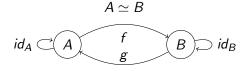
Retractions in Multiplicative Linear Logic

<u>Rémi Di Guardia</u>, Olivier Laurent

ENS Lyon (LIP)

Chocola 13/03/2024



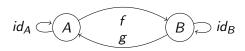
Instantiation in λ -calculus, logics, . . .

Wanted: an *equational theory*

Two main approaches:

Syntactic the analysis of pairs of terms composing to the identity should provide information on their type

Semantic find a model with the same isomorphisms than in the syntax but where they can be computed more easily (typically reducing to equality between combinatorial objects)

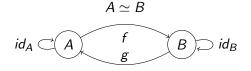


For λ -calculus with products and unit type / cartesian closed categories Semantic (finite sets) [Soloviev, 1983]

X	$A \times (B \times C)$	$\simeq (A \times B) \times C$	$A \times B \simeq B \times A$
\times and \rightarrow	$(A \times B) \rightarrow C$:	$\simeq A \rightarrow (B \rightarrow C)$	$A ightarrow (B imes C) \simeq (A ightarrow B) imes (A ightarrow C)$
1	$A \times 1 \simeq A$	$1 \rightarrow A \simeq A$	$A \rightarrow 1 \simeq 1$

Reduces to Tarski's High School Algebra Problem: can all equalities involving product, exponential and 1 be found using only

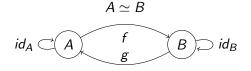
a(bc) = (ab)c ab = ba $c^{ab} = (c^b)^a$ $(bc)^a = b^a c^a$ 1a = a $a^1 = a$ $1^a = 1$



For Multiplicative Linear Logic / *-autonomous categories Syntactic (proof-nets) [Balat and Di Cosmo, 1999]

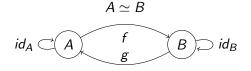
Associativity	$A\otimes (B\otimes C)$ a	$\simeq (A \otimes B) \otimes C$	$A \ \mathfrak{F} \left(B \ \mathfrak{F} \ C \right) \simeq \left(A \ \mathfrak{F} \ B \right) \ \mathfrak{F} \ C$
Commutativity	$A \otimes B \simeq B \otimes A$	$A \Im B \simeq B \Im A$	
Neutrality	$A \otimes 1 \simeq A$	A ?? $\perp \simeq A$	

 $(A \otimes B) \multimap C = (A^{\perp} \operatorname{\mathfrak{P}} B^{\perp}) \operatorname{\mathfrak{P}} C \simeq A^{\perp} \operatorname{\mathfrak{P}} (B^{\perp} \operatorname{\mathfrak{P}} C) = A \multimap (B \multimap C)$



For Multiplicative-Additive Linear Logic / *-autonomous categories with finite products Syntactic (proof-nets) [Di Guardia and Laurent, 2023]

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$ $A \oplus (B \oplus C) \simeq (A \oplus B) \oplus C$	$\begin{array}{c} A \ \mathfrak{F} \left(B \ \mathfrak{F} \ C \right) \simeq \left(A \ \mathfrak{F} \ B \right) \ \mathfrak{F} \ C \\ A \ \& \ \left(B \ \& \ C \right) \simeq \left(A \ \& \ B \right) \ \& \ C \end{array}$
Commutativity	$A \otimes B \simeq B \otimes A A \Im B \simeq B \Im A$	$A \oplus B \simeq B \oplus A A \& B \simeq B \& A$
Neutrality	$A \otimes 1 \simeq A \qquad A \ \Im \perp \simeq A$	$A \oplus 0 \simeq A \qquad A \& \top \simeq A$
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$	$A \mathfrak{P} \left(B \& C \right) \simeq \left(A \mathfrak{P} B \right) \& \left(A \mathfrak{P} C \right)$
Annihilation	$A \otimes 0 \simeq 0$	$A ~ \mathfrak{P} \top \simeq \top$

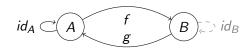


For Polarized Linear Logic

Semantic (games, forest isomorphisms) [Laurent, 2005]

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$	$A \ \mathfrak{F} (B \ \mathfrak{F} C) \simeq (A \ \mathfrak{F} B) \ \mathfrak{F} C$
	$A \oplus (B \oplus C) \simeq (A \oplus B) \oplus C$	$A \& (B \& C) \simeq (A \& B) \& C$
Commutativity	$A \otimes B \simeq B \otimes A A \ \mathfrak{F} B \simeq B \ \mathfrak{F} A$	$A \oplus B \simeq B \oplus A A \& B \simeq B \& A$
Neutrality	$A \otimes 1 \simeq A$ $A \ \Im \perp \simeq A$	$A \oplus 0 \simeq A \qquad A \& \top \simeq A$
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$	$A \Im (B \& C) \simeq (A \Im B) \& (A \Im C)$
Annihilation	$A \otimes 0 \simeq 0$	A % $ op \simeq op$
Seely	$!(A \& B) \simeq !A \otimes !B$	$?(A \oplus B) \simeq ?A$ % $?B$
	$! op\simeq 1$?0 \simeq \perp

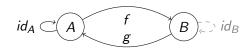
Retractions relate A and B when A is a "sub-type" of B $A \lhd B$



Instantiation in λ -calculus, logics, . . .

bool \leq nat with f(false) = 0, f(true) = 1 and g(n) = n is equal to 1

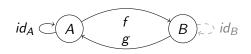
Retractions relate A and B when A is a "sub-type" of B $A \lhd B$



Instantiation in λ -calculus, logics, . . .

bool \leq nat with f(false) = 0, f(true) = 42 and g(n) = n is equal to 42

Retractions relate A and B when A is a "sub-type" of B

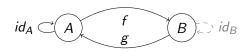


 $A \lhd B$

For simply typed affine λ -calculus

Syntactic [Regnier and Urzyczyn, 2002]

Retractions relate A and B when A is a "sub-type" of B



 $A \trianglelefteq B$

For Multiplicative Linear Logic

[UNKNOWN]

\simeq	associativity and commutativity of \otimes and ${ m ?}$, neutrality of 1 and ot
$\lhd (= \trianglelefteq \setminus \simeq)$???

Decidability of retractions in simply typed λ -calculus in [Padovani, 2001]

Definition

Cantor-Bernstein property: if $A \trianglelefteq B$ and $B \trianglelefteq A$ then $A \simeq B$.

Holds in some category but not all!

Plan

- Proof-Net
- Retraction
- Properties of Retractions
- 3 Difficulties for the general case $A \leq B$

4 Retractions of the shape $X \leq \cdot$ (universal super-types)

- Looking for a pattern
- Quasi-Beffara
- Beffara $X \lhd X \otimes (X^{\perp} \ \mathfrak{P} X)$
- Does not generalize to $A \trianglelefteq B$

Conclusion

Formula & Sequent

Formula

$$A,B ::= X \mid X^{\text{not}} \mid A \overset{\text{and}}{\otimes} B \mid A \overset{\text{or}}{\otimes} B$$

Duality

$$(X^{\perp})^{\perp} = X$$

 $(A \otimes B)^{\perp} = B^{\perp} \Im A^{\perp}$
 $(A \Im B)^{\perp} = B^{\perp} \otimes A^{\perp}$

$$x$$
 x^{\perp}
 x^{\perp}
 η
 z^{\perp}
 z^{\perp}

Formula & Sequent

Formula

$$A,B ::= X \mid X^{\text{not}} \mid A \overset{\text{and}}{\otimes} B \mid A \overset{\text{or}}{\otimes} B$$

Duality

$$(X^{\perp})^{\perp} = X$$

 $(A \otimes B)^{\perp} = B^{\perp} \Im A^{\perp}$
 $(A \Im B)^{\perp} = B^{\perp} \otimes A^{\perp}$

Sequent

$$\vdash A_1, \ldots, A_n$$

Examples X X^{\perp} Х (z)z Z^{\perp} \otimes \otimes 78 Example Х Ζ Y 78 Z^{\perp} \otimes \otimes

Formula & Sequent

Formula

$$A,B ::= X \mid X^{\text{not}} \mid A \overset{\text{and}}{\otimes} B \mid A \overset{\text{or}}{\otimes} B$$

Duality

$$(X^{\perp})^{\perp} = X$$

 $(A \otimes B)^{\perp} = B^{\perp} \Im A^{\perp}$
 $(A \Im B)^{\perp} = B^{\perp} \otimes A^{\perp}$

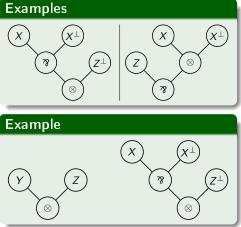
Sequent

$$\vdash A_1, \ldots, A_n$$

Rules (sequent calculus)

$$\frac{}{\vdash A^{\perp}, A} ax \qquad \frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes \qquad \frac{\vdash A, B, \Gamma}{\vdash A \Im B, \Gamma} \Im$$

Rémi Di Guardia, Olivier Laurent

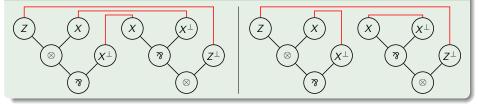


Proof-Structure

Proof-Structure

Sequent $\vdash A, B$ with edges between dual leaves (some X and X^{\perp}), these edges partitioning the leaves of the sequent.

Examples

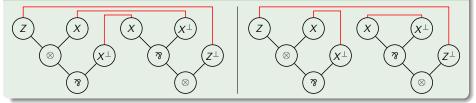


Proof-Structure

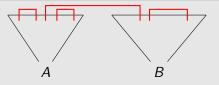
Proof-Structure

Sequent $\vdash A, B$ with edges between dual leaves (some X and X^{\perp}), these edges partitioning the leaves of the sequent.

Examples



Graphical representation



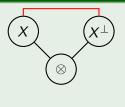
Correctness Graph

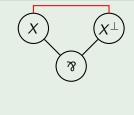
In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Toy examples





Rémi Di Guardia, Olivier Laurent

Retractions in MLL

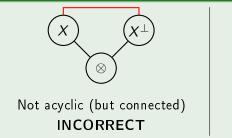
Correctness Graph

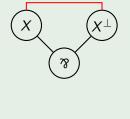
In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Toy examples





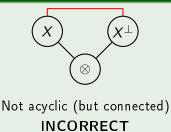
Correctness Graph

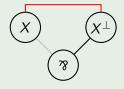
In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Toy examples





Acyclic and connected

Rémi Di Guardia, Olivier Laurent

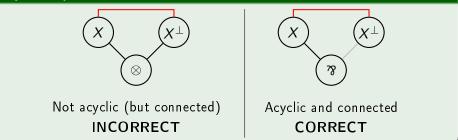
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Toy examples



Rémi Di Guardia, Olivier Laurent

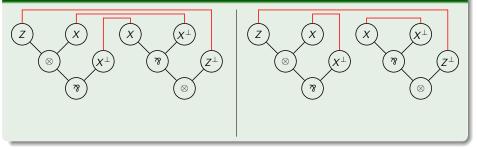
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples



Rémi Di Guardia, Olivier Laurent

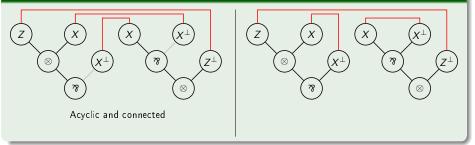
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples



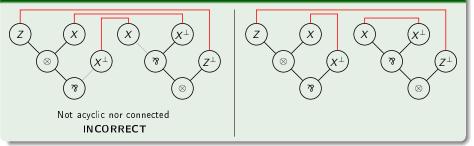
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples



Rémi Di Guardia, Olivier Laurent

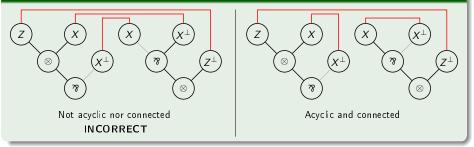
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples



Rémi Di Guardia, Olivier Laurent

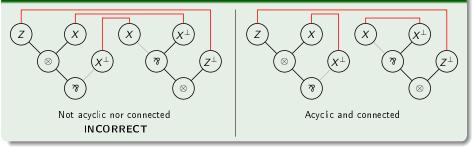
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples



Rémi Di Guardia, Olivier Laurent

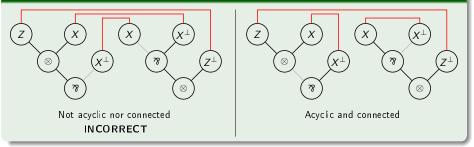
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples



Rémi Di Guardia, Olivier Laurent

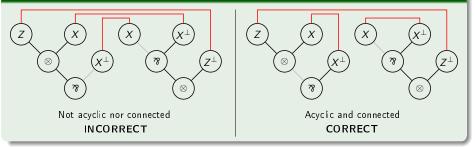
Correctness Graph

In a proof-structure, keep only one premise of each %-node.

Danos-Regnier Correctness Criterion

A proof-structure is *correct*, and called a *proof-net*, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples



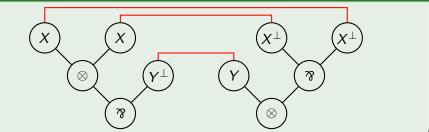
Rémi Di Guardia, Olivier Laurent

Identity proof-net

Identity proof-structure of A

In the sequent $\vdash A^{\perp}$, A, link each leaf in A to the dual one in A^{\perp} .

$Example: \ A = Y \otimes (X^{\perp} \ \mathfrak{P} X^{\perp})$



Lemma

An identity proof-structure is correct.

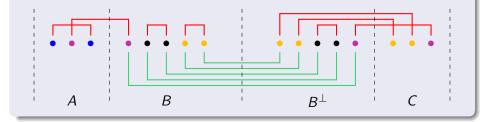
Rémi Di Guardia, Olivier Laurent

Retractions in MLL

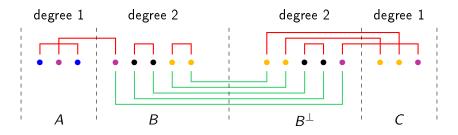
Equivalence Class of a leaf

Take two proof-nets on $\vdash A, B$ and $\vdash B^{\perp}, C$. Forget the syntax trees, keep only the leaves, the axiom edges and put edges between dual leaves of B and B^{\perp} .

Equivalence class of a leaf: those connected to it in this graph.



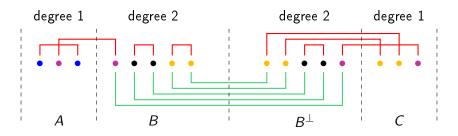
Composition bis



Lemma

A graph containing only vertices of degree 1 or 2 is a disjoint union of non-empty simple paths and cycles.

Composition bis



Lemma

A graph containing only vertices of degree 1 or 2 is a disjoint union of non-empty simple paths and cycles.

Thus an equivalence class contains exactly either two leaves of A and C or zero (for they are of degree 1).

Using the correctness criterion, there are no cycles; hence each class contains exactly two leaves of A and C. (But we do not need it here.)

Rémi Di Guardia, Olivier Laurent

Retractions in MLL

Composition ter

Composition

Take two proof-structures on $\vdash A, B$ and $\vdash B^{\perp}, C$. Delete edges involving leaves of B and B^{\perp} and add edges between leaves of A and B in the same equivalence class, obtaining a proof-structure on $\vdash A, C$.

Lemma

The composition of two proof-nets is a proof-net.

Composition ter

Composition

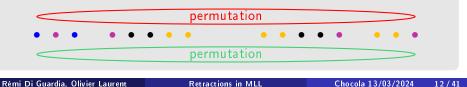
Take two proof-structures on $\vdash A, B$ and $\vdash B^{\perp}, C$. Delete edges involving leaves of B and B^{\perp} and add edges between leaves of A and B in the same equivalence class, obtaining a proof-structure on $\vdash A, C$.

Lemma

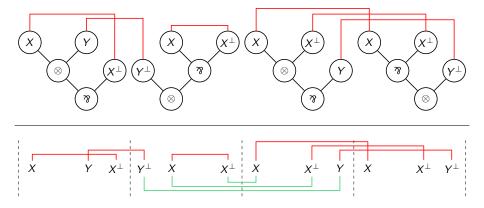
The composition of two proof-nets is a proof-net.

Orthogonality of GOI / of Danos-Regnier

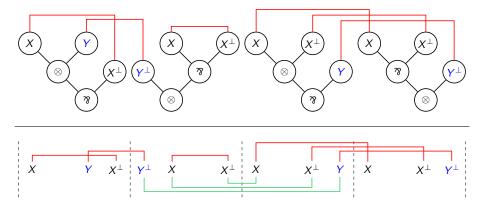
Composition of permutations, yielding a permutation if they are orthogonal = there are no cycles, only paths

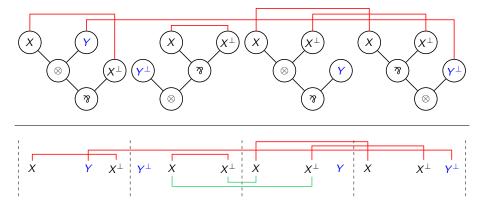


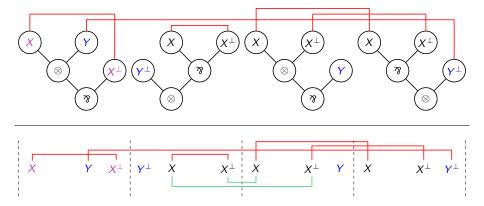
Example of composition



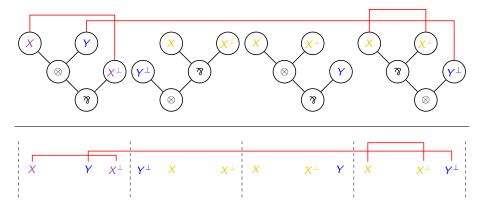
Example of composition





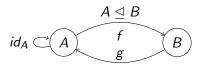






Retraction

Category theory



λ -calculus

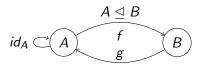
Retraction $A \leq B$

Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

 $N \circ M =_{\beta\eta} \lambda x^A . x$

Retraction

Category theory



λ -calculus

Retraction $A \leq B$

Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

$$N \circ M =_{\beta\eta} \lambda x^A . x$$

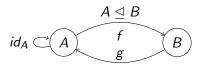
Multiplicative Linear Logic

Retraction $A \leq B$

Proof-nets \mathcal{R} of $\vdash A^{\perp}, B$ and \mathcal{S} of $\vdash B^{\perp}, A$ whose composition over B yields the identity proof-net of A.

Retraction

Category theory



λ -calculus

Retraction $A \leq B$

Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

$$N \circ M =_{\beta\eta} \lambda x^A . x$$

Multiplicative Linear Logic

Retraction $A \leq B$

Proof-nets \mathcal{R} of $\vdash A^{\perp}, B$ and \mathcal{S} of $\vdash B^{\perp}, A$ whose composition over B yields the identity proof-net of A.

$$A \trianglelefteq B \iff A^{\perp} \trianglelefteq B^{\perp}$$

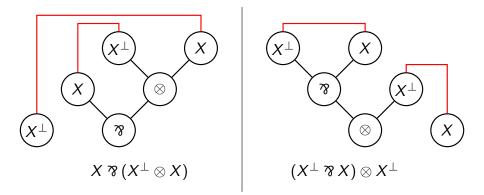
Rémi Di Guardia, Olivier Laurent

Beffara's retraction

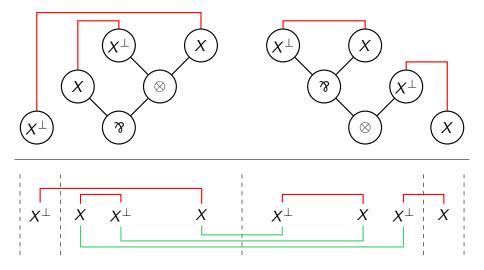
Beffara's retraction

$$X \lhd X \ \mathfrak{F}(X^{\perp} \otimes X)$$
 or dualy $X \lhd X \otimes (X^{\perp} \ \mathfrak{F} X)$

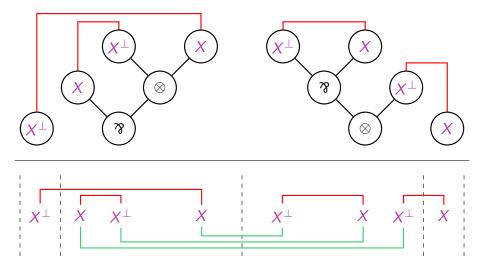
Can also be seen as $X \lhd (X \multimap X) \multimap X$



Beffara's is a retraction



Beffara's is a retraction



Beffara's is a retraction

Plan

Definitions

- Proof-Net
- Retraction

2 Properties of Retractions

3 Difficulties for the general case $A \leq B$

4 Retractions of the shape $X \trianglelefteq \cdot$ (universal super-types)

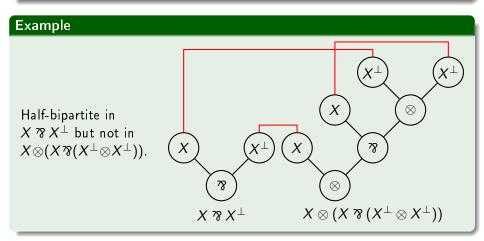
- Looking for a pattern
- Quasi-Beffara
- Beffara $X \lhd X \otimes (X^{\perp} \ \mathfrak{P} X)$
- Does not generalize to $A \trianglelefteq B$

Conclusion

Half-Bipartiteness

Definition

A proof-net on $\vdash A, B$ is *half-bipartite* in A if there is no link between leaves of A.

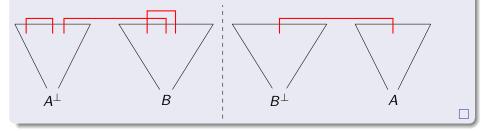


Lemma

Proof-nets of $A \leq B$ are half-bipartite in A^{\perp} and A respectively.

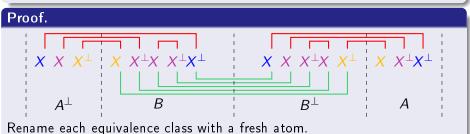
Proof.

A link between leaves of A^{\perp} or A would survive in the composition, i.e. in the resulting identity proof-net: contradiction.



Corollary: Non-ambiguity

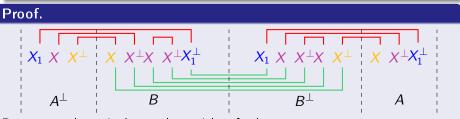
Up to renaming leaves, in $A \leq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$



Rémi Di Guardia, Olivier Laurent

Corollary: Non-ambiguity

Up to renaming leaves, in $A \leq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$



Rename each equivalence class with a fresh atom.

Corollary: Non-ambiguity

Up to renaming leaves, in $A \leq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$

Proof. $X_{1} X_{2} X^{\perp} X X_{2}^{\perp} X_{2} X_{2}^{\perp} X_{1}^{\perp} X_{1} X_{2} X_{2}^{\perp} X_{2} X_{1}^{\perp}$ $A^{\perp} B B^{\perp} A^{\perp}$

Rename each equivalence class with a fresh atom.

Corollary: Non-ambiguity

Up to renaming leaves, in $A \leq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$

Corollary: Non-ambiguity

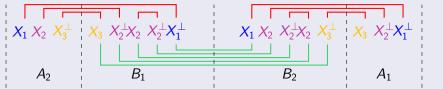
Up to renaming leaves, in $A \leq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$

Rémi Di Guardia, Olivier Laurent

Corollary: Non-ambiguity

Up to renaming leaves, in $A \leq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$

Proof.



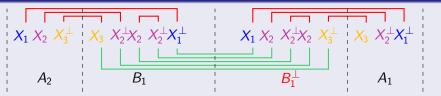
Rename each equivalence class with a fresh atom.

 $\textbf{0} \hspace{0.1in} \mathsf{Half-bipartiteness} \rightarrow \mathsf{one} \hspace{0.1in} \mathsf{atom} \hspace{0.1in} \mathsf{of} \hspace{0.1in} A \hspace{0.1in} \mathsf{by} \hspace{0.1in} \mathsf{class,} \hspace{0.1in} \mathsf{so} \hspace{0.1in} A_1 \hspace{0.1in} \mathsf{non-ambiguous}$

Corollary: Non-ambiguity

Up to renaming leaves, in $A \leq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$

Proof.



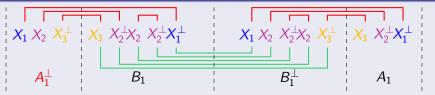
Rename each equivalence class with a fresh atom.

- **()** Half-bipartiteness ightarrow one atom of A by class, so A_1 non-ambiguous
- ② Dual leaves of B and B^\perp in the same equivalence class $o B_2 = B_1^\perp$

Corollary: Non-ambiguity

Up to renaming leaves, in $A \trianglelefteq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$

Proof.



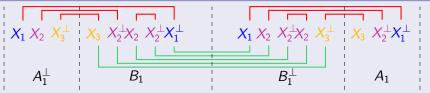
Rename each equivalence class with a fresh atom.

- $oldsymbol{0}$ Half-bipartiteness ightarrow one atom of A by class, so A_1 non-ambiguous
- ② Dual leaves of B and B^\perp in the same equivalence class $o B_2 = B_1^\perp$
- Composition is identity \rightarrow dual leaves of A^{\perp} and A in the same equivalence class $\rightarrow A_2 = A_1^{\perp}$

Corollary: Non-ambiguity

Up to renaming leaves, in $A \trianglelefteq B$ one can assume A to be non-ambiguous: its leaves are distinct atoms X, Y^{\perp}, Z, \ldots without $X^{\perp}, Y, Z^{\perp} \ldots$

Proof.



Rename each equivalence class with a fresh atom.

- $oldsymbol{0}$ Half-bipartiteness ightarrow one atom of A by class, so A_1 non-ambiguous
- ② Dual leaves of B and B^\perp in the same equivalence class $o B_2 = B_1^\perp$
- 3 Composition is identity \rightarrow dual leaves of A^{\perp} and A in the same equivalence class $\rightarrow A_2 = A_1^{\perp}$

Renaming preserves correction and the result of composition

Property on sizes

If A non-ambiguous, there is only one proof-net on $\vdash A^{\perp}, A$: the identity.

Retraction $A \leq B$ with A non-ambiguous

Proof-nets \mathcal{R} of $\vdash A^{\perp}, B$ and \mathcal{S} of $\vdash B^{\perp}, A$ whose composition over \mathcal{B} yields the identity proof-net of A.

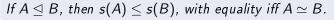
Property on sizes

If A non-ambiguous, there is only one proof-net on $\vdash A^{\perp}, A$: the identity.

Retraction $A \leq B$ with A non-ambiguous

Proof-nets \mathcal{R} of $\vdash A^{\perp}, B$ and \mathcal{S} of $\vdash B^{\perp}, A$ whose composition over \mathcal{B} yields the identity proof-net of A.

Theorem



Proof.

 A^{\perp} B B^{\perp} B^{\perp} AIf s(A) = s(B), then each atom of B corresponds to one in A^{\perp} , so B non-ambiguous too. Thus, both compositions yield identities. Reciprocally, associativity and commutativity preserve the size.

Rémi Di Guardia, Olivier Laurent

The previous result on non-ambiguity permits to characterize isomorphisms as done in [Balat and Di Cosmo, 1999]:

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$	$A \mathfrak{F} \left(B \mathfrak{F} C \right) \simeq \left(A \mathfrak{F} B \right) \mathfrak{F} C$
Commutativity	$A \otimes B \simeq B \otimes A$	$A \ \mathfrak{F} B \simeq B \ \mathfrak{F} A$

The previous result on non-ambiguity permits to characterize isomorphisms as done in [Balat and Di Cosmo, 1999]:

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$	$A \Im (B \Im C) \simeq (A \Im B) \Im C$
Commutativity	$A \otimes B \simeq B \otimes A$	$A \ \mathfrak{F} B \simeq B \ \mathfrak{F} A$

Corollary

The Cantor-Bernstein property holds:

$$A \trianglelefteq B$$
 and $B \trianglelefteq A \implies A \simeq B$

The previous result on non-ambiguity permits to characterize isomorphisms as done in [Balat and Di Cosmo, 1999]:

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$	$A \mathfrak{F} \left(B \mathfrak{F} C \right) \simeq \left(A \mathfrak{F} B \right) \mathfrak{F} C$
Commutativity	$A \otimes B \simeq B \otimes A$	$A \ \mathfrak{F} B \simeq B \ \mathfrak{F} A$

Corollary

The Cantor-Bernstein property holds:

$$A \trianglelefteq B$$
 and $B \trianglelefteq A \implies A \simeq B$

$$\begin{array}{c} X \otimes Y \not \trianglelefteq X \ \Im \ Y \\ X \ \Im \ (Y \otimes Z) \not \trianglelefteq \ Y \otimes (X \ \Im \ Z) \end{array}$$

Plan

Definitions

- Proof-Net
- Retraction
- Properties of Retractions

3 Difficulties for the general case $A \leq B$

④ Retractions of the shape $X \trianglelefteq \cdot$ (universal super-types)

- Looking for a pattern
- Quasi-Beffara
- Beffara $X \lhd X \otimes (X^{\perp} \ \mathfrak{P} X)$
- Does not generalize to $A \trianglelefteq B$

Conclusion

$$egin{aligned} X_1\otimes X_2\otimes X_3\otimes X_4 & \lhd (X_1\otimes X_2\otimes X_3\otimes X_4) rac{N}{2} (X_1\otimes (X_1^ot rac{N}{2} lpha & (X_2\otimes (X_2^ot lpha & (X_3\otimes (X_3^ot lpha & (X_3\otimes (X_3^ot lpha & (X_4\otimes X_4^ot))))))) \end{aligned}$$

Generally:

 $\{\otimes X_i\} \lhd \{\otimes X_i\} \mathfrak{F}(X_1 \otimes (X_1^{\perp} \mathfrak{F}(\dots (X_{n-1} \otimes (X_{n-1}^{\perp} \mathfrak{F}(X_n \otimes X_n^{\perp}))\dots)))$

However $(A \otimes X)$ $\mathfrak{P} \not \cong (A \otimes X)$ $\mathfrak{P} (X \otimes (X^{\perp} \mathfrak{P} B))$

Plan

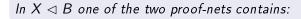
- Proof-Net
- Retraction
- 2 Properties of Retractions
- 3 Difficulties for the general case $A \leq B$

Retractions of the shape $X \trianglelefteq \cdot$ (universal super-types)

- Looking for a pattern
- Quasi-Beffara
- Beffara $X \lhd X \otimes (X^{\perp} \ \mathfrak{P} X)$
- Does not generalize to $A \trianglelefteq B$

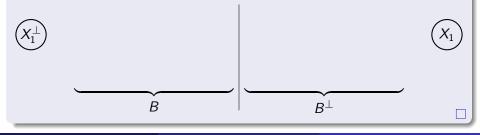
Conclusion

Lemma

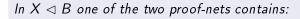


Proof.

We build a sequence (GOI path) finding such a pattern.

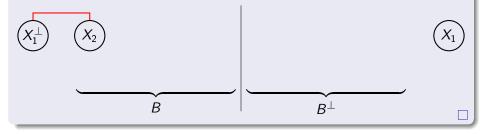


Lemma

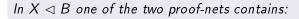


Proof.

We build a sequence (GOI path) finding such a pattern.

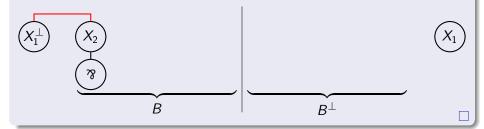


Lemma

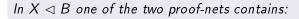


Proof.

We build a sequence (GOI path) finding such a pattern.

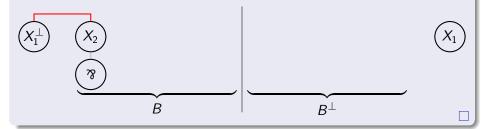


Lemma

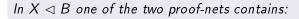


Proof.

We build a sequence (GOI path) finding such a pattern.

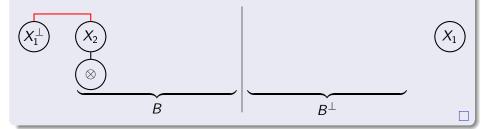


Lemma

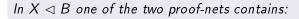


Proof.

We build a sequence (GOI path) finding such a pattern.

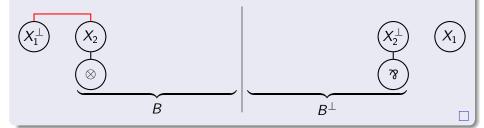


Lemma



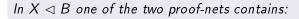
Proof.

We build a sequence (GOI path) finding such a pattern.



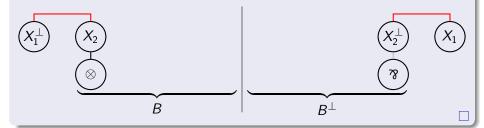
Rémi Di Guardia, Olivier Laurent

Lemma

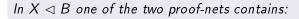


Proof.

We build a sequence (GOI path) finding such a pattern.

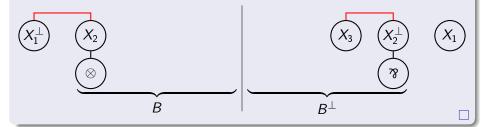


Lemma

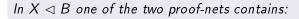


Proof.

We build a sequence (GOI path) finding such a pattern.

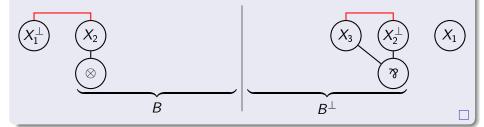


Lemma



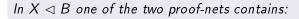
Proof.

We build a sequence (GOI path) finding such a pattern.



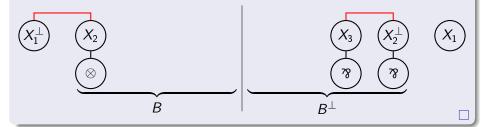
Rémi Di Guardia, Olivier Laurent

Lemma

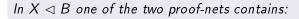


Proof.

We build a sequence (GOI path) finding such a pattern.

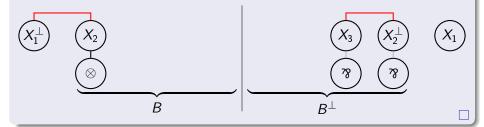


Lemma

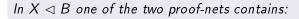


Proof.

We build a sequence (GOI path) finding such a pattern.

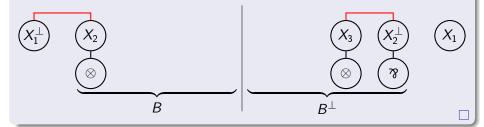


Lemma

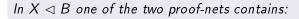


Proof.

We build a sequence (GOI path) finding such a pattern. Invariant: every X of B is above a \otimes , and every X^{\perp} above a \Im .

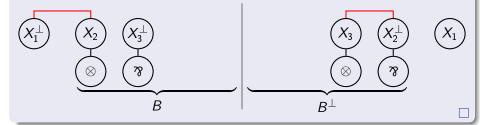


Lemma

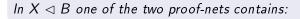


Proof.

We build a sequence (GOI path) finding such a pattern. Invariant: every X of B is above a \otimes , and every X^{\perp} above a \Im .

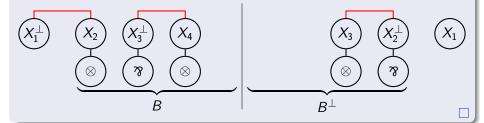


Lemma



Proof.

We build a sequence (GOI path) finding such a pattern. Invariant: every X of B is above a \otimes , and every X^{\perp} above a \Im .



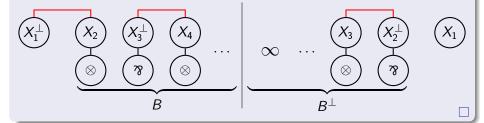
26/41

Lemma

In $X \lhd B$ one of the two proof-nets contains:

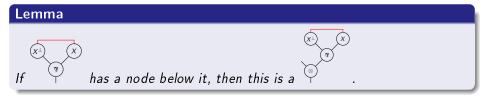
Proof.

We build a sequence (GOI path) finding such a pattern. Invariant: every X of B is above a \otimes , and every X^{\perp} above a \Im .



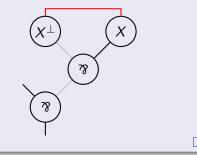
26/41

Extended pattern



Proof.

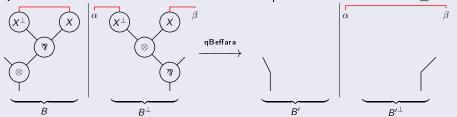
The connector below the pattern cannot be a \Im by connectivity:



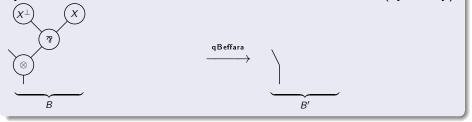
Quasi-Beffara

Definition

Quasi-Beffara is this local transformation on proofs of a retraction $A \trianglelefteq B$:



By extension, this defines two transformations on a formula B (by duality):



Rémi Di Guardia, Olivier Laurent

Lemma

If
$$(\mathcal{R}, \mathcal{S})$$
 are proofs of $A \leq B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{qBeffara} (\mathcal{R}', \mathcal{S}')$, then $(\mathcal{R}', \mathcal{S}')$
are proofs of $A \leq B'$ with $B \xrightarrow{qBeffara} B'$.

Proof.

Quasi-Beffara preserves:

• being a proof-structure

Rémi Di Guardia, Olivier Laurent

Retractions in MLL

Lemma

If
$$(\mathcal{R}, \mathcal{S})$$
 are proofs of $A \leq B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{\mathsf{qBeffara}} (\mathcal{R}', \mathcal{S}')$, then $(\mathcal{R}', \mathcal{S}')$
are proofs of $A \leq B'$ with $B \xrightarrow{\mathsf{qBeffara}} B'$.

Proof.

Quasi-Beffara preserves:

- being a proof-structure
- acyclicity of correctness graphs

Rémi Di Guardia, Olivier Laurent

Retractions in MLL

Lemma

If
$$(\mathcal{R}, \mathcal{S})$$
 are proofs of $A \leq B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{\mathsf{qBeffara}} (\mathcal{R}', \mathcal{S}')$, then $(\mathcal{R}', \mathcal{S}')$
are proofs of $A \leq B'$ with $B \xrightarrow{\mathsf{qBeffara}} B'$.

Proof.

Quasi-Beffara preserves:

- being a proof-structure
- acyclicity of correctness graphs
- the number $|V| + |\Im| |E|$ of cc. of any correctness graph: it removes 4 vertices, including 1 \Im , and 5 edges

Lemma

If
$$(\mathcal{R}, \mathcal{S})$$
 are proofs of $A \leq B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{\mathsf{qBeffara}} (\mathcal{R}', \mathcal{S}')$, then $(\mathcal{R}', \mathcal{S}')$
are proofs of $A \leq B'$ with $B \xrightarrow{\mathsf{qBeffara}} B'$.

Proof.

Quasi-Beffara preserves:

- being a proof-structure
- acyclicity of correctness graphs
- the number $|V|+|\, rakagent |E|$ of cc. of any correctness graph
- (result of composition over B)

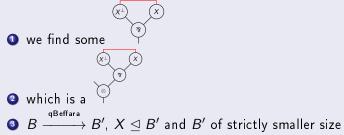
Completeness of Quasi-Beffara

Proposition

If
$$X \leq B$$
 then $B \xrightarrow{qBeffara} X$.

Proof.

By induction on the size of *B*. Trivial if B = X.



Quasi-Beffara & Beffara (statement)

• Remember Beffara's retraction:

$$X \lhd X \otimes (X^{\perp} \ orall \ X) \qquad \qquad X \lhd X \ orall \ (X^{\perp} \otimes X)$$

• Corresponding transformations inside a formula:

$$X \otimes (X^{\perp} \operatorname{\mathfrak{P}} X) \xrightarrow{\operatorname{\mathsf{Beffara}}} X \qquad X \operatorname{\mathfrak{P}} (X^{\perp} \otimes X) \xrightarrow{\operatorname{\mathsf{Beffara}}} X$$

Quasi-Beffara & Beffara (statement)

• Remember Beffara's retraction:

$$X \lhd X \otimes (X^{\perp} \ orall \ X) \qquad \qquad X \lhd X \ orall \ (X^{\perp} \otimes X)$$

• Corresponding transformations inside a formula:

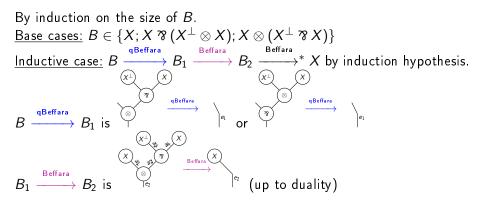
$$X \otimes (X^{\perp} \operatorname{\mathfrak{P}} X) \xrightarrow{\operatorname{\mathsf{Beffara}}} X \qquad X \operatorname{\mathfrak{P}} (X^{\perp} \otimes X) \xrightarrow{\operatorname{\mathsf{Beffara}}} X$$

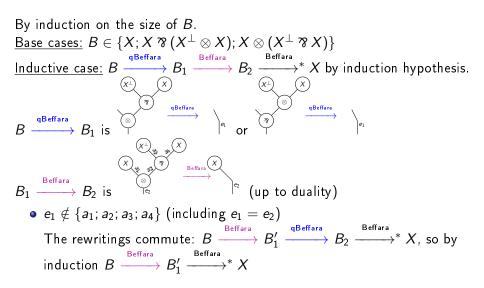
Proposition

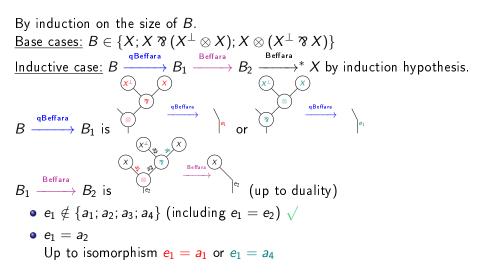
If $B \xrightarrow{q_{\text{Beffara}}} X$, then $B \xrightarrow{Beffara} X$ up to isomorphism (associativity and commutativity of \mathfrak{P} and \otimes)

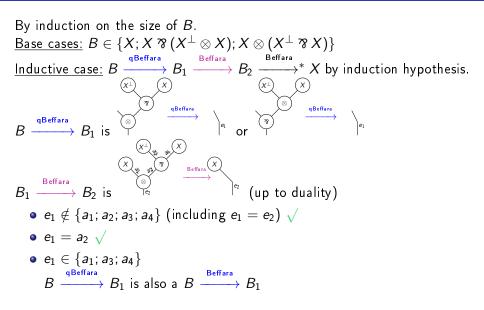
Rémi Di Guardia, Olivier Laurent

By induction on the size of *B*. <u>Base cases:</u> $B \in \{X; X \ \mathfrak{P} (X^{\perp} \otimes X); X \otimes (X^{\perp} \ \mathfrak{P} X)\}$ <u>Inductive case:</u> $B \xrightarrow{\mathsf{qBeffara}} B_1 \xrightarrow{\mathsf{Beffara}} B_2 \xrightarrow{\mathsf{Beffara}} X$ by induction hypothesis.









Characterization of $X \trianglelefteq B$

Theorem

The followings are equivalent:

 $\begin{array}{cccc} \bullet & X \leq B \\ \hline \bullet & & & \\ \bullet & B \xrightarrow{\mathsf{qBeffara}} * X \\ \bullet & & & \\ \bullet & & \\ \bullet & & & \\ \bullet & & & \\ \bullet & & \\ \bullet$

Characterization of $X \trianglelefteq B$

Theorem

The followings are equivalent:

 $\begin{array}{cccc} \bullet & X \leq B \\ & & & \\ \bullet & & \\$

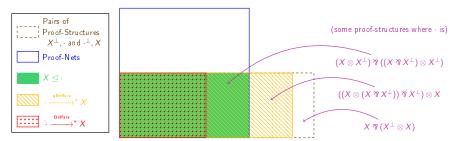
Characterization of $X \trianglelefteq B$

Theorem

The followings are equivalent:

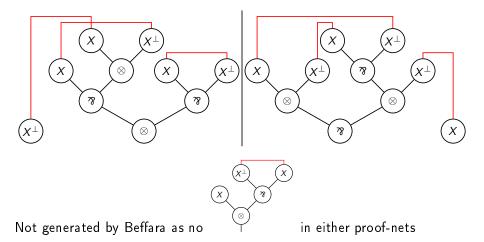
X \leq B
A \u03c9 B \u03c9 B^{qBeffara} * X
B \u03c9 B^{effara} * X (up to iso)
B \u03c9 X (up to iso)

... but this is when looking at *formulas*! Looking at *proofs*, this is messier:

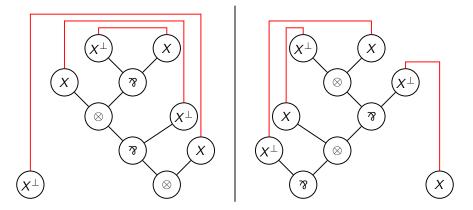


Retraction not generated by Beffara

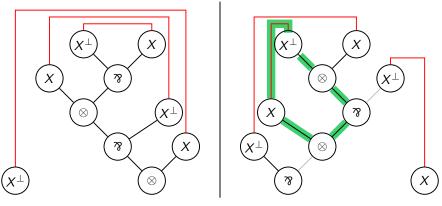
Proof of $X \triangleleft (X \otimes X^{\perp})$ $\Re ((X \ \Re X^{\perp}) \otimes X^{\perp})$



Not-Proof of
$$X \lhd ((X \otimes (X \ rak X^{\perp})) \ rak X^{\perp}) \otimes X$$

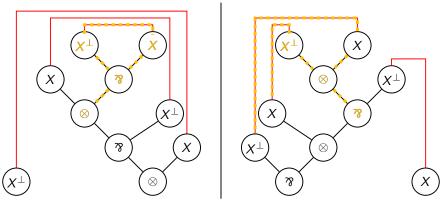


Not-Proof of
$$X \lhd ((X \otimes (X \ \mathfrak{P} X^{\perp})) \ \mathfrak{P} X^{\perp}) \otimes X$$



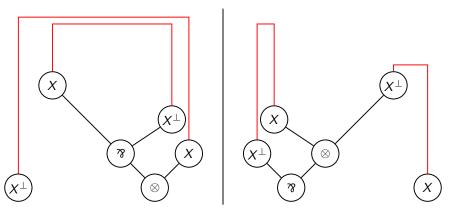
Incorrect

Not-Proof of
$$X \lhd ((X \otimes (X \ \mathfrak{P} X^{\perp})) \ \mathfrak{P} X^{\perp}) \otimes X$$



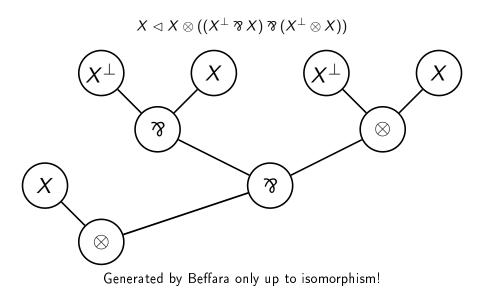
Can apply one step of Quasi-Beffara

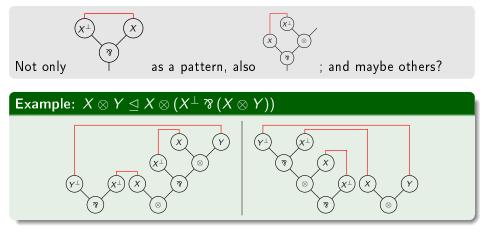
Not-Proof of
$$X \lhd ((X \otimes (X \ rak X \bot)) \ rak X \bot) \otimes X$$



This is Beffara, attainable from X by one step of Quasi-Beffara

Formula not generated by Beffara without iso

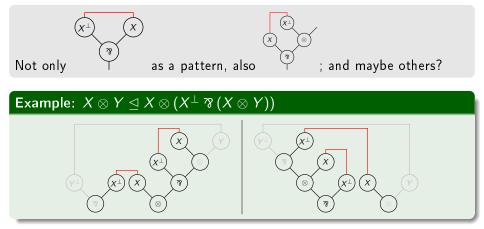




Rémi Di Guardia, Olivier Laurent

Retractions in MLL

Chocola 13/03/2024 37/41



Plan

Definitions

- Proof-Net
- Retraction
- 2 Properties of Retractions

3 Difficulties for the general case $A \leq B$

4 Retractions of the shape $X \trianglelefteq \cdot$ (universal super-types)

- Looking for a pattern
- Quasi-Beffara
- Beffara $X \lhd X \otimes (X^{\perp} \ \mathfrak{P} X)$
- Does not generalize to $A \trianglelefteq B$

Conclusion

Result from [Balat and Di Cosmo, 1999]

Take A and B without sub-formulas of the shape $- \otimes 1$, $1 \otimes -$, $\perp \mathcal{P} -$ nor $- \mathcal{P} \perp$, and π and π' cut-free proofs respectively of $\vdash A^{\perp}$, B and $\vdash B^{\perp}$, A. Then all 1 and \perp -rules in π and π' belongs to the following pattern:

Thus $\begin{cases} 1 & \to X \\ \bot & \to X^{\bot} \end{cases}$ up to isomorphism \longrightarrow same strict retractions with and without units; Cantor-Bernstein for MLL with units

Result from [Balat and Di Cosmo, 1999]

Take A and B without sub-formulas of the shape $- \otimes 1$, $1 \otimes -$, $\perp \vartheta -$ nor $- \vartheta \perp$, and π and π' cut-free proofs respectively of $\vdash A^{\perp}$, B and $\vdash B^{\perp}$, A. Then all 1 and \perp -rules in π and π' belongs to the following pattern:

Thus $\begin{cases} 1 & \rightarrow X \\ \downarrow & \rightarrow X^{\perp} \end{cases}$ up to isomorphism

 \longrightarrow same strict retractions with and without units; Cantor-Bernstein for MLL with units

The mix_2 -rule does not matter: it is preserved by composition and the identity has none.

Fact

$$\begin{split} !X \trianglelefteq !X \otimes !(X \otimes A) \iff \vdash A \text{ is provable} \\ X \trianglelefteq X \& (X \otimes A) \iff \vdash A \text{ is provable} \\ A \trianglelefteq A \oplus B \iff \vdash B^{\perp}, A \text{ is provable} \end{split}$$

Fact

$$\begin{split} !X \trianglelefteq !X \otimes !(X \otimes A) \iff \vdash A \text{ is provable} \\ X \trianglelefteq X \& (X \otimes A) \iff \vdash A \text{ is provable} \\ A \trianglelefteq A \oplus B \iff \vdash B^{\perp}, A \text{ is provable} \end{split}$$

Fragment	Provability
LL	Undecidable 😊
MELL	TOWER-hard 😊
	(decidability is open)
MALL	PSPACE-complete 🔅
ALL	P-complete

(an overview of these results on provability can be found in [Lincoln, 1995])

• $X \leq B \iff B \xrightarrow{\text{Beffara}} X$ up to isomorphism with some subtleties on the proof-morphisms

- General properties: Cantor-Bernstein, result on sizes, only provability of a particular shape no consider, ...
- Units, which are known for creating difficulties, do not matter here
- Still the problem is difficult!

And it is even worse in larger fragments of linear logic.

$$X \lhd X \otimes (X^{\perp} \ \mathfrak{F} X) \qquad A \lhd A \otimes (X^{\perp} \ \mathfrak{F} X) \iff X \in A$$

 $!X \trianglelefteq !X \otimes !(X \otimes A) \iff \vdash A \qquad X \trianglelefteq X \& (X \otimes A) \iff \vdash A$

Thank you for your attention!

 $A \trianglelefteq A \& B \iff \vdash A^{\perp}, B$ $A \trianglelefteq A \oplus B \iff \vdash A, B^{\perp}$

 $X \oplus Y \triangleleft ((X \oplus Z) \& (X \oplus Y)) \oplus Y \qquad ?A \trianglelefteq ??A \qquad ?!A \trianglelefteq ?!?!A$

References I

Balat, V. and Di Cosmo, R. (1999).

A linear logical view of linear type isomorphisms.

In Flum, J. and Rodríguez-Artalejo, M., editors, *Computer Science Logic*, volume 1683 of *Lecture Notes in Computer Science*, pages 250–265. Springer.

 Di Guardia, R. and Laurent, O. (2023).
 Type isomorphisms for multiplicative-additive linear logic.
 In Gaboardi, M. and van Raamsdonk, F., editors, International Conference on Formal Structures for Computation and Deduction (FSCD), volume 260 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:21. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.

References II

Laurent, O. (2005).

Classical isomorphisms of types.

Mathematical Structures in Computer Science, 15(5):969–1004.

Lincoln, P. (1995).

Deciding provability of linear logic formulas.

In Girard, J.-Y., Lafont, Y., and Regnier, L., editors, *Advances in Linear Logic*, volume 222 of *London Mathematical Society Lecture Note Series*, pages 109–122. Cambridge University Press.

Padovani, V. (2001).

Retracts in simple types.

In Abramsky, S., editor, *Typed Lambda Calculi and Applications*, volume 2044 of *Lecture Notes in Computer Science*, pages 376–384. Springer.

References III

- Regnier, L. and Urzyczyn, P. (2002). Retractions of types with many atoms. http://arxiv.org/abs/cs/0212005.
- Soloviev, S. (1983).

The category of finite sets and cartesian closed categories. *Journal of Soviet Mathematics*, 22(3):1387–1400.

Back-up: What about other "simple" fragments?

• For exponential formulas, there are new retractions:

$A \trianglelefteq A \supseteq A$ $A \bowtie A \supseteq A$

Look like the only "basic" ones?

Back-up: What about other "simple" fragments?

• For exponential formulas, there are new retractions:

 $A \leq ?A$ $A \leq ?A$ $A \leq PA$

Look like the only "basic" ones?

• For additive formulas, only one "basic" retraction (with units too):

 $A \trianglelefteq A \& B \iff \vdash A^{\perp}, B$ or $A \trianglelefteq A \oplus B \iff \vdash A, B^{\perp}$

Retraction of an atom manageable. But generally composition is bad due to the side condition:

 $X \oplus Y \lhd ((X \oplus Z) \& (X \oplus Y)) \oplus Y$

comes from $X \oplus Y \lhd (X \oplus Y) \oplus Y$ without $\vdash X \oplus Z, (X \oplus Y)^{\perp}$

Back-up: What about other "simple" fragments?

• For exponential formulas, there are new retractions:

 $A \leq ?A$ $A \leq ?A$ $A \leq PA$

Look like the only "basic" ones?

• For additive formulas, only one "basic" retraction (with units too):

 $A \trianglelefteq A \& B \iff \vdash A^{\perp}, B$ or $A \trianglelefteq A \oplus B \iff \vdash A, B^{\perp}$

Retraction of an atom manageable. But generally composition is bad due to the side condition:

$$X \oplus Y \lhd ((X \oplus Z) \& (X \oplus Y)) \oplus Y$$

comes from $X \oplus Y \lhd (X \oplus Y) \oplus Y$ without $\vdash X \oplus Z, (X \oplus Y)^{\perp}$

• Cantor-Bernstein holds in ALL. More complicated in MALL...

41 / 41