ E b
compose 1 E 7→ 1
compose (A× B) E 7→ compose A E× compose B E
compose (σ En T) E 7→ σ En λe. compose (switch T e) E
compose (Π S T) E 7→ Π S λs. compose (T s) E
compose (Σ S T) E 7→ Σ S λs. compose (T s) E

It is then straightforward to check that this is indeed computing the composition of
the functors, i.e. that we have:

JD ◦D EK ∼= JDK ◦ JEK

5.70 Lemma. The class of polynomial functors is a subclass of described functors.

Proof. Described functors are closed under reindexing, together with its left and right
adjoint (Lemma 5.68), and are closed under composition (Lemma 5.69). Described func-
tors are defined up to natural isomorphism (Definition 5.62). We have from Gambino
and Kock [2013, Corollary 1.14] that the class of polynomial functors is the least such

105

5. A Universe of Inductive Families

set. Therefore, the class of polynomial functor is included in the class of described
functors.

We conclude with the desired equivalence:

5.71 Proposition. The class of described functors corresponds exactly to the class of
polynomial functors.

Proof. By Lemma (5.64) and Lemma (5.70), we have both inclusions.

(5.72) The benefit of this algebraic approach is its flexibility with respect to the universe
definition: for practical purposes, we are likely to introduce new IDesc codes. How-
ever, the implementation of reindexing and its adjoints will remain unchanged. Only
composition would need to be verified. Besides, these operations are useful in practice,
so we are bound to implement them anyway. In the rest of this thesis, we shall con-
flate descriptions, containers, and polynomial functors, silently switching from one to
another as we see fit.

5.3.3. An alternative proof

MODEL: Chapter5.Equivalence.ToContainer

Chapter5.Equivalence.ToDesc

(5.73) An alternative proof, followed by Morris [2007], consists in translating the codes
of the universe directly to containers, and conversely. This less algebraic approach is
more constructive. However, to be absolutely formal, it calls for proving some rather
painful (extensional) equalities. While the proofs are laborious, the translation itself
is not devoid of interest. In particular, it gives an intuition of descriptions in terms of
operation, arity, and sorts. This slightly more abstract understanding of our universe
will be useful in this thesis, and is useful in general when reasoning about datatypes.

5.74 Definition (From descriptions to containers). We formalise the translation in Fig-
ure 5.4, mapping descriptions to containers. The message to take away from that trans-
lation is which code contributes to which part of the container, i.e. operation, arity,
and/or sorts. Crucially, the 1 and Σ codes contribute only to the operation. The var
and Π codes, on the other hand, contribute to the arity. Finally, the var code is singly
defining the sorts.

5.75 Definition (From containers to descriptions). The inverse translation is otherwise
trivial and given here for the sake of completeness:

〈(σ : ICont I J)〉−1 : func I J
〈Op�SortAr〉−1 7→ Σ Op λop. Π (Ar op) λar. var (Sort ar)

106

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.Equivalence.ToContainer.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter5.Equivalence.ToDesc.html

5.3. Categorical Semantics of Inductive Families

〈(D : func I J)〉 : ICont I J
〈D〉 7→ λj. Opfunc (D j)�λj.Sortfunc (D j)λj. Arfunc (D j) where

Opfunc (D : IDesc I) : SET

Opfunc var i 7→ 1
Opfunc 1 7→ 1
Opfunc A× B 7→ Opfunc A×Opfunc B
Opfunc σ E T 7→ (e : EnumT E)×Opfunc (switch T e)
Opfunc Π S T 7→ (s : S)→Opfunc (T s)
Opfunc Σ S T 7→ (s : S)×Opfunc (T s)

Arfunc (D : IDesc I) (op : Opfunc D) : SET

Arfunc var i ∗ 7→ 1
Arfunc 1 ∗ 7→ 0
Arfunc A× B (a, b) 7→ Arfunc A a+Arfunc B b
Arfunc σ E T (e, t) 7→ Arfunc (switch T e) t
Arfunc Π S T f 7→ (s : S)×Arfunc (T s) (f s)
Arfunc Σ S T (s, t) 7→ Arfunc (T s) t

Sortfunc (D : IDesc I) (ar : Arfunc D op) : I
Sortfunc var i ∗ 7→ i
Sortfunc A× B (injl ara) 7→ Sortfunc A ara
Sortfunc A× B (injr arb) 7→ Sortfunc B arb
Sortfunc σ E T ar 7→ Sortfunc (switch T (π0 sh)) ar
Sortfunc Π S T (s, ar) 7→ Sortfunc (T s) ar
Sortfunc Σ S T ar 7→ Sortfunc (T (π0 sh)) ar

Figure 5.4.: From descriptions to containers

107

5. A Universe of Inductive Families

(5.76) We are left to prove that these translations are indeed inverse of each other: while
this proof is extremely tedious to carry formally, it is intuitively straightforward (and
otherwise established by Proposition 5.71).

108

5.3. Categorical Semantics of Inductive Families

Conclusion

(5.77) Following the previous chapter on inductive types, we moved to inductive families.
We have extended our type theory with a universe of indexed descriptions, func. This
presentation subsumes the previous one by capturing inductive families. The universe
of indexed descriptions is the primary object of enquiry of this thesis: it gives us a small,
intensional presentation of dependent inductive types.

Related work

(5.78) Traditionally, inductive types are implemented through a syntactic scheme. The no-
tion of inductive definition corresponds to a signature satisfying a positivity condition.
In practice, the positivity is verified by a piece of software, the positivity checker. This is
the presentation adopted by systems like Coq and Agda. It originates from the work of
Paulin-Mohring [1996] on extending the Calculus of Constructions [Coquand and Huet,
1988] with inductive types. The treatment of fixpoint definitions over inductive types
was later treated by Giménez [1995] who showed that these definitions could always be
justified by reduction to the induction principle. The meta-theory of such type theories
with inductive definitions has been worked out by Luo [1994] and Werner [1994], using
an untyped presentation of conversion ; and by Goguen [1994] and Barras [2013], using
a judgmental presentation of conversion.

(5.79) The internalised presentation of datatypes originate from the work of Martin-Löf
[1984], in the guise of wellorderings (W-types), and Petersson and Synek [1989], for
their indexed variant. Whilst these original presentations were meant for an extensional
type theory, Dybjer [1997] gave a more intensional presentations based on universes,
covering various classes of datatypes [Dybjer, 1994, Benke et al., 2003]. Pursuing this
approach of enriching the structure of datatypes, Morris [2007] gave an intensional
universe with codes for least and greatest fixpoints. Compared to Morris [2007] and
certain universes of [Benke et al., 2003], we have purposely taken a step back: while the
objective of these authors was to be as expressive as possible, ours has been to provide a
minimal – yet practical – platform in which to experiment with bootstrapping (Part III)
and ornaments (Part IV). The result of our experiments ought to carry over to these
more expressive systems, subject to (potentially substantial) adaptations.

109

Part III.

Generic Programming

In this third part, we further explore the design space opened by
our presentation of inductive types. In Chapter 6, we bootstrap
the universe of descriptions in itself: rather than extending type
theory with a code for descriptions, we show how this code can be
self-described. In the resulting system, generic programs are first-
class citizens: we shall give a few examples of such programs.

In Chapter 7, we further bootstrap the theory of inductive types.
First, we formalise the elaboration of inductive definitions – the
user interface of inductive types – to our universes of datatypes.
Second, we demonstrate how functionalities of the type theory –
such as specialised induction principles, or domain-specific decision
procedures – can be implemented from within type theory. In effect,
we demonstrate our ability to reason about the inductive fragment
in type theory itself.

111

6. Bootstrapping Inductive Types
(6.1) In this chapter, we show that enumerations and descriptions can be treated as first-

class datatypes (Section 6.1). Indeed, the type EnumU, Desc, and IDesc are nothing
but inductives types! Our plan is to code them with descriptions and thus inherit the
standard equipment of datatypes: constructor expressions and an induction principle.

We are then able to manipulate these types just like any other datatype. In particular,
the generic induction principle applies to them and enables programming over descrip-
tions. This leads to a system where datatype-generic programming, i.e. programming
over descriptions, is just like programming over any datatype: no extension to the type
theory is required. We shall give a few examples of generic programs – such as the
catamorphism – and some generic datatype constructions – such as the free monad and
its Kleisli category (Section 6.2). In mathematical terms, “generic programming” reads
as reflection: we reflect the meta-theory of inductive types within the type theory. Con-
sequently, we can develop the theory of inductive types from inside our logic, without
any change to the meta-theory.

However, this exercise in self-description is perilously paradoxical. We shall there-
fore conclude by giving a model of our system (Section 6.3). We build a model of a
stratified hierarchy of types à la Palmgren [1995] and prove an isomorphism between
the meta-theoretic objects and their reflection. We shall explain in which sense our type
theory merely collapses this isomorphism to offer a first-class notion of datatypes.

6.1. The Art of Levitation

(6.2) The art of levitation consists in reflecting parts of our type theory into the inductive
fragment, while maintaining the consistency of the whole. We shall gain practice in this
art by first reflecting the enumeration code EnumU (Definition 2.35). We then present
the reflection of the description code Desc as the fixpoint of a description. Although
a similar operation can be carried on indexed descriptions, we choose to focus on de-
scriptions, for their simplicity. Pedagogically, we adopt a “trial and error” narrative:
doing so, we hope to convey the dangers and subtleties of self-description.

6.1.1. Implementing enumerations

MODEL: Chapter6.EnumU

(6.3) In Section 2.2, we specified the universe of enumerations EnumU. The formation and
introduction rules were given as:

113

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter6.EnumU.html

6. Bootstrapping Inductive Types

Γ ` VALID
Γ ` EnumU : SET

Γ ` VALID
Γ ` nilE : EnumU

Γ ` t : UId Γ ` E : EnumU
Γ ` consE t E : EnumU

However, we remark that the nilE and consE codes are respectively the nil and cons
constructors of an ordinary list with elements of type UId. This datatype can – and
ought to – be coded by a description. In fact, we have already given its code by way
of our description of lists (Example 4.20). By specialising the parameter to be UId, we
reflect EnumU as an inductive type in the type theory.

(6.4) Following this intuition, we define:

EnumU : SET

EnumU 7→ µ

(
Σ EnumT

{
’nilE
’consE

}{
’nilE 7→ 1
’consE 7→ Σ UId λ− . var× 1

})
REFLECTION

By relying on the constructor expressions (4.67), we can type check nilE and consE
against EnumU. These expressions elaborate to the low-level codes:

` EnumU 3 nilE
Chk; [’nilE]

t : UId; E : EnumU ` EnumU 3 consE t E Chk; [’consE t E]

(6.5) We have thus defined EnumU as a description. Our code clearly satisfies the speci-
fication we promised to realise. We are therefore tempted to substitute the meta-level
EnumU with this definition. However, this raises two questions. First, we must make
sure that this move is sound: what if our description of enumerations paradoxically de-
pends on itself? Indeed, to list the constructors, we are making use of an enumeration!

Second and this shall help us answer the first question, in order to extend the type
theory, we must provide a type-theoretic term. So far, we have given a high-level ex-
pression. Nonetheless, we expect that expression to elaborate to a well-typed term. It is
therefore sound to extend the type theory with this term: EnumU is an admissible type.

6.6 Theorem (Admissibility of EnumU). There exists a term EnumUD whose fixpoint
satisfies the specification of EnumU, i.e. we have:

Γ ` VALID ⇒ Γ ` µ EnumUD : SET

Γ ` VALID ⇒ Γ ` in (’nilE, ∗) : µ EnumUD

Γ ` t : UId∧ Γ ` e : µ EnumUD⇒ Γ ` in (’consE, (t, (e, ∗))) : µ EnumUD

and these are the only inhabitants of that type, encoding respectively nilE and consE.

114

6.1. The Art of Levitation

Proof. Without surprise, we derive the code of EnumUD by type checking our (putative)
definition of EnumU (¶ 6.4):

` SET 3 EnumU
Chk; µ EnumUD

We proceed in two steps. First, we elaborate the collection of constructors and their
codes. Second, we elaborate the enumeration of constructors. We elaborate the collec-
tion of constructors and its elimination following standard elaboration rules (respec-
tively, ¶ 3.16 and ¶ 3.18). This results in the following (intermediate) judgment:

` consE ’nilE (consE ’consE nilE) 3 EnumU
Chk; t

` SET 3 EnumU
Chk; µ (Σ (EnumT t) (switch(1, (Σ UId λ− . var× 1, ∗))))

Note that the enumeration of constructors relies on the constructors nilE and consE,
which do not formally exist! However, recall that EnumT has type EnumU→ SET: the
enumeration consE ’nilE (consE ’consE nilE) is thus checked against EnumU. We are back
to an elaboration problem:

` EnumU 3 consE ’nilE (consE ’consE nilE)
Chk;?

As pointed out earlier (¶ 6.4), we have access to the constructor expressions for
EnumU: the elaboration problem above is thus simply a succession of 3 such elabo-
ration problems. After elaboration, we obtain the following term:

` EnumU3 consE ’nilE (consE ’consE nilE)
Chk;

in (’consE, (’nilE, in (’consE, (’consE, in (’nilE, ∗)))))

For convenience, we underline the tag belonging to the collection. The others come
from the elaboration of the EnumU constructors. This notational convenience is purely
aesthetic, with no semantical implication. Wrapping up, the initial expression (¶ 6.4)
elaborates to the fully elaborated term:

` SET 3 EnumU
Chk; µ Σ (EnumT (in (’consE, (’nilE, in (’consE, (’consE, in (’nilE, ∗)))))))

(switch (1, (Σ UId λ− . var× 1, ∗)))

We therefore take EnumUD to be

EnumUD , Σ (EnumT (in (’consE, (’nilE, in (’consE, (’consE, in (’nilE, ∗)))))))
(switch (1, (Σ UId λ− . var× 1, ∗)))

and define EnumU by
EnumU : SETl
EnumU 7→ µ EnumUD

115

6. Bootstrapping Inductive Types

Object Role Status
EnumU,nilE, consE Build enumerations Reflected

π Build finite function space Reflected
EnumT, 0, 1+ Index into enumerations Meta-theory

switch Eliminate indices Meta-theory

Table 6.1.: Status of enumerations

We check that:
• this definition is well-typed, and
• the resulting inductive type has only two constructors: the desired nilE and consE.

Note that under this definition, we can effectively type check our high-level definition
of EnumU (¶ 6.4): we (reassuringly) obtain the same low-level term.

(6.7) Moreover, the π E P operator, which computes the finite function space (Defini-
tion 2.49), does not need to be provided by the meta-theory either: we can just use
the generic induction principle and write it as an ordinary program. Indeed, E : EnumU
is just like any datatype now.

6.8 Definition (Reflected π). We therefore define π by induction over E:

π (E : EnumU) (P : EnumT E→ SET) : SET

π E P ⇐ induction E
π nilE P 7→ 1
π (consE t E) P 7→ P 0×π E (P ◦ 1+)

REFLECTION

6.9 Remark (Resulting type theory). Our construction shows that, for a type theory
with a universe Desc, we can spare ourselves from extending the meta-theory with
EnumU, its constructors nilE and consE, and π. Indeed, we can simply define them by
a description (for EnumU), by induction over the resulting datatype (for π), and obtain
the constructors by elaboration (for nilE and consE).

Our only requirement on the type theory is that it exports the type EnumU and the π
operator we have defined. The rest of the meta-theory is left unchanged. In particular,
the universe decoder EnumT E remains in the meta-theory, together with the primitives
0 and 1+, and the switch operator.

The situation is summarised in Table 6.1. An object is “reflected” when it is either
built from a description, or it is implemented within type theory. An object is said to
belong to the “meta-theory” if it is introduced by specialised typing and equality rules.

116

6.1. The Art of Levitation

(6.10) Overall, without affecting the content of our type theory, we have reflected the code
of enumerations, making it an ordinary datatype. We can write generic programs that
manipulate them using the generic induction principle of descriptions. Our next step
is similar: we are going to condense the entire coding scheme of datatypes onto itself.

6.1.2. Reflecting descriptions

MODEL: Chapter6.Desc

(6.11) We have introduced the code of descriptions Desc in Section 4.1 (Figure 4.1), pre-
senting its inference rules as a specification. In this section, we set out to fulfil this
specification. The key idea is to notice that Desc is itself a datatype, the codes being the
constructors of that datatype. We are therefore in the same situation as with EnumU:
by describing descriptions themselves, we remove the need for introducing Desc at the
meta-level and gain the generic equipment of datatypes for it. In such a system, de-
scriptions are first-class citizens, born equipped with an induction principle.

6.12 Remark (Universe levels). Because we will be living on the edge of a self-referential
paradox, we shall be explicit about universe stratification in this section. We therefore
write our definitions by annotating them with the universe level they live in. For ex-
ample, we write

T` : SET`
T` 7→ · · ·

to define the type T simultaneously at every level of the hierarchy of sets. Similarly, we
write

t` : T`

t` 7→ · · ·

to inhabit such a type across the entire hierarchy. Thanks to this informal notation, the
reader can easily check that our definitions are well stratified.

However, our type theory does not formally support this kind of definition. Agda
implements “set polymorphism”, where a similar universal quantification over uni-
verse levels is possible. However, the meta-theory behind it is not well-developed. To
back up our presentation, we build a stratified model of levitation in Section 6.3. By
defining a hierarchy of types by induction-recursion, we can write such definitions si-
multaneously over all universe levels, hence justifying their validity.

(6.13) At a high-level, our strategy is as follows:
• We assume the existence of Desc and its fixpoint ;
• We describe the Desc datatype in this hypothetical universe ;
• We obtain a code DescD ;
• Taking the fixpoint of DescD, we obtain a self-described Desc.

All the difficulty stands in the definition of DescD, in which we must give a code de-
scribing Desc that does not mention Desc itself.

(6.14) The first step is to code the choice of constructors. As usual by now, we represent

117

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter6.Desc.html

6. Bootstrapping Inductive Types

the choice of constructors by an enumeration:

DescD` : Desc`+1

DescD` 7→ Σ EnumT

’1

’var
’×
’Σ
’Π

’1 7→ {?}
’var 7→ {?}
’× 7→ {?}
’Σ 7→ {?}
’Π 7→ {?}

We are then left to assign a code to each constructor case.

(6.15) Since the unit (1) and variable (var) cases take no argument, their encoding is trivial:

DescD` : Desc`+1

DescD` 7→ Σ EnumT

’1

’var
’×
’Σ
’Π

’1 7→ 1
’var 7→ 1
’× 7→ {?}
’Σ 7→ {?}
’Π 7→ {?}

(6.16) The next step is to encode the binary product (×), which takes two recursive argu-

ments described by var:

DescD` : Desc`+1

DescD` 7→ Σ EnumT

’1

’var
’×
’Σ
’Π

’1 7→ 1
’var 7→ 1
’× 7→ var× var× 1
’Σ 7→ {?}
’Π 7→ {?}

6.17 Remark. We are careful to terminate each branch with a 1 code: this way, we will
be able to use constructor expressions (¶ 4.67) for description codes.

(6.18) Finally, we code the higher-order constructors Σ and Π. To do so, we use a Σ code to
introduce an S of type SET` and then a Π to code the exponential by S:

DescD` : Desc`+1

DescD` 7→ Σ EnumT

’1

’var
’×
’Σ
’Π

’1 7→ 1
’var 7→ 1
’× 7→ var× var× 1
’Σ 7→ Σ SET` λS. (Π S λ− . var)× 1
’Π 7→ Σ SET` λS. (Π S λ− . var)× 1

REFLECTION

Following Remark 6.17, we terminate the codes with a 1 code.

118

6.1. The Art of Levitation

(6.19) At first glance, we have achieved our objective. We have described the codes of the
universe of descriptions. We are naturally lead to define Desc by taking its fixpoint:

Desc` : SET`+1
Desc` 7→ µ DescD`

REFLECTION

However, as such, this definition is invalid. Indeed, this apparent levitation of the
definition in itself relies, just as in the magic trick, on an “invisible cable” holding ev-
erything together. We shall now explain where the paradoxical self-reference is, and
present one way of avoiding it.

(6.20) The definition Desc` 7→ µ DescD` is circular, but the offensive recursion is concealed
by a high-level expression: the elimination of the enumeration of constructors. Elabo-
rating this expression (¶ 3.18) and exhibiting the motive P of switch reveals the issue:

DescD` : Desc`+1
DescD` 7→ Σ EnumT {’1 ’var ’× ’Σ ’Π}

(switch (P := λ− . µ DescD`+1)

1
1
var× var× 1
Σ SET` λS. (Π S λ− . var)× 1
Σ SET` λS. (Π S λ− . var)× 1

)

The circularity arises from the fact that we must specify the return type of the general-
purpose switch eliminator: we claim to return a µ DescD`+1 but this type does not exist
yet! Although type propagation allows us to hide this detail, the elaborated term does
contain the offensive circularity. Our only way out is to remove any mention of Desc
from its own definition.
6.21 Remark (Attempting to prove the admissibility of Desc). In the previous section,
we have shown that it is correct to introduce a self-hosted EnumU by giving a low-level
term satisfying its specification. It is instructive to attempt a similar construction by
elaborating our tentative definition of Desc.

So far, we have elaborated the elimination over the choice of constructors. Let us
assume that the choice of constructors elaborates to a term choice and the tuple of codes
elaborates to a term codes:

` EnumU 3 {’1 ’var ’× ’Σ ’Π} Chk; choice

` EnumT choice→Desc 3

1
1
var× var× 1
Σ SET` λS. (Π S λ− . var)× 1
Σ SET` λS. (Π S λ− . var)× 1

 Chk; codes

119

6. Bootstrapping Inductive Types

We could therefore be tempted to define DescD with the term:

DescD` : Desc`+1
DescD` 7→ Σ (EnumT choice)

(switch (P := λ− . µ DescD`+1) codes)

This definition is invalid! The definition of DescD depends on DescD itself. Adding
this term to our type theory would break strong normalisation and its corollary: decid-
ability of type checking.

(6.22) Thus, the problem stands solely in the fact that we must supply a return type for
switch. There is an easy way around that: since we know what this return type must be,
we eliminate the dreaded circularity by specialising switch:

switchD (ps : π E (λ− . Desc`)) (x : EnumT E) : Desc`
switchD b 0 7→ π0 b
switchD b (1+ x) 7→ switchD (π1 b) x

META-THEORY

The magician’s art rests here, in this extension. Whilst this legerdemain is not the
only way to achieve our objectives, it is the one that suggests itself. We shall hint at an
alternative in Remark 6.32.

6.23 Remark (Intuition). As we shall see formally in Section 6.3, this self-description
is only an illusion. In fact, we rely on Desc`+1 : SET`+2 to describe DescD`, with the
intent of defining the object Desc` : SET`+1 next. This is the reason why we could not
provide a motive to switch: we would need to refer to Desc` while it is not yet defined.
By specialising switch to switchD, we free ourselves from the need to justify the existence
of a type Desc` (more precisely, in this case, of a tuple of said type). Freed from that
necessity, we can define DescD` while avoiding any mention of Desc` – i.e. a circularity
– altogether.

6.24 Remark. The reader might be concerned about the fact that the type of switchD

mentions Desc. Recall that we must avoid a circular definition of DescD: as long as
the term defining DescD does not require Desc to pre-exist, we are in a safe territory. A
similar situation arose when describing EnumU: the type of EnumT depends on EnumU
and EnumT is used to define EnumU.

6.25 Definition (Reflecting descriptions). By replacing switch with a specialised switchD,
we do not need to mention the return type: it is hard-coded in the definition of switchD.

120

6.1. The Art of Levitation

This definition is therefore non-circular:

DescD` : Desc`+1
DescD` 7→ Σ EnumT {’1 ’var ’× ’Σ ’Π}

(switchD

1
1
var× var× 1
Σ SET` λS. (Π S λ− . var)× 1
Σ SET` λS. (Π S λ− . var)× 1

)

(6.26) We conceal switchD behind a type propagation rule for the finite function spaces of
codomain Desc that we apply with higher priority than switch:

Γ ` EnumU 3 {’l0 . . . ’lk}
Chk; E Γ ` π E (λ− . Desc`) 3 [e0 . . . ek]

Chk; ts

Γ ` EnumT E→Desc` 3 {’l0 7→ e0 ; . . . ; ’lk 7→ ek}
Chk; switchD ts

ELABORATION

Our tentative definition (¶ 6.18) now elaborates to the desired, paradox-free term.
(6.27) Thanks to this elaboration rule and the special-purpose switchD, we are able to prove

the validity of our self-definition. The approach is exactly the same as for enumerations.
First, guided by elaboration, we define a term which satisfies the specification of Desc.
Then, we check that this term is free of self-reference.

6.28 Theorem (Admissibility of DescD). There exists a term DescD whose fixpoint satis-
fies the specification of Desc, i.e. we have:

Γ ` VALID ⇒ Γ ` µ DescD` : SET`+1

Γ ` VALID ⇒ Γ ` in (’1, ∗) : µ DescD`

Γ ` VALID ⇒ Γ ` in (’var, ∗) : µ DescD`

Γ ` A : µ DescD` ∧ Γ ` B : µ DescD` ⇒ Γ ` in (’×, (A, (B, ∗))) : µ DescD`

Γ ` S : SETl ∧ Γ ` T : S→ µ DescD` ⇒ Γ ` in (’Σ, (S, (T, ∗))) : µ DescD`

Γ ` S : SETl ∧ Γ ` T : S→ µ DescD` ⇒ Γ ` in (’Π, (S, (T, ∗))) : µ DescD`

and these are the only inhabitants of that type, encoding 1, var, ×, Σ, and Π.

Proof. The construction of the term DescD consists simply in unfolding the bidirectional
type checking rules. First, we elaborate the enumeration of constructors. Then, we
elaborate the elimination of this enumeration, obtaining a switchD term. Unlike our
previous attempt (Remark 6.21), the resulting term does not mention DescD in the mo-
tive since we have removed it. Finally, just as EnumU uses its constructors in its own
definition, Desc uses the Desc constructors to describe itself: these constructors are in-

121

6. Bootstrapping Inductive Types

terpreted as constructor expressions and elaborate to the low-level terms:

` Desc` 3 1 Chk; in (’1, ∗)

` Desc` 3 var
Chk; in (’var, ∗)

A : Desc`; B : Desc` ` Desc` 3 A× B Chk; in (’×, (A, (B, ∗)))

S : SET`; T : S→Desc` ` Desc` 3 Σ S T Chk; in (’Σ, (S, (T, ∗)))

S : SET`; T : S→Desc` ` Desc` 3 Π S T Chk; in (’Π, (S, (T, ∗)))

Putting all the pieces together, we obtain a fully-elaborated term:

DescD` , ((’Σ,((EnumT (’consE,(’1,((’consE,(’var,((’consE,(’×
,((’consE,(’Σ,((’consE,(’Π,((’nilE,∗),∗))),∗))),∗))),∗))),∗))))

,((switchD ((’1,∗),
((’1,∗),
((’×,((’var,∗),((’×,((’var,∗),((’1,∗),∗))),∗))),
((’Σ,(SET`,(λS. (’×,(((’Π,(S,(λ− . (’var,∗),∗)))),((’1,∗),∗))),∗))),
((’Σ,(SET`,(λS. (’×,(((’Π,(S,(λ− . (’var,∗),∗)))),((’1,∗),∗))),∗))),
∗)))))),∗))))

This term is not meant for human consumption. We choose to put it in full here for
two reasons. First, we verify in a glance that DescD does not appear on the right-hand
side: this definition is not circular. Second, this horrendous term illustrates once more
the importance of elaboration: it protects us from these low-level encodings.

We can now define Desc to be the fixpoint of that low-level term:

Desc` : SET`+1
Desc` 7→ µ DescD`

Under this definition, we can now formally type check our high-level definition of
DescD (¶ 6.25): we obtain the same term.

(6.29) When describing a signature functor, we do not want to use the low-level represen-
tations of the Desc constructors. Instead, we want to write the standard constructor and
have it elaborate to its low-level representation. We obtain this syntactic convenience
by bootstrapping: now that Desc is but a datatype, we benefit from the elaboration of
constructor expressions (¶ 4.67). This is why we did not extend the term language with
the Desc constructors (Definition 4.6): we encode them at the term level and we use
constructors at the expression level, thanks to elaboration.

(6.30) As we did for enumerations (¶ 6.9), let us clarify the status of the universe of descrip-
tions. The kit for defining datatypes is summarised in Table 6.2. For each operation, we
describe its role and its status, making clear which components are self-described and
which ones are part of the meta-theory. We have reflected the code of descriptions into
the universe itself. This self-description is only possible because the least fixpoint µ

122

6.1. The Art of Levitation

Object Role Status
Desc Describe signature functors Reflected
J− K Interpret descriptions Meta-theory
µ, in Define, inhabit fixpoints Meta-theory

induction, �− , �→− Induction principle Meta-theory

Table 6.2.: Summary of constructions on descriptions

(which is defined using the functorial interpretation J− K) is part of the meta-theory.
Intuitively, through the least fixpoint, our type theory initially contains all the induc-
tive types that can be defined. When “defining” a datatype, we merely exhibit a code.
But, essentially, that code already existed on its own. Levitation is achieved by apply-
ing this remark to Desc itself: by realising that it already implicitly exists, we derive its
raw, non-elaborated form (Theorem 6.28) and denote that term “Desc”. Induction must
be provided as part of the meta-theory for model-theoretic reasons (¶ 4.63).

6.31 Remark (Implementation). As for enumerations, we now consider a type theory in
which Desc is self-described. In this type theory, we can define other datatypes, but also
use the generic equipment of datatypes – such as induction – on Desc itself: we natively
support generic programming.

Other generic programming systems, such as Generic Haskell [Hinze et al., 2002],
PolyP [Jansson and Jeuring, 1997], or Agda with reflection, offer similar operations:
they provide a syntactic incarnation of their (internal) representation of datatypes. In-
deed, there is an isomorphism between the grammar of datatypes and this internal
representation: by providing the user a (meta-level) quote and unquote mechanism, it
is possible to cross the isomorphism to and from the reflected grammar and its inter-
nal representation. However, reasoning, in type theory, about these reflective operators
is hard, or extremely limited. Our presentation collapses this isomorphism, defining
the internal representation with its reflected encoding. Consequently, there is no need
for a quote/unquote mechanism, and an associated meta-theory. We shall present the
isomorphism formally in Section 6.3.

(6.32) Levitation of indexed descriptions. There is no conceptual difficulty forbidding the
same manoeuvre to be carried on indexed descriptions. There are actually several ways
to do it. Let us sketch a few. First, we note that IDesc I is a plain inductive type, param-
eterised by I. Therefore, we could simply describe IDesc with a Desc code, as we coded
EnumU. However, this introduces an unnecessary dependency on the universe of de-
scriptions. We would like the universe of indexed descriptions to be standalone.

We could also simply follow the recipe described above, specialising the elimination
of enumerations for indexed descriptions to

switchID (ps : π E (λ− . IDesc` I))(x : EnumT E) : IDesc `I

Having a specialised switchID, we can safely eliminate over the enumeration of con-

123

6. Bootstrapping Inductive Types

structors and code each description constructor.
In fact, the only requirement is to avoid any mention of IDesc in the definition of its

code and interpretation. Alternatively, we could code the choice of constructors choice
with a finite sum σ:

IDescD` (I : SET) : IDesc`+1 1

IDescD` I 7→ σ

’1
’var
’×
’σ
’Σ
’Π

1
Σ I λ− . 1
var ∗× var ∗× 1
Σ EnumU λE. π E
Σ SET` λS. (Π S λ− . var ∗)× 1
Σ SET` λS. (Π S λ− . var ∗)× 1

Doing so, we hoist switch from the description of IDesc to the interpretation function

of IDesc. It is the interpretation function that must then use the specialised switchID

elimination principle, as follows:

J(D : IDesc` I)K (X : I→ SET`) : SET`
Jvar iK X 7→ X i
J1K X 7→ 1
JA× BK X 7→ JAK X× JBK X
Jσ E TK X 7→ (e : EnumT E)× JswitchID T eK X
JΠ S TK X 7→ (s : S)→ JT sK X
JΣ S TK X 7→ (s : S)× JT sK X

6.33 Remark. To define the code of the constructor σ, we take the liberty of writing π E.
Indeed, π E P is strictly-positive in the predicate P (Remark 5.10). As such, it can there-
fore be described by an inhabitant of IDesc (EnumT E). Implementing this description is
an interesting exercise in programming with the algebraic structure of descriptions. For
the sake of completeness, we give its implementation here:

π (E : EnumU) : IDesc` (EnumT E)
π nilE 7→ 1
π (consE t E) 7→ var 0×(compose (π E) D∆1+)

6.2. A Few Generic Constructions

(6.34) We have reflected the code of descriptions in itself. Beyond its pedagogical value,
this exercise has several practical outcomes. First, it confirms that the Desc type is
just plain data. As any piece of data, it can therefore be inspected and manipulated.
Moreover, it is defined by a description. As a consequence, it comes equipped, for
free, with an induction principle. Our ability to inspect and program with Desc is not
restricted to the meta-language: we have the necessary equipment to program with
data, i.e. program over datatypes. Generic programming is just programming.

124

6.2. A Few Generic Constructions

(6.35) In this section, we illustrate this motto with three examples. In Section 6.2.1, we de-
rive the catamorphism from the induction principle. We thus demonstrate our ability
to write generic programs over the universe of datatypes. In Section 6.2.2 and Sec-
tion 6.2.3, we present, respectively, the free monad and the free indexed monad con-
struction on descriptions and indexed descriptions. This demonstrates our ability to
make new datatype from old. Besides, the free monad has some interesting mathemat-
ical structure, which, in turn translates into generic operations.

6.2.1. The generic catamorphism

MODEL: Chapter6.Desc.InitialAlgebra

(6.36) In Section 4.2, we hardwired a dependent induction principle, but sometimes, the
catamorphism suffices. We recall the definition of the catamorphism and generically
construct it.

6.37 Definition (Catamorphism). Let F be an endofunctor admitting an initial algebra.
Let (X, α : F X → X) be an F-algebra.

The catamorphism (or fold) is the unique F-algebra morphism LαM from the initial al-
gebra (µF, in : F µF → µF) to the algebra α. Put explicitly, LαM is the unique morphism
making the following diagram commute:

F(µF) FX

µF X

αin

F LαM

LαM

6.38 Remark. As we have seen in Part II, our functors always admit an initial algebra.
However, in intensional type theory, we have only access to weak initial algebras: the
catamorphism exists but we cannot prove its uniqueness.

(6.39) This construction translates quite naturally into type theory. First, we represent func-
tors with a code in Desc. Their initial algebra is then given by µ D. The catamorphism
takes an algebra α : JDK T→ T, an inhabitant of the fixpoint, and returns a T:

L(α : JDK T→ T)M (x : µ D) : T
LαM x {?}

(6.40) Operationally, the catamorphism applies the algebra recursively over the structure
of the functor JDK. To do so, we proceed by induction over x. Since the return type is
non-dependent, setting up the induction is an easy step:

L(α : JDK T→ T)M (x : µ D) : T
LαM x 7→ induction {? : (xs : JDK (µ D))(ih :�D (λ− . T) xs)→ T} x

125

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter6.Desc.InitialAlgebra.html

6. Bootstrapping Inductive Types

(6.41) We are then left to implement the inductive step. Given a node xs and the induction
hypotheses ih, we must build an element of T. Provided that we know how to make an
element of JDK T, this step will be performed by the algebra α:

L(α : JDK T→ T)M (x : µ D) : T
LαM x 7→ induction (λxs ih. α {? : JDK T}) x

(6.42) To complete the final hole, we have xs : JDK µ D and ih :�D (λ− . T) xs to hand, and
we need a JDK T. The argument xs has the right shape, but its subcomponents have the
wrong type. However, for each such component, ih holds the corresponding value in
T. We thus implement a function to replace the former with the latter

replace (D : Desc) (xs : JDK X) (ih :�D (λ− . Y) xs) : JDK Y
replace 1 ∗ ∗ 7→ ∗
replace var x y 7→ y
replace (A× B) (a, b) (x, y) 7→ (replace A a x, replace B b y)
replace (Σ S D) (s, d) d′ 7→ (s, replace (D s) d d′)
replace (Π S D) f f ′ 7→ λs. replace (D s) (f s) (f ′ s)

6.43 Remark. This pattern-matching is justified by appeal to induction over the code of
descriptions. This is made possible by levitation: D is just like any datatype, we can
therefore use the generic induction principle on it.

6.44 Definition (Catamorphism, generically). This concludes our development. Filling
the hole with replace D xs ih, we have implemented a generic catamorphism function:

L(α : JDK T→ T)M (x : µ D) : T
LαM x 7→ induction (λxs ih. α (replace D xs ih)) x

(6.45) Indexed catamorphism. The same construction can be carried on the universe of in-
dexed descriptions, deriving an indexed catamorphism from the elimination principle
of IDesc. We shall overload notation and denote L− M this catamorphism.

6.46 Example (Height of a tree). A typical example of a catamorphism is the function
computing the maximum height of a binary tree (Example 4.21). The algebra consists
in returning a height of 0 on a leaf, while returning the size of the heighest subtree plus
one on a node:

heightAlg (ts : JTreeD AK Nat) : Nat
heightAlg [’leaf] 7→ 0
heightAlg [’node lh a rh] 7→ suc (max lh rh)

By recursively iterating this algebra over the tree, the catamorphism gives us the de-
sired function:

height (t : Tree A) : Nat
height t 7→ LheightAlgM t

6.47 Example (Semantics of typed expressions). In Example 5.48, we described a typed
syntax for a language of expressions. Let us now supply the semantics. We implement

126

6.2. A Few Generic Constructions

an evaluator as a catamorphism:

eval⇓ (tm : µ ExprD ty) : Val ty
eval⇓ tm 7→ Leval↓M tm

To finish the job, we must supply the algebra that implements a single step of evalu-
ation, given already evaluated subexpressions.

eval↓ (ty : Ty) (xs : JExprDK Val) : Val ty
eval↓ − [’val x] 7→ x
eval↓ − [’cond true x−] 7→ x
eval↓ − [’cond false − y] 7→ y
eval↓ ’nat [’plus x y] 7→ x + y
eval↓ ’bool [’le x y] 7→ x≤ y

Hence, we have a type-safe syntax and a tagless interpreter for our language, in the
spirit of Augustsson and Carlsson [1999], with help from the generic catamorphism.

(6.48) We have shown how to derive a generic operation, the catamorphism, from a pre-
existing generic operation, induction, by manipulating descriptions as data: the cata-
morphism is just a function taking each Desc value to a datatype specific operation.
This is polytypic programming [Jansson and Jeuring, 1997] made ordinary.

6.2.2. The generic free monad

MODEL: Chapter6.Desc.FreeMonad

(6.49) We now study a more ambitious generic operation. Given a functor – understood
as a signature of operations and represented by a tagged description – we build its free
monad, extending the signature with variables and substitution. Our presentation will
therefore appeal to functional programmers, being close to the standard construction
in Haskell (Remark 6.51). Our objective is then to adapt this construction to indexed
descriptions: this shall be the topic of the next section.

(6.50) Gambino and Hyland [2004, Theorem 11] have proved that every polynomial func-
tor – and therefore any description – has a free monad. Besides, the authors have shown
that the free monad of a polynomial functor is itself a container [Gambino and Hyland,
2004, Theorem 16]. Constructively, this suggests that, given a description, we can com-
pute another description that represents its free monad.
6.51 Remark (Free monad in Haskell). To gain some intuition, we recall the free monad
construction in Haskell. Given a functor f, the free monad over f is given by:

data FreeMonad f x

= Ret x

| Op (f (FreeMonad f x))

In effect, the free monad over a signature functor f consists of f-terms – constructed
from Op – and variables – introduced by Ret. Provided that f is an instance of Functor,

127

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter6.Desc.FreeMonad.html

6. Bootstrapping Inductive Types

we may take Ret for return and use f’s fmap to define the monadic bind >>= as substi-
tution:

instance Functor f => Monad (FreeMonad f) where

-- return :: a → FreeMonad f a

return = Ret

-- (>>=) :: FreeMonad f a → (a → FreeMonad f b) → FreeMonad f b

(Ret x) >>= t = t x

(Op fx) >>= t = Op (fmap (>>= t) fx)

(6.52) Intuition. Examining the definition of the Haskell FreeMonad datatype, we note that
it is isomorphic to the least fixpoint of the signature functor:

(F∗ X) Z 7→ X + F Z

Taking the fixpoint of this signature parameterised by F and X gives the FreeMonad

datatype for F at X. Our task now is to describe this signature, for any description.
6.53 Definition (Free monad). Our construction works on tagged descriptions (Defini-
tion 5.44). Given a set X of variables, we compute the signature of the free monad:

(D : tagDesc)∗ (X : SET) : tagDesc

(E, D)∗ X 7→
{

’ret : Σ X λ− . 1
E : D

Effectively, we simply add a constructor ret that takes an element of X. The collection
of constructors E and their codes D stay put, leaving the other constructors unchanged.

Unfolding the interpretation of this definition, we check that the following isomor-
phism holds:

JD∗ XK Z ∼= X + JDK Z

Taking the fixpoint of D∗ X ties the knot and we obtain the free monad:

(D : tagDesc)∗ (X : SET) : SET

D∗ X 7→ µ (D∗ X)

We overload the denotation (but not the colour) for the free monad. It is clear from
the context whether we refer to the tagged description or its fixpoint.
6.54 Remark (Construction on tagged descriptions). The rationale for defining the free
monad on tagged descriptions, as opposed to any description, is twofold. Firstly, any
description can be turned into a tagged description (Definition 4.23): we do not lose
expressive power by focusing on the tagged ones. Secondly, and more importantly,
by working on tagged descriptions, we preserve the constructor-oriented presentation
of the signature. The (tagged) signature is a collection of operation names, mapped
to their code. The free monad extends this collection with one called ’ret, the variable
introduced by the free monad. We can thus use constructor expressions for the monadic
operations.

128

6.2. A Few Generic Constructions

6.55 Example (Free monad: lists). The list datatype can be obtained through a free con-
struction. We define the following signature:

ΣList (A : SET) : Desc
ΣList A 7→

{
’cons : Σ A λ− . var× 1

We get List A by considering the free monad on the unit set:

List A ∼= (ΣList A)∗ 1

6.56 Remark. This monadic construction of List is not to be confused with the so-called
List monad, or non-determinism monad. What we are describing above is how we ob-
tain the List datatype from a free monad construction. As we shall see in Example 6.65,
we can then use the generic monadic operations to derive concatenation of lists. We
exploit here the characterisation of lists as free monoids over an alphabet A.

The non-determinism monad, on the other hand, uses the functor List : SET→ SET as
a monad on the category SET. The monadic structure is thus related to the parameter
of List. It is also equationally much richer than the very syntactic free monad.

6.57 Example (Free monad: terminal I/O). Free monads are often used in the context
of algebraic theories, as a syntactic representation of a theory (stripped of its equa-
tions) [Swierstra, 2008]. For example, one could specify a toy terminal input/output
system with the signature:

ΣIO : tagDesc

ΣIO 7→
{

’put : Σ String λ− . (Π 1 λ− . var)× 1
’get : (Π String λ− . var)× 1

Following standard terminology [Plotkin and Power, 2003], the constructors ’put and
’get are called the operations of the signature. Taking the free monad of this signature,
we obtain a TermIO monad:

TermIO (X : SET) : SET

TermIO X 7→ Σ∗IOX

Equipped with the following generic operations:

putString (s : String) : TermIO 1
putString s 7→ put s ret

getString : TermIO String
getString 7→ get ret

(6.58) We now go on a foray in the categorical structure that comes with the free monad.
As traditional in the programming community, we shall work with the Kleisli category.
Our presentation is therefore similar to the code presented in Remark 6.51. Let us recall
first the definition of the Kleisli category.

129

6. Bootstrapping Inductive Types

6.59 Definition (Kleisli category). Let (T, η, µ) be a monad over C.

The Kleisli category of T is the category CT whose objects are objects of C and mor-
phisms from C to D in CT are morphisms of from C to T D in C. In the programming
community, the identity is called return, while the (postfix) extension operator (which
defines composition) is called bind, denoted >>=, of type T A→ (A→ T B)→ T B.

(6.60) We construct the Kleisli category of the free monad D∗ by defining the identity (Def-
inition 6.61) and extension operator (Definition 6.64).

6.61 Definition (Identity). The identity trivially consists in returning the ’ret construc-
tor:

return (x : X) : D∗ X
return x 7→ ret x

Intuitively, return introduces variables.

(6.62) Meanwhile, the postfix extension operator subst mx σ corresponds to the substitution
of the variables in mx – introduced by ’ret – with the corresponding term given by σ.
We generically implement this substitution using the catamorphism. Let us write the
type, and start filling in the blanks:

subst (σ : X→D∗ Y) (mx : D∗ X) : D∗ Y
subst σ mx 7→ L {? : (xs : JD∗ XK (D∗ Y))→D∗ Y} M mx

(6.63) We are left with implementing the algebra of the catamorphism. Its role is to substi-
tute [’ret x] with σ x. This corresponds to the following definition:

apply (σ : X→D∗ Y) (xs : JD∗ XK (D∗ Y)) : D∗ Y
apply σ [’ret x] 7→ σ x
apply σ (c, xs) 7→ in (c, xs)

6.64 Definition (Extension operator and Composition). We can therefore complete the
hole left in ¶ 6.62 and obtain the extension operator:

subst (σ : X→D∗ Y) (mx : D∗ X) : D∗ Y
subst σ mx 7→ Lapply σM mx

And thus composition in the Kleisli category:

(ρ :Y→D∗ Z)~ (σ : X→D∗ Y) : X→D∗ Z
ρ ~ σ 7→ (subst ρ) ◦ σ

6.65 Example (Free monad: lists). Recall from Example 6.55 that a list can be presented
as the free monad of a single operation, ’cons. In this setting, the nil constructor is but
the variable case of the free monad. The extension operator corresponds to substitution
of these variables. We can therefore derive the concatenation of two lists xs and ys by

130

6.2. A Few Generic Constructions

“substituting” ys for the nil constructor of xs:

(xs : List A) ++ (ys : List A) : List A
xs ++ ys 7→ subst xs λ∗. ys

6.66 Example (Free monad: terminal I/O). In Example 6.57, we have defined a domain-
specific language that captures terminal inputs/outputs. In the TermIO monad, we can
denote the program that reads two strings and prints their concatenation:

example : TermIO 1
example 7→ getString >>= λs1.

getString >>= λs2.
putString(s1 ++ s2)

Here, >>= denotes the postfix extension operator, i.e. mx >>= σ , subst σ mx.

(6.67) In this section, we have presented the free monad construction over descriptions.
Every tagged description can be seen as a signature of operations: we can uniformly
add a variable, building a new type from an old one. We have also provided, generi-
cally, the monadic structure (i.e. substitution of variables) associated with this monad.

6.2.3. Indexed free monad

MODEL: Chapter6.IDesc.FreeMonad

(6.68) The free monad construction can be extended to multi-sorted signatures. In this
section, we present this extension, together with the monadic structure accompanying
the free construction. Gambino and Kock [2013, Theorem 4.5] have shown that the free
monad of a polynomial functor is again a polynomial functor. In a sense, what follows
is a constructive reading of that theorem.

6.69 Definition ((Indexed) free monad). In Section 6.2.2, we obtained the free monad
by adding a variable constructor ’ret. At a high-level, we do the same here, working
again on tagged (indexed) descriptions. In the indexed case, tagged descriptions are
segregated in the permanent choices and the indexed choices: we introduce the variable
constructor amongst the permanent choices, leaving the index-dependent constructors
untouched. This is the only difference. Our definition is thus:

(D : tagIDesc I)∗ (X : I→ SET) : tagIDesc I({
i ← E : T
p← F : U

)∗
X 7→

i ← ’ret : Σ (X i) λ− . 1
i ← E : T
p← F : U

6.70 Example (Free monad: filesystem interface). In line with Example 6.57, we can use
the indexed free monad to describe multi-sorted algebraic theories. In what follows,
we describe a filesystem interface that guarantees, by indexing, that only legitimate

131

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter6.IDesc.FreeMonad.html

6. Bootstrapping Inductive Types

operations are performed. In particular, we want to make sure that:
• We do not open a file that is already open ;
• We only read from open files ;
• We close only open files.

For simplicity, we are going to consider an interface for a single file. We thus do
not need to keep track of file handles. The state (open or closed) of that file will be
conventionally denoted s. Informally, this API is specified by:

{s = open} readFile : String {s = open}
{s = closed} openFile (f n : String) : 1 {}
{s = open} closeFile : 1 {s = closed}

Following McBride, we implement this specification with the following description:

ΣFS : IDesc State

ΣFS 7→

closed← ’openFile : Σ String λ− . (Π State λs. Π 1 λ− . var s)× 1
open ← ’readFile : (Π State λs. Π (s = open× String) λ− . var s)× 1
open ← ’closeFile : (Π State λs. Π (s = closed× 1) λ− . var s)× 1

Taking the free monad of that signature, we obtain the FS monad

FS (X : State→ SET) : State→ SET

FS X 7→ Σ∗FS X

that is equipped with the generic operations:

openFile (f n : String) : FS (λ− . 1) open
openFile f n 7→ openFile f n λs. ret

readFile : FS (λs. s = open× String) open
readFile 7→ readFile λs. ret

closeFile : FS (λs. s = closed× 1) closed
closeFile 7→ closeFile λs. ret

6.71 Example (Indexed descriptions). An interesting instance of free monad is IDesc
itself. Indeed, var is nothing but the return of a free monad. The remaining constructors
form the operations, trivially indexed by 1. The signature functor is described by:

IDescFreeD : tagIDesc 1

IDescFreeD 7→

−← 1 : 1
−←× : var ∗× var ∗× 1
−← σ : Σ EnumU λE. π E× 1
−← Σ : Σ SET λS. (Π S λ− . var ∗)× 1
−←Π : Σ SET λS. (Π S λ− . var ∗)× 1

We obtain IDesc I by applying the free monad construction on this signature, at con-

132

6.2. A Few Generic Constructions

stant index I:
IDescD (I : SET) : tagIDesc 1
IDescD I 7→ IDescFreeD∗ λ− . I

6.72 Example (Typed expressions). In Example 5.48, we presented a language of arith-
metic expressions. However, this language only lets us define and manipulate closed
terms. Adding variables, it becomes possible to build and manipulate open terms, that
is, terms in a context. We shall get this representation for free thanks to the free monad
construction.

An open term is defined with respect to a context, represented by a snoc-list of types:

data Context : SET where
Context 3 []
Context 3 snoc (Γ : Context)(ty : Ty)

An environment realises a context, packing a value for each type:

Env (Γ : Context) : SET

Env [] 7→ 1
Env (snoc Γ S) 7→ Env Γ×Val S

In this setting, we define type variables, Var by

Var (Γ : Context) (T : Ty) : SET

Var [] T 7→ 0
Var (snoc Γ S) T 7→ (Var Γ T) +(S = T)

while Val maps the type to the corresponding host type, Var indexes a value in the
context, obtaining a proof that the types match.

The lookup function precisely follows this semantics:

lookup (γ : Env Γ) (v : Var Γ T) : Val T
lookup (γ, t) (injr refl) 7→ t
lookup (γ, t) (injl x) 7→ lookup γ x

Consequently, taking the free monad of ExprD by Var Γ, we obtain the language of
open terms in a context Γ:

openTm (Γ : Context) : Ty→ SET

openTm Γ 7→ ExprD∗ (Var Γ)

In this setting, the language of closed terms corresponds to the free monad assigning
an empty set of values to variables:

closeTm : Ty→ SET

closeTm 7→ ExprD∗ (λ− . 0)

133

6. Bootstrapping Inductive Types

Declaring variables in the empty set amounts to forbidding variables, so closeTm and
ExprD describe isomorphic datatypes. Consequently, we can update an old ExprD to a
shiny closeTm:

update (tm : µ ExprD ty) : closeTm ty
update tm 7→ L(λ(tag, tm). in (1+ tag, tm))M tm

The other direction of the isomorphism is straightforward, the ’ret case being impos-
sible. We are therefore entitled to reuse the eval⇓ function to define the semantics of
closeTm.

(6.73) As for descriptions, the indexed free monad is equivalent to a Kleisli category that
comes with an identity – return – and an extension operator– a substitution operation
subst.

6.74 Definition (Identity). The identity is essentially the same as in the non-indexed
case (Definition 6.61) and is defined as the variable case:

return (x : X i) : D∗ X i
return x 7→ ret x

Intuitively, it lets us introduce variables in the terms generated by the signature D.

6.75 Definition (Extension operator). The definition of the extension in the indexed case
follows the non-indexed one (Definition 6.64). Its definition is

substI (σ : X →̇D∗ Y) : D∗ X →̇D∗ Y
substI σ 7→ LapplyI σM

where applyI is defined as follows:

applyI (σ : X →̇D∗ Y) (xs : JD∗ XK D∗ Y i) : D∗ Y i
applyI σ [’ret x] 7→ σ i x
applyI σ (c, ys) 7→ in (c, ys)

Composition follows straightforwardly.

6.76 Example (Free monad: filesystem interface). In the non-indexed setting, we have
used the terminal interface (Example 6.57) to write a simple effectful program (Exam-
ple 6.66). In the indexed setting, we enforce the underlying protocol of our interface
by its type. As a result, our effectful programs obey – by construction – the protocol
specified by the signature.

For instance, the following program tries to read the content of a file, with the guar-

134

6.3. Modelling Levitation

antee that the file is closed when it returns:

example (f n : String) : FS (λs. s = closed× String) closed
example f n 7→ openFile f n >>=

λ

closed ∗ 7→ ret "" – File does not exist: silently fail
open ∗ 7→ readFile >>= λopen str.

closeFile >>= λclosed ∗.
ret str

Forgetting to call closeFile would be caught at type checking: the file would be in a
state open, and not closed as specified by the post-condition λs. s = closed× String.

6.77 Example (Semantics of typed expressions). Now we would like to give semantics
to the language of open terms (Example 6.72). We proceed in two steps: first, we sub-
stitute variables by their value in a context; then, we evaluate the resulting closed term.
Thanks to eval⇓, the second problem is already solved.

Let us focus on substituting variables from the context. Again, we can subdivide
this problem: first, discharging a single variable from the context, with the function
discharge; then, applying this function to every variable in the term. The discharge func-
tion maps values to themselves, and variables to their value in context:

discharge (γ : Env Γ) (v : Var Γ T) : closeTm T
discharge γ v 7→ val (lookup γ v)

We are now left with applying discharge over all variables of the term. We simply
have to pass the right arguments to substI, the type guiding us:

substExpr (σ : Var Γ →̇ closeTm) (tm : openTm Γ T) : closeTm T
substExpr σ tm 7→ substI σ tm

This completes our implementation of the open term’s interpreter:

evalTerm⇓ (γ : Env Γ) (tm : openTm Γ T) : Val T
evalTerm⇓ γ tm 7→ eval⇓ (substExpr (discharge γ) tm)

Without much effort, we have described the syntax of a well-typed language, to-
gether with its semantics.

6.3. Modelling Levitation

MODEL: Chapter6.Universe

(6.78) In this chapter, we have seen how to levitate descriptions. At first glance, this oper-
ation is dangerously paradoxical. However, our informal annotations shed some light
on its stratification: in an infinite hierarchy of types, we code the description at level `

135

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter6.Universe.html

6. Bootstrapping Inductive Types

using the description at level `+ 1. Levitation thus breaks free of paradox through this
downward spiral of definitions.

In this section, we formalise this intuition. To do so, we build an inductive-recursive
model of an infinite hierarchy of types [Palmgren, 1995] closed under W-types. In this
model, we construct the tower of descriptions, parametrically over the level at which
the spiral starts. We then use this internalised type theory to, constructively, prove
an isomorphism between an “hard-coded” – that is, meta-level – presentation of de-
scriptions and its “levitated” – that is, reflected – presentation. We then explain why
Section 6.1 is harmlessly collapsing an isomorphism.
6.79 Remark (Type theory as a mathematical system). In this section, we use type the-
ory as a formal framework for (constructive) mathematics. We are going to define three
mathematical objects: an infinite hierarchy of types closed under a few set formers,
a tower of universes of descriptions, and a tower of levitated universes of descrip-
tions. We then reason about these objects inside type theory, establishing an isomor-
phism between descriptions. We obtain a mathematical result, under the proviso that
one believes in the coherence of type theory equipped with induction-recursion. In this
section, we shall make that assumption and rely on inductive-recursive definitions.

To summarise, our “paper” type theory extended with induction-recursion and W-
types (Remark 6.80) will be our meta-meta-theory: it provides a mathematical framework
in which to study self-description. In this system, we construct a hierarchy of types: this
defines a meta-theory (Definition 6.83) in which functions can be instantiated in one go
across the hierarchy of types. In that meta-theory, we model a hard-wired definition
of descriptions (Definition 6.87): we obtain a model of a type theory with an infinite
tower of universes of descriptions, all provided at the meta-level. Finally, we model
levitation by describing, using the hard-wired descriptions, an infinite tower of (levi-
tated) descriptions (Definition 6.93). In this final model, we prove that the hard-wired
descriptions and their levitated counterparts are isomorphic, in fact equal on the nose.
Diagrammatically, our development models the type theoretic construction of the pre-
vious section in the following way:

... Desc`+1 SET`+2

µ DescD` Desc` SET`+1

:

:∼=
(Th. 6.96)

(Def. 6.93) (Def. 6.87)

6.80 Remark (W-types). W-types [Martin-Löf, 1984, Nordström et al., 1990] were in-
troduced to represent wellorderings in type theory (Figure 6.1). As for (non-indexed)
containers, a W-type is specified by a set Op – the collection of nodes – and Ar – the
arity of each node. The introduction rule follows naturally from this intuition of W-
types as trees of finite depth. The elimination rule corresponds to transfinite induction
over such structure. Note that this corresponds exactly to the least fixpoint of a con-
tainer (Definition 5.53) indexed by the unit set. Even though W-types are subsumed by

136

6.3. Modelling Levitation

Γ ` Op : SET

Γ ` Ar : Op→ SET
Γ ` W Op Ar : SET

Γ ` op : Op
Γ ` xs : Ar op→W Op Ar
Γ ` sup op xs :W Op Ar

W-elim (ih : (op : Op)(xs : Ar op→W Op Ar)→((ar : Ar op)→Q (xs ar))→Q (sup op xs))
(xs :W Op Ar) : Q xs

W-elim ih (sup op xs) 7→ ih op xs (λar. W-elim ih (xs ar))

Figure 6.1.: W-types

induction-recursion, we bear with this redundancy for the sake of simplicity: dealing
with W-types through their encoding as inductive-recursive types would needlessly
obscure our presentation.

(6.81) Following Palmgren [1995], we first internalise a hierarchy of types. The hierarchy is
built by iterating a next universe operator. This operator is parameterised by a universe
(U, El). It is closed, as usual, under standard type formers – i.e. Σ-types, Π types, and
enumerations – and W-types. It is also closed under names of U and their decoding.
Such a definition is necessarily inductive-recursive because the domain of, say, the Π-
type is a code (an inductive type) that is then (recursively) interpreted in the type theory
in order to define its codomain: this simultaneous definition of an inductive type and
its recursive interpretation falls beyond the reach of inductive families.

6.82 Definition (Next universe operator). We translate our algebraic intuition into the
following inductive-recursive definition:

data Û [U : SET][El :U→ SET] : SET where
Û U El 3 U‘

| El‘(T :U)
| Π‘(S : Û U El)

(T : Êl S→ Û U El)
| Σ‘(S : Û U El)

(T : Êl S→ Û U El)
| EnumT‘(E : EnumU)
| W‘(S : Û U El)

(P : Êl S→ Û U El)

Êl (T : Û U El) : SET

Êl U‘ 7→ U
Êl (El‘ T) 7→ El T
Êl (Π‘ S T) 7→ (s : Êl S)→ Êl (T s)
Êl (Σ‘ S T) 7→ (s : Êl S)× Êl (T s)
Êl (EnumT‘ E) 7→ EnumT E
Êl (W‘ S P) 7→ W (Êl S) (λs. Êl (P s))

6.83 Definition (Hierarchy of types). We obtain the indexed hierarchy of types by iter-
ating the next universe operator over levels, starting from the empty universe :

Ũ (` : Level) : SET

Ũ 0 7→ 0
Ũ (suc `) 7→ Û (Ũ `) Ẽl

Ẽl (` : Level) (T : Ũ `) : SET

Ẽl 0 T 7→ 0
Ẽl (suc `) T 7→ Êl T

137

6. Bootstrapping Inductive Types

We restrict ourselves to a countable collections of universes, thus defining levels by:

data Level : SET where
Level 3 0

| suc(` : Level)

(6.84) Each level of types in the hierarchy thus reflects the types that are lower in the hier-
archy – by U‘ – and includes them – by El‘ – starting the empty universe at the lowest
level. It also includes enumerations’ formers – by EnumT‘. Every level is then closed
under W-types, Σ-types and Π-types – thanks to, respectively, W‘, Σ‘, and Π‘.

Since the lowest-level universe is empty, the actual hierarchy starts at level suc 0. We
therefore define

Ũ+ (` : Level) : SET

Ũ+ ` 7→ Ũ (suc `)
Ẽl+ (` : Level) (T : Ũ+ `) : SET

Ẽl+ ` T 7→ Ẽl (suc `) T

and work with this hierarchy, whose trivial bottom layer has been removed.
(6.85) In this model, we can formally write definitions inhabiting simultaneously the en-

tire hierarchy (Remark 6.12). To do so, we simply quantify over ` : Level and build
inhabitants of Ẽl+ T `. We call such definition a level-parametric definition.
6.86 Example (Level-parametric Nat). We can define natural numbers simultaneously
in all universes of the hierarchy by quantifying over all ` : Level:

Nat (` : Level) : Ũ+ `

Nat` 7→ W‘

(
EnumT‘

{
’0

’suc

}) {
’0 7→ EnumT‘ {}
’suc 7→ EnumT‘ {’∗}

}
0 : Ẽl+ Nat`

0 7→ sup ’0 0-elim
suc : Ẽl+ (Π‘Nat`λ− . Nat`)
suc 7→ λn. sup ’suc λ∗. n

6.87 Definition (Hard-wired descriptions). Using W-types, we define a hard-wired uni-
verse of descriptions. We obtain the datatype Desc by defining its W-type at every level:

DescM (` : Level) : Ũ+ `

DescM
` 7→ W‘

EnumT‘

1

var
Σ
Π

1 7→ EnumT‘ {’∗}
var 7→ EnumT‘ {’∗}
Σ 7→ Σ‘ U‘ λS. Π‘ (El‘ S) λ− . EnumT‘ {’∗}
Π 7→ Σ‘ U‘ λS. Π‘ (El‘ S) λ− . EnumT‘ {’∗}

(6.88) We automatically obtain the Desc constructors by inhabiting this W-type. We shall

skip their definition, which are otherwise unsurprising, and denote them 1M, varM, ΣM,
and ΠM, where “M” stands for “Meta”. This definition corresponds to our presentation
of Desc (Definition 4.6) as a meta-object in Chapter 4. Using the W-types, we conve-
niently model the formation and introduction rules of Desc.

(6.89) Note that the definition we have just written contains some apparently unnecessary

138

6.3. Modelling Levitation

noise in the form of unit types. For convenience, we have underlined this noise. We
shall come back to this point in Remark 6.99. In the meantime, we check that the code
of descriptions arising from this definition is extensionally equivalent to the one we are
interested in modelling.

6.90 Definition (Least fixpoint of DescM). Given a code in DescM , we can build its least
fixpoint, again using a W-type. The idea is to manually unfold the interpretation func-
tion J− K (Definition 4.6) in the definition of the fixpoint (Definition 4.38).

We obtain the following code:

µM (D : DescM
ell) : Ũ+ `

µM D 7→ W‘ µSh µPos where

µSh (D : Ẽl+ (DescM
`)) : Ũ+ `

µSh 1M 7→ EnumT‘ {’∗}
µSh varM 7→ EnumT‘ {’∗}
µSh (ΣM S T) 7→ Σ‘ S λs. µSh (T (s, ’∗))
µSh (ΠM S T) 7→ Π‘ S λs. µSh (T (s, ’∗))

µPos (D : Ẽl+ (DescM
`)) (sh : Ẽl+ (µSh D)) : Ũ+ `

µPos 1M ’∗ 7→ EnumT‘ {}
µPos varM ’∗ 7→ EnumT‘ {’∗}
µPos (ΣM S T) (s, sh) 7→ µPos (T (s, ’∗)) sh
µPos (ΠM S T) f 7→ Σ‘ S λs. µPos (T (s, ’∗)) (f s)

At this stage, we are therefore able to define inductive types using descriptions in our
model. To illustrate this possibility, let us describe natural numbers.

6.91 Example (Natural numbers, in DescM). We define natural numbers exactly as we
did in Example 4.18. This time, however, we work in DescM :

NatD (` : Level) : Ẽl+ (DescM
`) `

NatD` 7→ ΣM EnumT‘

{
’0
’suc

}{
’0 7→ 1M
’suc 7→ varM

}
Nat (` : Level) : Ũ+ `
Nat` 7→ µM NatD`

The constructors of the datatype Nat are thus the inhabitants of the W-type µM NatD:
unfolding its definition, we verify that zero and successor are the (only) inhabitants of
this type. We have described natural numbers.

(6.92) This definition has to be contrasted with the definition based on W-types (Exam-
ple 6.86). The encoding based on W-types models a meta-theoretic presentation of
natural numbers, i.e. a type theory coming with a notion of natural numbers. The
description-based encoding models a presentation inside a Desc universe, as we did
in Example 4.18. In this case, our only requirement is that the meta-theory provides a
universe of descriptions, from which, inside the theory, we build natural numbers.

139

6. Bootstrapping Inductive Types

At this stage, we have built a model of the type theory presented in Chapter 4. The
description grammar Desc is modelled by DescM , while its fixpoint µ is modelled by
µM. We have shown how natural numbers are described in this model. We are now in
the position to repeat the levitation exercise from Section 6.1.2: we reflect the datatype
Desc` using Desc`+1.

6.93 Definition (Levitated descriptions). We levitate the descriptions’ code by writing
exactly the same code as in Definition 6.22. The only difference is that we are working
in the model, thus we have to use the constructor of DescM and we quantify over sets
using the code U‘:

DescDR (` : Level) : Ẽl+ (DescM
(suc `)) `

DescDR
` 7→ ΣM

’1

’var
’Σ
’Π

’1 7→ 1M
’var 7→ 1M
’Σ 7→ ΣM U‘ λS. ΠM (El‘ S) λ− . varM
’Π 7→ ΣM U‘ λS. ΠM (El‘ S) λ− . varM

DescR (` : Level) : Ũ+ (suc `)

DescR
` 7→ µM DescDR

`

(6.94) Diagrammatically, the situation is as follows:

... DescM
`+2 Ũ+ (`+ 2)

DescR
`+1 DescM

`+1 Ũ+ (`+ 1)

DescR
` DescM

` Ũ+ `

:

:

:

The dashed lines representing the simultaneous instantiation of DescM over all uni-
verse levels, while the arrows represents the implementation of the target DescR using
a code inhabiting its source DescM .

(6.95) The levitation trick consists in observing that, at every level `, the meta-level DescM
`

and the reflected DescR
` are actually isomorphic.

6.96 Theorem. At every level `, the datatype DescM
` is isomorphic to DescR

` and the
bijection is an identity.

140

6.3. Modelling Levitation

Proof. Looking at the constructors of the respective datatype, the isomorphism is trivial:

Constructors of DescM : (unfolds to) Constructors of DescR :
1M , sup (1, ’∗) 0-elim , ’1R

varM , sup (var, ’∗) 0-elim , ’varR

ΣM S T , sup (Σ, (S, λ− . ’∗)) λ(s, ’∗). T s , ’ΣR S T
ΠM S T , sup (Π, (S, λ− . ’∗)) λ(s, ’∗). T s , ’ΠR S T

That is, up to extensionality, there is a one-to-one mapping between the codes of the
respective datatypes. Put otherwise, the W-types, i.e. the respective sets of operations
and arities, DescM and DescR are extensionally equal.

(6.97) The levitation trick thus consists in identifying the meta-level descriptions and their
reflected counterpart at every level. By collapsing the isomorphism, the self-describing
presentation (Section 6.1.2) implements a zig-zag of descriptions spiralling downward:

DescR
`+2 DescM

`+2 Ũ+ (`+ 2)

DescR
`+1 DescM

`+1 Ũ+ (`+ 1)

DescR
` DescM

` Ũ+ `

:

:

:

∼=

∼=

∼=

We can therefore dispose entirely of the tower of DescM and present DescR as a self-
supporting tower of definitions.
6.98 Remark (Absence of switchD in the model). Our model does not capture the switchD

construction. Instead, we exhibit the isomorphism between meta and reflected descrip-
tions. It is the privilege of an implementation to actually collapse the isomorphism:
in our type-theoretic model, we cannot identify distinct objects, even though they are
extensionally equal. In our implementation, switchD lets us collapse this isomorphism,
operationally identifying the reflected descriptions as a pre-existing, meta object – i.e.
the meta-level descriptions.
6.99 Remark (Noise in DescM definition). In ¶ 6.89, we noticed that the W-type encoding
of DescM contained some apparently unnecessary noise, in the form of functions to the
unit type. The proof of Theorem 6.96 should shed some light on this decision.

Indeed, the inhabitants of DescR are the result of the interpretation of DescDR through
µM: the resulting W-type contains some unavoidable encoding noise. Knowing this
noise, we simply defined DescM in such a way that its interpretation would artificially
generate the same noise. This way, the constructors of DescM and the constructors of
DescR match on the nose: they are trivially (extensionally) equal. If we had been less

141

6. Bootstrapping Inductive Types

careful in defining DescM , the isomorphism would still hold. However, establishing the
equivalence would have called for more legwork.
6.100 Remark (Set polymorphic models). In a stratified system, the self-encoded nature
of Desc appears only in a set polymorphic sense: the principal type of the encoded
description generalises to the type of Desc itself. We observe this phenomenon in our set
polymorphic model of descriptions in Agda, which relies on universe polymorphism,
and in our Coq model, which relies on typical ambiguity [Harper and Pollack, 1989]. In
those systems, we can again prove an isomorphism between the levitated Desc and its
pre-existing definition. Our presentation takes a step forward and offers to collapse the
isomorphism, disposing of any pre-existing definition.

142

6.3. Modelling Levitation

Conclusion

(6.101) This chapter was a pedagogical exercise in bootstrapping the theory of datatypes.
We presented a step-by-step construction of inductive types within type theory itself.
On the way, we gave a few examples of the risks of self-description and described
the tricks of the trade. This theoretical curiosity has some interesting practical conse-
quences. In such a system, descriptions are just like any other datatype. They come
equipped with the standard toolkit for reasoning and computing over them. In partic-
ular, we do not need to introduce a special elimination principle for descriptions: we
inherit the generic elimination principle of inductive types.

Besides, our presentation contrasts with the generative approaches of Agda and Coq.
Our theory of inductive types is closed, defined once and for all by the grammar of de-
scriptions. We can therefore write programs over the structure of all datatypes, the
ones that are, and the ones that are to be. We illustrated this possibility by defining
some generic datatypes – the free monads – and some generic programs – the catamor-
phism and the Kleisli categories associated with the free monads. Part IV pushes that
exploration of the structure of inductive types to a much wider scale: we shall study
a large class of datatype transformations, and develop generic programs for achieving
code reuse in type theory.

(6.102) Our presentation is also of interest to the implementer. Indeed, by condensing the
universe of enumerations and descriptions onto themselves, our requirement on the
base type theory is minimal: we only need to define the fixpoint of descriptions and its
elimination principle. We then obtain the type Desc by self-description. This implemen-
tation trick simplifies considerably the machinery required to provide inductive types
in a generic programming system. We shall explore the bootstrapping possibilities of
our design in Chapter 7, in which we reduce inductive definitions to our universe, au-
tomatically generate specialised lemmas to manipulate these inductive definitions, and
present a “deriving” mechanism akin to the one found in Haskell.

(6.103) Finally, we have presented a model of levitation. Using induction-recursion, we have
built a type-theoretic model of a hierarchy of types closed under W-types. This model
lets us formally state stratified definitions, such as the ones used to define Desc` from
Desc`+1. Thus, we have introduced a hierarchy of hard-coded descriptions and their
fixpoints. Within this universe, we have built the levitating descriptions, expressed
in term of the hard-coded description one level up. Finally, we have established an
isomorphism between the two objects. This justifies the correctness of our apparently
self-referential definition: we are merely collapsing an isomorphism.

Related work

(6.104) Generic programming is a vast topic. We refer our reader to Garcia et al. [2003] for a
broad overview of generic programming in various languages. For Haskell alone, there
is a myriad of proposals: Hinze et al. [2007] and Rodriguez et al. [2008] provide useful
comparative surveys.

143

6. Bootstrapping Inductive Types

(6.105) Our approach follows the polytypic programming style, as initiated by PolyP [Jans-
son and Jeuring, 1997]. We build generic functions by induction on signature functors.
However, unlike PolyP, we exploit type-level computation to avoid the preprocessing
phase: our datatypes are, natively, nothing but codes.

We have the type-indexed datatypes of Generic Haskell [Hinze et al., 2002] for free.
From one datatype, we can compute others and equip them with relevant structure: the
free monad construction provides one example. Our approach to encoding datatypes
as data also sustains generic views [Holdermans et al., 2006], allowing us to rebias the
presentation of datatypes conveniently. Tagged descriptions, giving us a sum-of-sigmas
view, are a natural example.

(6.106) We do not support polykinded programming [Hinze, 2000b], while it is supported
by Generic Haskell. Our descriptions are limited to endofunctors on SET I . Whilst in-
dexing is known to be sufficient to encode a large class of higher-kinded datatypes [Al-
tenkirch and McBride, 2003], we should rather hope to work in a more compositional
style. We are free to write higher-order programs manipulating codes, but is not yet
clear whether that is sufficient to deliver abstraction at higher kinds. Similarly, it will be
interesting to see whether arity-generic programming [Weirich and Casinghino, 2010]
arises just by computing with our codes, or whether a richer abstraction is called for.

(6.107) The Scrap Your Boilerplate [Lämmel and Peyton Jones, 2003] (SYB) approach to
generic programming offers a way to construct generic functions, based on dynamic
type-testing via the Typeable type class. SYB cannot compute types from codes, but its
dynamic character does allow a more flexible ad hoc approach to generic data traver-
sal. By maintaining the correspondence between codes and types whilst supporting
arbitrary inspection of codes, we pursue the same flexibility statically.

(6.108) Generic programming is not new to dependent types either. Altenkirch and McBride
[2003] developed a universe of polykinded types in Lego; Norell [2002] gave a formali-
sation of polytypic programming in Alfa, a precursor to Agda; Verbruggen et al. [2008,
2010] provided a framework for polytypic programming in the Coq theorem prover.
However, these works aim at modelling PolyP or Generic Haskell in a dependently-
typed setting for the purpose of proving correctness properties of Haskell code. Our
approach is different in that we aim at building a foundation for datatypes, in type
theory, for type theory.

(6.109) Closer to us are the work of Pfeifer and Ruess [1998] and Benke et al. [2003]. These
seminal papers introduced the usage of universes for developing generic programs.
Our universes share similarities with Benke et al.’s: our universe of descriptions is
similar to their universe of iterated induction, and our universe of indexed descriptions
is equivalent to their universe of finitary indexed induction. This is not surprising since
we share the same source of inspiration, namely induction-recursion.

144

7. Elaborating Inductive Definitions
(7.1) In this chapter, we give a formal semantics to the syntax of datatypes presented in

Section 3.2.2. Its semantics was hinted at by means of examples. We now give a formal
specification of its elaboration down to our universes of datatypes. Effectively, we give
a translation semantics to inductive definitions.

We first specify the elaboration of inductive types down to the universe of descrip-
tions in Section 7.1. While this system is restricted to strictly-positive types, we take
advantage of its simplicity to develop our intuition. We aim at presenting a general
methodology for growing a language of datatypes on top of a universe. The choice of a
particular universe of datatypes is in large part irrelevant.

In particular, the same ideas are at play on inductive families, whose elaboration we
specify in Section 7.2. This system subsumes the previous one, so we should reuse
many of the concepts developed for inductive types. The novelty of our syntax is to
support computation on indices, as made possible by our universe.

Finally, we consider two potential extensions of the elaboration machinery in Sec-
tion 7.3. For the proof-assistant implementer, we show how meta-theoretical results on
inductive types, such as the work of McBride et al. [2004], can be internalised and for-
mally presented in type theory. For the programmer, we show how a generic deriving
mechanism à la Haskell can be implemented from within type theory. Through these
examples, we demonstrate the pervasiveness of an elaboration-based approach.
7.2 Remark (Scope of this work). This chapter aims at specifying the elaboration of in-
ductive definitions down to their representations in a universe of inductive types. At
the risk of disappointing implementers, we are not describing an implementation. In
particular, we shall present elaboration in a relational style, hence conveniently glanc-
ing over the operational details. Our goal is to ease the formal study of inductive def-
initions, hence the choice of this more abstract treatment. Nonetheless, this chapter is
not entirely disconnected from implementation. It grew out of our work on the Epi-
gram system, in which Peter Morris implemented a tactic elaborating an earlier form of
inductive definition down to descriptions [Brady et al.].

7.1. Inductive Types

(7.3) In this section, we specify the elaboration of inductive types down to our Desc uni-
verse. While this universe only captures strictly-positive types, it is a good exercise
to understand the general idea governing the elaboration of inductive definitions. Be-
sides, because the syntax is essentially the same, our presentation should be easy to
understand for readers familiar with Haskell, Coq, or Agda.

145

7. Elaborating Inductive Definitions

(7.4) Our syntax for inductive definitions follows the sum-of-products canon:

data D
−−−→
[p : P] : SET where

D−→p 3 c0
−−−−→
(a0 : T0)

| . . .

| ck
−−−−→
(ak : Tk)

The arguments ~p are parameters. A Ti can be recursive, i.e. refer to D ~p, but only in
a strictly-positive position. We require that the parameters are the same in the defini-
tion and the recursive arguments. Doing so, we forbid nested types that, short of an
impredicative sort, we shall treat as (large) inductive families indexed by a large set,
rather than (small) parameterised inductive types [Matthes, 2009].

7.5 Definition (Grammar of inductive definitions). Formally, this notation is captured
by the grammar:

〈data〉 ::= data D ([p : 〈T〉])∗ : 〈T〉where 〈choices〉
〈choices〉 ::= D (p)∗ 3 〈constructor〉 (′|′ 〈constructor〉)∗

〈constructor〉 ::= con 〈arguments〉
〈arguments〉 ::= (′(′x : 〈T〉′)′)∗

ELABORATION

The terminals D and con correspond, respectively, to the datatype name and to the
constructor names. Following our earlier convention, the non-terminal 〈T〉 ranges over
types.

(7.6) The translation to descriptions follows the structure of inductive definitions. The
first level structure consists of the choice of constructors (i.e. the non-terminal 〈choices〉)
and is translated to a Σ code over the finite set of constructors. The second level struc-
ture consists of the Σ-telescope of arguments (i.e. the non-terminal 〈arguments〉): it
translates to right-nested Σ codes. When elaborating arguments, we must make sure
that the recursive arguments are valid, and translate them to the var code.

7.1.1. Description labels

(7.7) To guide the elaboration of inductive definitions, we extend the type theory with
description labels. Their role is akin to programming labels (Section 3.2.1): they guide
elaboration and, in particular, help ensure that recursive arguments are correctly elab-
orated. A description label HlI consists of an identifier – the name of the datatype being
defined – applied to a list of terms – the parameters of that datatype. It is simply a
phantom type around descriptions: it hides a low-level Desc code with a high-level

146

7.1. Inductive Types

Γ ` VALID
Γ ` HlI : SETl+1

Γ ` D : tagDesc
Γ ` return D :HlI

callHlI (t :HlI) : tagDesc
callHlI (return D) 7→ D

META-THEORY

Figure 7.1.: Description label

presentation, i.e. the name and parameters of the datatype being defined. The elabo-
rative steps are ran against a description label: thus, we can spot recursive arguments
and check that parameters are preserved across a definition.
7.8 Definition (Description label). We extend the type theory with a new syntactic en-
tity, the label

〈l〉 ::= D (〈t〉)∗ 〈T〉 ::= . . . | H〈l〉I

SYNTAX

We then define a set former HlI (Figure 7.1), the description label of the datatype l.
We introduce a description label using return. This constructor takes a (finite) enumer-
ation of constructors and their respective code. Doing so, we ensure that we only build
tagged descriptions. With callHlI , we eliminate return, obtaining a tagged description.
7.9 Remark. Labelled descriptions are not strictly necessary in the context of inductive
types. In particular, we extend the type theory with a description label that is never
actually used as a type. It only guides the elaboration and could therefore simply index
our elaboration relations. However, in our treatment of inductive families, we will
need the full power of labels. This section helps us get acquainted with the concept of
description label.

7.1.2. Elaborating inductive types

(7.10) We present our translation in a top-down manner: from a complete definition, we
show how the pieces fit together, giving some intuition for the subsequent translations.
We then move on to disassemble and interpret each subcomponent separately. As we
progress, the reader should check that the intuition we gave for the whole is indeed
valid. Every elaboration step is backed by a soundness property: proving these proper-
ties is inherently bottom-up. After having presented our definitions, we can prove the
soundness theorem. The proof is technically unsurprising: we shall sketch it at the end

147

7. Elaborating Inductive Definitions

of this section.

7.11 Remark (Structure of elaboration judgments). For the purpose of elaboration, we
are going to define several judgments. However, they all follow the same pattern:

(1) ` (2)
(3)
;(4)

In (1), to the left of the entailment symbol (`), we maintain a (valid) context of typed
variables. In (1) and (2), to the left of the arrow, are the inputs of the relation, while
outputs are kept to the right, in (4). The inputs in (2) are generally fragments of syntactic
definitions. Outputs in (4) are low-level terms in the type theory, generally description
codes. The arrow is pronounced “elaborates to”, with the identifier (3) specifying which
part of the inductive definition is treated.

7.12 Example. To further ease the understanding of our machinery, we illustrate each
step by elaborating binary trees:

data Tree [A : SET] : SET where
Tree A 3 leaf

| node (a : A)(b : Bool→Tree A)

Note that we (needlessly) use a higher-order argument to code the pair of branches.
This is for pedagogical reasons, so as to demonstrate the elaboration of higher-order
recursive arguments. We expect this datatype to elaborate to:

Tree (A : SET) : SET

Tree A 7→ µ

(
Σ EnumT

{
’leaf
’node

}{
’leaf 7→ 1
’node 7→ Σ A λ− . (Π Bool λ− . var)× 1

})
7.13 Remark. In our examples, we describe the derivations that lead to the elaboration
of the datatype. While convenient for specifying elaboration, displaying the deriva-
tion tree justifying our examples has many disadvantages. First, it is space-consuming
and rather difficult to read after a few deduction steps. Second, it forces a backward-
chaining style: from the desired conclusion, we must derive the subgoals.

Rather than writing proof trees, we write these derivations in the style of Lamport
[1995]. This enables a more flat representation of derivations, while allowing a forward-
chaining proof style: we can justify a goal by first presenting some hypothesis, and then
appeal to a rule that lets us deduce the goal from the hypothesis. Doing so, we put the
emphasis on the rules themselves, rather than on a too concrete proof tree. To further
reduce space consumption, we shall maintain the context of derivations – the left of
the turnstile – at the level of the proof. We indicate these assumptions using the LET

keyword.
(7.14) Elaboration of an inductive definition (Figure 7.2a.)

Γ ` data D
−−−→
(p : P) : SET where choices D;∆

148

7.1. Inductive Types

〈Γ〉 ` 〈data〉 D;〈Γ〉

Γ ` SET1 3
−−−→
(p : P)→ SET

Chk;
−−−→
(p : P′)→ SET

Γ;
−−→
p : P′ ` D ~p 3 choices Cs; code

Γ ` data D
−−−→
[p : P] : SET where choices D;

Γ[D 7→ λ~p. µ (callHD ~pI code) :
−−−→
(p : P′)→ SET]

(DATA)

(a) Elaboration of definition

〈Γ〉 ` 〈l〉 3 〈choices〉 Cs;〈t〉

T . l
Γ ` l 3 ci

C;[ti 7→ codei]

Γ ` EnumU 3 {ti}
Chk; E

Γ ` π E λ− . Desc 3 {ti 7→ codei}
Chk; T

Γ ` l 3 T � c0| . . . |cn
Cs; return (E, T)

(CHOICES)

(b) Elaboration of constructor choices

〈Γ〉 ` 〈l〉 3 〈constructor〉 C;[〈t〉 7→ 〈t〉]

Γ ` UId 3 ’t Chk; t′

Γ ` l 3 args A; code

Γ ` l 3 t args C;[t′ 7→ code]
(CONSTRUCTOR)

(c) Elaboration of a constructor

Figure 7.2.: Elaboration of inductive types

149

7. Elaborating Inductive Definitions

〈Γ〉 ` 〈l〉 3 〈arguments〉 A;〈t〉

Γ ` SET 3 T Chk; T′ Γ; x : T′ ` l 3 ∆ A; code∆

Γ ` l 3 (x : T)∆ A;Σ T′ λx. code∆

(ARG-SIG)

Γ ` l 3 ∇ R; code∇ Γ ` l 3 ∆ A; code∆

Γ ` l 3 (x :∇)∆ A; code∇× code∆

(ARG-REC)

Γ ` VALID

Γ ` l 3 ε
A; 1

(ARG-END)

(d) Elaboration of arguments

〈Γ〉 ` 〈l〉 3 〈T〉 R;〈t〉

Γ ` VALID T . l
Γ ` l 3 T R; var

(ARG-REC-VAR)

Γ ` SET 3 T Chk; T′ Γ; t : T′ ` l 3 ∇ R; code∇
Γ ` l 3 (t : T)→∇ R;Π T′ λt. code∇

(ARG-REC-EXP)

Γ ` SET 3 T Chk; T′ Γ; t : T′ ` l 3 ∇ R; code∇
Γ ` l 3 (t : T)×∇ R;Σ T′ λt. code∇

(ARG-REC-SIG)

(e) Elaboration of recursive arguments

〈T〉 .〈l〉

D .D (MATCH-NAME) T . l
T p . l p (MATCH-PARAM)

(f) Matching label

Figure 7.2.: Elaboration of inductive types

150

7.1. Inductive Types

This judgment reads as: in context Γ, the definition data D
−−−→
(p : P) : SET where choices

extends the original context to a context ∆ in which D has been defined. To obtain
this definition, we first elaborate the parameters – via type checking – and move onto

elaborating the choice of constructors – via the judgment Cs; – introducing a description
label in the process.

7.15 Example (Elaborating Tree). Applied to our example, we obtain:

LET: Γ a valid context

〈1〉1.
` data Tree [A : SET] : SET where [choices]

D; Γ[Tree 7→ λA. µ (callHTree AI [code]) : A→ SET]
BY: Example 7.18 applied to rule (DATA)

where

choices , Tree A � leaf | node (a : A)(b : Bool→Tree A)

code , return

{
’leaf
’node

}{
’leaf 7→ 1
’node 7→ Σ A λ− . (Π Bool λ. var)× 1

}
(7.16) Elaboration of constructor choices (Figure 7.2b.)

Γ ` l 3 choices Cs; code

This judgment reads as: in a context Γ, the sum of constructors choices defining the
datatype l elaborates to a description code. To elaborate the choice of constructors, we

elaborate each individual constructor – via judgment C; – hence obtaining their respec-
tive constructor name and code. We then return the finite collection of constructor
names and their corresponding codes.

This elaboration step is subject to the soundness property:

7.17 Lemma. If Γ ` l 3 choices Cs; code, then Γ ` code :HlI

7.18 Example (Elaborating Tree). Applied to our example, we obtain:

LET: 1. Γ a valid context
2. A : SET

〈1〉1. ` Tree A 3 [choices] Cs;[code]
BY: By Example 7.21 applied to rule (CHOICES)

Where choices and code have been defined above.

(7.19) Elaboration of a constructor (Figure 7.2c.)

Γ ` l 3 c C;[t 7→ code]

This judgment reads as: in context Γ, the constructor c defining a datatype l elabo-
rates to a tag t, the constructor name, and a description code. The role of this elaboration
step is twofold. First, we extract the constructor name and elaborate it to a tag – via

151

7. Elaborating Inductive Definitions

type checking against UId. Second, we elaborate the arguments of that constructor –

via judgment A; – hence obtaining a Desc code terminated by the 1 code. We return the
pair of the tag and the arguments’ code.

This step is subject to the following soundness property:

7.20 Lemma. If Γ ` l 3 c C;[t 7→ code], then
{

Γ ` t : UId
Γ ` code : Desc

7.21 Example (Elaborating Tree). Since our datatype has two constructors, there are two
instances of constructor elaboration.

LET: 1. Γ a valid context
2. A : SET

SKETCH: The first one to elaborate the leaf constructors:
〈1〉1. ` Tree A 3 leaf

C;[’leaf 7→ 1]
BY: Example 7.24 applied to rule (CONSTRUCTOR)

SKETCH: The second one to elaborate the node constructor:

〈1〉2.
` Tree A 3node (a : A)(b : Bool→Tree A)

C;[’node 7→ Σ A λ− . (Π Bool λ− . var)× 1]
BY: Example 7.24 applied to rule (CONSTRUCTOR)

(7.22) Elaboration of arguments (Figure 7.2d.)

Γ ` l 3 args A; code

This judgment reads as: in context Γ, a constructor’s arguments args defining the
datatype l elaborate to a description code. The arguments are interpreted as telescopes
of Σ-types terminated by a unit type. Hence our translation to Σ and × codes.

The rules (ARG-SIG) and (ARG-REC) are (purposely) ambiguous: T could either be a
proper type or a recursive argument. In the first case, this maps to a standard Σ code,

while in the second case, we elaborate the recursive arguments – via judgment R; – and
continue with a non-dependent product. Once all arguments have been processed, we
conclude by generating the 1 code – via rule (ARG-END).

This translation is subject to the following soundness property:

7.23 Lemma. If Γ ` l 3 args A; code, then Γ ` code : Desc

7.24 Example (Elaborating Tree).

LET: 1. Γ a valid context
2. A : SET

SKETCH: Elaborating the arguments of the leaf constructor is trivial:

〈1〉1. ` Tree A 3 ε
A; 1

BY: rule (ARG-END)
SKETCH: As for the node constructor, we obtain its code by elaborating (a : A) to a Σ
code, then elaborating the recursive argument, and terminating with the 1 code:

〈1〉2. ` Tree A 3 (a : A)(b : Bool→Tree A)
A;Σ A λ− . (Π Bool λ− . var)× 1

152

7.1. Inductive Types

LET: a : A
〈2〉1. ` Tree A 3 (b : Bool→Tree A)

A;(Π Bool λ− . var)× 1

〈3〉1. ` Tree A 3 ε
A; 1

BY: rule (ARG-END)
〈3〉2. Q.E.D.

BY: Example 7.27 and 〈3〉1 applied to rule (ARG-REC)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (ARG-SIG)

(7.25) Elaboration of recursive arguments (Figure 7.2e.)

Γ ` l 3 rec R; code

This judgment reads as: in context Γ, a recursive argument rec defining the datatype
l elaborates to a description code. There are three cases. First of all, we spot recursive
arguments via rule (ARG-REC-VAR). In this case, we must make sure that the recursive
call is valid – via the judgment T . l – and, if so, we generate a var code. We also support
constant exponentials of recursive arguments, translating them to the Π code – via rule
(ARG-REC-EXP). Similarly, we support coefficients of recursive arguments – via rule
(ARG-REC-SIG). This translation is subject to the following soundness property:

7.26 Lemma. If Γ ` l 3 rec R; code, then Γ ` code : Desc

7.27 Example (Elaborating Tree). The leaf constructor has no recursive argument. There
is therefore no elaboration step associated with it. As for the node constructor, we must
elaborate its higher-order recursive argument:

LET: 1. Γ a valid context
2. A : SET

3. a : A
〈1〉1. ` Tree A 3 (b : Bool→Tree A)

R;Π Bool λ− . var
LET: − : Bool
〈2〉1. Tree A .Tree A

BY: definition of − .−
〈2〉2. ` Tree A 3 Tree A R; var

BY: 〈2〉1 and rule (ARG-REC-VAR)
〈2〉3. Q.E.D.

BY: 〈2〉2 and rule (ARG-REC-EXP)

(7.28) Soundness. We can now prove the soundness of the whole translation: the elabora-
tion of a datatype in a valid context Γ returns an extended context ∆ that is valid.

7.29 Theorem (Soundness of elaboration). If Γ ` data D
−−−→
(p : P) : SET where choices D;∆,

then ∆ ` VALID.

Proof. First, we prove Lemma 7.26 by induction on the structure of recursive argu-
ments. We then prove Lemma 7.23 by induction on the list of arguments. We obtain

153

7. Elaborating Inductive Definitions

Lemma 7.20. Applying this lemma to all constructors, we obtain Lemma 7.17. The
soundness theorem follows.

7.30 Remark (Relative importance of matching labels correctly). The reader will have
noticed that we did not prove any theorem about the relation . that matches the la-
bels with the user inputs. Indeed, this relation works purely at a syntactic level, to
ensure that the definition entered by the user is consistent. At the type-theoretic level,
a “wrong” definition of . has little effect. For example, if our relation matching labels
did not enforce the stability of parameters, the following definitions would elaborate to
the same type-theoretic objects as before:

data Tree [A : SET] : SET where
Tree B 3 leaf

| node (a : A)(b : Bool→Tree A)

data Tree [A : SET] : SET where
Tree A 3 leaf

| node (a : A)(b : Bool→Tree B)

In effect, the relation . guarantees that what the user sees is what the elaboration
does. But the elaboration would do it irrespectively of a bogus definition of the label
matching relation: it is but a syntactic safeguard.

(7.31) Completeness. While our soundness theorem gives some hint as to the correctness
of our specification, we can obtain a stronger result by proving an equivalence between
Coq’s Inductive definitions and the corresponding datatype declaration in our sys-
tem. This equivalence amounts to proving the equivalence of the associated elimi-
nation forms, i.e. Fixpoint in Coq and induction in our system. However, since we
do not know of any formal description of elimination principles generated from an
Inductive definition, we shall use the simpler presentation given by Giménez [1995].
Because of its simplicity, Giménez’s model does not explicitly support inductive defi-
nitions such as mutually-inductive definitions, nested types, or nested fixpoints: as for
descriptions (Remark 4.12), we can nonetheless express them through encodings.

7.32 Lemma. For any inductive definition Ind(X : SET)〈C0 | . . . | Cn〉 in Coq, the cor-
responding inductive definition data X : SET where X 3 C0 | · · · | Cn in our system
elaborates to a code D having an extensionally equal elimination principle.

Proof. To prove this result, we compute the elaboration of a constructor form C (Defini-

tion 2.2, [Giménez, 1995]). This merely consists in applying the judgment C;: we denote
b−c the result of this elaboration step. We proceed by induction over the syntax of a
constructor form and obtain:

bXc 7→ 1
b(x : M)→ Cc 7→ Σ M λx. bCc

b(x : M→ X)→ Cc 7→ (Π M λ− . var)×bCc

We thus get a translation from Giménez’s recursive type declarations to a code in our

154

7.2. Inductive Families

universe:
bInd(X : SET)〈C0 | . . . | Cn〉c 7→ Σ (Fin n) {i 7→ bCic}

Having done that, it is then a straightforward symbol-pushing exercise to prove that
Coq’s elimination rules (Section 3.1.1, Giménez [1995]) can be reduced to our generic
elimination principle. The crux of the matter is in showing that the minor premises –
defined by E1 in that paper – are extensionally equivalent to the inductive step – defined
by �D X →̇X ◦ in in our system.

(7.33) A corollary of this lemma amounts to the completeness of our syntax of datatypes,
i.e. for a datatype X, all the functions that can be written over X in one system are
expressible in the other one.

7.34 Theorem (Completeness of elaboration). For an inductive type

Ind(X : SET)〈C0 | . . . | Cn〉

in Coq, any function introduced by a Fixpoint definition over X admits an extension-
ally equivalent definition in our system. Conversely, our generic elimination principle
is accepted by Coq.

Proof. We must show that any Fixpoint definition can be implemented using our in-
duction principle. To this end, we use Giménez reduction of Fixpoint definitions down
to elimination rules. By Lemma 7.32, we have that Coq’s induction principle is equiva-
lent to ours. Conversely, every definition in our system relies on the generic elimination
principle, which we have shown equivalent to the one in Coq.

7.35 Remark. Such a completeness result is only possible because the language of in-
ductive definitions we consider corresponds exactly to Coq’s language. We have an
alternative semantics to compare ours with, which allows us to verify our elaboration
as we would verify a compiler against a reference semantics. However, in the indexed
case, Coq does not support computation on indices. In this case, we escape Coq’s reach
and elaboration defines the semantics of our datatypes. This is why the soundness result
is crucial.

7.2. Inductive Families

(7.36) In this section, we extend our treatment of inductive definitions to inductive fam-
ilies. To do so, we add support for indices and computation on these indices. The
resulting system subsumes the one presented in the previous section. We reuse most
notations and rely on the intuition gained though this simpler system. Our syntax is
strongly inspired by the one used by Agda and Coq. However, to support computation

155

7. Elaborating Inductive Definitions

〈data〉 ::= data D ([p : 〈T〉])∗(′(′i : 〈T〉′)′)∗ : 〈T〉where 〈patterns〉
〈patterns〉 ::= (〈choices〉)∗(〈match〉)?

〈choices〉 ::= 〈pattern〉 3 〈constructor〉 (′|′ 〈constructor〉)∗

〈match〉 ::= 〈pattern〉 ⇐ 〈t〉{〈patterns〉}
〈pattern〉 ::= D (p)∗(〈t〉 | ′(′i =〈t〉′)′)∗

〈constructor〉 ::= con 〈arguments〉
〈arguments〉 ::= (′(′x : 〈T〉′)′)∗

ELABORATION

Figure 7.3.: Grammar of indexed inductive definitions

over indices, we add support for the Epigram-style by (⇐) gadget. Our language of
inductive definitions is therefore more complex, following the skeleton:

data D
−−−→
[p : P]

−−→
(i : I) : SET where

D ~p
−−−−→
(i = t0) 3 c0,0

−−−−−−→
(a0,0 : T0,0)

| . . .
...

D ~p~i ⇐ elim im

D ~p ~k0 3 . . .
...

7.37 Definition (Grammar of inductive families). Formally, this notation is captured
by the grammar of Figure 7.3. Following convention, 〈t〉 ranges over terms while 〈T〉
ranges over types. We artificially segregate parameters from indices, putting param-
eters first. This is not strictly necessary since our syntax syntactically distinguishes
parameters, declared by writing [p : P], from indices, declared by writing (i : I). How-
ever, this choice simplifies the syntax and, later, its elaboration. Our definition of the
non-terminal 〈patterns〉 follows the structure of tagged description (Definition 5.44): it
starts with 〈choices〉 – the constructors available at any index – and ends with 〈match〉 –
that introduces computations on indices.

7.38 Remark. This syntax is a superset of Agda’s and Coq’s definitions: by discarding
the non-terminal 〈match〉, we obtain a syntax exactly equivalent to the one they offer.
If we were interested in reasoning about the inductive definitions of these systems,
we could simply remove 〈match〉 from the grammar. With this minor adjustment, our
formalisation of elaboration gives a translation semantics for the inductive definitions
of these mainstream theorem provers.

156

7.2. Inductive Families

7.2.1. Description labels

(7.39) In Section 7.1.1, we have introduced the notion of description labels. It was geared
to deal with parametric definitions. For inductive families, we must adapt labels to
account for indexing. Indices, unlike parameters, can be either unconstrained – denoted
(i) for some index i – or constrained to some particular value – denoted (i = t). A
description label is now a phantom type around IDesc I, where I is the product of the
datatype’s indices.

7.40 Definition ((Indexed) description label). We extend the term language with a syn-
tactic category of (indexed) labels 〈l〉:

〈l〉 ::= D ([〈T〉])∗〈indices〉 〈T〉 ::= . . . | H〈l〉I
〈indices〉 ::= ′(′i : 〈T〉′)′〈indices〉

| ′(′i =〈t〉 : 〈T〉′)′〈indices〉

SYNTAX

We then define the set former HlI, the description label of the datatype l (Figure 7.4).
Note that indices are presented in a Church-style: they carry a type. We also intro-
duce a meta-operation J− KD that computes the (dependent) product of these types. It
computes the index of the description from the label:

JD [pk] . . . (il : Tj) . . . (im = tm : Tm) . . . KD 7→ (i0 : T0)× . . .× (im : Tm)× . . . 1

META-THEORY

The type HlI is inhabited by a return constructor, which takes an enumeration of con-
structors and their codes. It is then eliminated by callHlI that builds an indexed descrip-
tion.

7.41 Remark (Targetting indexed descriptions). For simplicity, our presentation elab-
orates to a poor man’s tagged indexed description: after a computation rule, we do
not keep track of constructors – unlike the actual tagged indexed descriptions (¶ 5.44).
Targeting a properly tagged description needlessly complicates our exposition.

7.2.2. Elaborating inductive families

(7.42) As for inductive types, we shall present the elaboration process in a top-down man-
ner. This presentation shares a few traits with the simpler elaboration of inductive
types: we elaborate choices of constructors (Figure 7.5c), followed by individual con-
structors (Figure 7.5d), and finally process the telescope of arguments (Figure 7.5e).

The presence of indices introduces new steps. We constrain and compute over in-

157

7. Elaborating Inductive Definitions

Γ ` JlKD : SET`
Γ ` HlI : SETl+1

Γ ` E : EnumU
Γ ` T : π E λ− . IDesc JlKD

Γ ` return E T :HlI
callHlI (t :HlI) : IDesc JlKD
callHlI (return E T) 7→ (E, T)

META-THEORY

Figure 7.4.: Description label (indexed)

dices through a new top-level judgment (Figure 7.5b). Besides, we must translate the
constraints to actual equalities (Figure 7.5h) and pass the correct indices when elaborat-
ing a recursive argument (Figure 7.5i).

7.43 Example. To give a better intuition of a rather intricate system, we illustrate every
judgment with two examples. Our first example is the definition of vectors that relies
on constraints to enforce the indexing discipline:

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

Our second example consists of the alternative definition of vector, where we com-
pute over the index to determine which constructor to offer:

data Vec [A : SET](n : Nat) : SET where
Vec A n ⇐ Nat-case n

Vec A 0 3 nil
Vec A (suc m) 3 cons (a : A)(vs : Vec A m)

(7.44) Elaboration of inductive families (Figure 7.5a.)

Γ ` data D
−−−→
[p : P]

−−→
(i : I) : SET where patts D;∆

This judgment reads as: in context Γ, the definition of datatype D, with parameters ~p,
indices~i, and constructors choices, elaborates to a context ∆ in which D is defined. The
elaboration of an inductive definition sets up the environment to trigger the elaboration
of the patterns of constructors. To do so, we first elaborate the telescope of parameters

and indices – via type checking. We can then translate the patterns – via Patts; – by
elaborating against the label type corresponding to the given inductive type.

158

7.2. Inductive Families

〈Γ〉 ` 〈data〉 D;〈Γ〉

Γ ` SET1 3
−−−→
(p : P)

−−→
(i : I)→ SET

Chk;
−−−→
(p : P′)

−−−→
(i : I′)→ SET

Γ;
−−→
p : P′;

−→
i : I′ ` D

−→
[p]
−→
(i) 3 patts Patts; code

Γ ` data D
−−−→
[p : P]

−−→
(i : I) : SET where patts D;

Γ[D 7→ λ~p : ~P′. µ (λ~i :~I′. callHD
−→
[p]
−→
(i)I code) :

−−−→
(p : P′)

−−−→
(i : I′)→ SET]

(DATA)

(a) Elaboration of definition

〈Γ〉 ` 〈l〉 3 〈patterns〉 Patts; 〈t〉

l ⊇ pti
I; li

Γ ` li 3 csi
Cs;[
{
~ci,j
}
7→
{−−−−−−→ci,j 7→ asi,j

}
]

l ⊇ pti+1
I; li+1

Γ ` e ewm; e′ ∈
−−−−−−−−−−−→
(
−−−−→
(xk : Xk)→ HlkI)→ Hli+1I

Γ;
−−−→
xk : Xk ` lk 3 pk

Patts; codek

Γ ` l 3

pt0 � cs0
...
pti � csi
pti+1 ⇐ e {~pk}

Patts; return

{
~ci,j
’elim

}
{

ci,j 7→ asi,j

’elim 7→ e′
−−−−−−−−−−−−−−→
(λ~xk : ~Xk. callHlkI codek)

}
(PATTERNS)

(b) Elaboration of patterns

〈Γ〉 ` 〈l〉 3 〈choices〉 Cs;[〈t〉 7→ 〈t〉]

Γ ` l 3 ci
C;[ti 7→ codei]

Γ ` l 3 c0| . . . |cn
Cs;[
{
~ti
}
7→
{−−−−−−→

ti 7→ codei

}
]
(CHOICES)

(c) Elaboration of choices

Figure 7.5.: Elaboration of inductive families

159

7. Elaborating Inductive Definitions

〈Γ〉 ` 〈l〉 3 〈constructor〉 C;[〈t〉 7→ 〈t〉]

Γ ` UId 3 ’c Chk; c′ Γ ` l 3 args A; code

Γ ` l 3 c args C;[c′ 7→ code]
(CONSTRUCTOR)

(d) Elaboration of constructor

〈Γ〉 ` 〈l〉 3 〈arguments〉 A;〈t〉

Γ ` SET 3 T Chk; T′ Γ; x : T′ ` l 3 ∆ A; code∆

Γ ` l 3 (x : T) ∆ A;Σ T λx. code∆

(ARG-SIG)

Γ ` l 3 ∇ R; code∇ Γ ` l 3 ∆ A; code∆

Γ ` l 3 (x :∇) ∆ A; code∇× code∆

(ARG-REC)

Γ ` l
Eq
; q

Γ ` l 3 ε
A; q

(ARG-END)

(e) Elaboration of arguments

〈Γ〉 ` 〈l〉 3 〈arguments〉 R;〈t〉

Γ ` l 3 T Idx; is
Γ ` l 3 (x : T) R; var is

(ARG-REC-VAR)

Γ ` SET 3 T Chk; T′ Γ; x : T′ ` l 3 ∇ R; code∇
Γ ` l 3 (x : T)→∇ R;Π T′ λx. code∇

(ARG-REC-EXP)

Γ ` SET 3 T Chk; T′ Γ; x : T′ ` l 3 ∇ R; code∇
Γ ` l 3 (x : T)×∇ R;Σ T′ λx. code∇

(ARG-REC-SIG)

(f) Elaboration of recursive arguments

Figure 7.5.: Elaboration of inductive families

160

7.2. Inductive Families

〈l〉 ⊇ 〈T〉 I;〈l〉

D ⊇ D I;D
l ⊇ T I; lT

l [p] ⊇ T p I; lT [p]
l ⊇ T I; lT

l (i : I) ⊇ T i I; lT (i : I)

l ⊇ T I; lT

l (i : I) ⊇ T (i = t : I) I; lT (i = t : I)
l ⊇ T I; lT

l (i = t : I) ⊇ T (i = t : I) I; lT (i = t : I)

(g) Pattern validation

〈Γ〉 ` 〈l〉 Eq
;〈l〉

Γ ` VALID

Γ ` D
Eq
; 1

(EQ-END)
Γ ` l

Eq
; q

Γ ` l [p]
Eq
; q

(EQ-PARAM)

Γ ` l
Eq
; q

Γ ` l (i : I)
Eq
; q

(EQ-INDEX)

Γ ` l
Eq
; q

i : I ∈ Γ

Γ ` I 3 t Chk; t′

Γ ` l (i = t : I)
Eq
;Σ (i = t′) λ− . q

(EQ-CSTR)

(h) Elaboration of constraints

〈Γ〉 ` 〈l〉 3 〈T〉 Idx;〈t〉

Γ ` l 3 t Idx; is
Γ ` D l 3 D t Idx; is

(EQ-START) Γ ` VALID

Γ ` ε 3 ε
Idx; ∗

(EQ-END)

Γ ` l 3 t Idx; is
Γ ` [p] l 3 p t Idx; is

(EQ-PARAM)

Γ ` I 3 i Chk; i′

Γ ` l 3 t Idx; is

Γ ` (j : I) l 3 i t Idx; (i′, is)
(EQ-INDEX)

Γ ` I 3 i Chk; i′

Γ ` l 3 t Idx; is

Γ ` (j= t : I) l 3 i t Idx; (i′, is)
(EQ-CSTR)

(i) Extraction of indices

Figure 7.5.: Elaboration of inductive families

161

7. Elaborating Inductive Definitions

7.45 Example (Vector, constrained). The elaboration of constraint-based vectors starts
as follows:

LET: Γ a valid context

〈1〉1.
` data Vec [A : SET](n : Nat) : SET where [patts=]

D;
Γ[Vec 7→ λA : SET. µ (λn : Nat. callHVec [A] (n : Nat)I [code=])

: (A : SET)(n : Nat)→ SET

]

BY: Example 7.51 applied to rule (DATA)

where

patts= ,
Vec A (n= 0) 3 nil
Vec A (n= suc m) 3 cons (m : Nat)(a : A)(vs : Vec A m)

code= , return

{
’nil
’cons

}
{

’nil 7→ Σ (n = 0) λ− . 1
’cons 7→ Σ Nat λm. Σ A λ− . var (m, ∗)×Σ (n = suc m) λ− . 1

}
7.46 Example (Vector, computed). The same skeleton is used in the alternative defini-
tion of vectors, but the choices of constructors – and therefore the resulting code – are
different:

patts→ ,
Vec A n ⇐ Nat-case n

Vec A 0 3 nil
Vec A (suc m) 3 cons (a : A)(vs : Vec A m)

code→ , return {’elim}’elim 7→

Nat-case n (λn. HVec [A](n : Nat)I)
(callHVec [A] (0 : Nat)I (return {’nil} {’nil 7→ 1}))
(λm. callHVec [A] (suc m : Nat)I

(return {’cons} {’cons 7→ Σ A λ− . var (m, ∗)× 1}))

(7.47) Elaboration of patterns (Figure 7.5b.)

Γ ` l 3 patts Patts; code

This judgment reads as: in context Γ, the index patterns patts defining the datatype
l elaborate to a description code. This elaboration judgment is an extra step that was
not necessary for inductive types. With inductive families, we can either constrain the
index to some particular value or compute over the index to refine the choice of con-
structors. Hence, an inductive definition is a list of index patterns, potentially ending
with a computation over the indices. Since the case where no index computation is per-
formed is a special case of this rule, we save space and do not treat this case explicitly.

The elaboration of pattern choices consists in interpreting the datatype patterns of

each constructor choice – via judgment Cs;. The resulting labels are used to elaborate

162

7.2. Inductive Families

these constructors choices. If there is a computation over indices, we rely on elimination
with a motive [Goguen et al., 2006, McBride, 2002] – via judgment ewm; – to generate
a type-theoretic term from the elimination principle provided by the user. We then
interpret each resulting subbranch as a pattern choice itself.

This elaboration step satisfies the following invariant:

7.48 Lemma. If Γ ` l 3 patts Patts; code, then Γ ` code :HlI
To prove this lemma, we need to show that pattern validation respects types:

7.49 Lemma. If l ⊇ T I; lT, then JlKD = JlTKD.

7.50 Remark. Note that we rely on the translation of datatype patterns T into a label lT

that carries the equations specified by T – via judgment I;: this device lets us postpone
the generation of the equality constraints until the end of the telescope of arguments,
for each argument. Indeed, we will be elaborating each individual constructor against
these labels: the rule (ARG-END) will trigger the generation of the equality constraints
at the end of each telescope of arguments.

7.51 Example (Vector, constrained). The elaboration of datatype patterns simply pro-
ceeds over the patterns of constructors, triggering the elaboration of patterns on nil and
cons:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. ` Vec [A](n : Nat) 3 [patts=]

Patts; [code=]

〈2〉1. Vec [A](n : Nat) ⊇ Vec A (n= 0)
I;Vec [A](n= 0 : Nat)

BY: definition of I;
〈2〉2. Vec [A](n : Nat) ⊇ Vec A (n= suc m)

I;Vec [A](n= suc m : Nat)

BY: definition of I;
〈2〉3. Q.E.D.

BY: Example 7.55, 〈2〉1, and 〈2〉2 applied to rule (PATTERNS)

where patts= and code= are the same as above.

7.52 Example (Vector, computed). For the other definition, the elaboration of patterns
triggers the elaboration of a motive for the nil and cons patterns:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. ` Vec [A](n : Nat) 3 [patts→]

Patts; [code→]

〈2〉1. Vec [A](n : Nat) ⊇ Vec A n I;Vec [A](n : Nat)

BY: definition of I;

〈2〉2.
` Nat-case n ewm;

λih0 ihn. Nat-case n ih0 ihn
∈ Vec [A](0 : Nat)→((m : Nat)→Vec [A](suc m : Nat))→Vec [A](n : Nat)

163

7. Elaborating Inductive Definitions

BY: definition of ewm;
SKETCH: In turn, this triggers the elaboration of constructor patterns for the nil and
cons patterns:

〈2〉3. ` Vec [A](0 : Nat) 3 nil
Patts; return {’nil} {’nil 7→ 1}

〈3〉1. Vec [A](n : Nat) ⊇ Vec A 0
I;Vec [A](0 : Nat)

BY: definition of I;
〈3〉2. Q.E.D.

BY: Example 7.56 and 〈3〉1 applied to rule (PATTERNS)
LET: m : Nat

〈2〉4.
` Vec [A](suc m : Nat) 3cons (a : A)(vs : Vec A m)

Patts; return {’cons} {’cons 7→ Σ A λ− . var (m, ∗)× 1}
〈3〉1. Vec [A](n : Nat) ⊇ Vec A suc m I;Vec [A](suc m : Nat)

BY: definition of I;
〈3〉2. Q.E.D.

BY: Example 7.56 and 〈3〉1 applied to rule (PATTERNS)
〈2〉5. Q.E.D.

BY: 〈2〉1, 〈2〉2, 〈2〉3, and 〈2〉4 applied to rule (PATTERNS)

with patts→ and code→ were previously defined.

(7.53) Elaboration of choices (Figure 7.5c.)

Γ ` l 3 choices Cs;[E 7→ T]

This judgment reads as: in context Γ, the sum of constructor choices elaborates to
an enumeration of constructor names E and their respective codes T. The elaboration
of the choice of datatypes follows from the definition of inductive types (¶ 7.16): we
merely collect the tag and code of each individual constructor and return them as enu-
merations.

This step is subject to the following soundness property:

7.54 Lemma. If Γ ` l 3 choices Cs;[E 7→ T], then
{

Γ ` E : EnumU
Γ ` T : EnumT E→ IDesc JlKD

7.55 Example (Vector, constrained). In the particular example of vector, there is only
one choice of constructor when (n= 0) – namely nil – and when (n= suc m) – namely
cons. Therefore, we obtain the elaboration of choices from the elaboration of the unique
constructor, in both cases:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. ` Vec [A](n= 0 : Nat) 3 nil

Cs;[{’nil} 7→ {’nil 7→ Σ (n = 0) λ− . 1}]
BY: Example 7.59 applied to rule (CHOICES)

164

7.2. Inductive Families

〈1〉2.
`Vec [A](n= suc m : Nat) 3 cons (m : Nat)(a : A)(vs : Vec A m)

Cs;[{’cons} 7→ {’cons 7→ Σ Nat λm. Σ A λ− . var (m, ∗)×Σ (n = suc m) λ− . 1}]
BY: Example 7.59 applied to rule (CHOICES)

7.56 Example (Vector, computed). The same situation arises here: once we have deter-
mined which index we are dealing with, there is a single constructor available. Hence,
we move from the elaboration of choices to the elaboration of the unique constructor:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. ` Vec [A](0 : Nat) 3 nil

Cs;[{’nil} 7→ {’nil 7→ 1}]
BY: Example 7.60 applied to rule (CHOICES)

LET: m : Nat

〈1〉2.
` Vec [A](suc m : Nat) 3 cons (a : A)(vs : Vec A m)

Cs;[{’cons} 7→ {’cons 7→ Σ A λ− . var (m, ∗)× 1}]
BY: Example 7.60 applied to rule (CHOICES)

(7.57) Elaboration of a constructor (Figure 7.5d.)

Γ ` l 3 c C;[t 7→ code]

This judgment reads as: in context Γ, the constructor c participating in the definition
of datatype l is named t and its arguments are coded by code. Again, the elaboration of
a constructor follows the definition for inductive types (¶ 7.19).

It is subject to the following invariant:

7.58 Lemma. If Γ ` l 3 c C;[t 7→ code], then
{

Γ ` t : UId
Γ ` code : IDesc JlKD

7.59 Example (Vector, constrained). Elaboration of the constructors is straightforward,
simply switching to the elaboration of the arguments:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. ` Vec [A] (n= 0 : Nat) 3 nil

C;[’nil 7→ Σ (n = 0) λ− . 1]
BY: Example 7.63 applied to rule (CONSTRUCTOR)

〈1〉2.
`Vec [A] (n= suc m : Nat) 3 cons (m : Nat)(a : A)(vs : Vec A m)

C;[’cons 7→ Σ Nat λm. Σ A λ− . var (m, ∗)×Σ (n = suc m) λ− . 1]
BY: Example 7.63 applied to rule (CONSTRUCTOR)

7.60 Example (Vector, computed). Similarly for the alternative definition, we have:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. ` Vec [A](0 : Nat) 3 nil

C;[’nil 7→ 1]

165

7. Elaborating Inductive Definitions

BY: Example 7.64 applied to rule (CONSTRUCTOR)
LET: m : Nat

〈1〉2.
` Vec [A](suc m : Nat) 3 cons (a : A)(vs : Vec A m)

C;[’cons 7→ Σ A λ− . var (m, ∗)× 1]
BY: Example 7.64 applied to rule (CONSTRUCTOR)

(7.61) Elaboration of arguments (Figure 7.5e.)

Γ ` l 3 args A; code

This judgment reads as: in context Γ, the telescope of arguments args participating
in the definition of the datatype l elaborates to a description code. The elaboration of
arguments follows the same principle as for inductive types (¶ 7.22). However, after
having encoded the telescope of arguments – via rule (ARG-SIG) and (ARG-REC), we
must switch to translating the potential equality constraints – via rule (ARG-END). As
hinted at in Remark 7.50, the equations are stored in the label l.

This step is subject to the following soundness property:

7.62 Lemma. If Γ ` l 3 args A; code, then Γ ` code : IDesc JlKD

7.63 Example (Vector, constrained). We then elaborate the arguments by unfolding the
telescope, at which point we switch to elaborating the constraints.

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
SKETCH: We do so immediately in the nil case:

〈1〉1. ` Vec [A] (n= 0 : Nat) 3 ε
A;Σ (n = 0) λ− . 1

BY: Example 7.71 applied to rule (ARG-END)
SKETCH: While a few steps are necessary to elaborate the arguments in the cons case,
including the elaboration of the recursive call:

〈1〉2.
`Vec [A] (n= suc m : Nat) 3 (m : Nat)(a : A)(vs : Vec A m)

A;Σ Nat λm. Σ A λ− . var (m, ∗)×Σ (n = suc m) λ− . 1
LET: m : Nat

〈2〉1.
` Vec [A] (n= suc m : Nat) 3 (a : A)(vs : Vec A m)

A;Σ A λ− . var (m, ∗)×Σ (n = suc m) λ− . 1

〈3〉1.
` Vec [A] (n= suc m : Nat) 3 (vs : Vec A m)

A; var (m, ∗)×Σ (n = suc m) λ− . 1

〈4〉1. ` Vec [A] (n= suc m : Nat) 3 ε
A;Σ (n = suc m) λ− . 1

BY: Example 7.71 applied to rule (ARG-END)
〈4〉2. Q.E.D.

BY: Example 7.67, and 〈4〉1 applied to rule (ARG-REC)
〈3〉2. Q.E.D.

BY: 〈3〉1 applied to rule (ARG-SIG)

166

7.2. Inductive Families

〈2〉2. Q.E.D.
BY: 〈2〉1 applied to rule (ARG-SIG)

7.64 Example (Vector, computed). In the alternative definition, the process is similar:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. A : SET, n : Nat ` Vec [A](0 : Nat) 3 ε

A; 1
BY: Example 7.72 applied to rule (ARG-END)

LET: m : Nat
〈1〉2. ` Vec [A](suc m : Nat) 3 (a : A)(vs : Vec A m)

A;Σ A λ− . var (m, ∗)× 1

〈2〉1. ` Vec [A](suc m : Nat) 3 (vs : Vec A m)
A; var (m, ∗)× 1

〈3〉1. ` Vec [A](suc m : Nat) 3 ε
A; 1

BY: Example 7.72 applied to rule (ARG-END)
〈3〉2. Q.E.D.

BY: Example 7.68, and 〈3〉1 applied to rule (ARG-REC)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (ARG-SIG)

(7.65) Elaboration of recursive arguments (Figure 7.5f.)

Γ ` l 3 arg R; code

This judgment reads as: in context Γ, the recursive argument arg participating in the
definition of the datatype l elaborates to a description code. Again, the elaboration of
recursive arguments follows the one for inductive types (¶ 7.25). However, when elab-
orating a recursive argument – via rule (ARG-REC-VAR), we must extract the indices

for which that recursive step is taken – via judgment Idx;.
This step is subject to the following soundness property:

7.66 Lemma. If Γ ` l 3 args R; code, then Γ ` code : IDesc JlKD

7.67 Example (Vector, constrained). There is no recursive argument in the nil case. The
elaboration of the recursive call in the cons case is a direct application of (ARG-REC-
VAR):

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
4. m : Nat

〈1〉1. ` Vec [A] (n= suc m : Nat) 3 (vs : Vec A m)
R; var (m, ∗)

BY: Example 7.75 applied to rule (ARG-REC-VAR)

7.68 Example (Vector, computed). In the alternative definition, the process is similar:
no recursive argument in the nil case and a direct appeal to (ARG-REC-VAR) in the cons
case:

167

7. Elaborating Inductive Definitions

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
4. m : Nat

〈1〉1. ` Vec [A](suc m : Nat) 3 (vs : Vec A m)
R; var (m, ∗)

BY: Example 7.76 applied to rule (ARG-REC-VAR)

(7.69) Elaboration of constraints (Figure 7.5h.)

Γ ` l
Eq
; q

This judgment reads as: in context Γ, the label l codes the equality constraints q.
In order to generate the equality constraints, we simply traverse the label. On an in-
dex constraint, we generate the corresponding equation, using whatever propositional
equality the system has to offer. On parameters and (unconstrained) indices, we simply
go through.

This step satisfies the following property:

7.70 Lemma. If Γ ` l
Eq
; q, then Γ ` q : IDesc JlKD.

7.71 Example (Vector, constrained). We elaborate the constraints in the nil case – con-
straining n to 0 – and in the cons case – constraining n to suc m:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat

〈1〉1. ` Vec [A] (n= 0 : Nat)
Eq
;Σ (n = 0) λ− . 1

〈2〉1. ` Vec [A]
Eq
; 1

〈3〉1. ` Vec
Eq
; 1

BY: rule (EQ-END)
〈3〉2. Q.E.D.

BY: 〈3〉1 applied to rule (EQ-PARAM)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (EQ-CSTR)
LET: m : Nat

〈1〉2. ` Vec [A] (n= suc m : Nat)
Eq
;Σ (n = suc m) λ− . 1

〈2〉1. ` Vec [A]
Eq
; 1

〈3〉1. ` Vec
Eq
; 1

BY: rule (EQ-END)
〈3〉2. Q.E.D.

BY: 〈3〉1 applied to rule (EQ-PARAM)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (EQ-CSTR)

7.72 Example (Vector, computed). No equations are generated and, indeed, needed for

168

7.2. Inductive Families

the alternative definition of vectors:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat

〈1〉1. ` Vec [A](0 : Nat)
Eq
; 1

〈2〉1. ` Vec [A]
Eq
; 1

〈3〉1. ` Vec
Eq
; 1

BY: rule (EQ-END)
〈3〉2. Q.E.D.

BY: 〈3〉1 applied to rule (EQ-PARAM)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (EQ-INDEX)
LET: m : Nat

〈1〉2. ` Vec [A](suc m : Nat)
Eq
; 1

〈2〉1. ` Vec [A]
Eq
; 1

〈3〉1. ` Vec
Eq
; 1

BY: rule (EQ-END)
〈3〉2. Q.E.D.

BY: 〈3〉1 applied to rule (EQ-PARAM)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (EQ-INDEX)

(7.73) Extraction of indices (Figure 7.5i.)

Γ ` l 3 T Idx; is

This judgment reads as: in context Γ, the recursive argument T participating in the
definition of datatype l is indexed by is. This step extracts the indices at which the
recursive argument is defined. To do so, we match the type definition with the datatype
label. Parameters are checked for consistency, i.e. they must remain unchanged across
recursive arguments. Indices are collected in a tuple terminated by the inhabitant of the
unit type.

This ensures the following soundness property:

7.74 Lemma. If Γ ` l 3 T Idx; is, then Γ ` is : JlKD.

7.75 Example (Vector, constrained). There is only one instance of recursive definition,
in the cons case. Its elaboration goes as follows:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
〈1〉1. ` Vec [A] (n= suc m : Nat) 3 Vec A m Idx; (m, ∗)
〈2〉1. ` [A] (n= suc m : Nat) 3 A m Idx; (m, ∗)

169

7. Elaborating Inductive Definitions

〈3〉1. ` (n= suc m : Nat) 3 m Idx; (m, ∗)
〈4〉1. ` ε 3 ε

Idx; ∗
BY: rule (EQ-END)
〈4〉2. Q.E.D.

BY: 〈4〉1 applied to rule (EQ-CSTR)
〈3〉2. Q.E.D.

BY: 〈3〉1 applied to rule (EQ-PARAM)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (EQ-START)

7.76 Example (Vector, computed). Similarly, the elaboration of the index for the recur-
sive definition is as follows:

LET: 1. Γ a valid context
2. A : SET

3. n : Nat
4. m : Nat

〈1〉1. ` Vec [A](suc m : Nat) 3 Vec A m Idx; (m, ∗)
〈2〉1. ` [A] (suc m : Nat) 3 A m Idx; (m, ∗)
〈3〉1. ` (suc m : Nat) 3 m Idx; (m, ∗)
〈4〉1. ` ε 3 ε

Idx; ∗
BY: rule (EQ-END)
〈4〉2. Q.E.D.

BY: 〈4〉1 applied to rule (EQ-CSTR)
〈3〉2. Q.E.D.

BY: 〈3〉1 applied to rule (EQ-PARAM)
〈2〉2. Q.E.D.

BY: 〈2〉1 applied to rule (EQ-START)

(7.77) Soundness. Having stated the soundness properties of each individual elaboration
step, we can now state and prove the soundness of the elaboration of inductive families.

7.78 Theorem (Soundness of elaboration).
If Γ ` data D

−−−→
[p : P]

−−→
(i : I) : SET where choices D;∆, then ∆ ` VALID.

Proof. First, we prove that labels elaborate to a type-correct index (Lemma 7.74). We
then prove that the constraints generated by interpreting the label are valid descriptions
(Lemma 7.70). From these lemmas, we can prove the soundness of the elaboration of
recursive arguments by induction on their structure (Lemma 7.66), followed by the
soundness of arguments by induction over the telescope of arguments (Lemma 7.62).
We then deduce the validity of the elaboration of a constructor (Lemma 7.58). Using
that lemma over each constructor, we thus obtain the soundness of the elaboration of
choices (Lemma 7.54). Using this result and assuming the soundness of elimination
with a motive (if Γ ` e ewm; e′ ∈ T, then Γ ` e′ : T), we obtain Lemma 7.48. This gives the
desired result.

170

7.3. Reflections on Inductive Types

(7.79) Completeness. As mentioned in Remark 7.38, our syntax is a strict superset of Coq’s
syntax. Consequently, it is impossible to prove a completeness result for inductive fam-
ilies in the vein of Theorem 7.34. Nonetheless, if we drop our support of computation
over indices, we then fall back in the realm of Coq’s inductive definitions. In this re-
stricted domain, we conjecture the completeness of elaboration:

7.80 Conjecture (Completeness with respect to Coq). For an inductive family

Ind(X :~I→ SET)〈C0 | . . . | Cn〉

in Coq, any function introduced by a Fixpoint definition over X admits an extension-
ally equivalent definition in our system. Conversely, our generic elimination principle
is accepted by Coq.

7.81 Remark. Ultimately, our elaboration rules (Figure 7.5, Figure 7.5, and Figure 7.5) de-
fine the semantics of inductive families by translation to indexed descriptions. As such,
the soundness lemmas provide supporting evidences that these definitions are conform
to our intents. Albeit not entirely satisfactory, this situation must be compared to cur-
rent practice in Coq and Agda. In those systems, the semantics of inductive families is
given de facto by the positivity checker, a large yet unspecified piece of software.

7.3. Reflections on Inductive Types

(7.82) Having described our elaboration infrastructure for inductive definitions, we now
give an overview of the possibilities offered by such a system. Indeed, in a purely
syntactic presentation of inductive definitions, we are stuck working at the meta-level
of the type theory: if we want to provide support for meta-programming over inductive
types, it must be implemented as an extension of the theorem prover, out of the type
theory.

Because our type theory reflects inductive definitions in itself, the meta-theory of
inductive types is no more than a universe. What used to be meta-theoretical construc-
tions can now be implemented within type theory, benefiting from the various ameni-
ties offered by a dependently-typed programming language. By adequately extending
the elaboration machinery, the user benefits from a convenient and high-level syntax to
refer to these type-theoretic constructions. In this section, we present two examples of
“reflections on inductive types”.

Our first example, reflecting constructions on constructors [McBride et al., 2004], will
appeal to the implementers: we hint at the possibility of implementing key features
of type theory within itself, a baby step toward bootstrapping. Our second example,
providing a user defined deriving mechanism, should appeal to programmers: we
illustrate how programmers could provide generic operations over datatypes and see
them automatically integrated in their development.

171

7. Elaborating Inductive Definitions

7.83 Remark. For simplicity and conciseness, we shall define these mechanisms over
our universe of inductive types, Desc. Nonetheless, it is straightforward, but more
verbose, to define these constructions for inductive families.

7.3.1. A few constructions on constructors, internalised

MODEL: Chapter7.Case, Chapter7.NoConfusion

(7.84) McBride et al. [2004] describe a collection of lemmas that a theorem prover’s imple-
menter would like to export with every inductive type. The authors first show how one
can reduce case analysis and course-of-value recursion to standard induction. Then,
they describe two lemmas over datatype constructors: the no confusion lemma – con-
structors are injective and disjoint – and the acyclicity lemma – we can automatically
disprove equalities of the form x = t where x appears constructor-guarded in t. How-
ever, since that paper works on the syntactic form of datatype definitions, its “defini-
tions” are given over skeletons of inductive definitions filled with ellipsis. For example,
the authors reduce case analysis to induction with no less than ten ellipsis.

7.85 Definition (Case analysis). In our system, we generically implement case analy-
sis by a mere definition within type theory. To do so, we simply ignore the induction
hypothesis from the generic induction principle:

case (D : Desc)(P : µD→ SET)(cases : ((d : JDK (µD))→ P(ind)))(x : µD) : Px
case D P cases x 7→ induction (λd. λ− . cases d) x

(7.86) To account for case analysis during elaboration, we simply add a judgment Case; to
our system (Figure 7.6). The judgment has the form

Γ ` data D
−−−→
(p : P) : SET where choices Case; ∆

This judgment reads as: in context Γ, the datatype declaration of D elaborates to
an extended context ∆, which defines the code of this declaration, denoted D-Desc,
together with a case analysis operator, denoted D-case. The inference rule by itself is
not surprising. We reuse the elaboration machinery to obtain the code of the datatype.
We then specialise the case function to this datatype by partial application.

7.87 Remark. In Figure 7.6, we extend the context with a definition D-Desc containing
the code of a description. This definition is useful on its own, independently of case
analysis. One could easily extend the elaboration of datatypes (Figure 7.2a) to contain
this definition directly. In the following, we should always assume that D-Desc is in
context for a datatype definition D.

(7.88) Similarly, the authors specify and prove the “no confusion” lemma over the skeleton
of an inductive definition. In our system, this result is internalised through two defini-
tions. In the following, we will assume that D is a tagged description, i.e. D = Σ E T
where E is the enumeration of constructor labels. An inhabitant of µ D is therefore a

172

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter7.Case.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter7.NoConfusion.html

7.3. Reflections on Inductive Types

Γ ` SET1 3
−−−→
(p : P)→ SET

Chk;
−−−→
(p : P′)→ SET

Γ;
−−→
p : P′ ` D ~p 3 choices Cs; code

Γ ` data D
−−−→
[p : P] : SET where choices

Case; Γ[D-Desc 7→ callHD ~pI code : Desc]
[D-case 7→ case D-Desc : (P : µD-Desc→ SET)→

(cases : ((d : JD-DescK (D-Desc))→ P(ind)))
(x : µD-Desc)→ Px]

Figure 7.6.: Elaboration of case analysis

pair in (c, a) with c representing the constructor name and a the tuple of arguments.

7.89 Lemma (“No confusion”, internalised). The NoConfusion lemma states that two
propositionally equal terms x, y : µ D must have the same constructor (otherwise, sec-
ond case, we ask for the impossible) and their arguments must be equal (first case):

NoConfusion (x : µD) (y : µD) : SET1
NoConfusion (in (cx, ax)) (in

(
cy, ay

)
) | decideEq-EnumT cx cy

NoConfusion (in (cx, ax)) (in
(
cx, ay

)
) | equal refl 7→ (P : SET)→(ax = ay→ P)→ P

NoConfusion (in (cx, ax)) (in
(
cy, ay

)
) | not-equal q 7→ (P : SET)→ P

The function decideEq-EnumT decides whether two indices into an enumeration are
equal or not. This is indeed a decidable property: an index is nothing but a natural num-
ber (bounded by the size of the enumeration). We put the result of decideEq-EnumT cx cy
under the scrutiny of NoConfusion by using the “with” (|) gadget (¶ 3.36).

Proof. The proof of this lemma consists simply in deciding whether the constructor tag
are equal or not, hence discriminating the constructors and deconstructing the equality:

noConfusion (x : µD) (y : µD) (q : x = y) : NoConfusion x y
noConfusion (in (cx, ax)) (in

(
cy, ay

)
) q | decideEq-EnumT cx cy

noConfusion (in (cx, ax)) (in
(
cx, ay

)
) q | equal refl 7→ λP. λrec. rec q

noConfusion (in (cx, ax)) (in
(
cy, ay

)
) q | not-equal neq 7→ λP. 0-elim (neq q)

(7.90) We have proved this lemma generically, for all tagged descriptions. Hence, users can
directly use it on their datatypes. For convenience, a subsequent elaboration phase can
specialise this lemma for each datatype definition. Since the corresponding inference
rule is similar to the one computing the datatype-specific case analysis (¶ 7.86), we do
not dwell on it further.

173

7. Elaborating Inductive Definitions

7.3.2. Deriving operations on datatypes

MODEL: Chapter7.Derivable

(7.91) Another extension of our system is a generic deriving mechanism. In the Haskell
language, we can write a definition such as

data Nat : SET where
Nat 3 0

| suc (n : Nat)
deriving Eq

that generates automatically an equality test for the given datatype. Since datatypes
are a meta-theoretical entity, this deriving mechanism has to be provided by the im-
plementer and, template programming aside, it cannot be implemented by the pro-
grammers themselves. This issue was identified and treated in Haskell by several au-
thors [Hinze and Jones, 2001, Magalhães et al., 2010], relying solely on multi-parameter
type classes. By contrast, our solution is implemented entirely in type theory while the
syntactic treatment of the deriving clause is handled by elaboration.

(7.92) We now extend our elaborator with such a deriving mechanism. However, for this
mechanism to work, we must restrict ourselves to decidable properties: for example, if
the user asks to derive equality on a datatype that does not admit a decidable equality
(e.g. Brouwer ordinals), it should fail immediately. To solve this issue, we add one
level of indirection: while we cannot decide equality for every datatype, we can decide
whether a datatype belongs to a subuniverse for which equality is decidable.

7.93 Definition (Derivable properties). To introduce a derivable property P in the sys-
tem, one must populate the following record structure:

Derivable (P : Desc→ SET) : SET1

Derivable P 7→

subDesc : Desc→ SET1
membership: (D : Desc)→Decidable (subDesc D)
derive : subDesc D→ P D

That is, one must specify a subuniverse of descriptions, subDesc. The membership
of a description to this subuniverse must be a decidable property, as witnessed by
membership. Finally, in order to actually derive the property P, one must provide a
derive function, taking an inhabitant of the subuniverse and providing a witness of P.

7.94 Definition (Decision procedure). A decision procedure for a proposition P returns
a positive answer if and only if P is true. It is said to be sound (the if direction) and
complete (the only if direction). In type theory, a property P on a set X is decidable if
we can implement a function

decideP : (x : X)→Decidable (P x)

174

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter7.Derivable.html

7.3. Reflections on Inductive Types

where Decidable is defined by:

data Decidable [A : SET] : SET where
Decidable A 3 yes (a : A)

| no (na : A→ 0)

(7.95) Derivable properties range from generic lemmas – such as decision procedures for
equality, or ordering – to generic functions – such as generic marshalling, or unmar-
shalling. The only requirements are that its type is itself of type Desc→ SET, and that
the program is definable over a subuniverse of descriptions. We illustrate our approach
with a decision procedure for equality.

7.96 Example (Derivable property: equality). In the case of equality1, the programmer
has first to provide a function eqDesc : Desc→ SET1. One possible (perhaps simplistic,
but valid) subuniverse consists only of products, finite sums, recursive call, and unit: it
is enough to describe natural numbers and variants thereof.

One then implements a procedure

membershipEq : (D : Desc)→Decidable (eqDesc D)

deciding whether a given Desc code fits into this subuniverse or not. It should be clear
that the membership of a Desc code to our subuniverse of finite products and sums is
decidable: we simply match on the code of D, returning yes when that code belongs to
eqDesc, and unlikely otherwise.

Finally, one implements the key operation

deriveEq : eqDesc D→ (x y : µ D)→Decidable (x = y)

that decides equality of two objects, assuming that they belong to the subuniverse. This
decision procedure is simply a matter of traversing a first-order structure and checking
objects of finite cardinality for equality. Put together, this populates a record:

Eq : Derivable (λD. (x y : µ D)→Decidable (x = y))

(7.97) While elaborating a datatype, it is then straightforward – and automatic – for us to
generate its derivable property, or reject it immediately: we simply unfold membership
on the specific code. If we obtain a positive witness, we pass that witness to derive and
instantiate the property. If we obtain a negative response, the elaborated term simply
fails to type check: in practice, one would certainly report a more informative error.

7.98 Example (Deriving equality: Natural numbers). Since natural numbers fit into the
eqDesc universe, the elaboration machinery can automatically generate the following

1We refer our reader to Chapter7.Derivable.Equality for the implementation details.

175

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter7.Derivable.Equality.html

7. Elaborating Inductive Definitions

Γ ` prop
Syn
; prop′ ∈ Derivable P

Γ ` data D
−−−→
[p : P] : SET where choices deriving prop

Derive; Γ [decide-P 7→ prop′.derive (witness (prop′.membership D-Desc) ∗)
: (x : µ D-Desc)→ P x]

Figure 7.7.: Elaboration of deriving

decision procedure

Nat-eq (x y : Nat) : Decidable (x = y)
Nat-eq x y 7→ deriveEq (witness (membershipEq NatD) ∗)

without any input from the user but the deriving Eq clause. Here, witness is a library
function that extracts the witness from a true decidable property:

witness (w : Decidable A) (t : True w) : A
witness (yes a) ∗ 7→ a where

True (w : Decidable A) : SET

True (yes a) 7→ 1
True (no na) 7→ 0

Applied to NatD, the function membershipEq computes a positive witness that we can
simply extract.

(7.99) Having laid down the low-level machinery, we then support it with some high-level
syntax. To this end, we extend the datatype definition with a deriving clause:

〈data〉 ::= data D 〈paramTel〉 : 〈T〉where 〈choices〉 deriving 〈t〉

We process these definitions through the judgment:

Γ ` data D
−−−→
(p : P) : SET where choices deriving P Derive; ∆

This judgment reads as: in context Γ, the datatype definition deriving a property P
elaborates to a context ∆, which either defines a function decide-P that decides P, or is
invalid – i.e. ∆ 6` VALID. The inference rule (Figure 7.7) consists simply in extending
Γ with a function extracting the decidability witness, as we did in Example 7.98, thus
obtaining our decision procedure.

7.100 Remark (type checking and error management). We remark that the witness ex-
traction might fail: if the decision procedure rejects the datatype, the witness function
asks for an inhabitant of 0. Thus, our generated term, providing an inhabitant of 1,
does not type check. This behavior is the expected one: we want to reject deriving state-

176

7.3. Reflections on Inductive Types

ments that cannot be decided. In an actual implementation, we would normalise the
result of the decision procedure membership beforehand, and report a more convenient
error message.

177

7. Elaborating Inductive Definitions

Conclusion

(7.101) In this chapter, we have given an elaboration of inductive definitions in type theory.
We have adopted a relational approach, specifying the elaboration through a system
of inference rules. We thus abstracted away the nitty-gritty operational details and fo-
cused on the translation of our syntactic constructions to the universe of codes. Overall,
our presentation is conceptually simple and amenable to formal reasoning, as demon-
strated by our correctness proof. Its relative simplicity (compared to, say, a positivity
checker) together with the soundness proofs should convince the reader of its validity.

(7.102) From there, we believe that reasoning on inductive definitions can be liberated from
the elusive ellipsis: proofs and constructions on inductive types ought to happen within
the type theory itself. After Harper and Stone [2000], we claim that if the treatment of
datatypes is conceptually straightforward then it ought to be technically straightfor-
ward and implemented as a generic program in type theory. For non-straightforward
properties, our results should be reusable across calculi – such as the Calculus of Induc-
tive Constructions – and not too rigidly tied to our universe of datatypes. Besides, we
were careful to present elaboration as a relation rather than a mere program, making it
more amenable to abstract reasoning.

(7.103) We also had a glimpse at two possible extensions of the elaboration process. We have
seen how generic theorems on inductive types can be internalised as generic programs:
besides the benefit of reducing the trusted computing base, their validity is guaranteed
by type checking. Also, we have presented a generic deriving mechanism: with no
extension to the type theory, we are able to let the user define subuniverses that sup-
port certain operations. These operations can then be automatically specialised to the
datatypes that support them, without any user intervention.

Related work

(7.104) This chapter has been strongly influenced by the work of Harper and Stone [2000]
on the formalisation of Standard ML in type theory. In their work, the authors gave
a semantics of Standard ML – the full-blown language – through a translation of the
high-level syntactic concepts – such as pattern-matching, data-type constructors, etc.–
to type theory. This elaboration of a programming language down to a basic calculus
was then pursued by Dreyer [2005] in his work on ML’s module system. Elaboration
lets us bridge the gap between the theory – the basic calculus – and the implementation,
without having to rely on a standard written in plain English, and therefore subject to
misinterpretation.

While Standard ML is simply typed, this technique naturally applies in a dependent
setting. The work of Giménez [1995] can be seen as an instance of this technique: to
justify the Fixpoint definition in Coq, the author gave a translation of such definitions
to an equivalent one using only induction on the datatype on which the fixpoint is
constructed. However, this analysis remain at the meta-level: it aims at justifying the
syntax, but the implementation does not benefit from this simplification.

McBride and McKinna [2004] took a step further and presented a programming lan-

178

7.3. Reflections on Inductive Types

guage that is entirely elaborated down to a basic calculus. In that setting, recursive
functions are automatically translated to definitions by induction. Consequently, the
implementer need only provide these elimination principles. However, inductive def-
initions were still treated at the meta-level, in a purely syntactic manner. The present
chapter completes this work by elaborating the inductive fragment. This allows us to
implement many conveniences for manipulating inductive types in type theory: for
example, the constructions on constructors become mere (generic) programs, in a poly-
typical style reminiscent of the work of Hinze [2000a] in a non-dependent setting.

Elaboration is also used in Matita [Asperti et al., 2012] as a mean to enrich the lan-
guage of expressions with a more convenient, type-directed syntax. As for us, having a
bidirectional type checker is crucial in their work: types drive the refinement of the high-
level syntax to a relatively simple core calculus. However, being stuck at the syntactic
level, inductive definitions are poorly handled.

179

Part IV.

A Calculus of Structures

In this fourth and last part, we build upon our internalised pre-
sentation of inductive types. First, in Chapter 8, we adapt an uni-
verse of ornaments to our universe of indexed descriptions. Or-
naments let us describe structure-preserving transformations of
datatypes. We study their algebraic properties, hence developing
an interesting “calculus of structures”.

In Chapter 9, we put ornaments at work. While the universe of
ornaments is restricted to transformations on datatypes, we present
a universe of functional ornaments that lets us relate functions op-
erating on similarly-structured datatypes.

Crucially, this last part does not require any support from the
type theory, aside from a universe of datatypes. The theory of orna-
ments and functional ornaments is entirely developed within type
theory. This illustrates, once more, the benefit of an internalised
presentation of datatypes: the meta-theory has been swallowed by
the theory.

181

8. Ornaments

(8.1) Imagine designing a library for an ML-like language. For instance, we start with
natural numbers and their operations, then we move to binary trees, then rose trees,
etc. It is the garden of Eden: datatypes are data-structures, each coming with its unique
and optimised set of operations. If we move to a language with richer datatypes, such
as a dependently-typed language, we enter the Augean stables. Where we used to have
binary trees, now we have complete binary trees, red-black trees, AVL trees, and count-
less other variants. Worse, we have to duplicate code across these tree-like datatypes:
because they are defined upon this common binarily branching structure, a lot of com-
putationally identical operations will have to be duplicated for the type checker to be
satisfied.

Since the ML days, datatypes have evolved: besides providing an organising struc-
ture for computation, they are now offering more control over what is a valid result.
With richer datatypes, we can enforce invariants on top of the data-structures. In such
a system, programmers strive to express the correctness of programs in their types: a
well-typed program is correct by construction, the proof of correctness being reduced
to type checking. A simple yet powerful recipe to obtain these richer datatypes is to
index the data-structure. We have described these objects as inductive families in Chap-
ter 5. Inductive families made it to mainstream functional programming with GADTs.
Refinement types [Freeman and Pfenning, 1991, Swamy et al., 2011] are another tech-
nique to equip data-structures with rich invariants. Atkey et al. [2012] have shown
how refinement types relate to inductive families, through a generalisation of algebraic
ornaments (Section 8.1.3).

(8.2) When programming in type theory, we are in a sweet spot: because the program-
ming language is also a logic, our datatypes are data-structures that comes naturally
equipped with a data-logic. The structure captures the dynamic, operational behavior
expected from the datatype. It corresponds to, say, the choice between a list or a binary
tree, which is mostly governed by performance considerations. The logic, on the other
hand, dictates the static invariants of the datatype. For example, by indexing lists by
their length, thus obtaining vectors, we integrate a logic of length with the data. We can
then take an m× n matrix to be a plainly rectangular m-vector of n-vectors, rather than
a list of lists together with a proof that measuring each length yields the same result.

However, these carefully crafted datatypes are a threat to any library design: the
same data-structure is used for logically incompatible purposes. This explosion of spe-
cialised datatypes is overwhelming: these objects are too specialised to fit in a global
library. Yet, because they share this common recursive structure, many operations on
them are extremely similar, if not exactly the same. The objective of this chapter is to

183

8. Ornaments

characterise, first intensionally and then categorically, these structure-preserving trans-
formations of datatypes. Having such a characterisation, we are able to extend our
datatypes on-demand with special-purpose logics without severing the structural ties
between them.

(8.3) To address this issue, McBride [2013] developed ornaments, which describe how one
datatype can be enriched into another with the same structure. Let us give a few examples
of ornamental transformations. We shall focus here on the result of the transformation:
a new datatype, derived from another one. The ornament itself is the intensional object
that describes these structure-preserving transformations, which we shall formally de-
fine and illustrate more concretely in the next section. Such transformations take two
forms. First, we can extend the initial type with more information.

8.4 Example (Ornament: Extending the Booleans to the option type). We can extend the
Booleans to the option type by attaching an a : A to the constructor true:

data Bool : SET where
Bool 3 true

| false

MaybeO A⇒
data Maybe [A : SET] : SET where

Maybe A 3 just (a : A)
| nothing

8.5 Example (Ornament: Extending numbers to lists). Or we can extend natural num-
bers to lists by inserting an a : A at each successor node:

data Nat : SET where
Nat 3 0

| suc (n : Nat)

ListO A⇒
data List [A : SET] : SET where

List A 3 nil
| cons (a : A)(as : List A)

8.6 Example (Ornament: Extending numbers to typed contexts). Extensions are not nec-
essarily parametric. For example, the datatype Context used to define minimal logic
(Example 3.51) is an extension of numbers:

data Nat : SET where
Nat 3 0

| suc (n : Nat)

ContextO⇒
data Context : SET where

Context 3 ε
| (Γ : Context) ; (T : Type)

(8.7) Second, we can refine the indexing of the initial type, following a finer discipline. By
refining the indices of a datatype, we make it logically more discriminating.

8.8 Example (Ornament: Refining numbers to finite sets). We refine natural numbers to
finite sets by indexing the number with an upper-bound:

data Nat : SET where
Nat 3 0

| suc (n : Nat)

FinO⇒
data Fin (n : Nat) : SET where

Fin (n= suc n′) 3 f0 (n′ : Nat)
| fsuc (n′ : Nat)(k : Fin n′)

The datatype Fin n describes the (finite) sets of cardinality 0 to n− 1.

We can also do both at the same time, as illustrated by the following example.

184

8.1. Universe of Ornaments

8.9 Example (Ornament: Extending and refining numbers to vectors). We extend nat-
ural numbers to lists while refining the index to represent the length of the list thus
constructed:

data Nat : SET where
Nat 3 0

| suc (n : Nat)

VecO A
=⇒

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

(8.10) To complete our intuition of ornaments, let us present a non-example of ornament.
We can spot that a datatype cannot ornament another by focusing on their recursive
structure. If we cannot map the structure of one to the other, then this transformation
is not in the realm of ornaments.

8.11 Non-example (Trees do not ornament numbers). Binary trees cannot ornament nat-
ural numbers: natural numbers have a linear structure – its constructors have arity 0 or
1 – while binary trees have a binarily-branching structure – its constructors have arity
0 or 2:

data Nat : SET where
Nat 3 0

| suc (n : Nat)
6⇒

data Tree [A : SET] : SET where
Tree A 3 leaf

| node (lb : Tree A)(a : A)(rb : Tree A)

(8.12) Because of their constructive nature, ornaments are not merely identifying similar
structures: they give an effective recipe to build new datatypes from old, guaranteeing
by construction that the structure is preserved. Hence, we can obtain a plethora of new
datatypes with minimal effort.

8.13 Remark. Unlike the previous chapters, this chapter’s material is directly presented
on our universe of indexed descriptions. Indeed, the point of ornaments is to relate
indexed datatypes through their shared structure. On non-indexed types, ornaments
are of lesser practical interest.

8.14 Remark (Meta-theoretical status). It is crucial to note that this chapter is built en-
tirely within type theory. No change or adaptation to the meta-theory is required. In
particular, the validity of our constructions is justified by mere type checking.

8.1. Universe of Ornaments

MODEL: Chapter8.Ornament

(8.15) Originally, McBride [2013, §4] presented the notion of ornament for a universe where
the indexing discipline could only be enforced by equality constraints. Consequently,
in that simpler setting, computing types from indices was impossible. We shall now
adapt the original definition to our setting. Following Remark 5.6, we first focus on
describing functors on [SET/I, SET] (Definition 8.17). We shall then lift our definition

185

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Ornament.html

8. Ornaments

pointwise to [SET/I, SET]J (Definition 8.20).
(8.16) Our grammar of ornaments is similar to the original one: we can copy the base

datatype (with the codes 1, Π, Σ, ×, and σ), extend it by inserting sets (with the code
insert), and refine the indexing subject to the relation imposed by u (with the code var).
However, we also have the J-index in our context: following Brady’s insight that in-
ductive families need not store their indices [Brady et al., 2003], we can delete parts of the
datatype definition as long as we can provide a witness.

8.17 Definition (Universe of ornaments). The universe of ornaments is presented in
Figure 8.1. Its interpretation computes the description of the extended datatype. This
consists in traversing the ornament code, turning the insert codes into Σ codes. In the
delete case, no Σ code is generated: we use the witness to compute the extension of the
rest of the ornament.

8.18 Remark (Notation). We overload the IDesc constructor names in the definition of
the Orn universe. Indeed, the ornamental codes 1, ×, σ, Π, and Σ merely duplicate
the underlying description. Similarly, the var ornament takes an index k that must be
related to the underlying index i through the function u. More generally, datatype’s
constructors may freely be overloaded: for a bidirectional type checker, there is no
ambiguity since constructors are checked against their type.

(8.19) We then define the ornament of an indexed description by lifting the ornament code
to a set indexed by J. An ornament is defined upon a datatype – specified by a descrip-
tion D : func K L – and indices are then refined relatively to two reindexing functions
u : I→K and v : J→ L.

8.20 Definition (Ornament). An ornament is the lifting of an Orn code to a J-indexed
set:

orn (D : func K L) (u : I→K) (v : J→ L) : SET1
orn D u v 7→ (j : J)→Orn (D (v j)) u

J(o : orn D u v)Korn : func I J
JoKorn 7→ λj. Jo jKorn

8.21 Remark (Notation). We adopt an informal notation to describe ornaments conve-
niently. The idea is to simply mirror our data definition, adding from which datatype
the ornament is defined. When specifying a constructor, we can then extend it with new
information – using [x : S] – or delete an argument originally named x by providing a
witness – using [x , s]. We now rephrase our earlier examples using this language.

Just as the datatype declaration syntax was elaborated to IDesc codes (Chapter 7),
this high-level syntax elaborates to ornaments. A formal description of the translation
is beyond the scope of this thesis1. Nonetheless, a few examples are enough to illustrate
our notation and shall help us build some intuition for ornaments.

8.22 Example (Ornament: from Booleans to the option type). We obtain the option type

1The treatment of inductive definitions in Chapter 7 was already rather dense. We believe that further
simplification of our system is necessary before tackling the elaboration of ornaments.

186

8.1. Universe of Ornaments

data Orn (D : IDesc K)[u : I→K] : SET1 where
– Extend with S:

Orn D u 3 insert (S : SET)(D+ : S→Orn D u)
– Refine the index:

Orn (var k) u 3 var (i : u −1 k)
– Copy the original:

Orn 1 u 3 1
Orn (A× B) u 3 (A+ : Orn A u)× (B+ : Orn B u)
Orn (σ E T) u 3 σ (T+ : (e : E)→Orn (switch T e) u)
Orn (Π S T) u 3 Π (T+ : (s : S)→Orn (T s) u)
Orn (Σ S T) u 3 Σ (T+ : (s : S)→Orn (T s) u)
– Delete S:

| delete (s : S)(T+ : Orn (T s) u)
(a) Code

J(O : Orn D u)Korn : IDesc I
Jinsert S D+Korn 7→ Σ S λs. JD+ sKorn
Jvar (inv i)Korn 7→ var i
J1Korn 7→ 1
JA+× B+Korn 7→ JA+Korn× JB+Korn
Jσ T+Korn 7→ σ E λe. Jswitch T+ eKorn
JΠ T+Korn 7→ Π S λs. JT+ sKorn
JΣ T+Korn 7→ Σ S λs. JT+ sKorn
Jdelete s T+Korn 7→ JT+Korn

(b) Interpretation

Figure 8.1.: Universe of ornaments

187

8. Ornaments

from the Booleans by inserting an extra a : A in the true case:

data Maybe [A : SET] from Bool where
Maybe A 3 just [a : A]

| nothing

;

MaybeO (A : SET) : orn BoolD id id

MaybeO A 7→ λ∗. Σ
{

’true 7→ insert A λ− . 1
’false 7→ 1

}
The reader will check that the interpretation of this ornament (by J− Korn) followed

by the interpretation of the resulting description (by J− K) yields the signature functor
of the option type:

JJMaybeO AKornK X ∼= 1 + A

8.23 Remark. The astute reader will have noticed that the constructor names of the
Maybe type have been lost in the ornamentation. In the present system, its constructors
are false : Maybe A and true : A→Maybe A. In practice, we want to be able to change the
name of constructors during ornamentation. To do so, one could define a universe of or-
naments specialised to tagged descriptions: the original type being in constructor-form,
one would ask for an enumeration of constructor tags of the same size (and therefore,
in bijection) to declare the constructors of the ornamented type.

8.24 Remark (Notation). We shall overload the interpretation of ornaments J− Korn to
denote both the description and the interpretation of that description. For instance, we
write the above isomorphism as follows:

JMaybeO AKorn[X] ∼= 1 + A

8.25 Example (Ornamenting natural numbers to lists). We obtain lists from natural
numbers with the following ornament:

data List [A : SET] from Nat where
List A 3 nil

| cons [a : A](as : List A)

;

ListO (A : SET) : orn NatD id id

ListO A 7→ λ∗. Σ
{

’0 7→ 1
’suc 7→ insert A λ− . var ∗

}
We check that we obtain the signature functor of lists:

JListO AKorn[X] ∼= 1 + A× X

188

8.1. Universe of Ornaments

8.26 Example (Ornamenting natural numbers to finite sets). We obtain finite sets by
inserting a number n′ : Nat, constraining the index n to suc n′, and – in the recursive case
– indexing at n′:

data Fin (n : Nat) from Nat where
Fin n 3 f0 [n′ : Nat][q : n = suc n′]

| fsuc [n′ : Nat][q : n = suc n′](k : Fin n′)

;

FinO : orn NatD (λn. ∗) (λn. ∗)
FinO 7→ λn. insert Nat λn′.

insert (n = suc n′)λ− .

Σ
{

’0 7→ 1
’suc 7→ var n′

}
Again, the reader will check that this is indeed describing the signature of finite sets.

8.27 Example (Canonical lifting). A close inspection of the canonical lifting (Defini-
tion 5.23) reveals that it is a mere ornament of D. We can define it by:

�(D:IDescK) (xs : JDK X) : Orn D π0

�1 ∗ 7→ 1
�var k x 7→ var (inv (k, x))
�A× B (a, b) 7→ �A a×�B b
�σ E T (e, xs) 7→ delete e (�switch T e xs)
�Σ S T (s, xs) 7→ delete s (�T s xs)
�Π S T f 7→ Π λs.�T s (f s)

This lifts pointwise to indexed descriptions, giving an ornament of type:

�(D:funcK L) : orn D (π0 : (k : K)×X k→K) (π0 : (l : L)× JDK X l→ L)

We obtain the desired predicate transformer by first interpreting the ornament into
a description, followed by the interpretation of the description into an indexed func-
tor. To avoid clutter, we shall conflate notations: we write �D for the ornament, the
corresponding description, and the resulting predicate transformer.

8.1.1. Brady’s optimisations, internally

MODEL: Chapter8.Brady

(8.28) In Remark 5.41, we introduced Brady’s forcing and detagging optimisations. We
have explained how, thanks to our definition of descriptions as functions, we could
(manually) craft datatypes in this form – such as detagged vectors or forced finite
sets. Instead of a Henry Ford presentation, we gave an equivalent but less redundant
definition. Seen as a datatype transformation, this operation is (obviously) structure-

189

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Brady.Main.html

8. Ornaments

preserving.
In fact, these transformations are an instance of ornamentation. The key ingredient

is the delete code that lets us delete parts of a definition using a witness extracted from
the index. The deletion ornament lets us internalise the forcing and detagging opti-
misations into type theory. We can therefore craft our own Brady-optimised datatypes
and benefit from them as early as at type checking.

8.29 Example (Detagging, by ornamentation). Our earlier definition of vectors (Exam-
ple 3.47) mirrors Agda’s convention of constraining indices with equality. Our defini-
tion of ornaments lets us define a version of Vec that does not store its indices. Indeed,
we can describe Vec by an ornament that matches the index n to determine which con-
structor to offer:

data Vec’ [A : SET](n : Nat) from Vec A n where
Vec’ A n ⇐ Nat-case n

Vec’ A 0 3 nil

Vec’ A (suc n) 3 cons [n′ , n](a : A)(vs : Vec’ A n)

Such a definition was unavailable in the original presentation [McBride, 2013]. We
have internalised detagging (Definition 5.43): the constructors of the datatype are deter-
mined by the index.

8.30 Example (Forcing, by ornamentation). The definition of finite sets given in Exam-
ple 3.47 is also subject to an optimisation: by matching the index, we can avoid the du-
plication of n by deleting n′ with the matched predecessor and trivialising the proofs.
Hence, Fin can be further ornamented to the optimised Fin’, which makes crucial use of
deletion:

data Fin’ (n : Nat) from Fin n where
Fin’ 0 3 [b :0] – no constructor
Fin’ (suc n) 3 f0 [n′ , n]

| fsuc [n′ , n](k : Fin’ n′)

Again, this definition was previously unavailable to us. We are making crucial use
of the deletion ornament to avoid duplication. We have internalised forcing (Defini-
tion 5.42): the content of the constructors – here n′ – is retrieved from the index, instead
of being needlessly duplicated.

8.1.2. Ornamental algebra

MODEL: Chapter8.Ornament.Algebra

(8.31) Following McBride [2013, §4], every ornament induces an ornamental algebra: an al-
gebra that forgets the extra information introduced by the extensions, mapping the
ornamented datatype back to its original form.

8.32 Definition (Cartesian morphism). For an ornament O : Orn D u, there is a function
– actually, a natural transformation – projecting the ornamented functor down to the

190

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Ornament.Algebra.html

8.1. Universe of Ornaments

original, unornamented functor:

forgetNT (O : Orn D u) (xs : JOKorn (X ◦ u)) : JDK X
forgetNT (insert S D+) (s, xs) 7→ forgetNT (D+ s) xs
forgetNT (var (inv i)) xs 7→ xs
forgetNT 1 ∗ 7→ ∗
forgetNT (O1×O2) (t1, t2) 7→ (forgetNT O1 t1, forgetNT O2 t2)
forgetNT (σ O) (k, xs) 7→ (k, forgetNT (switch O k) xs)
forgetNT (Σ O) (s, xs) 7→ (s, forgetNT (O s) xs)
forgetNT (Π O) f 7→ λs. forgetNT (O s) (f s)
forgetNT (delete s O) xs 7→ (s, forgetNT O xs)

This function then lifts pointwise to a function on ornaments:

forgetNT : (o : orn D u v)→ JoK (X ◦ u) →̇ JD ◦ vK X

8.33 Remark. The choice of terminology is not innocent here: as we shall see in Sec-
tion 8.2, this construction is related to the notion of Cartesian morphism of containers.
These morphisms arise themselves from a fibration (Remark 8.71).

8.34 Definition (Ornamental algebra). Applied with µ D for X and post-composed with
the initial algebra in, this Cartesian morphism induces the ornamental algebra:

forgetAlg (o : orn D u u) (xs : JoK (µ D ◦ u) i) : (µ D ◦ u) i
forgetAlg o xs 7→ in (forgetNT o xs)

8.35 Definition (Forgetful map). In turn, this algebra induces a forgetful map from the
ornamented type to its original form:

forget (o : orn D u u) : µ JoKorn →̇ µ D ◦ u
forget o 7→ LforgetAlg oM

8.36 Example (From lists back to natural numbers). Applied to the ornament ListO, the
Cartesian morphism removes the extra information added through insert, i.e. the in-
habitant of A. The resulting algebra thus takes nil to 0, and cons a to suc. In turn, the
forgetful map computes the length of the list.

8.37 Example (From finite sets back to natural numbers). Applied to the ornament FinO,
the Cartesian morphism removes the equations introduced by insert and forgets the
indexing discipline enforced by the var code. The resulting forgetful map computes the
cardinality – a natural number – of a finite set.

191

8. Ornaments

8.1.3. Algebraic ornaments

MODEL: Chapter8.AlgebraicOrnament

(8.38) An important class of datatypes is constructed by algebraic ornamentation over a base
datatype. An algebraic ornament indexes an inductive type by the result of a catamor-
phism over its elements. From the code D : func K K and an algebra α : JDK X →̇X,
we define an ornament Dα indexed by (k : K)×X k satisfying the following coherence
property:

µ Dα (k, x) ∼= (t : µ D k)× LαM t = x

Seen as a set comprehension, this states that µ Dα (k, x) is an inductive definition equiv-
alent to the refinement type {t ∈ µ D k | LαM t = x}. A categorical presentation that
explores the connection with refinement types is given by Atkey et al. [2012].

8.39 Example (Algebraic ornament: interval). For a given natural number m : Nat, the
addition m +− : Nat→Nat is definable by folding the algebra:

addm (xn : JNatDK Nat) : Nat
addm [’0] 7→ m
addm [’suc n] 7→ suc n

By algebraically ornamenting Nat by this algebra, we obtain the type of intervals
[m,−] : Nat→ SET that is characterised by the isomorphism:

[m,n] ∼= (k : Nat)×(m + k = n)

Put explicitly, the datatype computed by the algebraic ornament corresponds to

data [[m : Nat],−] (n : Nat) : SET where
[m,−] (n=m) 3 0
[m,−] (n= suc n′) 3 suc (k : [m,n′])

(8.40) The type-theoretic construction of Dα was originally given by McBride [2013, §5].
We adapt it to our universe of types. The idea is to define – by ornamentation of D – a
description whose fixpoint will satisfy the above coherence property. This ornament is
called an algebraic ornament.

8.41 Definition (Algebraic ornament). The algebraic ornament of D by α is a refinement
of the former by the latter: for an index (k, x), the algebraic ornament is built from any
xs : JDK X k, as long as we have α xs = k. We therefore insert such an xs and enforce the
coherence (locally) by an equality constraint. We then use the canonical lifting of D at

192

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.AlgebraicOrnament.html

8.1. Universe of Ornaments

index xs to create a D-structure that follows the indexing discipline set by xs:

(D : func K K)(α:JDK X →̇X) : orn D π0 π0
Dα 7→ λ(k, x). insert (JDK X k) λxs.

insert (α xs = x) λ− .
�D (k, xs)

8.42 Remark. In Section 8.3.2, we relate this type-theoretic definition with the categor-
ical one given by Atkey et al. [2012]. We shall see that the two notions are in exact
correspondence.

8.43 Remark (Notation). We shall indiscriminately write Dα to refer to the ornament
and the resulting description.

8.44 Example (Algebraic ornament: vectors). Ornamenting natural numbers to lists,
we obtain an ornamental algebra: the algebra computing the length of a list. We can
therefore build the algebraic ornament of lists by the length algebra. This corresponds
exactly to the datatype of vectors (Example 5.36).

Note that this operation generalises to all ornaments: any ornament induces an orna-
mental algebra. We can always build the algebraic ornament by the ornamental algebra.
We shall study this operation in more details in Section 8.1.4.

8.45 Example (Algebraic ornament: lifting). As noticed by McBride [2013, §7], the canon-
ical lifting of a description D corresponds to Din. Note that in is an isomorphism (by
Lambek’s lemma 4.35). The definition of Din does indeed reduce to �D : the inserted
equality constraint being trivialised by the isomorphism. We shall come back to this
point through a categorical angle in Section 8.3.2.

8.46 Example (Algebraic ornament: indexing by semantics). A typical use-case of al-
gebraic ornaments is the implementation of semantic-preserving operations on syntax
trees [McBride, 2013, §9]. For example, let us consider arithmetic expressions, whose
semantics is given by interpretation in Nat:

data Expr : SET where
Expr 3 const (n : Nat)

| add (d : Expr)(e : Expr)

evalAlg (es : JExpr-DescK Nat) : Nat
evalAlg [’const n] 7→ n
evalAlg [’add m n] 7→ m + n

Using the algebra evalAlg, we construct the algebraic ornament of Expr and obtain
expressions indexed by their semantics:

data ExprevalAlg (k : Nat) : SET where

ExprevalAlg (k = n) 3 const (n : Nat)
ExprevalAlg (k =m + n) 3 add (m n : Nat)(d : ExprevalAlg m)(e : ExprevalAlg n)

We can now enforce the preservation of semantics by typing. For example, let us

193

8. Ornaments

optimise away all additions of the form “0 + e”:

optimise-0+ (e : ExprevalAlg n) : ExprevalAlg n
optimise-0+ (const n) 7→ const n
optimise-0+ (add 0 n (const 0) e) 7→ optimise-0+ e
optimise-0+ (add m n d e) 7→ add m n d e

If the type checker accepts our definition, we have that, by construction, this oper-
ation preserves the semantics. We can then prune the semantics from the types using
the forgetful map and retrieve the transformation on raw syntax trees. The coherentOrn
theorem certifies that the pruned tree satisfies the invariant we enforced by indexing.

(8.47) Read constructively, the coherence property (¶ 8.38) corresponds to two mutually
inverse functions. From left to right, we obtain a proposition stating that forgetting an
algebraic ornament gives a value that satisfies the algebraic predicate. From right to
left, we have a function that builds an inhabitant of the algebraic ornament from an
inhabitant of the base type, the index being computed by the algebraic predicate. These
constructions arise naturally from the definition of algebraic ornaments.

(8.48) The direction µ Dα(i, x)→ (t : µ D i)× LαM t = x relies on the generic forget Dα func-
tion to compute the first component of the pair, and gives us the following theorem:

coherentOrn :∀tα : µ Dα(i, x). LαM (forget Dα tα) = x

This corresponds to the Recomputation theorem of McBride [2013, §8].
(8.49) Computational interpretation. From an inhabitant of Dα, we can extract its compu-

tational component with forget. Doing so, we forget the indexing (i.e. logical) informa-
tion. The coherence theorem tells us that the resulting datatype satisfies the algebraic
predicate that Dα was enforcing.

8.50 Example (Indexing by semantics). Applied to Example 8.46, we implement our
semantics-preserving operation on the algebraic ornament, hence obtaining its sound-
ness by construction. However, we are only interested in the operation of the non-
indexed datatype, which we obtain by forget. The coherence theorem tells us that the
non-indexed result is semantically valid.

(8.51) In the other direction, the isomorphism gives us a function of type:

(t : µ D i)× LαM t = x→ µ Dα(i, x)

Put in full and simplifying the equation, this corresponds to a function:

Dα-make : (t : µ D i)→ µ Dα(i, LαM t)

This corresponds to the remember function of McBride [2013, §7].
(8.52) Computational interpretation. This operation lets us lift an inhabitant of D to its

194

8.1. Universe of Ornaments

algebraic refinement Dα. Computationally, this function is an identity function: its role
is purely logical, unfolding the index-level computation LαM across the inhabitant of D.

8.1.4. Reornaments

MODEL: Chapter8.Reornament

(8.53) In the next chapter, we are particularly interested in a special subclass of algebraic
ornaments. As hinted at in Example 8.44, every ornament o induces an ornamental
algebra forgetAlg o, which forgets the extra information introduced by the ornament.
Hence, given a datatype D and an ornament oD of D, we can algebraically ornament
JoDKorn using the ornamental algebra forgetAlg oD. McBride [2013, §6] calls this construc-
tion the algebraic ornament by the ornamental algebra.
8.54 Remark (Notation). We shall denote an ornament of D by oD as doDe. For brevity,
we call it the reornament of oD. As usual, we write doDe to denote both the ornament
and the resulting description.
8.55 Example (Reornament: vectors). Following Example 8.44, a standard example of
reornament is Vec: it is the reornament of ListO. Explicitly, a vector is the algebraic
ornament of List by the algebra computing its length, i.e. the ornamental algebra from
List to Nat. This corresponds to the definition of vectors by equality constraints:

data Vec [A : SET](n : Nat) : SET where
Vec A (n= 0) 3 nil
Vec A (n= suc n′) 3 cons (n′ : Nat)(a : A)(vs : Vec A n′)

8.56 Example (Reornament: indexed option type). In Example 8.22, we ornamented
Booleans to the option type. We can thus reornament the option type with its Boolean
status. Unfolding the definition of the reornament, we obtain the datatype:

data IMaybe [A : SET](b : Bool) : SET where
IMaybe A (b= true) 3 just (a : A)
IMaybe A (b= false) 3 nothing

This datatype comes – by folding its ornamental algebra – with the forgetful map:

forgetIMaybe (mba : IMaybe A b) : (ma : Maybe A)× isJust ma = b
forgetIMaybe (just a) 7→ (just a, refl)
forgetIMaybe nothing 7→ (nothing, refl)

(8.57) Reornaments are thus straightforwardly obtained through a two steps process: first,
compute the ornamental algebra and, second, construct the algebraic ornament by this
algebra. However, such a simplistic construction introduces a lot of spurious equality
constraints and duplication of information. For instance, using this naive definition of
reornaments, a vector indexed by n is constructed as any list as long as it is of length n.

195

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Reornament.html

8. Ornaments

8.58 Example (Reornamenting vectors, efficiently). We can adopt a more fine-grained
approach yielding an isomorphic but better structured datatype. In our setting, where
we can compute over the index, a finer construction of the Vec reornament is as follows:
• We retrieve the index, hence obtaining a number n : Nat ;
• By inspecting the ornament ListO, we obtain the exact information by which n

is extended into a list: if n = 0, no supplementary information is needed and if
n = suc n′, we need to extend it with an a : A. We call this the extension – denoted
Extension – of ListO at n ;
• By inspecting the ornament ListO again, we obtain the recursive structure of the

reornament by deleting the data already determined by the index and its exten-
sion, only to extract the refined indexing discipline: the tail of a vector of size
suc n′ is a vector of size n′. The recursive structure is denoted Structure.

Let us generalise this construction to any ornament.

8.59 Definition (Reornament extension). By the coherence property, we know that for
any index t : µ D, the reornament t++ : µ doDe t is isomorphic to the comprehension

{t+ : µ JoDKorn i | forget oD t+ = t}

Note that the equality constraints are introduced only to ensure that t+ is in the in-
verse image of the forgetful map at t. In our setting, we can enforce these constraints
by construction: from the ornament oD and the index t, we can compute the set of valid
extensions of t giving a t+ in the inverse image of the forgetful map:

Extension (O : Orn D u) (xs : JDK µ D) : SET

– Do not duplicate the original data, it is already in xs:
Extension (var (inv i)) t 7→ 1
Extension 1 ∗ 7→ 1
Extension (Π T+) f 7→ (s : S)→ Extension (T+ s) (f s)
Extension (A+× B+) (a, b) 7→ Extension A+ a×Extension B+ b
Extension (σ T+) (e, xs) 7→ Extension (switch T+ e) xs
Extension (Σ T+) (s, xs) 7→ Extension (T+ s) xs
– Ask for freshly inserted data, it is the data missing from xs:

Extension (insert S D+) xs 7→ (s : S)×Extension (D+ s) xs
– Deleted data must be consistent with xs:

Extension (delete s T+) (s′, xs) 7→ (q : s = s′)×Extension T+ xs

(8.60) The next step consists in building the recursive structure of the reornamented type.
Again, the recursive structure is entirely described by the ornament and the index: the
ornament gives the recursive structure of t+, while the index t specifies the indexing
strategy of the subnodes: subnodes of t++ must be indexed by the corresponding subn-
odes of t.

8.61 Definition (Reornament structure). We obtain the recursive structure of t++ by
traversing the ornament definition while unfolding the index t along the way in order to
reach its subnodes. On a variable, we index by the value specified by the ornament and

196

8.1. Universe of Ornaments

the subnode of t we have reached. We can delete Σ and insert codes to avoid information
duplication: the information is already provided by the index in the case of Σ, and by
the extension in the case of insert. We proceed as follows:

Structure (O : Orn D u) (xs : JDK µ D) (e : Extension O xs) : Orn JOKorn π0
– Extract index from the ornament and the index:

Structure (var (inv i)) t ∗ 7→ var (inv (i, t))
– Duplicate only the recursive structure:

Structure 1 ∗ ∗ 7→ 1
Structure (Π T+) f ext 7→ Π λs. Structure (T+ s) (f s) (ext s)
Structure (A+× B+) (a, b) (exta, extb) 7→ Structure A+ a exta× Structure B+ b extb
Structure (σ T+) (e, xs) ext 7→ delete e (Structure (switch T+ e) xs ext)
Structure (Σ T+) (s, xs) ext 7→ delete s (Structure (T+ s) xs ext)
Structure (insert S D+) xs (s, ext) 7→ delete s (Structure (D+ s) xs ext)
Structure (delete s T+) (s, xs) (refl, ext) 7→ Structure T+ xs ext

8.62 Definition (Reornament). A reornament is thus the Extension of its index followed
by the arguments specified by its recursive Structure. We define the reornament at index
t = in xs : µ D by inserting the valid extensions of t, followed by its recursive structure:

reornament (o : orn D u u) : orn JoKorn π0 π0
reornament o 7→ λ(i, in xs). insert (Extension (o i) xs) λe.

Structure (o i) xs e

8.63 Example (Reornament: vectors). Applied to the ornament ListO (Example 8.55),
this construction gives the fully Brady-optimised – detagged and forced – version of
Vec corresponding to the definition:

data Vec [A : SET](n : Nat) : SET where
Vec A 0 3 nil
Vec A (suc n) 3 cons (a : A)(vs : Vec A n)

That is, we determine which constructor of Vec is available by pattern-matching on
the index. This is unlike the naive reornament, which relies on constraints to enforce
the indexing discipline.

8.64 Example (Reornament: indexed option type). Under this definition, the reorna-
ment of MaybeO (Example 8.56) corresponds to the definition

data IMaybe [A : SET](b : Bool) : SET where
IMaybe A true 3 just (a : A)
IMaybe A false 3 nothing

where, similarly, constraints are off-loaded to computations on indices.

(8.65) Note that our ability to compute over indices is crucial for this construction to work.

197

8. Ornaments

Also, the datatypes we obtain are isomorphic to the datatypes one would have obtained
by the algebraic ornament of the ornamental algebra. Consequently, the correctness
property of algebraic ornaments is still valid: constructively, we get the coherentOrn
theorem in one direction and the doDe-make function in the other.

8.66 Remark (Iterating reornamentation). Every ornament induces a reornament. A
reornament is itself an ornament: it therefore induces yet another reornament. We
are naturally led to wonder if this process ever stops, and if so when. For example,
the ornament of natural numbers into lists reornaments to vectors. Reornamenting
vectors, we obtain an inductive predicate representing the length function Length :
Nat→ List A→ SET. Reornamenting Length leads to an object with no computational
content: all its information has been erased and is provided by the indices.

The same pattern arises in general: every chain of reornaments is bound to terminate
on a computationally trivial object. We deduce this from the definition of reornaments
based on Extension and Structure. We proceed by case analysis on the ornament. On a 1,
×, Π, and var code, the reornamentation proceeds purely structurally, hence introduc-
ing no information. The reornamentation deletes Σ codes, using the index information
instead: this removes the information contained in the datatype. On a delete code, the
reornament inserts an equality constraint, which contains no information per se: it is
only enforcing the indexing discipline. Only on an insert code does the reornament
introduce new information through a Σ code.

In the next iteration of the reornament, the insert codes of the ornament (e.g. list from
nat) turn into Σ codes in its reornament (e.g. vector). In the subsequent iteration, these
Σ codes in the reornament are in turn deleted by the re-reornament (e.g. the Length
predicate). In the third iteration, there is nothing left in the code but equations: the
resulting datatype is computationally trivial and is entirely determined by its indices.

(8.67) In this section, we have adapted ornaments to our universe of datatypes. In doing so,
we have introduced deletion ornaments, which use the indexing to remove duplicated
information from the datatypes. This has proved useful to simplify the definition of
reornaments. We shall see in Chapter 9 how this can be turned to our advantage when
we transport functions across ornaments.

8.2. Categorical Semantics of Ornaments

(8.68) In Chapter 5, we gave a presentation of inductive types in type theory and showed
that these objects can faithfully be modelled by containers. In the previous section,
we have adapted the notion of ornament to our theory of inductive types. A natural
question is then whether ornaments correspond to a categorical entity in the theory of
containers. As it turns out, they do: ornaments are Cartesian morphisms of containers. In
this section, we substantiate this claim.

198

8.2. Categorical Semantics of Ornaments

8.2.1. Cartesian morphisms of containers

MODEL: Chapter8.Container.Morphism

Chapter8.Container.BaseChange

Chapter8.Container.CobaseChange

(8.69) In Section 5.3, we have recalled the definition of containers (Definition 5.53). In this
chapter, we move on to studying the morphisms between containers, focusing our ef-
fort on the so-called Cartesian morphisms [Abbott et al., 2005, Gambino and Kock,
2013]. As we shall see in Section 8.2.2, Cartesian morphisms provide a categorical
model for ornaments.

8.70 Definition (Cartesian morphism of containers). Let Op′�Sort′Ar′ : ICont I J and Op�SortAr :
ICont K L be two containers, indexed respectively by (I, J) and (K, L). Let u : I→K and
v : J→ L be two functions mapping the indices of the former to the latter.

A Cartesian morphism from Op′�Sort′Ar′ to Op�SortAr framed by u and v corresponds
to a triple

ω :Op′ j→Op (v j)
ρ : ∀ op′ : Op′ j. Ar (ω op′) = Ar′ op′

q : ∀ op′ : Op′ j. ∀ ar : Ar (ω op′). u (Sort′ ar) = Sort ar

where ω maps the operations of Op′�Sort′Ar′ to operations of Op�SortAr, while ρ en-
forces that the operations mapped through ω have the same arity, and q enforces that
the sorts of their arguments are related through u. In general, we specify a Cartesian
morphism by only giving its action on operations ω, leaving it to the reader to verify
that the side-conditions ρ and q are satisfied.

Following 2-categorical conventions [Shulman, 2008], the hom-set of Cartesian mor-
phisms (i.e. 2-cell) from Op′�Sort′Ar′ to Op�SortAr framed by u and v is denoted

Op′�Sort′Ar′
u

=⇒c
v

Op�SortAr

8.71 Remark. As suggested by the denomination of “Cartesian morphism”, these mor-
phisms play a particular role in some fibration. We may think of the polynomial func-
tors indexed by I and J as defining a subcategory of [SET I , SET J] [Gambino and Kock,
2013, Proposition 2.4]. The category SET J being pullback-complete, and SET I having a
terminal object 1, we may consider the fibration

[SET I , SET J]

SET J

−1

The Cartesian morphisms we have just defined correspond exactly to the Cartesian
natural transformations – natural transformations whose naturality square forms a

199

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Container.Morphism.Main.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Container.BaseChange.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Container.CobaseChange.html

8. Ornaments

pullback – in the fibration [Gambino and Kock, 2013, Theorem 3.8]. This also suggests
that there exists a more general notion of morphism of containers [Abbott et al., 2005,
Gambino and Kock, 2013], which we shall not study in this thesis.

8.72 Example (From lists to natural numbers). We build a Cartesian morphism from
ListContA (Example 5.56) to NatCont (Example 5.55) by mapping operations of ListContA
to operations of NatCont:

ω : ListContA
id

=⇒c
id

NatCont where

ω (opl : OpList ∗) : OpNat ∗
ω (injl ∗) 7→ injl ∗ – nil to 0
ω (injr a) 7→ injr ∗ – cons a to suc

We are then left to check that arities are isomorphic: this is indeed true, since, in the
nil/0 case, the arity is nil while, in the cons/suc case, the arity is one. The coherence con-
dition is trivially satisfied, since both containers are indexed by 1. We shall relate this
natural transformation to the function computing the length of a list in Example 8.93.
8.73 Definition (Interpretation of container morphism). A Cartesian container morphism
interprets to a natural transformation from the first container to the second, simply
mapping operations Op′ to operations Op covariantly using ω:

J(m : Op′�Sort′Ar′
u

=⇒c
v

Op�SortAr)KCont (xs : JOp′�Sort′Ar′KCont (X ◦ u) j) : JOp�SortArKCont X (v j)
JωKCont (op′, xs) 7→ (ω op′, xs)

(8.74) For a pair of indices I, J : SET, we can – quite unsurprisingly – organise ICont I J into
a category [Abbott, 2003], with the morphisms defined to be the Cartesian morphisms
framed by the identity (u , idI and v , idJ).

More interestingly, we can organise ICont itself into a 2-category [Gambino and Kock,
2013]. The objects are the indices, the category of 1-morphisms between indices I and
J is the category ICont I J. Thus, the 2-cells are the Cartesian morphisms between the
containers indexed by I and J.

However, this fails to capture the fact that indices have a life on their own: it makes
sense to have morphisms between differently indexed functors. Indeed, morphisms
between indices – the objects – induce 1-morphisms. Gambino and Kock [2013] have
shown that polynomials (thus, containers) and their interpretations can be organised
into framed bicategories [Shulman, 2008].

Besides, they have shown that the interpretation functor (Definition 5.58 and Defini-
tion 8.73) is an equivalence of framed bicategories [Gambino and Kock, 2013, Proposi-
tion 3.14]. We can therefore legitimately conflate containers and polynomial functors,
the two notions being equivalent.

(8.75) Frame structure. By working with framed bicategories, we gain access to two (dual)
operations that manipulate indexing of containers, the base-change and cobase-change [Gam-
bino and Kock, 2013, ¶3.10]. Let us give their definition in the theory of containers.

200

8.2. Categorical Semantics of Ornaments

8.76 Definition (Base-change container). Let Op�SortAr : ICont K L be a container in-
dexed by K and L. Let u : K→ I and v : L→ J be two functions mapping K and L
respectively to I and J.

The base-change of Op�SortAr by u and v, written (u, v)∗Op�SortAr, is a container
indexed by I and J, defined as follows:

(u, v)∗Op�SortAr ,

Op∗ (j : J) : SET

Op∗ j 7→ (l : v −1 j)×Op l
Ar∗ (op : Op∗ j) : SET

Ar∗ op 7→ Ar (π1 op)
Sort∗ (ar : Ar∗ op) : I
Sort∗ ar 7→ v (Sort ar)

(8.77) Intuition. In a sense, the base-change container (u, v)∗Op�SortAr is the “closest” con-
tainer to Op�SortAr that is indexed by I and J instead of K and L.

We can think of u and v as functions imposing a less precise indexing discipline since
many I-indices may be mapped to the same K-index, and similarly from J to L. The
resulting base-changed container is thus describing a less finely-indexed data-structure.

8.78 Definition (Cobase-change container). Let Op�SortAr : ICont I J be a container in-
dexed by I and J. Let u : K→ I and v : L→ J be two functions mapping K and L
respectively to I and J.

The cobase-change of Op�SortAr by u and v, written (u, v)!Op�SortAr, is a container
indexed by K and L, defined as follows:

(u, v)!Op�SortAr ,

Op! (l : L) : SET

Op! l 7→ (op : Op (v l))×((ar : Ar op)→ (k : K)× u k = Sort ar)
Ar! (op : Op! l) : SET

Ar! op 7→ Ar (π0 op)
Sort! (ar : Ar! op) : K
Sort! ar 7→ π0 ((π1 op) ar)

(8.79) Intuition. While the base-change operation uses u and v to define a less precisely-
indexed signature, the cobase-change has the opposite effect. Looking at u from K to I
this time, we can see the I-indices as more segregative than the K-indices, and similarly
from L to J.

The cobase-change container (u, v)!Op�SortAr is thus the more precisely-indexed con-
tainer derived from Op�SortAr. To this end, we must carefully restrict its operations to
the ones in the original container whose arities are preserved under the new (more
segregative) indexing regime. An example of cobase-changed datatype is given in Ex-
ample 8.109.

8.80 Remark. Interestingly, we can easily define a Cartesian morphism from a con-
tainer to its base-change container and, dually, we have a Cartesian morphism from
the cobase-change container to its original container. As we shall see in Section 8.3.3,
this translates into a novel ornamental construction.

201

8. Ornaments

8.2.2. Ornaments are Cartesian morphisms

MODEL: Chapter8.Equivalence

(8.81) Relating the definition of ornaments (Definition 8.17) with our container-based read-
ing of descriptions (Figure 5.4), we make the following remarks. Firstly, the ornament
code lets us only insert – with the insert code – or delete – with the delete code – Σ codes,
while forbidding deletion or insertion of either Π or var codes. In terms of containers,
this translates to: operations can be extended, while arity must remain unchanged. Sec-
ondly, on the var code, the ornament code lets us pick any index in the inverse image of
u. In terms of container, this corresponds to the coherence condition: the initial index-
ing must commute with applying the ornamented indexing followed by u.

(8.82) Concretely, for a container Op�SortAr, an ornament can be modelled as an extension
ext, and a refined indexing Sort+ subject to a coherence condition q with respect to the
original indexing:

ext : Op (v l)→ SET

Sort+ : ext op→Ar op→K
q :∀ ar : Ar op. u (Sort+ e ar) = Sort ar

(8.83) Equivalently, the family of set ext can be understood as the inverse image of a func-
tion ω : Op+ l→Op (v l). The function Sort+ is then the arguments’ sort of a con-
tainer with operations Op+ and arities Ar ◦ω. Put otherwise, the morphism on op-
erations ω together with the coherence condition q form a Cartesian morphism from
Op+�Sort+Ar ◦ω to Op�SortAr!

8.84 Example (The many faces of an ornament). To gain some intuition, the reader can
revisit the Cartesian morphism of Example 8.72 as an ornament of container – by simply
inverting the morphism on operations – and as an ornament of description – by relating
it with the ornament ListO (Example 8.25).

We shall now formalise this argument by proving that ornaments and Cartesian mor-
phisms are in fact the two sides of the same coin:

8.85 Proposition. Ornaments are an intensional characterisation of the Cartesian mor-
phisms of containers, i.e. we have the isomorphism

orn D u v ∼= ICont(−, 〈D〉)u,v

Proof. The first half of the isomorphism consists in mapping an ornament o of a descrip-
tion D to a Cartesian morphism from the container described by JoKorn to the container
described by D. By definition of Cartesian morphisms, we simply have to give a map
from the operations of JoKorn to the operations of D (Figure 8.2).

We are then left to check (extensionally) that the arities are isomorphic and the in-
dexing is coherent. This is indeed the case, even though proving it in type theory is
cumbersome. The ornament does not introduce or delete any new Π or var: hence the
arities of each operations are left unchanged. Concerning the sort of these arguments,
we rely on u −1 k to ensure that the more precise indexing is coherent by construction.

202

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Equivalence.Main.html

8.2. Categorical Semantics of Ornaments

φ (o : orn D u v) : 〈JoKorn〉
u

=⇒c
v
〈D〉

φ o 7→ (λi. forget (o i) (u i)) where
forget (O : Orn D u) (sh : Opfunc JOKorn) : Opfunc D
forget (insert a D+) (a, sh) 7→ forget (D+ a) sh
forget (var (inv j)) ∗ 7→ ∗
forget 1 ∗ 7→ ∗
forget (A+× B+) (a, b) 7→ (forget A+ a, forget B+ b)
forget (σ T+) (e, sh) 7→ (e, forget (switch T+ e) sh)
forget (Π T+) f 7→ λa. forget (T+ a) (f a)
forget (Σ T+) (a, sh) 7→ (a, forget (T+ a) sh)
forget (delete s O) sh 7→ (s, forget O sh)

Figure 8.2.: From ornament to Cartesian morphism

In the other direction, we are given a Cartesian morphism from F to G. We return
an ornament of the description of G. For the isomorphism to hold, this ornament must
map to the description of F:

ψ (m : F
u

=⇒c
v

G) : orn 〈G〉−1 u v

ψ (forget) 7→ λj. Σ λsh. insert (forget−1 sh) λext. Π λps. var (inv (nF ps))

Indeed, the description of G is a Σ of its operations, followed by a Π of its arities,
terminated by a var at the desired sort. To ornament G into F, we simply have to insert
the inverse image of forget, i.e. the information that extends G to F. As for the sorts,
we can legitimately use F’s indexing function: the coherence condition of the Cartesian
morphism ensures that it is indeed in the inverse image of the reindexing function.

We have carefully crafted φ and ψ so that these functions are (extensionally) inverses
of each other. Expressing these extensional evidences into an (intensional) theorem
prover is arduous and sheds no new insight on the construction itself. Hence, we will
not attempt to prove it in type theory here.

8.86 Remark (Relation with ornamental algebras (Section 8.1.2)). To define the orna-
mental algebra (Definition 8.34), we introduced the Cartesian morphism (Definition 8.32),
a function taking an ornamented type to its unornamented form. This construction ac-
tually corresponds to our transformation φ, followed by the interpretation of the re-
sulting Cartesian morphism. The Cartesian morphism forgetNT is indeed natural and
Cartesian. This natural transformation was already present in the original presenta-
tion [McBride, 2013, §4], in the form of the helper function erase.

8.87 Remark (Terminology). We may now conflate the notions of ornament, Cartesian
morphism, and Cartesian natural transformation. In particular, we shall say that “F
ornaments G” when we have a Cartesian morphism from F to G.

203

8. Ornaments

Let us now raid the container toolbox for the purpose of programming with orna-
ments. The next section shows the beginning of what is possible.

8.3. Tapping into the Categorical Structure

MODEL: Chapter8.Container.Morphism.Cartesian,

Chapter8.Container.Morphism.Contornament

(8.88) In the previous section, we have categorically characterised ornaments in terms of
Cartesian morphisms. We now turn to the original ornamental constructions – such as
the ornamental algebra and the algebraic ornament – and rephrase them in our cate-
gorical framework. Doing so, we extract the structure governing their type-theoretic
definition and thus gain a finer understanding.

Next, we study the categorical structure of Cartesian morphisms and uncover novel
and interesting ornamental constructions. We shall see how identity, composition, and
the frame structure translate into ornaments. We shall also be interested in pullbacks in
the category of containers and the functoriality of the derivative in that category.

8.3.1. Ornamental algebra

(8.89) Following Remark 8.86, the forgetNT function that implements the ornamental al-
gebra corresponds exactly to the Cartesian natural transformation described by the or-
nament. The ornamental algebra is thus a simple corollary of the very definition of
ornaments as Cartesian morphisms.

8.90 Corollary (Ornamental algebra). From an ornament o : F
u

=⇒c
v

G, we obtain the or-

namental algebra forgetAlg o : F (µG ◦ v)→ µG ◦ u.

Proof. We apply the natural transformation o at µG and post-compose by in:

forgetAlg o : F (µG ◦ v)
oµG−→ (G µG) ◦ u in−→ µG ◦ u

(8.91) Going back to Section 8.1.2, we easily relate the type-theoretic definitions with their
categorical model. As explained in Remark 8.86, the so-called Cartesian morphism
forgetNT (Definition 8.32) is the interpretation of the Cartesian morphism. The orna-
mental algebra forgetAlg (Definition 8.34) is then obtained by composing the Cartesian
morphism with the in constructor.

(8.92) Computational interpretation. Folding the ornamental algebra, we obtain a map
from the ornamented type µF to its unornamented version µG. In effect, the ornamental
algebra describes how to forget the extra information introduced by the ornament.

8.93 Example (Ornamental algebra: ListO). The Cartesian morphism from list to natural
numbers (Example 8.72) maps the nil constructor to 0, while the cons constructor is

204

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Container.Morphism.Cartesian.Main.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter8.Container.Morphism.Contornament.Main.html

8.3. Tapping into the Categorical Structure

mapped to suc. Post-composing by in, we obtain a natural number. This is the algebra
computing the length of a list.

8.3.2. Algebraic ornaments

(8.94) The notion of algebraic ornament was initially introduced by McBride [2013, §5]. A
similar categorical construction, defined for any functor, was also presented by Atkey
et al. [2012]. In this section, we reconcile these two works and show that, for a container,
the refinement functor can itself be internalised as a container.
8.95 Definition (Refinement functor [Atkey et al., 2012, §4.3]). Let F be an endofunctor
on SET I . Let (X : SET I , α : F X → X) be an algebra over F.

The refinement functor is defined by

Fα , Σα ◦ F̂ : Set(i:I)×X i→ Set(i:I)×X i

where F̂ – the canonical lifting of F [Hermida and Jacobs, 1998, Fumex, 2012] – gener-
alises the canonical lifting of descriptions (Definition 4.52) as follows

F̂ (P : (i : I)×X i→ SET) (ixs : (i : I)× F X i) : SET

F̂ P ixs 7→ (ps : F (λ− . (ix : (i : I)×X i)× P ix))× F π0 ps = ixs

(8.96) The idea, drawn from refinement types [Freeman and Pfenning, 1991], is that a func-
tion LαM : µF→X can be thought of as a predicate over µF. By integrating the algebra α
into the signature F, we obtain a signature Fα indexed by X that describes the F-objects
satisfying, by construction, the predicate LαM. Categorically, this translates to:
8.97 Theorem (Coherence property of algebraic ornament [Atkey et al., 2012, Theo-
rem 4.6]). The fixpoint of the refinement functor PF

α satisfies the isomorphism µPF
α ∼=

ΣLαM1 µF where 1 : SET I → [SET I , SET I], the terminal object functor, maps objects X to
idX (Remark 4.61).

(8.98) Informally, using a set-theoretic notation, this isomorphisms reads as

µFα i x ∼= ΣLαM1 µF
∼= {t : µF i | LαM t = x}

That is, the algebraic ornament µFα at index i and x corresponds exactly to the pair of
a witness t of µF i and a proof that this witness satisfies the indexing equation LαM t = x.

(8.99) When F is a polynomial functor, we show that the refinement functor can be in-
ternalised and presented as an ornament of F. In practice, this means that from a
description D and an algebra α, we can compute an ornament code that describes the
functor Dα. This should not come as a surprise: we defined algebraic ornaments (Def-
inition 8.41) exactly this way, based on the original presentation of McBride [2013, §5].
The following theorem abstracts this original definition.
8.100 Proposition. Let σ , Op�SortAr be a container indexed by I. Let (X, α) be an
algebra over F, i.e. α : JσKCont X →̇X.

205

8. Ornaments

The refinement functor σα is polynomial and ornaments σ.

Proof. We first show that σ̂ ornaments σ, and then that Σα ornaments the identity con-
tainer. By horizontal composition, we thus get that σα ornaments σ.

To show that σ̂ ornaments σ, we remark that the canonical lifting of a container itself
a container. Indeed, we define

C� (σ : ICont I J) : ICont ((i : I)×X i) ((j : J)× JσKCont X j)

C� Op�SortAr 7→

Opl (jxs : (j : J)× JσKCont X j) : SET

Opl jxs 7→ 1
Arl (op : Opl jxs) : SET

Arl ∗ 7→ Ar (π0 (π1 jxs))
Sortl (ar : Arl op) : (i : I)×X i
Sortl ar 7→ (Sort ar, (π1 (π1 jxs)) ar)

We then verify that JC� σKCont ∼= ĴσKCont and that there exists a container morphism
from C� σ to σ, which is suggested by the fact that both containers have the same arities.

Similarly, we can construct a container representing Σα (along the lines of its defini-
tion as a description in the proof of Lemma 5.68), and build a Cartesian natural trans-
formation from the container describing Σα to the identity container indexed by I.

By horizontal composition of these two Cartesian natural transformations, we obtain
a Cartesian natural transformation from σα , Σα ◦ σ̂ to id ◦ σ ∼= σ.

(8.101) The categorical presentation of refinement functors (Definition 8.95) gives an inter-
esting perspective on our definition of the algebraic ornament (Definition 8.41). We now
understand the definition of Fα as the composition of the canonical lifting, followed by
the op-reindexing by α.

First, we explicitly appeal to the canonical lifting. Second, the op-reindexing is coded
by inserting an xs : JDK X k satisfying the constraint α xs = x. In the internal language,
we have:

Σα : SET/JDK X → SET/X

Σα {Pxs | xs ∈ JDK X},
{

∑
xs∈α−1x

Pxs | x ∈ X

}
, {(xs : JDK X)× α xs = x× Pxs | x ∈ X}

8.3.3. Categorical structures

(8.102) Identity. A trivial ornamental construction is the identity ornament. Indeed, for ev-
ery container, there is a Cartesian morphism from and to itself, introducing no extension
and no refinement.

8.103 Definition (Identity ornament). In terms of ornament code, this construction sim-
ply consists in copying the code of the description: this is a generic program, taking a

206

8.3. Tapping into the Categorical Structure

description as input and returning the identity ornament:

idO (D : IDesc I) : Orn D id
idO (var i) 7→ var (inv i)
idO 1 7→ 1
idO A× B 7→ idO A× idO B
idO (σ E T) 7→ σ λe. idO (switch T e)
idO (Π S T) 7→ Π λs. idO T s
idO (Σ S T) 7→ Σ λs. idO T s

This definition then lifts pointwise to ornaments:

idO : (D : func I J)→ orn D id id

(8.104) Vertical composition. The next structure of interest is composition. Recall that an
ornament corresponds to a (Cartesian) natural transformation. There are therefore two
notions of composition. First, vertical composition lets us collapse chains of ornaments:

SET/I SET/J SET/I SET/J

F

G

H

F

H

⇓ o1

⇓ o2

o2 • o1
⇓=

8.105 Example (Vertical composition of ornaments). We have seen that List ornaments
Nat. We also know that Vec ornaments List. By vertical composition, we thus obtain
that Vec ornaments Nat.

(8.106) Horizontal composition. Turning to horizontal composition, we have the following
identity:

SET/I SET/J SET/K

SET/I SET/K

F1

G1

F2

G2
F2 ◦ F1

G2 ◦ G1

⇓ o1 ⇓ o2

o2 ◦ o1
⇓

=

8.107 Example (Horizontal composition of ornaments). Let us consider the following

207

8. Ornaments

containers:

Square X 7→ X× X : SET/1→ SET/1
Height {Xn | n ∈ Nat} 7→ {Xn × Xn+1 | n ∈ Nat}

+ {Xn × Xn | n ∈ Nat} : SET/Nat→ SET/Nat

It is easy to check that VecCont (Example 5.57) ornaments ListCont (Example 5.56). In
fact, Example 8.63 showed that vectors are a reornament of lists. Besides, Height orna-
ments Square. By horizontal composition of these ornaments, we obtain that VecCont ◦
Height – describing a balanced binary tree – is an ornament of ListCont ◦ Square – de-
scribing a binary tree. Thus, we obtain that balanced binary trees ornament binary
trees.

(8.108) Frame structure. Finally, the frame structure (¶ 8.75) lets us lift morphisms on indices
by ornamentation.
8.109 Example (Cobase-change ornament). Recall the arithmetic expressions indexed
by their semantics (Example 8.46):

data ExprevalAlg (k : Nat) : SET where

ExprevalAlg (k = n) 3 const (n : Nat)
ExprevalAlg (k =m + n) 3 add (m n : Nat)(d : ExprevalAlg m)(e : ExprevalAlg n)

One could be interested in a subset of these expressions: for example, we might want
to manipulate those expressions that are strictly positive. Strictly-positive natural num-
bers are defined by

data Nat∗ : SET where
Nat∗ 3 1

| suc (n : Nat∗)

and trivially embeds into natural numbers:

toNat (n : Nat∗) : Nat
toNat 1 7→ suc 0
toNat (suc n) 7→ suc (toNat n)

The container describing ExprevalAlg is indexed by Nat: we can therefore reindex it by
toNat. We obtain a container that describes the expressions denoting strictly-positive
natural numbers. Put explicitly, the object thus computed is the following datatype:

data ExprevalAlg+ (k : Nat∗) : SET where

ExprevalAlg+ k 3 const (n : Nat)(q : toNat k = n)
| add (m n : Nat∗)(d : ExprevalAlg+ m)(e : ExprevalAlg+ n)

(q : toNat k = toNat m + toNat n)

For both constructors, the strict-positivity of inhabitants of ExprevalAlg+ is enforced by
the side-conditions q: the (strictly-positive) index k must be equal to the denotation of

208

8.3. Tapping into the Categorical Structure

the expression.

8.110 Remark. The identity, vertical and horizontal compositions, and frame structure
illustrate the algebraic properties of ornaments: not only can we define ornaments, but
we can also combine them. The categorical simplicity of ornaments gives us a finer
understanding of datatypes and their relation to each other. This is demonstrated by
Example 8.107 for instance.

8.3.4. Pullback of ornaments

(8.111) So far, we have merely exploited the fact that containers form a (framed bi)category.
However, it has a much richer structure. That extra structure can in turn be translated
into ornamental constructions. We shall focus our attention on pullbacks, but we expect
other categorical notions to be of programming interest.

8.112 Example (Pullback of ornament). Natural numbers can be ornamented to lists
(Example 8.25) as well as finite sets (Example 8.26). Taking the pullback of these two
ornaments, we obtain bounded lists that correspond to lists of bounded length, with
the bound given by an index n : Nat. Put explicitly, the object thus computed is the
following datatype:

data BoundedList [A : SET](n : Nat) : SET where
BoundedListA (n= suc n′) 3 nil (n′ : Nat)

| cons (n′ : Nat)(a : A)(as : BoundedListA n′)

(8.113) This construction is not unique to this pair of ornaments. In fact, every pair of orna-
ments admits a pullback, as established by the following proposition.

8.114 Proposition ([Dagand and McBride, 2013a, Proposition 4]). The category of con-
tainers has all pullbacks.

8.115 Remark. The pullback construction is another algebraic property of ornaments:
given two ornaments, both describing an extension of the same datatype (e.g. extending
natural numbers to lists and extending natural numbers to finite sets), we can “merge”
them into one having both characteristics (i.e. bounded lists). In type theory, Ko and
Gibbons [2011] have experimented with a similar construction for composing indexing
disciplines.

8.3.5. Derivative of ornament

(8.116) Abbott et al. [2005] have shown that the Zipper [Huet, 1997] data-structure can be
computed from the derivative of signature functors. Interestingly, the derivative is
characterised by the existence of a universal arrow in the category of containers.

8.117 Definition (Differentiability [Abbott et al., 2005]). Let F be a container indexed by
I : SET.

F is differentiable in i : I if and only if, for any container G, we have the following

209

8. Ornaments

bijection of morphisms
ICont(G× πi, F)
ICont(G, ∂iF)

We denote ICont∂i the class of containers differentiable in i.
8.118 Remark (Intuition). A container can be thought of as describing a polynomial of
multiple (in fact, I) variables. The above definition of a partial derivative is merely
the multivariate counterpart to the derivative on (non-indexed) polynomials [Abbott
et al., 2005], i.e. inductive types. Where the univariate derivative computes the one-
hole context of some inductive type, the partial derivative in i computes the one-hole
context of some inductive family at index i, leaving the other variables unchanged.
Following the mono-sorted setting, from the one-hole context of an inductive family,
we generically obtain its (indexed) Zipper [Morris, 2007].
8.119 Example (Ornamentation of derivative). Let us consider binary trees. Balanced
binary trees are an ornamentation of binary trees (Example 8.107). We also have that
the derivative of balanced binary trees is an ornament of the derivative of binary trees.

(8.120) This observation carries over to any ornament: ornamentation is stable by deriva-
tion, as demonstrated by the following theorem.
8.121 Proposition. Let F and G be two containers in ICont∂i .

If F ornaments G, then ∂iF ornaments ∂iG.

Proof. The proof simply follows from the functoriality of ∂i over ICont∂i [Abbott, 2003,
Section 6.4]. Intuitively, we have the following Cartesian morphism

∂iF× πi →c F →c G

where the first component is the unit of the universal arrow while the second compo-
nent is the ornament from F to G. By definition of differentiability, we therefore have
the desired Cartesian morphism:

∂iF →c ∂iG

8.122 Remark. The derivative is thus an example of an operation on datatypes that
preserves ornamentation. Knowing that the derivative of an ornamented datatype is
an ornamentation of the derivative of the original datatype, we get that the order in
which we ornament or derive a datatype does not matter. This lets us relate datatypes
across such transformations, thus preserving the structural link between them.

210

8.3. Tapping into the Categorical Structure

Conclusion

(8.123) In this chapter, we have adapted McBride’s ornaments to our universe of datatypes.
This gives us the ability to compute over indices. Consequently, we have extended the
original presentation with a deletion ornament. Deletion ornaments are a key ingre-
dient for the internalisation of Brady’s optimisation [Brady et al., 2003] over inductive
families. In particular, this gave us a simpler implementation of reornaments.

(8.124) We then gave a categorical presentation of ornaments. Doing so, we get to the
essence of ornaments: ornamenting a datatype consists in extending it with new in-
formation, and refining its indices. Formally, this characterisation turns into an abstract
representation of ornaments as Cartesian morphisms of containers. Having such an
abstract understanding of ornaments, an entirely new design space opens up to us.

(8.125) We have reported some initial results of our explorations. We translate the type-
theoretic ornamental toolkit to the categorical framework. Doing so, we gain a deeper
understanding of the original definitions. Then, we have expressed the categorical
structure of containers in terms of ornaments, discovering new constructions – iden-
tity, vertical composition, horizontal composition, and frame structure of ornaments –
in the process. Last but not least, we have studied the algebraic structure of containers,
obtaining the notion of pullback of ornaments and derivative of ornaments.

Related work

(8.126) Ornaments were initially introduced by McBride [2013] as a programming artefact.
They were presented in type theory, with a strong emphasis on their computational
contribution. Ornaments were thus introduced through a universe. Constructions on
ornaments – such as the ornamental algebra, algebraic ornament, and reornament –
were introduced as programs in this type theory, relying crucially on the concreteness
of the universe-based presentation.

While this approach has many pedagogical benefits, it was also clear that more ab-
stract principles were at play. For example, in this chapter, we have adapted the notion
of ornaments to our universe of inductive families, whilst Ko and Gibbons [2011] ex-
plore datatype engineering with ornaments in yet another universe. This chapter gives
such an abstract treatment. This focus on the theory behind ornaments thus comple-
ments the original, computational treatment.

Building upon that original paper, Ko and Gibbons [2011] also identify the pullback
structure – called “composition” in their paper – as significant, giving a treatment for a
concrete universe of ornaments and compelling examples of its effectiveness for com-
bining indexing disciplines. The conceptual simplicity of our approach lets us subsume
their type-theoretic construction as a mere pullback.

(8.127) Algebraic ornaments were also treated categorically by Atkey et al. [2012]: instead
of focusing on a restricted class of functors, the authors described the refinement of
any functor by any algebra. The constructions are presented in the generic framework
of fibrations. The refinement construction described in their paper, once specialised to
containers, corresponds exactly to the notion of algebraic ornament, as we have shown.

211

8. Ornaments

(8.128) Algebraic ornament are strikingly similar to the “upward incrementalisation” of
Leather et al. [2011]. Upward incrementalisation consists of memoising the application
of an algebra over a datatype. To do so, one defines another datatype whose operations
are extended to store the result of the algebra. Algebraic ornaments are an indexed
counterpart of this construction: no information is stored in the datatype, instead it
flows through the indices. The arguments’ sorts contain the result of the algebra of the
subnodes and the constructor’s resulting sort is computed by applying the algebra over
the argument’s sorts.

It would be interesting to study the indexed counterpart of the “downward incre-
mentalisation” described by the authors, and combinations of upward and downward
incrementalisation. While we do not foresee any technical difficulty, the practical in-
terest of such a definition is less clear. Indeed, when defining an indexing discipline,
we normally focus on structural properties, i.e. properties that flows from the leaf of the
data-structure to its root. Thus, when grafting subtrees together with a constructor,
the indexing information flows quite naturally from the parts to define the type of the
whole. A downward indexing discipline would propagate from the top down: when
grafting subtrees, one would likely have to fix-up the type of the subnodes to satisfy
the constraint arbitrarily set by the constructor.

(8.129) Finally, it is an interesting coincidence that Cartesian morphisms should play such
an important role in structuring ornaments. Indeed, containers stem from the work on
shapely types [Jay and Cockett, 1994]. In the shape framework, a few base datatypes
were provided (such as natural numbers) and all the other datatypes were grown from
these basic blocks by a pullback construction, i.e. an ornament. However, this frame-
work was simply typed, hence no indexing was at play.

212

9. Functional Ornaments

(9.1) Thanks to ornaments (Chapter 8), we now have a good handle on the transforma-
tion of individual datatypes. However, we are still facing a major reusability issue: a
datatype comes equipped with a set of operations. Ornamenting this datatype, we have
to re-implement many similar operations for the ornamented version.

9.2 Example. The datatype Nat comes with operations such as addition and subtraction.
When defining List A as an ornament of Nat, it seems natural to transport the structure-
preserving functions of Nat to List A, such as moving from addition of natural numbers
to concatenation of lists:

(m : Nat) + (n : Nat) : Nat
0 + n 7→ n
(suc m) + n 7→ suc (m+ n)

⇒
(xs : List A) ++ (ys : List A) : List A
nil ++ ys 7→ ys
(cons a xs) ++ ys 7→ cons a (xs++ ys)

Or, from subtraction of natural numbers to dropping a prefix:

(m : Nat)− (n : Nat) : Nat
0 − n 7→ 0
m − 0 7→ m
(suc m) − (suc n) 7→ m− n

⇒

drop (xs : List A) (n : Nat) : List A
drop nil n 7→ nil
drop xs 0 7→ xs
drop (cons a xs) (suc n) 7→ drop xs n

(9.3) We want to generalise the notion of ornament to functions. In order to do this, we
first need to be able to manipulate functions in type theory and, in particular, their
types. To this effect, we define a universe of functions. With it, we are able to write
generic programs over the class of functions captured by our universe. Using this tech-
nology, we define a functional ornament as a decoration over the universe of functions.
The liftings implementing the functional ornament are related to the base function by a
coherence property. To minimise the burden induced by coherence proofs, we expand
our system with patches: a patch is the type of the functions that satisfy the coherence
property by construction. Finally, and still writing generic programs, we show how we
can automatically project the lifting and its coherence certificate out of a patch.

(9.4) First, we work through an example in Section 9.1. We explore the structural ties that
link addition on natural numbers and concatenation of lists. Upon identifying some
common structure, we cast it in terms of ornaments and their reornaments. Through
this pedestrian presentation, we lay the foundations for the next sections: we introduce
the vocabulary and the general intuitions.

(9.5) Then, we introduce functional ornaments by a universe construction in Section 9.2.
Based on this universe, we establish the connection between a base function (such as

213

9. Functional Ornaments

(m : Nat)< (n : Nat) : Bool
m < 0 7→ false
0 < suc n 7→ true
suc m < suc n 7→ m< n

=⇒

lookup (m : Nat) (xs : List A) : Maybe A
lookup m nil 7→ nothing
lookup 0 (cons a xs) 7→ just a
lookup (suc n) (cons a xs) 7→ lookup n xs

Figure 9.1.: Implementation of −<− and lookup

addition and subtraction) and its ornamented version (such as, respectively, −++−
and drop). Within this framework, we redevelop the example of Section 9.1 with all the
automation offered by our system.

(9.6) In Section 9.3, we provide further support to drive the computer into lifting func-
tions semi-automatically. As we can see from our examples above, the lifted functions
often follow the same recursion pattern and return similar constructors: with a few
constructions, we shall remove further clutter and code duplication from our libraries.

9.7 Remark (Meta-theoretical status). It is crucial to note that this chapter is built en-
tirely within type theory. No change or adaptation to the meta-theory is required. In
particular, the validity of our constructions is justified by mere type checking.

9.1. From Comparison to Lookup, Manually

(9.8) There is an astonishing resemblance between the comparison function −<− on
numbers and the list lookup function (Figure 9.1). Interestingly, the similarity is not
merely at the level of types. It is also in their implementation: their definition follows
the same pattern of recursion (first, case analysis on the second argument; then induc-
tion on the first argument) and they both return a failure value (respectively, false and
nothing) in the first case analysis and a success value (respectively, true and just) in the
base case of the induction.

(9.9) This raises the question: what exactly is the relation between−<− and lookup? Also,
could we use the implementation of −<− to guide the construction of lookup? First,
let us work out the relation at the type level. To this end, we use ornaments to explain
how each individual datatype has been promoted when going from −<− to lookup:

−<− Nat Nat Bool

lookup Nat List A Maybe A

idONat ListO A MaybeO A

: → →

: → →

Note that the first argument is ornamented to itself, or put differently, it has been
ornamented by the identity ornament.

214

9.1. From Comparison to Lookup, Manually

(9.10) Ornamental algebras. Each of these ornaments come with a forgetful map, com-
puted from the ornamental algebra. These forgetful maps correspond to the following
functions:

length (as : List A) : Nat
length nil 7→ 0
length (cons a as) 7→ suc (length as)

isJust (m : Maybe A) : Bool
isJust nothing 7→ false
isJust (just a) 7→ true

(9.11) Using these forgetful map we deduce a relation, at the operational level, between
−<− and lookup. This relation is uniquely determined by the ornamentation of the
individual datatypes. This coherence property is expressed as follows:

∀n : Nat. ∀xs : List A. isJust (lookup n xs) = n< length xs

Or, equivalently, using a commuting diagram:

Nat× List A Maybe A

Nat×Nat Bool−<−

lookup

id× length isJust

9.12 Remark (Vocabulary). We call the function we start with the base function (here,
−<−), its type being the base type (here, Nat→Nat→Bool). The richer function type
built by ornamenting the individual pieces is called the functional ornament (here, Nat→
List A→Maybe A). A function inhabiting this type is called a lifting (here, lookup). A
lifting is said to be coherent if it satisfies the coherence property.
9.13 Remark (Coherence and functional ornament). It is crucial to understand that the
coherence of a lifting is relative to a given functional ornament: the same base function
ornamented differently would give rise to a different coherence property.

(9.14) We now have a better grasp of the relation between the base function and its lifting.
However, lookup remains to be implemented while making sure that it satisfies the
coherence property. Traditionally, one would stop here: we would implement lookup
and prove the coherence as a theorem. This works rather well in a system like Coq
since it offers a powerful theorem proving environment. It does not work so well in a
system like Agda that does not offer tactics to its users, forcing them to write explicit
proof terms. It would not work at all in an ML language with GADTs, which has no
notion of proof.
9.15 Remark (Methodology). We are not satisfied by this laborious approach: if we
have dependent types, why should we use them only for proofs, as an afterthought? We
should rather write a lookup function correct by construction: by implementing a more
precisely indexed version of lookup, the user can drive the type checker into verifying

215

9. Functional Ornaments

the necessary invariants. We believe that this is how it should be: computers should
check proofs by computation; humans should drive computers. The other way around
– where humans are coerced into computing for computers – may seem surreal, yet it
reflects the current situation in most proof systems.

(9.16) To get the computer to work for us, we would rather implement the function ilookup

ilookup (m : Nat) (vs : Vec A n) : IMaybe A (m< n)
ilookup m nil 7→ nothing
ilookup 0 (cons a vs) 7→ just a
ilookup (suc m) (cons a vs) 7→ ilookup m vs

where Vec A is the reornament of List A by its length (Example 8.55), and IMaybe A is
the reornament of Maybe A by its truth as computed by isJust (Example 8.64).

Indeed, the accuracy afforded by ilookup’s type significantly constrains – and thus sim-
plifies – its implementation. For instance, having determined that the vector is empty
(first pattern), the return type leaves us no choice but to give the constructor nothing. In
fact, in an interactive system such as Agda extended with Agsy [Lindblad and Benke,
2004], the user can drive the system to implement ilookup without typing a single term
herself: we only need to setup the matching patterns, and then appeal to Agsy’s au-
tomation to generate the (desired) returned terms.

(9.17) The rationale behind ilookup is to index the types of lookup by their unornamented
version, i.e. the arguments and result of −<−. Hence, we can make sure that the re-
sult computed by ilookup respects the output of −<− on the unornamented indices:
the result is correct by indexing! The type of ilookup is naturally derived from the orna-
mentation of−<− into lookup and is uniquely determined by the functional ornament
we start with.

9.18 Remark (Vocabulary). Expanding further our vocabulary, we call coherent liftings
these finely indexed functions that are coherent by construction.

(9.19) We use reornaments to internalise the coherence requirements. From ilookup, we
can extract both lookup and its proof of correctness without having written any proof term
ourselves:

lookup (m : Nat) (xs : List A) : Maybe A
lookup m xs 7→ π0(forgetIMaybe (ilookup m (makeVec xs)))

cohLookup (n : Nat) (xs : List A) : isJust (lookup n xs) = n< length xs
cohLookup m xs 7→ π1(forgetIMaybe (ilookup m (makeVec xs)))

We rely on the function makeVec : (xs : List A)→Vec A (length xs), which turns a list
into a vector of the corresponding length. It is derived automatically from the vector
reornament (¶ 8.51). Operationally, it is an identity.

9.20 Remark (ilookup vs. vlookup). The function ilookup is very similar to the more fa-

216

9.2. A Universe of Functions and their Ornaments

miliar vlookup function:

vlookup (m : Fin n) (vs : Vec A n) : A
vlookup f0 (cons a xs) 7→ a
vlookup (fsuc n) (cons a xs) 7→ vlookup n xs

These two definitions are actually equivalent, thanks to the isomorphism:

(m : Nat)→ IMaybe A(m< n) ∼= Fin n→ A

Intuitively, we can move the constraint that m< n from the result – where we return
an object of type IMaybe A(m< n) – to the premise – where we expect an object of type
Fin n. Indeed, we can think of the type Fin n as the combination of a number m : Nat
together with a proof that m< n.

(9.21) With this example, we have manually unfolded the key steps of the construction of
a lifting of −<−. Let us recapitulate each steps:
• Start with a base function, here −<− : Nat→Nat→Bool
• Ornament its inductive components as desired, here Nat to List A and Bool to

Maybe A in order to describe the lifting of interest, here

lookup : Nat→ List A→Maybe A

satisfying

∀n : Nat. ∀xs : List A. isJust (lookup n xs) = n< length xs

• Implement a carefully indexed version of the lifting, here

ilookup : (m : Nat)(vs : Vec A n)→ IMaybe A (m< n)

• Derive the lifting, here lookup, and its coherence proof, without writing a proof!
Besides, the implementation of ilookup is useful on its own: this function corresponds
exactly to vector lookup, a function that one would have implemented anyway.

(9.22) This manual unfolding of the lifting is instructive: it involves many constructions
on datatypes (here, the datatypes List A and Maybe A) as well as on functions (here,
the type of ilookup, the definition of lookup and its coherence proof). Yet, it feels like a
lot of these constructions could be automated. In the next section, we shall build the
machinery to describe these transformations and obtain them within type theory.

9.2. A Universe of Functions and their Ornaments

(9.23) We now generalise ornaments to functions. To do so, we first need to be able, in type
theory, to manipulate functions and their types. We thus define a universe of functions
(Section 9.2.1). With it, we will be able to write generic programs over the class of
functions captured by this universe. We define a functional ornament as a decoration

217

9. Functional Ornaments

over the universe of functions (Section 9.2.2). The liftings implementing the functional
ornament are related to the base function by a coherence property.

To minimise the theorem-proving burden induced by coherence proofs, we expand
our system with patches (Section 9.2.3): a patch is the type of the functions that satisfy
the coherence property by construction. Finally, we show how we can project the lifting
and its coherence certificate out of a patch (Section 9.2.4).

9.2.1. A universe of functions

MODEL: Chapter9.Functions

9.24 Definition (Universe of types). For clarity of exposition, we restrict our language
of types to the bare minimum: a type can either be an exponential whose domain is
an inductive type, or a product whose first component is an inductive type, or the unit
type – used as a termination marker:

data Type : SET1 where
Type 3 µ{(D : func K K) (k : K) }→ (T : Type)

| µ{(D : func K K) (k : K) }× (T : Type)
| 1

This universe codes the function space from some (maybe none) inductive types to
some (maybe none) inductive types. Concretely, the codes are interpreted as follows:

J(T : Type)KType : SET

Jµ{D k }→ TKType 7→ µ D k→ JTKType
Jµ{D k }× TKType 7→ µ D k× JTKType
J1KType 7→ 1

(9.25) The constructions we develop next could be adapted to a more powerful universe,
such as one supporting non-inductive parameters, dependent quantifiers, or higher-
order functions. However, this would needlessly complicate our exposition.

For instance, the treatment of non-inductive parameters would lead to further, but
orthogonal, extensions of the functional ornaments ; namely, inserting or deleting these
quantifiers during functional ornamentation. To support higher-order functions, we
are bound to make a distinction between covariant and contravariant ornamentations,
which we can simply overlook in a first-order system.
9.26 Example (Coding−<−). Written in the universe of function types, the type of the
comparison function is:

type< : Type
type< 7→ µ{NatD ∗ }→ µ{NatD ∗ }→ µ{BoolD ∗ }× 1

The implementation of −<− is essentially the same as earlier, except that it must now

218

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter9.Functions.html

9.2. A Universe of Functions and their Ornaments

return a pair of a Boolean and an inhabitant of the unit type. To be explicit about the
recursion pattern of this function, we make use of Epigram’s by (⇐) gadget:

− < − : Jtype<KType
m < n ⇐ Nat-case n

m < 0 7→ (false, ∗)
m < suc n ⇐ Nat-elim m

0 < suc n 7→ (true, ∗)
suc m < suc n 7→ m< n

That is, we first do a case analysis on n and then, in the successor case, we proceed
by induction over m.

9.27 Example (Coding −+−). In the universe of function types, the type of addition is
given by:

type+ : Type
type+ 7→ µ{NatD ∗ }→ µ{NatD ∗ }→ µ{NatD ∗ }× 1

Again, up to a trivial multiplication by 1, the implementation of −+− is left un-
changed:

− +− : Jtype+KType
m + n ⇐ Nat-elim m

0 + n 7→ (n, ∗)
suc m + n 7→ (suc m+ n, ∗)

That is, we proceed by induction over m.

9.2.2. Functional ornament

MODEL: Chapter9.FunOrnament

(9.28) It is now straightforward to define functional ornaments: we traverse the function
type and ornament the inductive types as we go. Note that it is always possible to leave
an object unornamented: we ornament by the identity, which simply copies the original
description.

9.29 Definition (Universe of functional ornaments). Following this intuition, we define
functional ornaments by the following grammar:

data FunOrn (T : Type) : SET1 where
FunOrn (µ{D k }→ T) 3 µ+{(o : orn D u u) (i : u −1 k) }→ (T+ : FunOrn T)
FunOrn (µ{D k }× T) 3 µ+{(o : orn D u u) (i : u −1 k) }× (T+ : FunOrn T)
FunOrn 1 3 1

9.30 Definition (Lifting type). We get the type of the liftings by interpreting the orna-

219

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter9.FunOrnament.html

9. Functional Ornaments

ments as we traverse the functional ornament:

J(T+ : FunOrn T)KFunOrn : SET

Jµ+{o (inv i) }→ T+KFunOrn 7→ µ JoKorn k→ JT+KFunOrn

Jµ+{o (inv i) }× T+KFunOrn 7→ µ JoKorn k× JT+KFunOrn

J1KFunOrn 7→ 1

(9.31) We want our ornamented function to be coherent with respect to the base function
we started from: for a function f : µ D→ µ E, the ornamented function

f+ : µ JoDKorn→ µ JoEKorn

is said to be coherent with f if the following diagram commutes:

µ JoDKorn µ JoEKorn

µ D µ E

forget oD forget oE

f

f+

Or, equivalently in type theory:

∀x+ : µ JoDKorn i. f (forget oD x+) = forget oE (f+ x+)

This captures our intuition that the lifted function f+ behaves similarly to the base
function f , only that it also carries the extra-information introduced by the ornament
oD over to the ornament OE. Coherence states that this extra-step does not interfere
with its core operational behavior, which is specified by f .

9.32 Definition (Coherence). This definition of coherence generalises to any arity. We
define it by induction over the code of functional ornaments:

Coherence(T+ : FunOrn T)(f : JTKType)(f+ : JT+KFunOrn) : SET

Coherence (µ+{o (inv i) }→ T+) f f+ 7→
∀x+ : µ JoKorn k. Coherence T+ (f (forgetOrn x+)) (f+x+)

Coherence (µ+{o (inv i) }× T+) (x, xs) (x+, xs+) 7→
x = forgetOrn x+×Coherence T+ xs xs+

Coherence 1 ∗ ∗ 7→ 1

9.33 Example (Ornamenting type< to describe lookup). In Section 9.1, we have identi-
fied the ornaments taking the type of −<− to the type of lookup. We ornament Nat to
List A (Example 8.25), and Bool to Maybe A (Example 8.22). From there, the functional

220

9.2. A Universe of Functions and their Ornaments

ornament describing the type of the lookup function is as follows:

typeLookup : FunOrn type<
typeLookup 7→ µ+{idONat ∗ }→ µ+{ListO A ∗ }→ µ+{MaybeO A ∗ }× 1

The reader checks that JtypeLookupKFunOrn gives us the type of the lookup function,
up to a multiplication by 1. Also, unfolding the coherence condition gives the desired
property:

Coherence typeLookup (−<−); λ f+ : JtypeLookupKFunOrn.
∀n : Nat. ∀xs : List A. isJust (f+ n xs) = n< length xs

9.34 Remark. This equation is not specifying the lookup function: it is only establishing
a computational relation between −<− and a candidate lifting f+, for which lookup
is a valid choice. However, one could be interested in other functions satisfying this
coherence property and they would be handled by our system just as well.

9.35 Example (Ornamenting type+ to describe −++−). The functional ornament of
type+ relies solely on the ornamentation of Nat into List A:

type++ : FunOrn type+
type++ 7→ µ+{ListO A ∗ }→ µ+{ListO A ∗ }→ µ+{ListO A ∗ }× 1

Again, we check that Jtype++KFunOrn is indeed the type of −++− while the coher-
ence condition Coherence type++ (−+−) correctly captures our requirement that ap-
pending lists preserves their lengths. As before, the list append function is not the only
valid lifting: one could for example consider a function that reverses the first list and
appends it to the second one.

9.2.3. Patches

MODEL: Chapter9.Patch

(9.36) By definition of a functional ornament, the lifting of a base function f : JTKType is
a function f+ of type JT+KFunOrn satisfying the coherence property Coherence T+ f . To
implement a lifting that is coherent, we might ask the user to first implement the lifting
f+ and then prove its coherence. However, as discussed in Remark 9.15, this fails to
harness the power of dependent types when implementing f+, this weakness being
then paid off by tedious proof obligations. To overcome this limitation, we define the
notion of Patch as the type of all the functions that are coherent by construction.

9.37 Remark. We are looking for an isomorphism here: we define patches in such a way
that they are in bijection with the liftings satisfying a coherence property. Put otherwise,
we want that:

Patch T T+ f ∼= (f+ : JT+KFunOrn)×Coherence T+ f f+ (9.1)

221

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter9.Patch.html

9. Functional Ornaments

(9.38) In this chapter, we constructively use this bijection in the left-to-right direction: hav-
ing implemented a patch f++ of type Patch T T+ f , we show how we can extract a
lifting together with its coherence proof.

9.39 Example (Patching−<−). Before giving the general construction of a Patch, let us
first work through our running example. After having functionally ornamented −<−
with typeLookup, the lifting function f+ and coherence property can be represented by
the following commuting diagram:

Nat List A Maybe A

Nat Nat Bool×

×

id

−<−

f+

length isJust

(9.2)

In type theory, this is written as:

(f+ : Nat× List A→Maybe A)×
∀m : Nat. ∀as : List A. m< length as = isJust (f+ m as)

Applying intensional choice, this is equivalent to:

∼= (m : Nat)× (n : Nat)× (as : List A)× length as = n→
(ma : Maybe A)× isJust ma = m< n

Now, by definition of reornaments, we have that:

(as : List A)× length as = n ∼= Vec A n and
(ma : Maybe A)× isJust ma = b ∼= IMaybe A b

Applying these isomorphisms, we obtain the following type, which we call the Patch
of the functional ornament typeLookup:

∼= (m : Nat)× (n : Nat)× (vs : Vec A n)→ IMaybe A (m< n)

This last type is thus equivalent to a pair of a lifting and its coherence proof.

(9.40) Intuitively, the Patch construction consists in turning the vertical arrows of the com-
muting diagram (9.2) into the equivalent reornaments. In type-theoretic terms, it turns
the pairs of datatypes and their algebraically defined constraints into the equivalent
reornaments. The coherence property of reornaments tells us that projecting the orna-

222

9.2. A Universe of Functions and their Ornaments

mented function down to its unornamented components gives back the base function.
By turning the projection functions into inductive datatypes, we enforce the coher-

ence property directly by the index: we introduce a fresh index for the arguments (in
Example 9.39, introducing m and n) and index the return types by the result of the
unornamented function (in Example 9.39, indexing IMaybe A by the result m< n).

9.41 Definition (Patch type). We define the Patch type generically by induction over
the functional ornament. Upon an argument (i.e. a code µ+{o }→), we introduce a
fresh index and the reornament of o. Upon a result (i.e. a code µ+{o }×), we ask for a
reornament of o indexed by the result of the base function.

Patch (T : Type) (T+ : FunOrn T) (f : JTKType) : SET

Patch (µ{D (u i) }→ T) (µ+{o (inv i) }→ T+) f 7→
(x : µ D (u i))→ µ doe (i, x)→Patch T T+ (f x)

Patch (µ{D (u i) }× T) (µ+{o (inv i) }× T+) (x, xs) 7→
µ doe (i, x)×Patch T T+ xs

Patch 1 1 ∗ 7→ 1

9.42 Example (Patch of typeLookup). The type of the coherent liftings of−<− by typeLookup,
as defined by the Patch of −<− by typeLookup, unfolds to:

(m : Nat)(m+ : µ didONatem)→ (n : Nat)(vs : µ dList Ae n)→ µ dMaybe Ae (m< n)× 1

9.43 Remark. µ didONate n is isomorphic to 1: all the content of the datatype has been
forced – the recursive structure of the datatype is entirely determined by its index –
and detagged – the choice of constructors is entirely determined by its index, leaving
no actual data in it. Hence, we discard this argument as computationally uninteresting.
On the other hand, dList Ae and dMaybe Ae are, respectively, the previously introduced
vectors and indexed option types.

9.44 Example (Patch of type+). Similarly, the Patch of −+− by type+ unfolds to the
type of the vector append function

(m : Nat)(xs :dList Aem)→ (n : Nat)(ys :dList Aem)→dList Ae (m+ n)× 1

where, again, the datatype dList Ae corresponds exactly to vectors.

9.45 Lemma. Following our Remark 9.37, we have that a Patch is isomorphic to the pair
of a lifting and its coherence proof:

∀T : Type. ∀T+ : FunOrn T. ∀ f : JTKType.
Patch T T+ f ∼= (f+ : JT+KFunOrn)×Coherence T+ f f+

That is, our definition of the Patch type enforces that its inhabitants are exactly those
liftings that are coherent by construction.

223

9. Functional Ornaments

Proof. For clarity, we shall only write the proof for arity one. The generalisation to
multiple input and output arities is straightforward but laboriously verbose. So, from
a base function f , we start with its lifting and the associated coherence property:

(f+ : µ JoAKorn→ µ JoBKorn)×
∀a+ : µ JoAKorn. forget oB (f+ a+) = f (forget oA a+)

Applying intensional choice, we obtain the following equivalent type:

∼= (a : µ A)× (a+ : µ JoAKorn)× forget oA a+ = a→ (b+ : µ JoBKorn)× forget oB b+ = f a

Then, we can simply use the characterisation of a reornament to turn every pair (x+ :
µ JoXKorn)× forget oX x+ = t into the equivalent inductive type µ doXe t

∼= (a : µ A)× µ doAe a→ µ doBe(f a)

which corresponds to the Patch type of this functional ornament.

9.46 Remark (When to index?). While these precisely indexed functions relieve us from
the burden of theorem proving, this approach is not always applicable. For instance, if
we were to implement a length-preserving list reversal function, our patching machin-
ery would ask us to implement vrev:

vrev (xs : Vec A n) : Vec A n
vrev nil 7→ nil
vrev (cons a vs) 7→ {(vrev vs) ++(cons a nil) : Vec A (1 + n)}

To complete this goal calls for some proving in order to match up the types: we must
appeal to the equational theory of addition. Here, the term we put in the hole has type
Vec A (n + 1) while the expected type is Vec A (1 + n). The commutativity of addition
is beyond the grasp of our type checker, which can only decide definitional identities.

Unless the type checker works up to equational theories, as done in CoqMT [Strub,
2010], the programmer is certainly better off using our machinery to generate the coher-
ence condition (Section 9.2.2) and implement the lifting and its coherence proof manu-
ally, rather than using patches. However, this example gives a hint as to what can be
seen as a “good” coherence property: because we want the type checker to do all the
proving, the equations we rely on at the type level need to be definitionally true, either
because our logic decides a rich definitional equality, or because we rely on operations
that satisfy these identities by definition.

224

9.2. A Universe of Functions and their Ornaments

9.2.4. Patching and coherence

MODEL: Chapter9.Patch.Apply, Chapter9.Patch.Coherence

(9.47) At this stage, we can implement the ilookup function exactly as we did in Section 9.1.
From there, we now want to obtain the lookup function and its coherence certificate.
More generally, having implemented a function satisfying the Patch type, we want to
extract the lifting and its coherence proof. Perhaps not surprisingly, we obtain this con-
struction by looking at the isomorphism of the previous section (Lemma 9.45) through
our constructive glasses: indeed, since the Patch type is isomorphic to the set of liftings
satisfying the coherence property, we effectively get a function taking every Patch to
a lifting and its coherence proof. More precisely, we obtain the lifting by generalising
the reornament-induced forget functions to functional ornaments while we obtain the
coherence proof by generalising the reornament-induced coherentOrn theorem.

9.48 Definition (Patching). We call patching the action of projecting the coherent lifting
from a Patch function. Again, it is defined by induction over the functional ornament.
When ornamented arguments are introduced (i.e. with the code µ+{o }→), we simply
patch the body of the function. This is possible because from x+ : µ JoDKorn, we can forget
the ornament to compute f (forgetOrn x+), and we can also make the reornament to
compute f++ (makeAlgOrn x+). When an ornamented result is to be returned (i.e. with
the code µ+{o }×), we simply forget the reornamentation computed by the coherent
lifting:

patch (T+ : FunOrn T) (f : JTKType) (p : Patch T T+ f) : JT+KFunOrn

patch (µ+{o (inv i) }→ T+) f f++ 7→
λx+. patch (f (forgetOrn x+))

(f++ (forgetOrn x+) (makeAlgOrn x+))
patch (µ+{o (inv i) }× T+) (x, xs) (x++, xs++) 7→

(forgetOrn x++, patch T+ xs xs++)
patch 1 ∗ ∗ 7→ ∗

9.49 Definition (Coherence of a patch). Extracting the coherence proof follows a similar
pattern. We introduce arguments as we go, just as we did with patch. When we reach
a result, we have to prove the coherence of the result returned by the patched function,
which is a straightforward application of the coherentOrn theorem:

coherence (T+ : FunOrn T) (f : JTKType) (p : Patch T T+ f) : Coherence T+ f (patch T+ f p)
coherence (µ+{o (inv i) }→ T+) f p 7→

λx+. coherenceT+ (f (forgetOrn x+))
(p (forgetOrn x+) (makeAlgOrn x+))

coherence (µ+{o (inv i) }× T+) (x, xs) (x+, p) 7→
(coherentOrn x+, coherence T+ xs p)

coherence 1 ∗ ∗ 7→ ∗

225

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter9.Patch.Apply.html
https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter9.Patch.Coherence.html

9. Functional Ornaments

9.50 Example (Obtaining lookup and its coherence, for free). This last step is a mere
application of the patch and coherence functions. Hence, we define lookup as follows:

lookup : JtypeLookupKFunOrn

lookup 7→ patch typeLookup (−<−) ilookup

And we get its coherence proof, here spelled in full:

cohLookup (n : Nat) (xs : List A) : length (lookup n xs) = n< length xs
cohLookup n xs 7→ coherence typeLookup (−<−) ilookup n xs

9.51 Remark (Code readability). The lookup function thus defined is rather daunting,
especially for a potential user of that piece of code. However, we must bear in mind
that lookup is in fact entirely specified by ilookup: there is no point in inspecting the
definition of lookup. In a programming environment, we could imagine a syntactic
device akin to our informal syntax for ornaments. For instance, we would state that
lookup is a functional ornamentation of −<−. This would lead us to – transparently –
implement ilookup in lieu of lookup.

9.52 Example (Obtaining −++− and its coherence, for free). Assuming that we have
implemented the coherent lifting vappend, we obtain concatenation of lists and its co-
herence proof by simply running our generic machinery:

++ : Jtype++KFunOrn

++ 7→ patch type++ (−+−) vappend

coh++ (xs : List A) (ys : List A) : length (xs++ ys) = (length xs) +(length ys)
coh++ xs ys 7→ coherence type++ (−+−) vappend xs ys

(9.53) Looking back at the pedestrian construction of Section 9.1, we can measure the
progress we have made: while we had to entirely duplicate the type signature of lookup
and its coherence proof, we can now write down a functional ornament and these are
generated for us. This is not just convenient: a functional ornament establishes a strong
connection between two functions. By pinning down this connection with the universe
of functional ornaments, we turn this knowledge into an effective object that can be
manipulated and reasoned about within type theory.

We make use of this concrete object when we construct the Patch induced by a func-
tional ornament: this is again a construction that is generic now, while we had to te-
diously (and perhaps painfully) construct it in Section 9.1. Similarly, we get patching
and extraction of the coherence proof for free now, while we had to manually fiddle
with several projection and injection functions.

(9.54) We presented Patch as the type of the liftings coherent by construction. As we have
seen, its construction and further projection down to a lifting is now entirely automated,
hence effortless. This is a significant step forward: we could either implement lookup

226

9.3. Lazy Programmers, Smart Constructors

− < − : Jtype<KType
m < n ⇐ Nat-case n

m < 0 7→ (false, ∗)
m < suc n ⇐ Nat-elim m

0 < suc n 7→ (true, ∗)
suc m < suc n 7→ m< n

ilookup (m : Nat) (vs : Vec A n) : IMaybe A (m< n)
ilookup m vs ⇐ Vector-case vs

ilookup m nil 7→ nothing
ilookup m (cons a vs) ⇐ Nat-elim m

ilookup 0 (cons a vs) 7→ just a
ilookup (suc m) (cons a vs) 7→ ilookup m vs

Figure 9.2.: Implementations of −<− and ilookup

and then prove it coherent, or we could go through the trouble of manually defining
carefully indexed types and write a function correct by construction.

We have now made this second alternative just as accessible as the first one. And,
from a programming perspective, the second approach is much more appealing. In a
word, we have made an appealing technique extremely cheap!

9.55 Remark (No meta-theory). We must reiterate that none of the above constructions
involve extending the type theory: using our universe of datatypes, functional orna-
ments are internalised as a few generic programs and inductive types.

For systems such as Agda, Coq, or an ML with GADTs, this technology would need
to be provided at the meta-level. However, the fact that our constructions type check in
our system suggests that adding them at the meta-level is consistent with a pre-existing
meta-theory.

9.3. Lazy Programmers, Smart Constructors

MODEL: Chapter9.Lift

(9.56) In our journey from −<− to lookup, we had to implement the ilookup function. It
is instructive to put −<− and ilookup side-by-side (Figure 9.2). First, both functions
follow the same recursion pattern: case analysis over n/vs followed by induction over
m. Second, the returned constructors are related through the Maybe ornament: knowing
that we have returned true or false when implementing−<−, we deduce which of just
or nothing will be used in ilookup. Interestingly, the only unknown, hence the only
necessary input from the user, is the a in the just case: this is precisely the information
that has been introduced by the Maybe ornament.

(9.57) In this section, we are going to leverage our knowledge of the definition of the base
function – such as−<− – to guide the implementation of the coherent lifting – such as
ilookup: instead of re-implementing ilookup by duplicating most of the code of −<−,
the user indicates what to transport and only provides the strictly-necessary inputs. We
are primarily interested in transporting two forms of structure:
Recursion pattern: if the base function is a catamorphism LαM and the user provides us

with a coherent algebra α̂ of α, we construct the coherent lifting Lα̂M of LαM ;

227

https://personal.cis.strath.ac.uk/pierreevariste.dagand/stuffs/thesis-2011-phd/model/html/Chapter9.Lift.Main.html

9. Functional Ornaments

Returned constructor: if the base function returns a constructor C and the user pro-
vides us with a coherent extension Ĉ of C, we construct the coherent lifting of C.

(9.58) We shall formalise what we understand by being a coherent algebra and a coherent
extension below. The key idea is to identify the strictly-necessary inputs from the user,
helped in that by the ornaments. It is then straightforward to build the lifted objects,
automatically and generically.

9.3.1. Transporting recursion patterns

(9.59) When transporting a function, we are very unlikely to change the recursion pattern
of the base function. Indeed, the very reason why we can do this transformation is that
the lifting uses exactly the same underlying structure to compute its results. Hence,
most of the time, we could just ask the computer to use the recursion pattern induced
by the base function: the only task left to the user will be to give an algebra.

9.60 Example (Lifting a catamorphism). To understand how we transport recursion pat-
terns, let us look again at the coherence property of liftings, but this time specialising
to a function that is a catamorphism:

µ JoDKorn µ JoEKorn

µ D µ E

forget oD forget oE

LαM

LβM

By the fold-fusion theorem [Bird and de Moor, 1997], it is sufficient (but not neces-
sary) to work on the algebras, where we have the following diagram:

JoDKorn µ JoEKorn µ JoEKorn

JoDKorn µ E JDK µ E µ E

JoDK (forget oE)

forgetNT oD

forget oE

α

β

Now, we would like to find an algebra α̂ such that its catamorphism gives us a func-
tion of the Patch type.

9.61 Example (Lifting isSuc). To illustrate our approach, let us work through a concrete
example: we derive hd : List A→Maybe A from isSuc : Nat→Bool by transporting the

228

9.3. Lazy Programmers, Smart Constructors

algebra. For the sake of argument, we artificially define isSuc by a catamorphism:

isSuc (n : Nat) : Bool
isSuc n 7→ LisSucAlgM n where

isSucAlg (xs : JNatDK Bool) : Bool
isSucAlg [’0] 7→ false
isSucAlg [’suc xs] 7→ true

Our objective is thus to define the algebra for hd, which has the following type

hdAlg : JListD AK Maybe A→Maybe A

such that its catamorphism is coherent. By the fold-fusion theorem, it is sufficient for
hdAlg to satisfy the following condition:

∀ms : JListD AK Maybe A.
isJust (hdAlg ms) = isSucAlg (forgetNT (ListO A) (JListD AK isJust ms))

Following the same methodology we applied to define the Patch type, we can mas-
sage the type of hdAlg and its coherence condition to obtain an equivalent definition
enforcing the coherence by indexing. In this case, we obtain the type:

lifthdAlgAlg , JVecD AK (λn′. IMaybe A (isSuc n′)) n→ IMaybe A (isSuc n)

This construction generalises to any functional ornament.

9.62 Definition (Coherent algebra). Let α be an algebra

α : (k : K)→ JDK (λ− . JTKType) k→ JTKType

together with an ornament oD : orn D u u and a functional ornament T+ : FunOrn T.
We define the coherent algebras for α to be the inhabitants of the type:

liftα
Alg , (i : I)(t : µ D (u i))→

JdoeK (λ(i, t). Patch T (LαM t) T+) (i, t)→Patch T (LαM t) T+

9.63 Definition (Lifting of coherent algebra). Constructively, we get that coherent alge-
bras induce coherent liftings, by the catamorphism of the coherent algebra:

lift-fold (α : (k : K)→ JDK (λ− . JTKType) k→ JTKType)
(α̂ : liftα

Alg) : Patch (µ{D (u i) }→ T) LαM (µ+{o i }→ T+)

lift-fold α α̂ 7→ λx. λx++. Lα̂M x++

229

9. Functional Ornaments

9.64 Example (Transporting the recursion pattern of isSuc). We can now apply our generic
machinery to transport isSuc to hd: using a high-level notation, we write the command
of Figure 9.3(a) (Page 235). To this command, an interactive system would respond by
automatically generating the algebra, as shown in Figure 9.3(b). In the low-level type
theory, this would elaborate to the following term:

ihd (vs : Vec A n) : IMaybe A (isSuc n)
ihd vs 7→ lift-fold isSucAlg ihdAlg

where

ihdAlg (vs : JVecD AK (λn′. IMaybe A (isSuc n′)) n) : IMaybe A (isSuc n)
ihdAlg [’nil] 7→ {?}
ihdAlg [’cons a xs] 7→ {?}

9.65 Remark (High-level notation). Formalising the elaboration process from the high-
level notation to the low-level type theory is beyond the scope of this thesis. The readers
will convince themselves that the high-level notation contains all the information nec-
essary to reconstruct a low-level term. We use the high-level syntax to describe our
transformations, with the understanding that it builds a low-level, well-typed term.

The treatment of induction is essentially the same, as hinted at by the fact that in-
duction can be reduced to a catamorphism [Hermida and Jacobs, 1998, Fumex, 2012].
We first define the coherent inductive step and deduce an operation lifting induction
principles:

9.66 Definition (Coherent inductive step). Let α be an inductive step

α : (k : K)(xs : JDK (µ D) k)→�D (λ− . JTKType) xs→ JTKType

together with an ornament oD : orn D u u and a functional ornament T+ : FunOrn T.

We define the coherent inductive step for α to be the inhabitants of the type:

liftα
IH , (i : I)(t : µ D (u i))(xs : JdoeK (µ doe) (i, t))→

�doe (λ(i, t). Patch T ((iinduction α) t) T+) xs→Patch T ((iinduction α) t) T+

9.67 Definition (Lifting of inductive step). As for algebras, a coherent inductive step α̂
induces a coherent lifting, by merely applying the induction:

lift-ind (α : (k : K)(xs : JDK (µ D) k)→�D (λ− . JTKType) xs→ JTKType)
(α̂ : liftα

IH) : Patch (µ{D (u i) }→ T) (iinduction α) (µ+{o i }→ T+)
lift-ind α α̂ 7→ λx. λx++. iinduction α̂ x++

9.68 Definition (Lifting of case analysis). Lifting case analysis is trivial, since it is deriv-
able from induction by stripping out the induction hypotheses (Section 7.3.1).

230

9.3. Lazy Programmers, Smart Constructors

lift-case (α : (k : K)(xs : JDK (µ D) k)→ JTKType)
(α̂ : lift

(λxs−. α xs)
IH) : Patch (µ{D (u i) }→ T)

(iinduction (λxs − . α xs))
(µ+{o i }→ T+)

lift-case α α̂ 7→ lift-ind (λxs − . α xs) (λxs − . α̂ xs)

9.69 Example (Transporting the recursion pattern of −<−). To implement ilookup, we
use lift-case to transport the case analysis on n:

ilookup : Patch type< typeLookup −<−
ilookup m im n vs lift⇐ lift-case

ilookup m im 0 nil {?}
ilookup m im (suc n) (cons a vs) {?}

Followed by lift-ind to transport the induction over m:

ilookup : Patch type< typeLookup −<−
ilookup m im n vs lift⇐ lift-case

ilookup m im 0 nil {?}
ilookup m im (suc n) (cons a vs) lift⇐ lift-ind

ilookup 0 0 0 nil {?}
ilookup (suc m) (suc im) 0 nil {?}

The interactive nature of this construction is crucial: the user types in the lift⇐ com-
mand together with the action to be carried out, while the computer does all the heavy
lifting and generates the resulting patterns.

9.70 Example (Transporting the recursion pattern of −+−). In order to implement the
concatenation of vectors, we can also benefit from our generic machinery. We simply
have to instruct the machine that we want to lift the case analysis used in the definition
of −+− and the computer comes back to us with the following goals:

vappend : Patch type+ type++ −+−
vappend m xs n ys lift⇐ lift-case

vappend 0 nil n ys {?}
vappend (suc m) (cons a xs) n ys {?}

9.3.2. Transporting constructors

(9.71) Just as the recursive structure, the returned values frequently mirror the original def-
inition: we are often in a situation where the base function returns a given constructor
and we would like to return its ornamented counterpart. Informing the computer that

231

9. Functional Ornaments

we simply want to lift that constructor, it should fill in the parts that are already deter-
mined and ask only for the missing information, i.e. the data newly introduced by the
ornament.

(9.72) Recall that, when implementing the coherent lifting, we are working on the reorna-
ments of the lifting. Hence, when returning a constructor-headed value, we are simply
building an inhabitant of a reornament. When defining reornaments in Section 8.1.4,
we have shown that, thanks to deletion ornaments, a reornament can be decomposed
in two components:

• The extension that contains all the extra information introduced by the ornament ;
• The recursive structure of the refined datatype that specifies the sort of its argu-

ments.

And no additional information is required: all the information provided by indexing
with the unornamented datatype is optimally used in the definition of the reornament.
Thus, there is absolutely no duplication of information.

9.73 Definition (Lifting of constructor). This clear separation of concerns is a blessing
for us: when lifting a constructor, we only have to provide the extension and the ar-
guments of the datatype, nothing more. In terms of implementation, this is as simple
as:

lift-constructor (e : Extension (o i) xs) – coherent extension
(a : JStructure (o i) xs eKorn (µ doe)) – arguments
(t++ : Patch T t T+)
: Patch (µ{D (u i) }× T) (in xs, t) (µ+{o i }× T+)

lift-constructor e a t++ 7→ (in (e, a), t++)

9.74 Remark. The implementation of the lifting of constructors is straightforward: it is
merely packing the various components in pairs. We might wonder whether such a
trivial construction is worth considering. In fact, we achieve such a level of simplicity
thanks to a careful choice of definitions: we have crucially defined reornaments as a
product of an extension and a structure. An alternative definition would have made
this construction much more involved. By carefully choosing the “right” definition, we
obtain a simple but just as interesting lifting function.

9.75 Example (Transporting the constructors of isSuc). Let us finish the implementation
of hd from isSuc. Our task is simply to transport the true and false constructors along
the Maybe ornament. In a high-level notation, we would write the command shown
in Figure 9.3(c). The interactive system would then respond by generating the code
of Figure 9.3(d). The unit goals (1) are trivially solved, probably automatically by the
system. The only information the user has to provide is a value of type A, which is
required by the just constructor.

9.76 Example (Transporting the constructors of −<−). As for ilookup, we want to lift
the constructors true and false to the Maybe ornament. In a high-level notation, this

232

9.3. Lazy Programmers, Smart Constructors

would be represented as follows:

ilookup : Patch type< typeLookup −<−
ilookup m im n vs lift⇐ lift-case

ilookup m im 0 nil
lift7→ nothing ∗[∗]

ilookup m im (suc n) (cons a vs) lift⇐ lift-ind

ilookup 0 0 (suc n) (cons a vs) lift7→ just {? : a} A[∗]
ilookup (suc m) (suc im) (suc n) (cons a vs) {?}

As before, in an interactive setting, the user would instruct the machine to execute

the command lift7→ and the computer would come back with the skeleton of the expected
inputs. Finishing the implementation of ilookup is now one baby step away:

ilookup : Patch type< typeLookup −<−
ilookup m im n vs lift⇐ lift-case

ilookup m im 0 nil
lift7→ nothing ∗[∗]

ilookup m im (suc n) (cons a vs) lift⇐ lift-ind

ilookup 0 0 (suc n) (cons a vs) lift7→ just a[∗]
ilookup (suc m) (suc im) (suc n) (cons a vs) 7→ ilookup m im n vs

9.77 Example (Transporting the constructors of −+−). We can also benefit from the
automatic lifting of constructors to fill out the cons case of vector append. We instruct
the system that we want to lift the suc constructor, which results in the following goals:

vappend : Patch type+ type++ −+−
vappend m xs n ys lift⇐ lift-case
vappend 0 nil n ys {?}
vappend (suc m) (cons a xs) n ys lift7→ cons {? : A} [{?}]

It is then straightforward to, manually this time, conclude the implementation of
vappend:

vappend : Patch type+ type++ −+−
vappend m xs n ys lift⇐ lift-case
vappend 0 nil n ys 7→ ys

vappend (suc m) (cons a xs) n ys lift7→ cons a[vappend m xs n ys]

9.78 Remark (About an interactive system). To convey our message to the reader, we
have used a very high-level language of liftings, without giving much information
about its implementability, or even a formal specification. It would certainly be inter-

233

9. Functional Ornaments

esting to elaborate on such a language extension. However, more easily implementable
alternatives are worth considering. For instance, one could choose to implement a semi-
decision procedure à la Agsy [Lindblad and Benke, 2004] that attempts to automatically
lift a function. The lifting operations we have described thus serve as a precise language
in which to express the lifting problem, and over which to compute its solution. Our
high-level syntax is highly anticipative, and may remain unimplemented. However, it
is only necessary for the purpose of conveying high-level intuitions to the reader, and
to keep us from flooding these pages with lambda terms.

234

9.3. Lazy Programmers, Smart Constructors

(a) Request lifting of algebra (user input):

ihd (vs : Vec A n) : IMaybe A isSuc n

ihd
lift⇐ lift-fold

{?}

(b) Result of lifting the algebra (system output):

ihd (vs : Vec A n) : IMaybe A (isSuc n)

ihd
lift⇐ lift-fold where

ihdAlg (vs : JVecDK (λn′. IMaybe A (isSuc n′)) n) : IMaybe A (isSuc n)
ihdAlg ’nil {?}
ihdAlg (’cons a xs) {?}

(c) Request lifting of constructors (user input):

ihd (vs : Vec A n) : IMaybe A (isSuc n)

ihd
lift⇐ lift-fold where

ihdAlg (vs : JVecDK (λn′. IMaybe A (isSuc n′)) n) : IMaybe A (isSuc n)

ihdAlg ’nil
lift7→ {?}

ihdAlg (’cons a xs) lift7→ {?}

(d) Result of lifting constructors (system output)

ihd (vs : Vec A n) : IMaybe A (isSuc n)

ihd
lift⇐ lift-fold where

ihdAlg (vs : JVec AK (λn′. IMaybe A (isSuc n′)) n) : IMaybe A (isSuc n)

ihdAlg ’nil
lift7→ nothing {? :1} [{? :1}]

ihdAlg (’cons a xs) lift7→ just {? : A} [{? :1}]

(e) type checked term (automatically generated from (d)):

ihd (vs : Vec A n) : IMaybe A (isSuc n)
ihd vs 7→ lift-fold isSucAlg ihdAlg where

ihdAlg (vs : JVec AK (λn′. IMaybe A (isSuc n′)) n) : IMaybe A (isSuc n)
ihdAlg ’nil 7→ lift-constructor ’nil {? :1} {? :1} ∗
ihdAlg (’cons a xs) 7→ lift-constructor (’suc n) {? : A} {? :1} ∗

Figure 9.3.: Guided implementation of ihd

235

9. Functional Ornaments

Conclusion

(9.79) In this chapter, we have generalised ornaments to functions: from a universe of
function types, we define a functional ornament as the ornamentation of each of its
inductive components. A function of the resulting type will be subject to a coherence
property, akin to the ornamental forgetful map of ornaments. We have constructively
presented this object by building a small universe of functional ornaments.

Using functional ornaments, we can tackle the question of transporting a function
to its ornamented version in such way that the coherence property holds. Instead of
asking our user to write cumbersome proofs, we define a Patch type as the type of all
the functions that satisfies the coherence property by construction. Hence, we make
extensive use of the dependently-typed programming machinery offered by the envi-
ronment: in this setting, the type checker, that is the computer, is working with us to
construct a term, not waiting for us to produce a proof.

Having implemented a function correct by construction, we then get, for free, the
lifting and its coherence certificate. This is a straightforward application of the iso-
morphism between the Patch type and the set of coherent functions. These projection
functions have been implemented in type theory by programming over the universe of
functional ornaments.

(9.80) To further improve code reuse, we provide two smart constructors to implement a
Patch type: the idea is to use the structure of the base function to guide the imple-
mentation of the coherent lifting. Hence, if the base function uses a specific induction
principle or returns a specific constructor, we make it possible for the users to specify
that they want to lift this element one level up. This way, the function is not duplicated:
only the new information, as determined by the ornament, is necessary.

We believe that this is a first yet interesting step towards code reuse for dependently-
typed programming systems. With ornaments, we were able to organise datatypes by
their structure. With functional ornaments, we are now able to organise functions by
their structure-preserving computational behaviour. Besides, we have developed some
appealing automation to assist the implementation of functional ornaments, without
any proving required, hence making this approach even more accessible.

Related work

(9.81) In their work on realisability and parametricity for Pure Type Systems, Bernardy and
Lasson [Bernardy and Lasson, 2011] have shown how to build a logic from a program-
ming language. In such a system, terms of type theory can be precisely segregated
based on their computational contribution and their logical contribution. In particu-
lar, the idea that natural numbers realise lists of the corresponding length appears in
this system under the guise of vectors, the reflection of the realisability predicate. The
strength of the realisability interpretation is that it is naturally defined on functions:
while McBride [2013] and Atkey et al. [2012] only consider ornaments on datatypes,
their work is the first, to our knowledge, to capture a general notion of functions real-
ising – i.e. ornamenting – other functions.

236

9.3. Lazy Programmers, Smart Constructors

(9.82) Following the steps of Bernardy, Ko and Gibbons [2011] adapted the realisability in-
terpretation to McBride’s universe of datatypes and explored the other direction of the
Patch isomorphism, using reornaments to generate coherence properties: they describe
how one could take list append together with a proof that it is coherent with respect
to addition and obtain the vector append function. Their approach would shift neatly
to our index-aware setting, where the treatment of reornaments is streamlined by the
availability of deletion.

However, we prefer to exploit the direction of the isomorphism that internalises co-
herence: we would rather use the full power of dependent types to avoid explicit proof.
Hence, in our framework, we simultaneously induce list append and implicitly prove
its coherence with addition just by defining vector append. Of course, which approach
is appropriate depends on one’s starting point. Moreover, our universe of functions
takes a step beyond the related work by supporting the mechanised construction of
liftings, leaving to the user the task of supplying a minimal patch. Our framework
could easily be used to mechanise the realisability predicate constructions of Bernardy
and Lasson [2011], Ko and Gibbons [2011].

237

10. Conclusion

(10.1) In this thesis, we have designed a type theory for generic programming. It is based
on a low-budget Martin-Löf type theory, with Π-types, Σ-types, and finite sets. We left
equality, both definitional and propositional, underspecified so as to be more widely
applicable. We obviously have an eye for observational type theory, or a homotopic
treatment of equality. But none of these powerful equalities are required: they are just
bonus.

We have extended this type theory with inductive types and families, following a
universe-based approach. A universe enables an intensional characterisation of induc-
tive families. It also implies that our presentation of inductive types is closed. No
datatype is ever “introduced” in the type theory, it already implicitly existed: we merely
made it explicit by naming its code.

(10.2) The code of this universe is itself an inductive type: we are therefore able to describe
it into itself. To do so, we have delineated the minimal amount of meta-theory neces-
sary to obtain inductive types: their fixpoint. The rest is bootstrapped. We obtain a
lightweight meta-theory of inductive types.

Consequently, we were able to treat the code of inductive definitions just like any
other datatype: in particular, we use the elimination principle of inductive types to
compute over the grammar of datatypes. This enables generic programming, with no
special support but this particular setup of the type theory. We built upon this calculus
to give a few examples of generic programs.

(10.3) The use of codes instead of inductive definitions could scare away a potential user.
While we certainly have a system for generic programming, we also want specific pro-
gramming to remain natural and free from low-level encodings. We have seen how,
with a blend of bidirectional type checking and elaboration, we can grow a program-
ming language on top of our austere calculus. Consequently, we expect specific pro-
gramming in our system to be just like programming in a non-generic system, such as
Coq and Agda.

(10.4) We have adapted ornaments to our presentation of datatypes. We obtain a syntactic
object characterising structure-preserving operations on inductive types. Doing so, we
take advantage of our categorical understanding of ornaments to give a more abstract
presentation of the type-theoretic constructions. We have generalised ornaments to
functions, thus relating structure-preserving functions. This opens up interesting appli-
cations for reusing code across domain-specific datatypes. We gave a few examples of
automatic code transformations, lifting a function across its ornamentation. Crucially,
none of these constructions require extending the type theory. The theory of ornaments
and functional ornaments is entirely developed within type theory. Its validity is thus

239

10. Conclusion

simply justified by type checking.
(10.5) Finally, we have striven to give a categorical model to the objects studied in this

thesis. Our objective was to develop a mathematical toolkit with which to carry more
abstract reasoning than is possible in type theory. We have thus established an equiva-
lence between our universe of datatypes and containers. We also proved an equivalence
between ornaments and Cartesian morphisms of containers. As a result, we were able
to explore the realm of ornaments using the more abstract Cartesian morphisms. In the
process, we have discovered a few interesting objects (Section 8.3), such as the cobase-
change ornament (Example 8.109) and the pullback of ornaments (Example 8.112).

10.1. Further Work

(10.6) A very natural next step is to extend our universe of datatypes. Let us explore a
few possibilities. Firstly, we have only considered the inductive fragment: as we intro-
duced a least fixpoint operator µ, we could introduce a greatest fixpoint ν. We would
then equip this set former with its terminal algebra semantics. However, it seems that
introducing greatest fixpoint would put some more constraints on our notion of equal-
ity [McBride, 2009], beyond what we were willing to consider in this thesis.

Secondly, we could extend our universe with codes for internal fixpoints, as did Mor-
ris et al. [2004]. The external fixpoint operator approach we have taken here makes
datatypes such as rose trees, i.e. a tree with lists of subtrees, more cumbersome than
they should be. Moreover, if we allow the alternation of least and greatest fixpoints, we
expect to gain types that are not readily encoded with one external fixpoint.

Thirdly, it would be fascinating to extend our universe with dedicated support for
syntax with binding. So far, we have worked with endofunctors on SET and slices
of SET. Following Fiore et al. [1999], we are interested in representing endofunctors
on the presheaf of finite sets. Such a binding structure would thus come equipped
with a monadic substitution operation as described by Altenkirch and Reus [1999]. By
building the type theory around this universe, we might be able to obtain a definitional
equality working modulo substitution.

Finally, it is very tempting to move to inductive-recursive definitions [Dybjer and Set-
zer, 2001], allowing us to interleave the definition and interpretation of data in intricate
and powerful ways. This interleaving is particularly useful when reflecting the syntax
of dependent type systems. The potential for generic programming on such objects
seems limitless.

(10.7) Much work remains to be done on the side of elaboration. For instance, we must
extend the elaboration of datatypes to the elaboration of ornaments. Also, we would
like to adapt our syntax to the definition of coinductive types. Finally, an interesting
challenge would be to internalise the elaboration process itself in type theory, hence
obtaining a correct-by-construction translation. Overall, despite our attempt at system-
atising the elaboration process, it feels extremely laborious. We would like to develop
a general framework for type-directed elaboration.

(10.8) In our study of ornaments, we have barely scratched the surface of containers: most

240

10.2. Implementation Work

of its structure remains unexploited. Pursuing this exploration might lead to novel
and interesting ornamental constructions. Also, our definition of ornaments in terms
of containers might be limiting. One can wonder if a more abstract criterion could
be found for a larger class of functors. For instance, the functor − 1C : [C, D] → D is a
fibration for D pullback-complete and C equipped with a terminal object 1C. Specialised
to the slices of an LCCC, the Cartesian morphisms are exactly our ornaments. What
about the general case?

(10.9) Finally, there has been much work recently on homotopy inductive types [Awodey
et al., 2012]. Coincidentally, the formalism used in these works is based on W-types, i.e.
the fixpoint of containers. It would be interesting to study what ornaments we could
express in this framework.

(10.10) Concerning functional ornaments, we have deliberately chosen a simple universe of
functions, which we would like to extend in various directions. Adding support for
higher-order functions, type dependency (Π-types and Σ-types) but also non-inductive
sets is a necessary first step. Inspired by Bernardy and Lasson [2011], we would like
to add a parametric quantifier: in the implementation of ilookup, we would mark the
index A of Vec A and IMaybe A as parametric so that in the cons a case, the a could be
automatically carried over.

The universe of functional ornaments could be extended as well, especially once the
universe of functions has been extended with dependent quantifiers. For instance, we
want to consider the introduction and deletion of quantifiers, as we are currently doing
on datatypes. Whilst we have only looked at least fixpoints, we also want to generalise
our universe with greatest fixpoints and the lifting of co-inductive definitions.

(10.11) Further, our framework relies crucially on the duality between a reornament and
its ornament presentation subject to a proof. We cross this isomorphism in both direc-
tions when we project the lifting from the coherent lifting. In practice, this involves a
traversal of each of the input datatypes and a traversal of each of the output datatypes.
However, computationally, these traversals are identities: the only purpose of these
terms is at the logical level, for the type checker to fix the types. We are looking at
transforming our library of smart constructors into a proper domain-specific language
(DSL). This way, implementing a coherent lifting would consist in working in a DSL for
which a compiler could optimise away the computationally irrelevant operations.

10.2. Implementation Work

(10.12) This thesis has grown out of the Epigram2 system. A prototype of Epigram2 im-
plemented an early universe of datatypes, upon which this thesis is based. It was or-
ganised around a bidirectional type checker. It also featured a bootstrapped presenta-
tion of inductive definitions. However, much to our regret, this prototype had to be
abandoned and the implementation effort disrupted. Consequently, the constructs pre-
sented in this thesis have been developed in an Agda model. In the future, we would
like to implement a language that supports the programming paradigm we advocate.

(10.13) A first direction of development is the elaboration of inductive definitions. In Epi-

241

10. Conclusion

gram2, Peter Morris had implemented a tactic elaborating an earlier form of inductive
definition down to our universe of codes. We would like to pursue this implementation,
adapted to our setting. We would extend it to support a deriving mechanism. Also,
we will have to generate the specialised induction principles – such as case analysis
and course-of-value recursion – as well as constructions on constructors.

(10.14) A second area of experimentation concerns the lifting of function across ornaments.
Informally, we have presented a syntax that describes the lifting of constructors and
recursors. We could try to formally describe this syntactic toolkit by extending the
set of gadgets defined by McBride and McKinna [2004]. Alternatively, and perhaps
more pragmatically, we could provide a decision procedure à la Agsy [Lindblad and
Benke, 2004]. Users would pass their definition to a tool that would return a skeleton
definition.

(10.15) Finally, much legwork remains to be done on the front of usability: for convenience,
we gave a relational specification of various elaborators. We are left with implementing
these systems. Another usability question is whether or not we can protect our users
from leaks of encoding during datatype-specific programming. Again, early experi-
ments with Epigram2 suggest that it is, in principle, possible. Integrating these features
without making generic programming prohibitively difficult is another question.

10.3. Epilogue

(10.16) First and foremost, this thesis attempts to swallow inductive types in type theory. By
reducing inductive definitions to type-theoretic objects, we follow the design principle
of type theory: reflection. Indeed, if we believe in type theory as a complete mathe-
matical system, we should strive to express the mathematical concepts we manipulate
– here, inductive definitions – in that system itself. In terms of implementation, this
amounts to implementing most of the inductive fragment in the type theory.

From a programming language perspective, this corresponds to bootstrapping. Here,
we have focused on the inductive fragment. However, we are confident that type the-
ory will eventually be fully bootstrapped [Barras, 2013]. This thesis gives a glimpse of
tomorrow’s type theory, which would provide:
• a native support for generic programming, not necessarily restricted to inductive

types ;
• an elaboration of expressions, programs, and inductive definitions, implemented

in type theory ;
• a reflected representation of types, going beyond our first-order, simply-typed

universe of functions ;
• a framework for symbolically manipulating and defining terms, pushing further

our reflections on inductives and the lifting library.
(10.17) Being at the interface between type theory and category theory, this thesis was meant

for both communities. To the type theorist, we offer a more semantic account of induc-
tive types and constructions over them. We use the intuition thus gained to introduce
new type-theoretic constructions. To the category theorist, we present a type theory, i.e.

242

10.3. Epilogue

a programming language, that offers an interesting playground for categorical ideas.
Our approach can be summarised as categorically-structured programming. For practi-

cal reasons, we do not work on categorical objects directly: instead, we materialise these
concepts through universes, thus reifying categorical notions through computational
objects. Descriptions, ornaments, and functional ornaments are merely an instance of
that interplay between categorical concepts and effective, type-theoretic universes. To
help bridge the gap between type theory and category theory, we have provided the
type theorist with concrete examples of the categorical notions and the category theo-
rist with the computational intuition behind the type-theoretic objects.

(10.18) Finally, this thesis was an exercise in generic programming. This exercise was guided
by the idea that generic programming is just programming, as it should be. Indeed,
generic programming simply consists in programming over some special mathemati-
cal structures, be they containers (datatype-generic programming), or their Cartesian
morphisms (ornaments and functional ornaments). By internalising these structures in
type theory, generic programs become first-class citizens.

This reduction of generic programming to programming with mathematical struc-
tures was made possible by a deeper understanding of the mathematics at play. This is
a direct result of the dialogue we have established between type theory and category
theory. This interaction has two components. On one hand, we have striven to cre-
ate mathematical knowledge from operational phenomenons observed in type theory.
On the other hand, we have turned the abstract understanding thus gained into novel
programming artefacts.

(10.19) Programming is a fascinating activity during which virtual constructions are created
out of thin air. This process consists in describing, in a language intelligible by a com-
puter, how to compute a result. On the other hand and paraphrasing Wigner [1960],
mathematics is an unreasonably effective system for explaining why we have carved our
objects in one way and not another. We have constructed this thesis around this dia-
logue between programs – the how? – and mathematics – the why?

243

A. Overloaded Notations

J(D : Desc)K : (X : SET)→ SET

InterpretationJ(D : IDesc I)K : (I→ SET)→ SET

J(D : func I J)K : (X : I→ SET)→ J→ SET

�(D:Desc) : (P : X→ SET)(xs : JDK X)→ SET
Canonical lifting

�(D:func I I) : (P : (i : I)× µ D i→ SET)(xs : JDK (µ D) i)→ SET

D�(D:IDesc I) : (xs : JDK X)→ IDesc ((i : I)×X i)
Canonical lifting

D�(D:func I J) : func ((i : I)×X i) ((j : J)× JDK X j)

�→(D:Desc) : (p : (x : X)→ P x)(xs : JDK X)→�D P xs
Lifting map

�→(D:IDescI) : (p : (x : X i)→ P x)(xs : JDK X)→�D P xs

µ (D : Desc) : SET
Least fixpoint

µ (D : func I I) : I→ SET

L(α : JDK T→ T)M : (x : µ D)→ T
Catamorphism

L(α : JDK T →̇ T)M : (x : µ D i)→ T i

245

Bibliography
M. Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003.

M. Abbott, T. Altenkirch, C. McBride, and N. Ghani. ∂ for data: Differentiating data
structures. Fundamenta Informaticae, 65(1-2):1–28, 2005.

A. Abel, T. Coquand, and P. Dybjer. Verifying a semantic βη-conversion test for
Martin-Löf type theory. In Mathematics of Program Construction, pages 29–56, 2008.
doi:10.1007/978-3-540-70594-9 4.

A. Abel, T. Coquand, and M. Pagano. A modular type-checking algorithm for type
theory with singleton types and proof irrelevance. In Typed Lambda Calculi and Appli-
cations, 2009. doi:10.2168/LMCS-7(2:4)2011.

P. Aczel. An introduction to inductive definitions. In Handbook of Mathematical Logic,
volume 90, pages 739 – 782. 1977. doi:10.1016/S0049-237X(08)71120-0.

R. Adams. Pure type systems with judgemental equality. Journal of Functional Program-
ming, 16(2):219–246, 2006. doi:10.1017/S0956796805005770.

G. Adelson-Velskii and E. Landis. An algorithm for the organization of information.
Doklady Akademii Nauk USSR, 146(2):263–266, 1962.

T. Altenkirch and C. McBride. Generic programming within dependently typed pro-
gramming. In Proceedings of the IFIP TC2/WG2.1 Working Conference on Generic Pro-
gramming, 2003. doi:10.1007/978-3-540-76786-2 4.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms using generalized
inductive types. In Computer Science Logic, 1999. doi:10.1007/3-540-48168-0 32.

T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now! In Program-
ming Languages meets Program Verification, 2007. doi:10.1145/1292597.1292608.

A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. A bi-directional refinement algorithm
for the calculus of (co)inductive constructions. Logical Methods in Computer Science, 8
(1), 2012. doi:10.2168/LMCS-8(1:18)2012.

R. Atkey, P. Johann, and N. Ghani. Refining inductive types. Logical Methods in Computer
Science, 8, 2012. doi:10.2168/LMCS-8(2:9)2012.

L. Augustsson. Cayenne - a language with dependent types. In Advanced Functional
Programming, pages 240–267, 1998. doi:10.1007/10704973 6.

247

http://dx.doi.org/10.1007/978-3-540-70594-9_4
http://dx.doi.org/10.2168/LMCS-7(2:4)2011
http://dx.doi.org/10.1016/S0049-237X(08)71120-0
http://dx.doi.org/10.1017/S0956796805005770
http://dx.doi.org/10.1007/978-3-540-76786-2_4
http://dx.doi.org/10.1007/3-540-48168-0_32
http://dx.doi.org/10.1145/1292597.1292608
http://dx.doi.org/10.2168/LMCS-8(1:18)2012
http://dx.doi.org/10.2168/LMCS-8(2:9)2012
http://dx.doi.org/10.1007/10704973_6

Bibliography

L. Augustsson and M. Carlsson. An exercise in dependent types: A well-typed inter-
preter. Unpublished, 1999. URL http://www.cs.chalmers.se/~augustss/cayenne/

interp.ps.

S. Awodey. Category Theory (Oxford Logic Guides). Oxford University Press, USA, 2006.
ISBN 0199237182.

S. Awodey and M. A. Warren. Homotopy theoretic models of identity types.
Mathematical Proceedings of the Cambridge Philosophical Society, 146:45–55, 2009.
doi:10.1017/s0305004108001783.

S. Awodey, N. Gambino, and K. Sojakova. Inductive types in homotopy type theory. In
Logic in Computer Science, pages 95–104, 2012. doi:10.1109/LICS.2012.21.

B. Barras. Semantical Investigations in Intuitionistic Set Theory and Type Theories with Induc-
tive Families. Habilitation à diriger les recherches, Université Paris 7 - Denis Diderot,
2013.

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing, 10, 2003.

N. Benton, C.-K. Hur, A. J. Kennedy, and C. Mcbride. Strongly typed term representa-
tions in coq. Journal of Automated Reasoning, 49(2):141–159, 2012. doi:10.1007/s10817-
011-9219-0.

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type systems.
In Foundations of Software Science and Computation Structures, pages 108–122, 2011.
doi:10.1007/978-3-642-19805-2 8.

R. Bird and L. Meertens. Nested datatypes. In Mathematics of Program Construction,
volume 1422, pages 52–67. 1998. doi:10.1007/BFb0054285.

R. S. Bird and O. de Moor. Algebra of programming. Prentice Hall, 1997. ISBN
013507245X.

E. Brady, J. Chapman, P.-E. Dagand, A. Gundry, C. McBride, P. Morris, and U. Norell.
An Epigram implementation. URL http://www.e-pig.org/.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store their indices.
In Types for Proofs and Programs, 2003. doi:10.1007/978-3-540-24849-1 8.

J. Chapman, T. Altenkirch, and C. McBride. Epigram reloaded: a standalone type-
checker for ETT. In Trends in Functional Programming, volume 6, pages 79–94, 2005.

J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art of levi-
tation. In International Conference on Functional Programming, pages 3–14, 2010.
doi:10.1145/1863543.1863547.

248

http://www.cs.chalmers.se/~augustss/cayenne/interp.ps
http://www.cs.chalmers.se/~augustss/cayenne/interp.ps
http://dx.doi.org/10.1017/s0305004108001783
http://dx.doi.org/10.1109/LICS.2012.21
http://dx.doi.org/10.1007/s10817-011-9219-0
http://dx.doi.org/10.1007/s10817-011-9219-0
http://dx.doi.org/10.1007/978-3-642-19805-2_8
http://dx.doi.org/10.1007/BFb0054285
http://www.e-pig.org/
http://dx.doi.org/10.1007/978-3-540-24849-1_8
http://dx.doi.org/10.1145/1863543.1863547

Bibliography

J. Cheney and R. Hinze. First-class phantom types. Technical report, Cornell University,
2003.

R. L. Constable. Implementing Mathematics With the Nuprl Proof Development System.
Prentice Hall, 1986. ISBN 0134518322.

C. Coquand and T. Coquand. Structured type theory. In Logical Frameworks and Meta-
languages, 1999.

T. Coquand. Pattern matching with dependent types. In Types for Proofs and Programs,
1992.

T. Coquand. An algorithm for type-checking dependent types. Science of Computer
Programming, 26, 1996. doi:10.1016/0167-6423(95)00021-6.

T. Coquand. Equality and dependent type theory. Bologna lectures, 2011. URL http:

//www.cse.chalmers.se/~coquand/bologna.pdf.

T. Coquand and G. Huet. The calculus of constructions. Information and Computation,
76(2-3):95–120, Feb. 1988. doi:10.1016/0890-5401(88)90005-3.

J. Courant. Explicit universes for the calculus of constructions. In Theorem Proving in
Higher Order Logics, 2002. doi:10.1007/3-540-45685-6 9.

P.-L. Curien. Substitution up to isomorphism. Fundamenta Informaticae, 19(1-2):51–85,
1993.

P.-E. Dagand and C. McBride. Transporting functions across ornaments.
In International Conference on Functional Programming, pages 103–114, 2012.
doi:10.1145/2364527.2364544.

P.-E. Dagand and C. McBride. A categorical treatment of ornaments. In Logics in Com-
puter Science, 2013a. doi:10.1109/LICS.2013.60.

P.-E. Dagand and C. McBride. Elaborating inductive definitions. In Journées Franco-
phones des Langages Applicatifs, 2013b.

G. Deleuze and F. Guattari. A Thousand Plateaus: Capitalism and Schizophrenia. University
of Minnesota Press, 1987. ISBN 0816614024.

D. Dreyer. Understanding and Evolving the ML Module System. PhD thesis, Carnegie
Mellon University, 2005.

P. Dybjer. Inductive sets and families in Martin-Löf’s type theory. In Logical Frameworks,
1991.

P. Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–465, 1994.
doi:10.1007/BF01211308.

249

http://dx.doi.org/10.1016/0167-6423(95)00021-6
http://www.cse.chalmers.se/~coquand/bologna.pdf
http://www.cse.chalmers.se/~coquand/bologna.pdf
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1007/3-540-45685-6_9
http://dx.doi.org/10.1145/2364527.2364544
http://dx.doi.org/10.1109/LICS.2013.60
http://dx.doi.org/10.1007/BF01211308

Bibliography

P. Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s
type theory. Theoretical Computer Science, 176(1-2):329–335, 1997. doi:10.1016/S0304-
3975(96)00145-4.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In
Typed Lambda Calculi and Applications, 1999. doi:10.1007/3-540-48959-2 11.

P. Dybjer and A. Setzer. Indexed induction-recursion. In Proof Theory in Computer Sci-
ence. 2001. doi:10.1016/j.jlap.2005.07.001.

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Logic in
Computer Science, pages 193–202, 1999. doi:10.1109/LICS.1999.782615.

T. Freeman and F. Pfenning. Refinement types for ML. In Programming Language Design
and Implementation, pages 268–277, 1991. doi:10.1145/113445.113468.

C. Fumex. Induction and coinduction schemes in category theory. PhD thesis, University of
Strathclyde, 2012.

N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial functors.
In Types for Proofs and Programs, volume 3085, pages 210–225. 2004. doi:10.1007/978-
3-540-24849-1 14.

N. Gambino and J. Kock. Polynomial functors and polynomial monads. Math-
ematical Proceedings of the Cambridge Philosophical Society, 154(1):153–192, 2013.
doi:10.1017/S0305004112000394.

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock. A comparative study of lan-
guage support for generic programming. In Object-Oriented Programming, Systems,
Languages and Applications, 2003. doi:10.1145/949305.949317.

R. Garner. On the strength of dependent products in the type theory of Martin-Löf.
Annals of Pure and Applied Logic, 160(1):1–12, 2009. doi:10.1016/j.apal.2008.12.003.

H. Geuvers. Induction is not derivable in second order dependent type theory. In Typed
Lambda Calculi and Applications, 2001. doi:10.1007/3-540-45413-6 16.

J. Gibbons. Datatype-generic programming. In Spring School on Datatype-Generic Pro-
gramming, volume 4719, pages 1–71, 2007. doi:10.1007/978-3-540-76786-2.

E. Giménez. Codifying guarded definitions with recursive schemes. In Types for Proofs
and Programs, volume 996, pages 39–59. 1995. doi:10.1007/3-540-60579-7 3.

J.-Y. Girard. Interprétation functionelle et Elimination des coupures dans l’arithmétique d’ordre
supérieure. PhD thesis, Université Paris VII, 1972.

H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University of
Edinburgh, 1994.

250

http://dx.doi.org/10.1016/S0304-3975(96)00145-4
http://dx.doi.org/10.1016/S0304-3975(96)00145-4
http://dx.doi.org/10.1007/3-540-48959-2_11
http://dx.doi.org/10.1016/j.jlap.2005.07.001
http://dx.doi.org/10.1109/LICS.1999.782615
http://dx.doi.org/10.1145/113445.113468
http://dx.doi.org/10.1007/978-3-540-24849-1_14
http://dx.doi.org/10.1007/978-3-540-24849-1_14
http://dx.doi.org/10.1017/S0305004112000394
http://dx.doi.org/10.1145/949305.949317
http://dx.doi.org/10.1016/j.apal.2008.12.003
http://dx.doi.org/10.1007/3-540-45413-6_16
http://dx.doi.org/10.1007/978-3-540-76786-2
http://dx.doi.org/10.1007/3-540-60579-7_3

Bibliography

H. Goguen and Z. Luo. Inductive data types: well-ordering types revisited. In Workshop
on Logical Environments, pages 198–218, 1993.

H. Goguen, C. McBride, and J. McKinna. Eliminating dependent pattern match-
ing. In Algebra, Meaning and Computation, volume 4060, pages 521–540. 2006.
doi:10.1007/11780274 27.

T. Hallgren and A. Ranta. An extensible proof text editor. In Logic for Programming and
Automated Reasoning, pages 70–84, 2000. doi:10.1007/3-540-44404-1 6.

R. Harper and R. Pollack. Type checking with universes. In Theory and Practice of Soft-
ware Development, 1989. doi:10.1016/0304-3975(90)90108-T.

R. Harper and C. Stone. A type-theoretic interpretation of Standard ML. In Proof,
Language, and Interaction: essays in honour of Robin Milner, 2000.

M. Hedberg. A coherence theorem for Martin-Löf’s type theory. Journal of Functional
Programming, 8:413–436, 1998. doi:10.1017/S0956796898003153.

C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Information and Computation, 145(2):107–152, 1998. doi:10.1006/inco.1998.2725.

R. Hinze. Memo functions, polytypically! In Workshop on Generic Programming, pages
17–32, 2000a.

R. Hinze. Polytypic values possess polykinded types. In Mathematics of Program Con-
struction, 2000b. doi:10.1016/S0167-6423(02)00025-4.

R. Hinze and S. P. Jones. Derivable type classes. Electronic Notes in Theoretical Computer
Science, 41(1):5 – 35, 2001. doi:10.1016/S1571-0661(05)80542-0.

R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. In Mathematics of Program
Construction, 2002. doi:10.1016/j.scico.2003.07.001.

R. Hinze, J. Jeuring, and A. Löh. Comparing approaches to generic programming in
Haskell. In Datatype-Generic Programming, 2007. doi:10.1007/978-3-540-76786-2 2.

M. Hofmann. On the interpretation of type theory in locally cartesian closed categories.
In Computer Science Logic, volume 933, pages 427–441, 1995. doi:10.1007/BFb0022273.

M. Hofmann and T. Streicher. The groupoid model refutes uniqueness
of identity proofs. In Logic in Computer Science, pages 208–212, 1994.
doi:10.1109/LICS.1994.316071.

S. Holdermans, J. Jeuring, A. Löh, and A. Rodriguez. Generic views on data types. In
Mathematics of Program Construction. 2006. doi:10.1007/11783596 14.

G. Huet. The zipper. Journal of Functional Programming, 7(05):549–554, 1997.
doi:10.1017/S0956796897002864.

251

http://dx.doi.org/10.1007/11780274_27
http://dx.doi.org/10.1007/3-540-44404-1_6
http://dx.doi.org/10.1016/0304-3975(90)90108-T
http://dx.doi.org/10.1017/S0956796898003153
http://dx.doi.org/10.1006/inco.1998.2725
http://dx.doi.org/10.1016/S0167-6423(02)00025-4
http://dx.doi.org/10.1016/S1571-0661(05)80542-0
http://dx.doi.org/10.1016/j.scico.2003.07.001
http://dx.doi.org/10.1007/978-3-540-76786-2_2
http://dx.doi.org/10.1007/BFb0022273
http://dx.doi.org/10.1109/LICS.1994.316071
http://dx.doi.org/10.1007/11783596_14
http://dx.doi.org/10.1017/S0956796897002864

Bibliography

B. Jacobs. Categorical Logic and Type Theory. Elsevier Science, 2001. doi:10.1016/S0049-
237X(98)80028-1.

P. Jansson and J. Jeuring. PolyP—a polytypic programming language extension. In
Principles of Programming Languages, 1997. doi:10.1145/263699.263763.

B. Jay and R. Cockett. Shapely types and shape polymorphism. In European Symposium
on Programming, 1994. doi:10.1007/3-540-57880-3 20.

G. Jojgov. Incomplete Proofs and Terms and Their Use in Interactive Theorem Proving. PhD
thesis, Technische Universiteit Eindhoven, 2004.

H.-S. Ko and J. Gibbons. Modularising inductive families. In Workshop on Generic Pro-
gramming, pages 13–24, 2011.

J. Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift, 103
(2):151–161, 1968. doi:10.1007/BF01110627.

R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. In Types in Language Design and Implementation, 2003.
doi:10.1007/978-3-540-40018-9 23.

L. Lamport. How to write a proof. American Mathematical Monthly, 102(7):600–608, 1995.
doi:10.2307/2974556.

S. Leather, A. Löh, and J. Jeuring. Pull-ups, push-downs, and passing it around. In
Implementation and Application of Functional Languages, volume 6041, pages 159–178.
2011. doi:10.1007/978-3-642-16478-1 10.

D. R. Licata and R. Harper. 2-dimensional directed type theory. Electronic Notes Theo-
retical Computer Science, 276(0):263–289, 2011. doi:10.1016/j.entcs.2011.09.026.

F. Lindblad and M. Benke. A tool for automated theorem proving in Agda. In Types for
Proofs and Programs, pages 154–169, 2004. doi:10.1007/11617990 10.

Z. Luo. Computation and Reasoning. Oxford University Press, 1994. ISBN 978-0-19-
853835-6.

S. Mac Lane. Categories for the Working Mathematician. Springer, 1998. ISBN 0387984038.

J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving mechanism for
haskell. In Haskell Symposium, pages 37–48, 2010. doi:10.1145/1863523.1863529.

L. Magnusson and B. Nordström. The ALF proof editor and its proof engine. In Types
for Proofs and Programs, pages 213–237, 1993. doi:10.1007/3-540-58085-9 78.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis Napoli, 1984. ISBN 88-7088-105-9.

P. Martin-Löf. An intuitionistic theory of types: Predicative part. The Journal of Symbolic
Logic, 49, 1984. doi:10.2307/2274116.

252

http://dx.doi.org/10.1016/S0049-237X(98)80028-1
http://dx.doi.org/10.1016/S0049-237X(98)80028-1
http://dx.doi.org/10.1145/263699.263763
http://dx.doi.org/10.1007/3-540-57880-3_20
http://dx.doi.org/10.1007/BF01110627
http://dx.doi.org/10.1007/978-3-540-40018-9_23
http://dx.doi.org/10.2307/2974556
http://dx.doi.org/10.1007/978-3-642-16478-1_10
http://dx.doi.org/10.1016/j.entcs.2011.09.026
http://dx.doi.org/10.1007/11617990_10
http://dx.doi.org/10.1145/1863523.1863529
http://dx.doi.org/10.1007/3-540-58085-9_78
http://dx.doi.org/10.2307/2274116

Bibliography

P. Martin-Löf. Constructive mathematics and computer programming. In Mathematical
logic and programming languages, pages 167–184, 1985. doi:10.1098/rsta.1984.0073.

P. Martin-Löf. On the meanings of the logical constants and the justifications of the
logical laws. Nordic Journal of Philosophical Logic, 1:11–60, 1996.

R. Matthes. An induction principle for nested datatypes in intensional type theory.
Journal of Functional Programming, 19:439–468, 2009. doi:10.1017/S095679680900731X.

C. McBride. Kleisli arrows of outrageous fortune. Unpublished. URL http://

personal.cis.strath.ac.uk/~conor/Kleisli.pdf.

C. McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis, LFCS,
1999.

C. McBride. Elimination with a motive. In Types for Proofs and Programs, page 727, 2002.
doi:10.1007/3-540-45842-5 13.

C. McBride. Let’s see how things unfold: reconciling the infinite with the inten-
sional. In Conference on Algebra and Coalgebra in Computer Science, pages 113–126,
2009. doi:10.1007/978-3-642-03741-2 9.

C. McBride. Ornamental algebras, algebraic ornaments. Journal of Functional Program-
ming, 2013. To appear.

C. McBride and J. McKinna. The view from the left. Journal of Functional Programming,
14(1):69–111, 2004. doi:10.1007/11780274 27.

C. McBride, H. Goguen, and J. McKinna. A few constructions on constructors. In Types
for Proofs and Programs, pages 186–200, 2004. doi:10.1007/11617990 12.

R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, 1978. doi:10.1016/0022-0000(78)90014-4.

R. Milner, M. Tofte, and D. MacQueen. The Definition of Standard ML. MIT Press, 1997.
ISBN 0262631814.

P. Morris. Constructing Universes for Generic Programming. PhD thesis, University of
Nottingham, 2007.

P. Morris and T. Altenkirch. Indexed containers. In Logics in Computer Science, 2009.
doi:10.1109/LICS.2009.33.

P. Morris, T. Altenkirch, and C. McBride. Exploring the regular tree types. In Types for
Proofs and Programs, 2004. doi:10.1007/11617990 16.

P. Morris, T. Altenkirch, and N. Ghani. A universe of strictly positive fami-
lies. International Journal of Foundations of Computer Science, 20(1):83–107, 2009.
doi:10.1142/S0129054109006462.

253

http://dx.doi.org/10.1098/rsta.1984.0073
http://dx.doi.org/10.1017/S095679680900731X
http://personal.cis.strath.ac.uk/~conor/Kleisli.pdf
http://personal.cis.strath.ac.uk/~conor/Kleisli.pdf
http://dx.doi.org/10.1007/3-540-45842-5_13
http://dx.doi.org/10.1007/978-3-642-03741-2_9
http://dx.doi.org/10.1007/11780274_27
http://dx.doi.org/10.1007/11617990_12
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://dx.doi.org/10.1109/LICS.2009.33
http://dx.doi.org/10.1007/11617990_16
http://dx.doi.org/10.1142/S0129054109006462

Bibliography

B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s Type Theory:
An Introduction. Oxford University Press, 1990. ISBN 0198538146.

U. Norell. Functional generic programming and type theory. Master’s thesis, Chalmers
University of Technology, 2002.

U. Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

C. Okasaki. Purely functional data structures. Cambridge University Press, 1998. ISBN
978-0521663502.

N. Oury. Égalités et filtrages avec types dépendants dans le Calcul des Constructions Induc-
tives. PhD thesis, Université Paris-Sud, 2006.

N. Oury and W. Swierstra. The power of Pi. In International Conference on Functional
Programming, 2008. doi:10.1145/1411204.1411213.

E. Palmgren. On universes in type theory. In Twenty-Five Years of Constructive Type
Theory, pages 191–204, 1995.

C. Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions. PhD thesis,
Université Paris VII, 1989.

C. Paulin-Mohring. Définitions inductives en théorie des types d’ordre supérieur. Habilita-
tion à diriger les recherches, ENS Lyon, 1996.

K. Petersson and D. Synek. A set constructor for inductive sets in Martin-Löf’s
type theory. In Category Theory and Computer Science, pages 128–140, 1989.
doi:10.1007/BFb0018349.

S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report, volume 13
of Journal of Functional Programming. 2003. doi:10.1017/S0956796803000315.

H. Pfeifer and H. Ruess. Polytypic abstraction in type theory. In Workshop on Generic
Programming, 1998.

H. Pfeifer and H. Ruess. Polytypic proof construction. In Conference on Theorem Proving
in Higher Order Logics, pages 55–72, 1999. doi:10.1007/3-540-48256-3 5.

B. C. Pierce and D. N. Turner. Local type inference. Transactions on Programming Lan-
guages and Systems, 22:1–44, 2000. doi:10.1145/345099.345100.

A. Pitts. Polymorphism is set theoretic, constructively. In Category Theory and Computer
Science, volume 283, pages 12–39, 1987. doi:10.1007/3-540-18508-9 18.

G. Plotkin and J. Power. Algebraic operations and generic effects. Applied Categorical
Structures, 11(1):69–94, 2003. doi:10.1023/A:1023064908962.

254

http://dx.doi.org/10.1145/1411204.1411213
http://dx.doi.org/10.1007/BFb0018349
http://dx.doi.org/10.1017/S0956796803000315
http://dx.doi.org/10.1007/3-540-48256-3_5
http://dx.doi.org/10.1145/345099.345100
http://dx.doi.org/10.1007/3-540-18508-9_18
http://dx.doi.org/10.1023/A:1023064908962

Bibliography

M. Puech. Proofs, upside down: a functional correspondence between natural deduc-
tion and the sequent calculus. In Asian Symposium on Programming Languages and
Systems, 2013. In press.

J. Reynolds. Polymorphism is not set-theoretic. In Semantics of Data Types, volume 173,
pages 145–156, 1984. doi:10.1007/3-540-13346-1 7.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell Symposium, 2008.
doi:10.1145/1411286.1411301.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete and decid-
able type inference for GADTs. In International Conference on Functional Programming,
pages 341–352, 2009. doi:10.1145/1596550.1596599.

R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 95, 1983. doi:10.1017/S0305004100061284.

M. Shulman. Framed bicategories and monoidal fibrations. Theory and Applications of
Categories, 20(18):650–738, 2008.

V. Siles. Investigation on the typing of equality in type systems. PhD thesis, École Polytech-
nique, 2010.

M. Smyth and G. Plotkin. The category-theoretic solution of recursive do-
main equations. In Foundations of Computer Science, pages 13–17, 1977.
doi:10.1109/SFCS.1977.30.

M. Sozeau. Equations: A dependent pattern-matching compiler. In Interactive Theorem
Proving, pages 419–434, 2010. doi:10.1007/978-3-642-14052-5 29.

G. L. Steele. Growing a language. Higher Order Symbolic Computation, 12(3):221–236,
1999. doi:10.1023/A:1010085415024.

P.-Y. Strub. Coq modulo theory. In Computer Science Logic, pages 529–543, 2010.
doi:10.1007/978-3-642-15205-4 40.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure dis-
tributed programming with value-dependent types. In International Conference on
Functional Programming, pages 266–278, 2011. doi:10.1145/2034773.2034811.

W. Swierstra. A Functional Specification of Effects. PhD thesis, University of Nottingham,
2008.

W. Tait. Intensional interpretations of functionals of finite type. The Journal of Symbolic
Logic, 32(2), 1967. doi:10.2307/2271658.

The Coq Development Team. The Coq Proof Assistant Reference Manual. URL http:

//coq.inria.fr/refman/.

255

http://dx.doi.org/10.1007/3-540-13346-1_7
http://dx.doi.org/10.1145/1411286.1411301
http://dx.doi.org/10.1145/1596550.1596599
http://dx.doi.org/10.1017/S0305004100061284
http://dx.doi.org/10.1109/SFCS.1977.30
http://dx.doi.org/10.1007/978-3-642-14052-5_29
http://dx.doi.org/10.1023/A:1010085415024
http://dx.doi.org/10.1007/978-3-642-15205-4_40
http://dx.doi.org/10.1145/2034773.2034811
http://dx.doi.org/10.2307/2271658
http://coq.inria.fr/refman/
http://coq.inria.fr/refman/

Bibliography

W. Verbruggen, E. de Vries, and A. Hughes. Polytypic programming in Coq. In Work-
shop on Generic Programming, 2008. doi:10.1145/1411318.1411326.

W. Verbruggen, E. de Vries, and A. Hughes. Formal polytypic programs
and proofs. Journal of Functional Programming, 20(3-4):213–269, 2010.
doi:10.1017/S0956796810000158.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework:
The propositional fragment. In Types for Proofs and Programs, pages 355–377, 2004.
doi:10.1007/978-3-540-24849-1 23.

S. Weirich and C. Casinghino. Arity-generic datatype-generic programming. In Pro-
gramming Languages meets Program Verification, 2010. doi:10.1145/1707790.1707799.

B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université Paris-Diderot
- Paris VII, 1994.

A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press,
1910. doi:10.1093/mind/LVII.226.137.

E. P. Wigner. The unreasonable effectiveness of mathematics in the natural
sciences. Communications on Pure and Applied Mathematics, 13(1):1–14, 1960.
doi:10.1002/cpa.3160130102.

G. C. Wraith. Algebraic theories. Aarhus Universitet. Lecture Note Series, 22, 1975.

A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic programming with
fixed points for mutually recursive datatypes. In International Conference in Functional
Programming, 2009. doi:10.1145/1596550.1596585.

256

http://dx.doi.org/10.1145/1411318.1411326
http://dx.doi.org/10.1017/S0956796810000158
http://dx.doi.org/10.1007/978-3-540-24849-1_23
http://dx.doi.org/10.1145/1707790.1707799
http://dx.doi.org/10.1093/mind/LVII.226.137
http://dx.doi.org/10.1002/cpa.3160130102
http://dx.doi.org/10.1145/1596550.1596585

Index

µ, see Least fixpoint

Acyclicity, 172
Algebra, 75

initial, 75
Algebraic ornament, 192

coherence property, 205
Algebraic ornament by the ornamental

algebra, see Reornament

Base function, 215
Base type, 215
Base-change container, 200
Bidirectional type checking, 47

Canonical lifting, 80, 189
indexed, 92

Cartesian morphism
container, 199
ornament, 190

Cartesian natural transformation, 200
Catamorphism, 75

generic, 126
indexed, 91

Category
algebra, 75
Kleisli, 130
slice, 87

Cobase-change container, 201
Coherent algebra, 229
Coherent inductive step, 230
Coherent lifting, 216
Constructions on constructors, 172
Container, 100

interpretation, 102

natural transformation, 200
Context validity, 27
Conversion

typed, 30
untyped, 41

Datatype-generic programming, 71
Datatype-specific programming, 84
Decidability of type checking, 44
Decision procedure

type theory, 174
Derivable properties, 174
Deriving mechanism, 174
Described functor, 103
Description, 68

indexed, 88
tagged, 73
tagged indexed, 97

Description label, 147
indexed, 157

Detagging, see also Forcing, 190
Differentiability, 209

Elaboration, 48
arguments, 152, 166
choices, 164
constraints, 168
constructor, 84, 151, 165
constructor choices, 151
enumeration, 52
enumeration elimination, 52
enumeration index, 53
indices, 169
inductive definition, 148
inductive families, 158

257

Index

patterns, 162
recursive arguments, 153, 167
tuple, 51

Enumeration, 37
elimination, 40
index, 38

Equality
judgmental, 30
propositional, 33

Equivalence
descriptions and containers, 106
ornaments and Cartesian morphisms,

202
Expressions, 48

Fold, 75
Forcing, see also Detagging, 190
Frame structure, 200

base-change, 200
cobase-change, 201

Free monad, 127, 128
indexed, 131

Functional ornament, 215
coherence, 220

Functor
terminal object, 83

Generic operation, 129

Henry Ford principle, 96
Hierarchy of types, 137
Hole, 55

Identity type, 35
Induction principle, 79

indexed, 92
Inductive definitions

grammar, 146
Inductive families

grammar, 156
Inverse image, 104

Judgmental equality, 30
enumeration, 38
enumeration index, 39

tag, 36

Kleisli category, 130

Lambek’s lemma, 77
Least fixpoint, 77

indexed, 91
Least reflexive relation, 35
Let binding, 27
Level-parametric definition, 138
Levitation, 113

description, 120, 121
enumeration, 114
indexed description, 123

Lifting, 215
case analysis, 230
coherent, 215
coherent algebra, 229
constructor, 232
inductive step, 230

Lifting map, 82
indexed, 93

Lifting type, 219
Local definition, 27

Multi-sorted signature, 101
Mutually-inductive definition, 95

Next universe operator, 137
No confusion, 172
NuPRL, 34

Ornament, 186
algebraic, 192
Cartesian morphism, 190
coherence, 194
derivative, 210
forgetful map, 191
frame structure, 208
horizontal composition, 207
identity, 206
pullback, 209
vertical composition, 207

Ornamental algebra, 191, 204

Patch type, 223

258

Index

Patching, 225
Polarity, 30
Polynomial functor, 102
Predicate transformer, 81

Recomputation, 194
Refinement type, 183
Remember, 194
Reornament, 195, 197

extension, 196
structure, 196

Set polymorphism, 117
Sigmas-of-sigmas, 67
Small Π-type, 40
Strictly-positive family, 89
Strictly-positive functor, 70
Strong normalisation, 44
Structure, 183
Substitution, 26
Sum, 41
Sum-of-products, 67
Surjective pairing, 32

Tagged description, 73
Tags, 36
Terminal object functor, 83
Terms, 25

enumeration, 37
enumeration index, 38
label, 55
tag, 36

Type
negative, 31
positive, 31

Type checking, 49
Type synthesis, 48
Typing

Church-style, 30
Curry-style, 47

Typing judgment, 27
enumeration, 37
enumeration index, 38
sum, 41
tag, 36

UIP, see Unicity of identity proof
Unicity of identity proof, 34
Universe

description, 68
enumeration, 36
functional ornament, 219
indexed description, 89
ornaments, 186
types, 218

W-types, 136
Wellorderings, 136

Zipper data-structure, 209

259

Acknowledgements

I remember quite vividly my interview for this PhD position: my supervisor-to-be,
Conor McBride, presented this project as “a walk in the minefield”. This was enough to
convince me to embark on this journey. I must therefore thank Conor for his guidance
and for my two legs. I also greatly appreciate the freedom he gave me to pursue my
research interests and to pick my own tools. I’m particularly thankful to him for having
accepted and supported my two internship applications.

Coincidentally, his words upon receiving my final draft were: “you’ll get a concen-
trated blast [of feedback] from me.” And a blast it was: I must thank him for his atten-
tion to detail, which have tremendously improved my dissertation. Knowing his taste
for extended metaphors, I cannot shake the idea that our conversation has set a new
record.

I would like to thank my examiners, Ralf Hinze and Clemens Kupke, for taking the
time to read this dissertation and for providing many suggestions for improvement.

This dissertation is the fruit of an intellectual and human journey. Back in 2009, I
was in ETH-Zürich, compiling domain-specific languages for the Barrelfish operating
system. Little did I know about Martin-Löf type theory, inductive families, or generic
programming, which were to be my daily diet in Glasgow. Along the way, I have met
some truly amazing people. I am deeply indebted to them and this thesis reflects their
influences upon me. I would like to take the following lines to thank those that made
this adventure so enjoyable.

In the MSP circles, I must give special credit to Stevan Andjelkovic and Stuart Han-
nah for, respectively, their South Scandinavian and West Scottish sense of humour. This
last year spent in Glasgow was absolutely hilarious, in large part thanks to them. I want
to thank Lorenzo Malatesta for putting the paper of Gambino and Kock into my hands:
this was absolutely instrumental for my research. I am also thankful to Guillaume Al-
lais for his insightful feedback on my papers and the many pointers he gave me. I have
learned a lot from discussions with our neighbours in Edinburgh, Ben Kavanagh and
Ohad Kammar. Edwin Brady, James Chapman, Peter Morris, and Wouter Swierstra
have also played a significant role in this thesis. They guided me to make the most of
my PhD and provided me with a wealth of motivating examples for my research.

Finally, I am immensely grateful to Peter Hancock for his thought-provoking com-
ments on my work but also for supporting and guiding me toward the completion of
my dissertation. I thank him for these multiple occasions where he selflessly defused
a mine I had stepped on. Last but not least, no words can express my gratitude to
Clément Fumex: he has been an extremely supportive colleague and a great friend. I
have learned a lot from him and he has strongly influenced my research. I have learned

261

Acknowledgements

from him most – if not all – of the category theory found in the previous pages. More
than a fellow PhD student, he has been a patient and insightful teacher.

This journey has also been influenced by friends from my “previous lives” at EPFL
and ETH. In particular, I owe to Ruzica Piskac and Damien Zufferey to have made
me realise that the MSP group, an unusually small pond, was perhaps a special place.
They planted that seed at the most crucial moment, which led me to visit the Barrelfish
team in Cambridge. I am most thankful to my Master’s supervisor Timothy Roscoe,
and to Andrew Baumann and Oriana Riva for their support to fly me off to the Pacific
Northwest. I am particularly indebted to Oriana for her insistence, and to Andrew for
the zeal with which he had polished my application.

This interlude at Microsoft Research Redmond was an amazing experience. I want
to thank my manager, Nikhil Swamy, and the F∗ team: Juan Chen, Cédric Fournet, Ben
Livshits, and Pierre-Yves Strub. I have very fond memories of my fellow interns too: it
was refreshing to be amongst such a high concentration of brains. My hiking buddies
– Louis Jachiet, Jason König, Magnus Madsen, and Mehdi Bouaziz – deserve a special
mention, for they hurled me to the top of the Cascades every week-end. Thanks so
much for the oxygen. Nik and Mehdi have made a lasting impression on me: their
patience, kindness, and enthusiasm is an inspiration for me.

From one Microsoft Research, I jumped to the next, in Cambridge this time. There, I
had the privilege to work with Nick Benton, Andrew Kennedy, and Jonas Jensen, writ-
ing x86 programs in Coq. In three months, I was (happily!) force-fed enough Coq,
SSREFLECT, and separation logic to implement and prove the correctness of a regular
expression compiler. Needless to say, my fellow interns were as impressive as the ones
I had left in Redmond. I owe special thanks to Aws Albarghouthi and Thomas Ströder
for making fun of my workaholism (they will be delighted to learn that my thesis is fi-
nally done), to Richard Eisenberg, Nicolas Frisby, Markus Rabe, and Gordon Stewart for
many interesting discussions, and to Sadia Ahmed for being such a perky neighbour. I
was also a great pleasure to reminisce with Akhilesh Singhania.

The present document has been written in Paris, from February to April 2013. Every
now and then, I would take a break from the redaction by visiting a nearby research
group. To work out, I would walk up to the LIX, in Saclay. I thank Assia Mahboubi for
her kind welcome and very useful advices. I also thank Stéphane Graham-Lengrand,
Bruno Barras, and Dale Miller for their time.

I would also regularly visit my neighbours at PPS. I would like to thank Pierre Boutil-
lier for exchanging his office in Paris for mine in Glasgow, and to Hugo Herbelin and
Pierre-Louis Curien to have permitted that trade. In a month, I have learned so much: I
am indebted to Matthieu Sozeau, and to my temporary office mates Guillaume Munch-
Maccagnoni, Pierre-Marie Pédrot, Matthias Puech, and Stéphane Zimmermann for this
glimpse at a fascinating world.

Finally, I am looking forward to start my post-doc in the Gallium team. I would like
to thank Didier Rémy and François Pottier for having supported my application, and
for their help in making it happen on a very short notice. I am also very grateful to
Thibaut Balabonski for his guidance and advice, and to Barbara Petit for having put us
in touch.

262

This dissertation is also the result of countless interactions at conferences or by email.
For better or for worse, the initial impulse for Chapter 7 was provided by Peter Dybjer
in Marseille, with the final kick provided by Derek Dreyer in Copenhagen. I thank
them for these discussions. I also thank Andrea Vezzosi for these Agda files he would
send me every now and then: he would prove a theorem I had postulated, or disprove
it with a counter-example. I am indebted to Gabor Greif, for his feedback on my LICS
paper, and to those madmen that have read parts of my thesis, (mostly) of their own free
will: Clément, Fredrik Nordvall Forsberg, Guillaume, Hank, Lorenzo, Matteo Maffei,
Stevan, and Vincent Silès.

My final thanks go to José Pedro Magalhães. Every draft paper I have written during
my PhD has received his scrutiny. His insightful comments have greatly improved the
final products. Without his encouragements, these papers would have remained in the
state of drafts. Finally, I cannot thank him enough for the time and energy he has spent
reading the first draft of this document. It has been a pleasure and, I daresay, an honour
to receive the attention of such a selfless, humanistic scholar.

I will conclude with a few words for my family, in French. Je remercie mes par-
ents pour leur soutien indéfectible durant toutes ces années. Je remercie ma mère
pour m’avoir donné “Pierre” – la passion de bâtir – et mon père pour m’avoir donné
“Évariste” – la passion des mathématiques. Je remercie aussi mes frères pour leur in-
spiration: merci à Pascal pour l’air frais des Calanques, merci à Yannick pour m’avoir
ouvert la voie, et merci à Giovanni pour m’avoir constamment rappelé que “Qui ose
gagne”. Mes derniers mots vont à Samantha dont les encouragements et la confiance
m’ont portés tout au long de cette aventure. Merci.

263

	Introduction
	Prospectus
	Background
	Structure
	Notational Conventions

	Terms, Types & Programs
	The Type Theory
	A Minimal Calculus
	Enumerations
	Meta-Theoretical Properties

	A Notation for Programs
	Bidirectional Type Checking
	Elaborating Programs
	Abuse of (Programming) Language

	The Inductive Fragment of Type Theory
	A Universe of Inductive Types
	The Universe of Descriptions
	Initial Algebra Semantics
	Extending Type Propagation

	A Universe of Inductive Families
	The Universe of Indexed Descriptions
	Initial Algebra Semantics
	Categorical Semantics of Inductive Families

	Generic Programming
	Bootstrapping Inductive Types
	The Art of Levitation
	A Few Generic Constructions
	Modelling Levitation

	Elaborating Inductive Definitions
	Inductive Types
	Inductive Families
	Reflections on Inductive Types

	A Calculus of Structures
	Ornaments
	Universe of Ornaments
	Categorical Semantics of Ornaments
	Tapping into the Categorical Structure

	Functional Ornaments
	From Comparison to Lookup, Manually
	A Universe of Functions and their Ornaments
	Lazy Programmers, Smart Constructors

	Conclusion
	Further Work
	Implementation Work
	Epilogue

	Overloaded Notations
	Bibliography
	Index
	Acknowledgements

