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Isomorphisms

Isomorphisms relate types/formulas/objects which are �the same�

A ≃ B

A Bf
g

idA idB

Instantiation in λ-calculus, logics,. . .

Wanted: an equational theory

Two main approaches:

Syntactic the analysis of pairs of terms composing to the identity
should provide information on their type

Semantic �nd a model with the same isomorphisms than in the syntax
but where they can be computed more easily (typically
reducing to equality between combinatorial objects)
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Isomorphisms

Isomorphisms relate types/formulas/objects which are �the same�
A ≃ B

A Bf
g

idA idB

For λ-calculus with products and unit type / cartesian closed categories
Semantic (�nite sets) [Soloviev, 1983]

× A× (B × C ) ≃ (A× B)× C A× B ≃ B × A

× and → (A× B) → C ≃ A → (B → C ) A → (B × C ) ≃ (A → B)× (A → C )

1 A× 1 ≃ A 1 → A ≃ A A → 1 ≃ 1

Reduces to Tarski's High School Algebra Problem: can all equalities
involving product, exponential and 1 be found using only

a(bc) = (ab)c ab = ba cab = (cb)a (bc)a = baca

1a = a a1 = a 1a = 1
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Isomorphisms

Isomorphisms relate types/formulas/objects which are �the same�

A ≃ B

A Bf
g

idA idB

For Multiplicative Linear Logic / ⋆-autonomous categories
Syntactic (proof-nets) [Balat and Di Cosmo, 1999]

Associativity
A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C A ` (B ` C ) ≃ (A ` B) ` C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A

(A⊗ B) ⊸ C = (A⊥ ` B⊥) ` C ≃ A⊥ ` (B⊥ ` C ) = A ⊸ (B ⊸ C )
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Isomorphisms

Isomorphisms relate types/formulas/objects which are �the same�

A ≃ B

A Bf
g

idA idB

For Multiplicative-Additive Linear Logic / ⋆-autonomous categories with
�nite products Syntactic (proof-nets) [Di Guardia and Laurent, 2023]

Associativity
A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C A ` (B ` C ) ≃ (A ` B) ` C
A⊕ (B ⊕ C ) ≃ (A⊕ B)⊕ C A& (B & C ) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C ) ≃ (A⊗ B)⊕ (A⊗ C ) A ` (B & C ) ≃ (A ` B) & (A ` C )

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤
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Isomorphisms

Isomorphisms relate types/formulas/objects which are �the same�

A ≃ B

A Bf
g

idA idB

For Polarized Linear Logic
Semantic (games, forest isomorphisms) [Laurent, 2005]

Associativity
A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C A ` (B ` C ) ≃ (A ` B) ` C
A⊕ (B ⊕ C ) ≃ (A⊕ B)⊕ C A& (B & C ) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C ) ≃ (A⊗ B)⊕ (A⊗ C ) A ` (B & C ) ≃ (A ` B) & (A ` C )

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

Seely
!(A& B) ≃ !A⊗ !B ?(A⊕ B) ≃ ?A ` ?B

!⊤ ≃ 1 ?0 ≃ ⊥
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Retractions

Retractions relate A and B when A is a �sub-type� of B

A � B

A Bf
g

idA idB

Instantiation in λ-calculus, logics,. . .

bool � nat with f (false) = 0, f (true) = 1 and g(n) = n is equal to 1

Rémi Di Guardia, Olivier Laurent Retractions in MLL Chocola 13/03/2024 3 / 41



Retractions

Retractions relate A and B when A is a �sub-type� of B

A � B

A Bf
g

idA idB

Instantiation in λ-calculus, logics,. . .

bool � nat with f (false) = 0, f (true) = 42 and g(n) = n is equal to 42
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Retractions

Retractions relate A and B when A is a �sub-type� of B

A � B

A Bf
g

idA idB

For simply typed a�ne λ-calculus
Syntactic [Regnier and Urzyczyn, 2002]

≃ A → B → C ≃ B → A → C

� (= � \ ≃)
A � B → A

A � (A → X ) → X if A is Y1 → Y2 → · · · → X
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Retractions

Retractions relate A and B when A is a �sub-type� of B

A � B

A Bf
g

idA idB

For Multiplicative Linear Logic
[UNKNOWN]

≃ associativity and commutativity of ⊗ and `, neutrality of 1 and ⊥
� (= � \ ≃) ???
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Other results about retractions

Decidability of retractions in simply typed λ-calculus in [Padovani, 2001]

De�nition

Cantor-Bernstein property: if A � B and B � A then A ≃ B .

Holds in some category but not all!
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Plan

1 De�nitions
Proof-Net
Retraction

2 Properties of Retractions

3 Di�culties for the general case A � B

4 Retractions of the shape X � · (universal super-types)
Looking for a pattern
Quasi-Be�ara
Be�ara X � X ⊗ (X⊥ ` X )
Does not generalize to A � B

5 Conclusion
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Formula & Sequent

Formula

A,B ::= X |
not

X⊥ | A
and
⊗ B | A

or` B

Duality

(X⊥)⊥ = X

(A⊗ B)⊥ = B⊥ ` A⊥

(A ` B)⊥ = B⊥ ⊗ A⊥

Sequent

⊢ A1, . . . ,An

Examples

X

`
X⊥

⊗

Z⊥

X⊥

⊗

X

`

Z

Example

X

`
X⊥

⊗

Z⊥Z

⊗

Y

Rules (sequent calculus)

ax
⊢ A⊥,A

⊢ A, Γ ⊢ B,∆
⊗

⊢ A⊗ B, Γ,∆

⊢ A,B, Γ `
⊢ A ` B, Γ
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Proof-Structure

Proof-Structure

Sequent ⊢ A,B with edges between dual leaves (some X and X⊥), these
edges partitioning the leaves of the sequent.

Examples

X

⊗

Z

`
X⊥

X

`
X⊥

⊗

Z⊥

X

⊗

Z

`
X⊥

X

`
X⊥

⊗

Z⊥

Graphical representation

A B
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Correctness & Proof-Net

Correctness Graph

In a proof-structure, keep only one premise of each `-node.
Danos-Regnier Correctness Criterion

A proof-structure is correct, and called a proof-net, if all its correctness
graphs are acyclic and connected (i.e. are trees).

Toy examples

X

⊗

X⊥ X

`
X⊥
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A proof-structure is correct, and called a proof-net, if all its correctness
graphs are acyclic and connected (i.e. are trees).

Toy examples
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Not acyclic (but connected)
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X
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Identity proof-net

Identity proof-structure of A

In the sequent ⊢ A⊥,A, link each leaf in A to the dual one in A⊥.

Example: A = Y ⊗ (X⊥ ` X⊥)

X

⊗

X

`
Y⊥

X⊥

`
X⊥

⊗

Y

Lemma

An identity proof-structure is correct.
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Composition

Equivalence Class of a leaf

Take two proof-nets on ⊢ A,B and ⊢ B⊥,C . Forget the syntax trees, keep
only the leaves, the axiom edges and put edges between dual leaves of B
and B⊥.
Equivalence class of a leaf: those connected to it in this graph.

• • • • • • • • ••••• •••

A B B⊥ C
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Composition bis

• • • • • • • • ••••• •••

A B B⊥ C

degree 1 degree 2 degree 2 degree 1

Lemma

A graph containing only vertices of degree 1 or 2 is a disjoint union of

non-empty simple paths and cycles.

Thus an equivalence class contains exactly either two leaves of A and C or
zero (for they are of degree 1).

Using the correctness criterion, there are no cycles; hence each class
contains exactly two leaves of A and C . (But we do not need it here.)
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Composition ter

Composition

Take two proof-structures on ⊢ A,B and ⊢ B⊥,C . Delete edges involving
leaves of B and B⊥ and add edges between leaves of A and B in the same
equivalence class, obtaining a proof-structure on ⊢ A,C .

Lemma

The composition of two proof-nets is a proof-net.

Orthogonality of GOI / of Danos-Regnier

Composition of permutations, yielding a permutation if they are orthogonal
= there are no cycles, only paths

• • • • • • • • ••••• •••
permutation

permutation
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Example of composition

X Y

X⊥

X X⊥

Y⊥⊗

`

`

⊗

Y⊥

X X⊥ X X⊥

Y

⊗

` ⊗

`

X Y X⊥ X X⊥ Y⊥Y⊥ X X⊥ X X⊥ Y
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Retraction

Category theory A � B

A Bf
g

idA

λ-calculus

Retraction A � B

Terms M : A → B and N : B → A such that

N ◦M =βη λxA.x

Multiplicative Linear Logic

Retraction A � B

Proof-nets R of ⊢ A⊥,B and S of ⊢ B⊥,A whose composition over B
yields the identity proof-net of A.

A � B ⇐⇒ A⊥ � B⊥
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Be�ara's retraction

Be�ara's retraction

X � X ` (X⊥ ⊗ X ) or dualy X � X ⊗ (X⊥ ` X )

Can also be seen as X � (X ⊸ X ) ⊸ X

X⊥

X

`

X⊥

⊗

X

X⊥

⊗

X

`
X⊥

X

X ` (X⊥ ⊗ X ) (X⊥ ` X )⊗ X⊥
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Be�ara's is a retraction

X⊥ X

X

X⊥

⊗

X

` ⊗

X⊥

X

`
X⊥

X⊥ XX X⊥ X X⊥XX⊥
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Half-Bipartiteness

De�nition

A proof-net on ⊢ A,B is half-bipartite in A if there is no link between
leaves of A.

Example

Half-bipartite in
X ` X⊥ but not in
X⊗(X`(X⊥⊗X⊥)). X X⊥

`

X

⊗

`

X ⊗

X⊥ X⊥

X ` X⊥ X ⊗ (X ` (X⊥ ⊗ X⊥))
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Retractions are half-bipartite

Lemma

Proof-nets of A � B are half-bipartite in A⊥ and A respectively.

Proof.

A link between leaves of A⊥ or A would survive in the composition, i.e. in
the resulting identity proof-net: contradiction.

A⊥ B B⊥ A

Rémi Di Guardia, Olivier Laurent Retractions in MLL Chocola 13/03/2024 19 / 41



Non-ambiguity

Corollary: Non-ambiguity

Up to renaming leaves, in A � B one can assume A to be non-ambiguous:

its leaves are distinct atoms X ,Y⊥,Z , . . . without X⊥,Y ,Z⊥ . . .

Proof.

X X X⊥ X X⊥X X⊥X⊥ X⊥XX⊥XX X⊥X⊥X

A⊥ B B⊥ A

Rename each equivalence class with a fresh atom.

1 Half-bipartiteness → one atom of A by class, so A1 non-ambiguous

2 Dual leaves of B and B⊥ in the same equivalence class → B2 = B⊥
1

3 Composition is identity → dual leaves of A⊥ and A in the same
equivalence class → A2 = A⊥

1

4 Renaming preserves correction and the result of composition
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Property on sizes

If A non-ambiguous, there is only one proof-net on ⊢ A⊥,A: the identity.

Retraction A � B with A non-ambiguous

Proof-nets R of ⊢ A⊥,B and S of ⊢ B⊥,A whose composition over B
yields the identity proof-net of A.

Theorem

If A � B , then s(A) ≤ s(B), with equality i� A ≃ B .

Proof.

A⊥ B B⊥ A
If s(A) = s(B), then each atom of B corresponds to one in A⊥, so B
non-ambiguous too. Thus, both compositions yield identities.
Reciprocally, associativity and commutativity preserve the size.
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Consequences

The previous result on non-ambiguity permits to characterize isomorphisms
as done in [Balat and Di Cosmo, 1999]:

Associativity A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C A ` (B ` C ) ≃ (A ` B) ` C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A

Corollary

The Cantor-Bernstein property holds:

A � B and B � A =⇒ A ≃ B

X ⊗ Y ̸� X ` Y

X ` (Y ⊗ Z ) ̸� Y ⊗ (X ` Z )
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Plan

1 De�nitions
Proof-Net
Retraction

2 Properties of Retractions

3 Di�culties for the general case A � B

4 Retractions of the shape X � · (universal super-types)
Looking for a pattern
Quasi-Be�ara
Be�ara X � X ⊗ (X⊥ ` X )
Does not generalize to A � B

5 Conclusion
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Not �nitely axiomatisable?

X1 ⊗ X2 ⊗ X3 ⊗ X4 � (X1 ⊗ X2 ⊗ X3 ⊗ X4)`(X1 ⊗ (X⊥
1 `

(X2 ⊗ (X⊥
2 `

(X3 ⊗ (X⊥
3 `

(X4 ⊗ X⊥
4 )))))))

Generally:

{⊗Xi} � {⊗Xi} ` (X1 ⊗ (X⊥
1 ` (. . . (Xn−1 ⊗ (X⊥

n−1 ` (Xn ⊗ X⊥
n )) . . . )))

However (A⊗ X ) ` B ̸� (A⊗ X ) ` (X ⊗ (X⊥ ` B))
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Key Result

Lemma

In X � B one of the two proof-nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1

X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥
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Key Result

Lemma

In X � B one of the two proof-nets contains:
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Extended pattern

Lemma

If

X⊥ X

`
has a node below it, then this is a

X⊥ X

`

⊗

.

Proof.

The connector below the
pattern cannot be a ` by
connectivity:

X⊥ X

`

`
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Quasi-Be�ara

De�nition

Quasi-Be�ara is this local transformation on proofs of a retraction A � B :

X⊥ X

`

⊗

︸ ︷︷ ︸
B

α β
XX⊥

⊗

`

︸ ︷︷ ︸
B⊥

qBe�ara

−−−−→

︸ ︷︷ ︸
B ′

α β

︸ ︷︷ ︸
B ′⊥

By extension, this de�nes two transformations on a formula B (by duality):

X⊥ X

`

⊗

︸ ︷︷ ︸
B

qBe�ara

−−−−→

︸ ︷︷ ︸
B ′
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Coherence of Quasi-Be�ara

Lemma

If (R,S) are proofs of A � B and (R,S)
qBe�ara

−−−−→ (R′,S ′), then (R′,S ′)

are proofs of A � B ′ with B
qBe�ara

−−−−→ B ′.

Proof.

Quasi-Be�ara preserves:

being a proof-structure

acyclicity of correctness graphs

the number |V |+ | ` | − |E | of cc. of any correctness graph

X⊥ X

`

⊗

α β
XX⊥

⊗

`

qBe�ara

−−−−→

α β
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Coherence of Quasi-Be�ara

Lemma

If (R,S) are proofs of A � B and (R,S)
qBe�ara

−−−−→ (R′,S ′), then (R′,S ′)

are proofs of A � B ′ with B
qBe�ara

−−−−→ B ′.

Proof.

Quasi-Be�ara preserves:

being a proof-structure

acyclicity of correctness graphs

the number |V |+ | ` | − |E | of cc. of any correctness graph:
it removes 4 vertices, including 1 `, and 5 edges

X⊥ X

`

⊗

α β
XX⊥

⊗

`

qBe�ara

−−−−→

α β
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Coherence of Quasi-Be�ara

Lemma

If (R,S) are proofs of A � B and (R,S)
qBe�ara

−−−−→ (R′,S ′), then (R′,S ′)

are proofs of A � B ′ with B
qBe�ara

−−−−→ B ′.

Proof.

Quasi-Be�ara preserves:

being a proof-structure

acyclicity of correctness graphs

the number |V |+ | ` | − |E | of cc. of any correctness graph

(result of composition over B)

X⊥ X

`

⊗

α β
XX⊥

⊗

`

qBe�ara

−−−−→

α β
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Completeness of Quasi-Be�ara

Proposition

If X � B then B
qBe�ara

−−−−→∗ X .

Proof.

By induction on the size of B . Trivial if B = X .
Else, by previous results:

1 we �nd some

X⊥ X

`

2 which is a

X⊥ X

`

⊗

3 B
qBe�ara

−−−−→ B ′, X � B ′ and B ′ of strictly smaller size
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Quasi-Be�ara & Be�ara (statement)

Remember Be�ara's retraction:

X � X ⊗ (X⊥ ` X ) X � X ` (X⊥ ⊗ X )

Corresponding transformations inside a formula:

X ⊗ (X⊥ ` X )
Be�ara

−−−−→ X X ` (X⊥ ⊗ X )
Be�ara

−−−−→ X

Proposition

If B
qBe�ara

−−−−→∗ X , then B
Be�ara

−−−−→∗ X up to isomorphism

(associativity and commutativity of ` and ⊗)
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Quasi-Be�ara & Be�ara (proof)

By induction on the size of B .
Base cases: B ∈ {X ;X ` (X⊥ ⊗ X );X ⊗ (X⊥ ` X )}

Inductive case: B
qBe�ara

−−−−→ B1

Be�ara

−−−−→ B2

Be�ara

−−−−→∗ X by induction hypothesis.

B
qBe�ara

−−−−→ B1 is

X⊥ X

`

⊗

qBe�ara

−−−−→
e1 or

X⊥ X

⊗

`
qBe�ara

−−−−→
e1

B1

Be�ara

−−−−→ B2 is

X⊥ X

`

⊗

X

a
3 a 4

a 2
a
1

e2

Be�ara

−−−−→
X

e2
(up to duality)

e1 /∈ {a1; a2; a3; a4} (including e1 = e2)
√
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Inductive case: B
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`
qBe�ara

−−−−→
e1

B1

Be�ara

−−−−→ B2 is

X⊥ X

`

⊗

X

a
3 a 4

a 2
a
1

e2

Be�ara

−−−−→
X

e2
(up to duality)

e1 /∈ {a1; a2; a3; a4} (including e1 = e2)

The rewritings commute: B
Be�ara

−−−−→ B ′
1

qBe�ara

−−−−→ B2

Be�ara

−−−−→∗ X , so by

induction B
Be�ara

−−−−→ B ′
1

Be�ara

−−−−→∗ X
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Quasi-Be�ara & Be�ara (proof)

By induction on the size of B .
Base cases: B ∈ {X ;X ` (X⊥ ⊗ X );X ⊗ (X⊥ ` X )}

Inductive case: B
qBe�ara

−−−−→ B1

Be�ara

−−−−→ B2

Be�ara

−−−−→∗ X by induction hypothesis.

B
qBe�ara

−−−−→ B1 is

X⊥ X

`

⊗

qBe�ara

−−−−→
e1 or

X⊥ X

⊗

`
qBe�ara

−−−−→
e1

B1

Be�ara

−−−−→ B2 is

X⊥ X

`

⊗

X

a
3 a 4

a 2
a
1

e2

Be�ara

−−−−→
X

e2
(up to duality)

e1 /∈ {a1; a2; a3; a4} (including e1 = e2)
√

e1 = a2
Up to isomorphism e1 = a1 or e1 = a4
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Quasi-Be�ara & Be�ara (proof)

By induction on the size of B .
Base cases: B ∈ {X ;X ` (X⊥ ⊗ X );X ⊗ (X⊥ ` X )}

Inductive case: B
qBe�ara

−−−−→ B1

Be�ara

−−−−→ B2

Be�ara

−−−−→∗ X by induction hypothesis.

B
qBe�ara

−−−−→ B1 is

X⊥ X

`
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qBe�ara

−−−−→
e1 or
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`
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−−−−→
e1

B1
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−−−−→ B2 is

X⊥ X

`

⊗

X

a
3 a 4

a 2
a
1

e2

Be�ara

−−−−→
X

e2
(up to duality)

e1 /∈ {a1; a2; a3; a4} (including e1 = e2)
√

e1 = a2
√

e1 ∈ {a1; a3; a4}

B
qBe�ara

−−−−→ B1 is also a B
Be�ara

−−−−→ B1
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Characterization of X � B

Theorem

The followings are equivalent:

1 X � B

2 B
qBe�ara

−−−−→∗ X

3 B
Be�ara

−−−−→∗ X (up to iso)

4 B ∈ P (up to iso)

P ::= X | P ⊗ (N ` P) | P ` (N ⊗ P)
N ::= X⊥ | N ⊗ (P `N) | N ` (P ⊗N)

. . . but this is when looking at formulas! Looking at proofs, this is messier:

Pairs of

Proof-Structures

X⊥, · and ·⊥,X

Proof-Nets

X � ·

·
qBe�ara

−−−−→∗ X

·
Be�ara

−−−−→∗ X

(some proof-structures where · is)

(X ⊗ X⊥) ` ((X ` X⊥)⊗ X⊥)

((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X ` (X⊥ ⊗ X )
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Retraction not generated by Be�ara

Proof of X � (X ⊗ X⊥) ` ((X ` X⊥)⊗ X⊥)

X⊥

X

`

X

⊗

X⊥

⊗

X

`
X⊥ X⊥

⊗

X⊥

`

X

`

X⊥

⊗

X

X

Not generated by Be�ara as no

X⊥ X

`

⊗

X

in either proof-nets
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Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

⊗

X⊥

`

`

X

X⊥

⊗

X

X⊥

`

X

⊗

⊗

X⊥

X

`
X⊥

X

X⊥ X

`

⊗

X⊥

⊗

`
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Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

⊗

X⊥

`

`

X

X⊥

⊗

X

X⊥

`

X

⊗

⊗

X⊥

X

`
X⊥

X

X⊥ X

`

⊗

X⊥

⊗

`

Incorrect

Rémi Di Guardia, Olivier Laurent Retractions in MLL Chocola 13/03/2024 35 / 41



Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

⊗

X⊥

`

`

X

X⊥

⊗

X

X⊥

`

X

⊗

⊗

X⊥

X

`
X⊥

X

X⊥ X

`

⊗

X⊥

⊗

`

Can apply one step of Quasi-Be�ara
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Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

`
X⊥

⊗

X

X⊥

⊗

X

`
X⊥

X

This is Be�ara, attainable from X by one step of Quasi-Be�ara
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Formula not generated by Be�ara without iso

X � X ⊗ ((X⊥ ` X ) ` (X⊥ ⊗ X ))

X

⊗

`

`
X⊥ X

⊗

X⊥ X

Generated by Be�ara only up to isomorphism!
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Generalization to A � B?

Not only

X⊥ X

`
as a pattern, also

X⊥

⊗

`

X

; and maybe others?

Example: X ⊗ Y � X ⊗ (X⊥ ` (X ⊗ Y ))

Y⊥

`
X⊥ X

⊗

X⊥

`

⊗

X Y

X⊥

`

X

⊗

`
X⊥Y⊥

Y

⊗

X
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Generalization to A � B?

Not only
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`

X

⊗
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Y

⊗

X
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Plan

1 De�nitions
Proof-Net
Retraction

2 Properties of Retractions

3 Di�culties for the general case A � B

4 Retractions of the shape X � · (universal super-types)
Looking for a pattern
Quasi-Be�ara
Be�ara X � X ⊗ (X⊥ ` X )
Does not generalize to A � B

5 Conclusion
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What about the units? the mix2-rule?

Result from [Balat and Di Cosmo, 1999]

Take A and B without sub-formulas of the shape −⊗ 1, 1⊗−, ⊥ `− nor

− `⊥, and π and π′ cut-free proofs respectively of ⊢ A⊥,B and ⊢ B⊥,A.
Then all 1 and ⊥-rules in π and π′ belongs to the following pattern:

1
⊢ 1 ⊥

⊢ ⊥, 1

Thus

{
1 → X

⊥ → X⊥ up to isomorphism

−→ same strict retractions with and without units; Cantor-Bernstein for
MLL with units

The mix2-rule does not matter: it is preserved by composition and the
identity has none.
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Retractions and Provability

Fact

!X � !X ⊗ !(X ⊗ A) ⇐⇒ ⊢ A is provable

X � X & (X ⊗ A) ⇐⇒ ⊢ A is provable

A � A⊕ B ⇐⇒ ⊢ B⊥,A is provable

Fragment Provability

LL Undecidable /

MELL
TOWER-hard /

(decidability is open)
MALL PSPACE-complete /
ALL P-complete

(an overview of these results on provability can be found in [Lincoln, 1995])
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Conclusion

X � B ⇐⇒ B
Be�ara

−−−−→∗ X up to isomorphism
with some subtleties on the proof-morphisms

General properties: Cantor-Bernstein, result on sizes, only provability
of a particular shape no consider, . . .

Units, which are known for creating di�culties, do not matter here

Still the problem is di�cult!
And it is even worse in larger fragments of linear logic.
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X � X ⊗ (X⊥ ` X ) A � A⊗ (X⊥ ` X ) ⇐⇒ X ∈ A

!X � !X ⊗ !(X ⊗ A) ⇐⇒ ⊢ A X � X & (X ⊗ A) ⇐⇒ ⊢ A

Thank you

for your attention!

A � A& B ⇐⇒ ⊢ A⊥,B A � A⊕ B ⇐⇒ ⊢ A,B⊥

X ⊕ Y � ((X ⊕ Z ) & (X ⊕ Y ))⊕ Y ?A � ??A ?!A � ?!?!A
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Back-up: What about other �simple� fragments?

For exponential formulas, there are new retractions:

?A � ??A ?!A � ?!?!A

Look like the only �basic� ones?

For additive formulas, only one �basic� retraction (with units too):

A � A& B ⇐⇒ ⊢ A⊥,B or A � A⊕ B ⇐⇒ ⊢ A,B⊥

Retraction of an atom manageable.
But generally composition is bad due to the side condition:

X ⊕ Y � ((X ⊕ Z ) & (X ⊕ Y ))⊕ Y

comes from X ⊕ Y � (X ⊕ Y )⊕ Y without ⊢ X ⊕ Z , (X ⊕ Y )⊥

Cantor-Bernstein holds in ALL. More complicated in MALL. . .
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