Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear Logic

Rémi Di Guardia

supervised by Olivier Laurent

23 September 2024

Mousse Recipe

- 1 Warm the chocolate
- 2 Beat the whites
- **3** Add the yolks in the chocolate
- 4 Add the whites in the mixture

Mousse Recipe

- 1 Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

Mousse Recipe

Ingredients: chocolate, eggs

- Get the eggs
- 2 Get the chocolate
- 3 Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

Another? Mousse Recipe

- 1 Get the eggs
- 4 Separate the eggs
- 5 Beat the whites
- 2 Get the chocolate
- 3 Warm the chocolate
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

Mousse Recipe

Ingredients: chocolate, eggs

- Get the eggs
- 2 Get the chocolate
- 3 Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

Same Mousse Recipe

- 1 Get the eggs
- 4 Separate the eggs
- 5 Beat the whites
- 2 Get the chocolate
- 3 Warm the chocolate
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture
- \longrightarrow The order of *independent* steps is meaningless for the result! Different writings for a unique recipe

Mousse Recipe

- 1 Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

Mousse Recipe

Ingredients: chocolate, eggs

- **1** Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

 \bigcirc

Mousse Recipe

- Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

Mousse Recipe

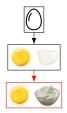
- Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

Mousse Recipe

- 1 Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

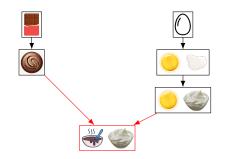
Mousse Recipe

- 1 Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture



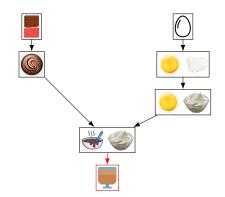
Mousse Recipe

- 1 Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture



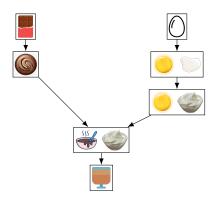
Mousse Recipe

- Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture



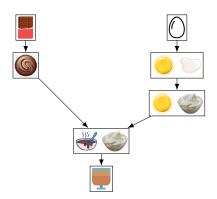
Mousse Recipe

- Get the eggs
- 2 Get the chocolate
- **3** Warm the chocolate
- 4 Separate the eggs
- 5 Beat the whites
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture



Same Mousse Recipe

- 1 Get the eggs
- 4 Separate the eggs
- 5 Beat the whites
- 2 Get the chocolate
- 3 Warm the chocolate
- 6 Add the yolks in the chocolate
- 7 Add the whites in the mixture

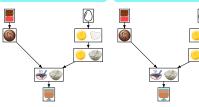


Recipe 1

Recipe 2 1 Get eggs

- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites

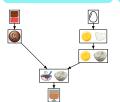
- 4 Separate eggs5 Beat whites
- 2 Get chocolate
- 3 Warm chocolate
- 6 Add yolks
- 7 Add whites



- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites

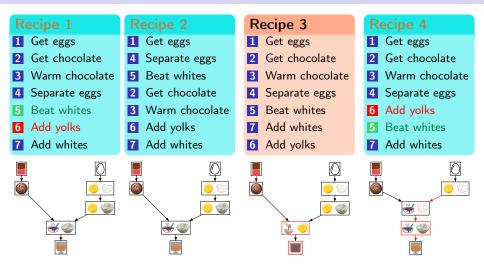
- 1 Get eggs
- 4 Separate eggs
- 5 Beat whites
- 2 Get chocolate
- 3 Warm chocolate
- 6 Add yolks
- 7 Add whites

- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 7 Add whites
- 6 Add yolks



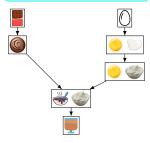
Recipe 1	Recipe 2	Recipe 3
1 Get eggs	1 Get eggs	1 Get eggs
2 Get chocolate	4 Separate eggs	2 Get chocolate
3 Warm chocolate	5 Beat whites	3 Warm chocolate
4 Separate eggs	2 Get chocolate	4 Separate eggs
5 Beat whites	3 Warm chocolate	5 Beat whites
6 Add yolks	6 Add yolks	7 Add whites
7 Add whites	7 Add whites	6 Add yolks

Recipe 1	Recipe 2	Recipe 3	Recipe 4
1 Get eggs	1 Get eggs	1 Get eggs	1 Get eggs
2 Get chocolate	4 Separate eggs	2 Get chocolate	2 Get chocolate
3 Warm chocolate	5 Beat whites	3 Warm chocolate	3 Warm chocolate
4 Separate eggs	2 Get chocolate	4 Separate eggs	4 Separate eggs
5 Beat whites	3 Warm chocolate	5 Beat whites	6 Add yolks
6 Add yolks	6 Add yolks	7 Add whites	5 Beat whites
7 Add whites	7 Add whites	6 Add yolks	7 Add whites

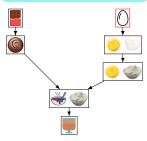


 \longrightarrow Some order in diagrams is still meaningless for causality! Some commutations give different graphs but are the same recipe

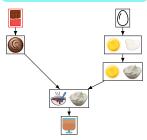
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites



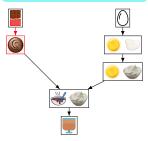
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites



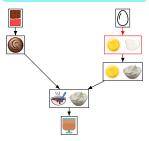
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites

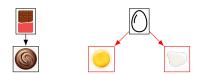


- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites

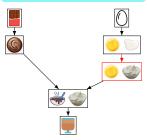


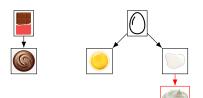
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites



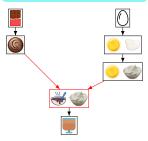


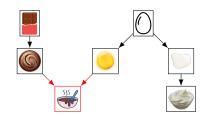
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites



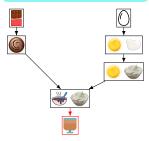


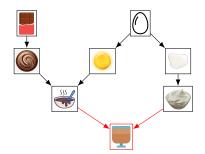
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites





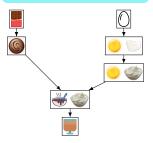
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites

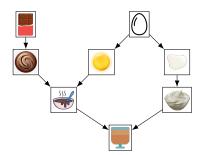




Recipe 1

- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 5 Beat whites
- 6 Add yolks
- 7 Add whites

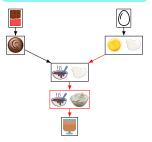


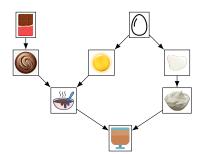


→ <u>Parallelize</u> everything
 The remaining order is causality!
 Unique writing for a recipe: canonicity

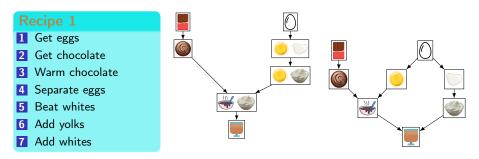
Recipe 4

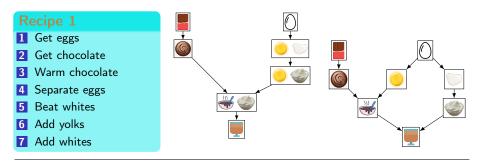
- 1 Get eggs
- 2 Get chocolate
- 3 Warm chocolate
- 4 Separate eggs
- 6 Add yolks
- 5 Beat whites
- 7 Add whites





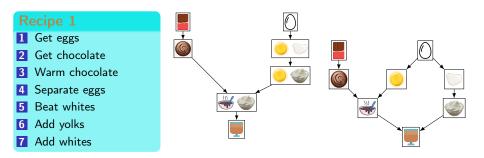
→ <u>Parallelize</u> everything The remaining order is causality! Unique writing for a recipe: canonicity





Hilbert System

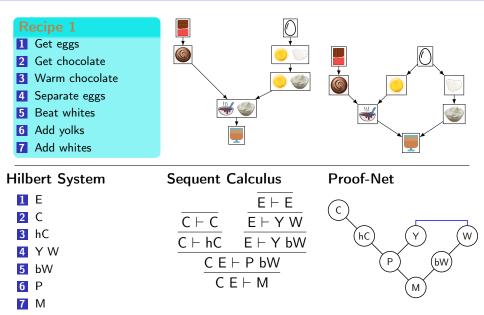
- 1 E 2 C
- 3 hC
- 4 Y W
- 5 bW
- 6 P
- 7 M



Hilbert System

Calculus

	E⊢E
$\overline{C\vdashC}$	$E \vdash Y \; W$
$\overline{C\vdashhC}$	$\overline{E\vdashY\;bW}$
C E ⊢	P bW
CE	⊢ M



Formulas and Connectives

Mousse Recipe

Ingredients: chocolate, eggs

Recipe: produce mousse from chocolate and eggs

Formulas and Connectives

Mousse Recipe

Ingredients: chocolate, eggs

C and E

 $\wedge\,$ and, take both

Dark or Milk Mousse

Ingredients: dark or milk chocolate, eggs

 $(dC \lor mC) \land E$

∧ and, take both∨ or, take one

Organic or Regular, Dark or Milk Mousse Ingredients: dark or milk chocolate, organic or regular eggs

 $(dC \lor mC) \land (oE \lor rE)$

∧ and, take both∨ or, take one

Organic or Regular, Dark or Milk Mousse

Ingredients: dark or milk chocolate, organic or regular eggs

 $(dC \lor mC) \otimes (oE \lor rE)$

⊗ and, take both∨ or, take one

Mousses at a Restaurant

<u>Desserts</u> Dark Chocolate Mousse or Milk Chocolate Mousse (organic or regular eggs according to supplies)

$$(dC \lor mC) \otimes (oE \lor rE)$$

⊗ and, take both∨ or, take one

Mousses at a Restaurant

<u>Desserts</u> Dark Chocolate Mousse or Milk Chocolate Mousse (organic or regular eggs according to supplies)

$$(dC \& mC) \otimes (oE \oplus rE)$$

and, take both
or, you choose one
or, someone else chooses one

- $\otimes\,$ and, take both
- & or, you choose one
- \oplus or, someone else chooses one
- compare $C \otimes E$ and $E \otimes C$

- \otimes and, take both
- & or, you choose one
- \oplus or, someone else chooses one
- compare $C \otimes E$ and $E \otimes C$
- compare $C \otimes (Y \otimes W)$ and $(C \otimes Y) \otimes W$

- \otimes and, take both
- & or, you choose one
- \oplus or, someone else chooses one
- compare $C \otimes E$ and $E \otimes C$
- compare $C \otimes (Y \otimes W)$ and $(C \otimes Y) \otimes W$
- compare $C \otimes (oE \oplus rE)$ and $(C \otimes oE) \oplus (C \otimes rE)$

 $\otimes\,$ and, take both

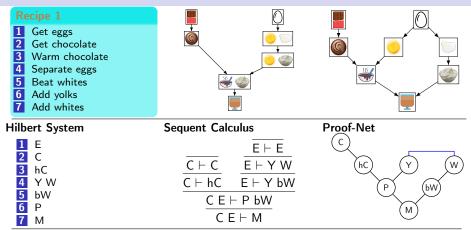
& or, you choose one

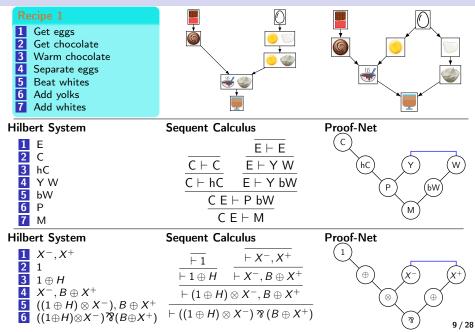
 \oplus or, someone else chooses one

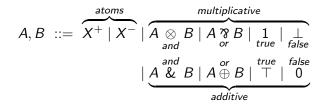
- compare $C \otimes E$ and $E \otimes C$
- compare $C \otimes (Y \otimes W)$ and $(C \otimes Y) \otimes W$
- compare $C \otimes (oE \oplus rE)$ and $(C \otimes oE) \oplus (C \otimes rE)$

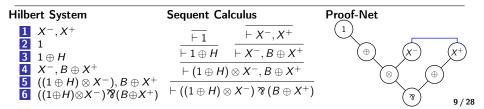
Again, different syntaxes / writings for a same underlying object Transparent ways to go from one formula to the other, without losses \rightarrow isomorphism

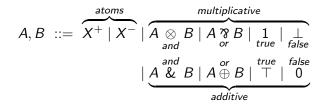
 $C \otimes E \simeq E \otimes C$ (associativity) $C \otimes (Y \otimes W) \simeq (C \otimes Y) \otimes W$ (commutativity) $C \otimes (oE \oplus rE) \simeq (C \otimes oE) \oplus (C \otimes rE)$ (distributivity)

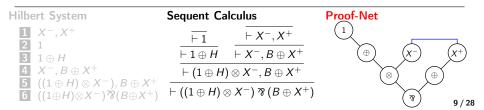


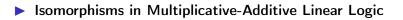












▶ Retractions in Multiplicative Linear Logic

 $C \otimes E$ behaves the same as $E \otimes C \rightarrow \text{isomorphism } C \otimes E \simeq E \otimes C$

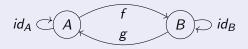
In category theory: isomorphism $A \simeq B$

$$id_A \subset A$$
 g $B \supset id_B$

 $g \circ f = id_A$ $f \circ g = id_B$

 $C \otimes E$ behaves the same as $E \otimes C \rightarrow$ isomorphism $C \otimes E \simeq E \otimes C$

In category theory: isomorphism $A \simeq B$



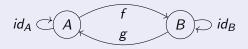
$$g \circ f = id_A$$
$$f \circ g = id_B$$

In <u> λ -calculus</u>: isomorphism $A \simeq B$

Terms $M : A \to B$ and $N : B \to A$ such that $\lambda x^A . N(Mx) =_{\beta \eta} \lambda x^A . x$ and $\lambda y^B . M(Ny) =_{\beta \eta} \lambda y^B . y$

 $C \otimes E$ behaves the same as $E \otimes C \rightarrow$ isomorphism $C \otimes E \simeq E \otimes C$

In category theory: isomorphism $A \simeq B$



$$g \circ f = id_A$$
$$f \circ g = id_B$$

In <u> λ -calculus</u>: isomorphism $A \simeq B$

Terms $M : A \to B$ and $N : B \to A$ such that $\lambda x^A . N(Mx) =_{\beta\eta} \lambda x^A . x$ and $\lambda y^B . M(Ny) =_{\beta\eta} \lambda y^B . y$

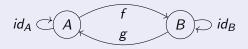
In (linear) logic: isomorphism $A \simeq B$

Proofs
$$\pi$$
 of $A \vdash B$ and ϕ of $B \vdash A$ such that

$$\frac{A \vdash B}{A \vdash A} \stackrel{\phi}{}_{(cut)} =_{\beta\eta} \overline{A \vdash A} \stackrel{(ax)}{}_{add} \text{ and } \frac{A \vdash A}{B \vdash B} \stackrel{\pi}{}_{(cut)} =_{\beta\eta} \overline{B \vdash B} \stackrel{(ax)}{}_{(add)}$$

 $C \otimes E$ behaves the same as $E \otimes C \rightarrow \text{isomorphism } C \otimes E \simeq E \otimes C$

In category theory: isomorphism $A \simeq B$



$$g \circ f = id_A$$
$$f \circ g = id_B$$

In <u> λ -calculus</u>: isomorphism $A \simeq B$

Terms $M : A \to B$ and $N : B \to A$ such that $\lambda x^A . N(Mx) =_{\beta\eta} \lambda x^A . x$ and $\lambda y^B . M(Ny) =_{\beta\eta} \lambda y^B . y$

In (linear) logic: isomorphism $A \simeq B$

Proofs
$$\pi$$
 of $A \vdash B$ and ϕ of $B \vdash A$ such that

$$\frac{A \vdash B}{A \vdash A} \stackrel{\phi}{}_{(cut)} =_{\beta\eta} \frac{}{A \vdash A} \stackrel{(ax)}{}_{ax} \text{ and } \frac{B \vdash A}{B \vdash B} \stackrel{\pi}{}_{(cut)} =_{\beta\eta} \frac{}{B \vdash B} \stackrel{(ax)}{}_{(ax)}$$

rule commutations $\vdash^{r} \subseteq =_{\beta\eta}$

Goal: obtain an equational theory

Syntactic Method

Analyze pairs of proofs of isos \rightarrow get information on their formulas

Semantic Method

Find a model with the same isos but where computation/equality is easy

Goal: obtain an equational theory

Syntactic Method

Analyze pairs of proofs of isos \rightarrow get information on their formulas

Semantic Method

Find a model with the same isos but where computation/equality is easy

 $\begin{cases} \lambda \text{-calculus with products and unit type} \\ \text{Cartesian closed categories} \end{cases}$

Semantic (finite sets) [Sol83]

$A \times (B \times C) \simeq (A \times B) \times C$ $A \times B \simeq B \times A$	$1 \times A \simeq A$
$(A imes B) o C \simeq A o (B o C)$	$1 \rightarrow A \simeq A$
$A ightarrow (B imes {\mathcal C}) \simeq (A ightarrow B) imes (A ightarrow {\mathcal C})$	$A ightarrow 1 \simeq 1$

Reduces to Tarski's High School Algebra Problem:

can all equalities involving product, exponential and 1 be found using only

$$egin{aligned} \mathsf{a}(bc) &= (ab)c \quad ab = ba \quad 1a = a\ c^{ab} &= (c^b)^a \qquad a^1 = a\ (bc)^a &= b^a c^a \qquad 1^a = 1 \end{aligned}$$

Goal: obtain an equational theory

Syntactic Method

Analyze pairs of proofs of isos \rightarrow get information on their formulas

Semantic Method

Find a model with the same isos but where computation/equality is easy

Multiplicative Linear Logic +-autonomous categories

Syntactic (proof-nets) [BD99]

Associativity	$\begin{array}{l} A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C \\ A \Im (B \Im C) \simeq (A \Im B) \Im C \end{array}$	
Commutativity	$A \otimes B \simeq B \otimes A \qquad A \ \mathfrak{P} B \simeq B \ \mathfrak{P} A$	
Neutrality	$A \otimes 1 \simeq A$ $A \Im \perp \simeq A$	

Goal: obtain an equational theory

Syntactic Method

Analyze pairs of proofs of isos \rightarrow get information on their formulas

Semantic Method

Find a model with the same isos but where computation/equality is easy

{Polarized Linear Logic Control Categories Semantic (games, forest isomorphisms) [Lau05]

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$ $A \Im (B \Im C) \simeq (A \Im B) \Im C$	$A \oplus (B \oplus C) \simeq (A \oplus B) \oplus C$ $A \& (B \& C) \simeq (A \& B) \& C$	
Commutativity	$A \otimes B \simeq B \otimes A A \mathfrak{P} B \simeq B \mathfrak{P} A$	$A \oplus B \simeq B \oplus A A \& B \simeq B \& A$	
Neutrality	$A \otimes 1 \simeq A \qquad A \ \mathfrak{F} \bot \simeq A$	$A \oplus 0 \simeq A \qquad A \& \top \simeq A$	
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$	$A \Im (B \& C) \simeq (A \Im B) \& (A \Im C)$	
Annihilation	$A \otimes 0 \simeq 0$	A $arphi$ $\top \simeq op$	
Seely	$!(A \& B) \simeq !A \otimes !B$	$?(A\oplus B)\simeq ?A$ $rak{V}?B$	
	$! op\simeq 1$	$?0\simeq ot$	

Goal: obtain an equational theory

Syntactic Method

Analyze pairs of proofs of isos \rightarrow get information on their formulas

Semantic Method

Find a model with the same isos but where computation/equality is easy

{Polarized Linear Logic Control Categories Semantic (games, forest isomorphisms) [Lau05]

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$	$A \oplus (B \oplus C) \simeq (A \oplus B) \oplus C$	
Associativity	$A \Im (B \Im C) \simeq (A \Im B) \Im C$	$A \& (B \& C) \simeq (A \& B) \& C$	
Commutativity	$A \otimes B \simeq B \otimes A A \ \mathfrak{P} B \simeq B \ \mathfrak{P} A$	$A \oplus B \simeq B \oplus A A \& B \simeq B \& A$	
Neutrality	$A \otimes 1 \simeq A$ $A \ \mathfrak{P} \perp \simeq A$	$A \oplus 0 \simeq A \qquad A \& \top \simeq A$	
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$	$A \mathfrak{P} \left(B \& C \right) \simeq \left(A \mathfrak{P} B \right) \& \left(A \mathfrak{P} C \right)$	
Annihilation	$A \otimes 0 \simeq 0$	A $arphi$ $\top \simeq op$	
Seely	$!(A \& B) \simeq !A \otimes !B$	$?(A\oplus B)\simeq ?A$ $rak{V}?B$	
	$! op\simeq 1$?0 \simeq \perp	

Goal: obtain an equational theory

Syntactic Method

Analyze pairs of proofs of isos \rightarrow get information on their formulas

Semantic Method

Find a model with the same isos but where computation/equality is easy

Multiplicative-Additive Linear Logic *-autonomous categories with finite products

Syntactic [thesis]

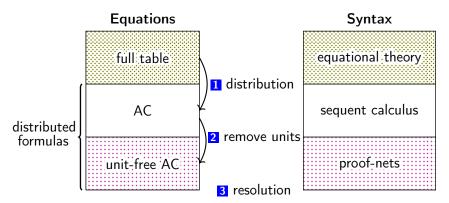
	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$	$A \oplus (B \oplus C) \simeq (A \oplus B) \oplus C$	
Associativity	$A \Im (B \Im C) \simeq (A \Im B) \Im C$	$A \& (B \& C) \simeq (A \& B) \& C$	
Commutativity	$A \otimes B \simeq B \otimes A A \ \mathfrak{P} B \simeq B \ \mathfrak{P} A$	$A \oplus B \simeq B \oplus A$ $A \& B \simeq B \& A$	
Neutrality	$A \otimes 1 \simeq A \qquad A \ \mathfrak{F} \bot \simeq A$	$A \oplus 0 \simeq A \qquad A \& \top \simeq A$	
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$	$A \mathfrak{P} \left(B \& C \right) \simeq \left(A \mathfrak{P} B \right) \& \left(A \mathfrak{P} C \right)$	
Annihilation	$A \otimes 0 \simeq 0$	A $arphi$ $\top \simeq op$	
Seely	$!(A \& B) \simeq !A \otimes !B$	$?(A\oplus B)\simeq ?A$ % $?B$	
	$! op\simeq 1$	$?0\simeq ot$	

Proof sketch

Syntactic method:

- 1 Simplify using the **distributivity** equations
- 2 Remove the units
- 3 Analyze the shape of isomorphisms to conclude

(rewriting theory) (sequent calculus) (proof-nets)



Proof 1/3: Distribution

Distributed Formula

Proof 1/3: Distribution

Distributed Formula

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$	$A \mathfrak{F} \left(B \mathfrak{F} C \right) \simeq \left(A \mathfrak{F} B \right) \mathfrak{F} C$	
Associativity	$A \oplus (B \oplus C) \simeq (A \oplus B) \oplus C$	$A \& (B \& C) \simeq (A \& B) \& C$	
Commutativity	$A \otimes B \simeq B \otimes A \qquad A \ \mathfrak{F} B \simeq B \ \mathfrak{F} A$	$A \oplus B \simeq B \oplus A A \& B \simeq B \& A$	
Neutrality	$A \otimes 1 \to A \qquad A \ \mathfrak{F} \bot \to A$	$A \oplus 0 \to A \qquad A \And \top \to A$	
Distributivity	$A \otimes (B \oplus C) \to (A \otimes B) \oplus (A \otimes C)$	$A \Im (B \& C) \to (A \Im B) \& (A \Im C)$	
Annihilation	$A \otimes 0 \rightarrow 0$	$A \mathbin{\mathbin{v}} \top \to \top$	

Proposition

${\cal E}$		complete fo	r distributed	formulas
\mathcal{E} + Neut.	+ Dist. + Anni.	complete fo	r <mark>all</mark>	formulas
Associativity	$A \otimes (B \otimes C) \simeq (A \\ A \oplus (B \oplus C) \simeq (A \\ A \\ B \oplus C) \simeq (A \\ A \\ B \\ B \\ B \\ C) \simeq (A \\ A \\ C) \simeq (A \\ A \\ C) \simeq (A $		$\begin{array}{c} A \ \Im \left(B \ \Im \ C \right) \simeq (\\ A \ \& \left(B \ \& \ C \right) \simeq (\end{array}$	
Commutativity	$A \otimes B \simeq B \otimes A = A^{2}$	$\mathcal{B} B \simeq B \mathcal{B} A$	$A \oplus B \simeq B \oplus A$ A	$A\&B\simeq B\&A$
Neutrality	$A\otimes 1\simeq A$	A % $\perp \simeq A$	$A \oplus 0 \simeq A$	$A \& \top \simeq A$
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes$	$B)\oplus (A\otimes C)$	A \mathcal{B} $(B \& C) \simeq (A ?$	8 B) & (A 78 C)
Annihilation	$A \otimes 0 \simeq$	0	A 78 ⊤ ≏	⊻ T

In isomorphisms of *distributed* formulas: units = fresh atoms

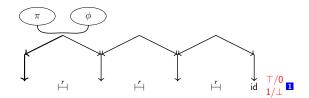
1 In the identity: $\overline{\vdash \top, 0}^{(\top)}$

$$rac{-1}{dash 1} \stackrel{(1)}{(\perp)}$$

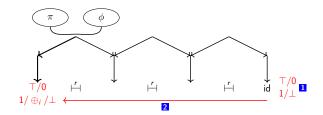
In isomorphisms of *distributed* formulas: units = fresh atoms 1 In the identity: $\overrightarrow{\vdash \top, 0}$ (\top) \longrightarrow $\overrightarrow{\vdash X^{-}, X^{+}}$ (ax) $\overrightarrow{\vdash 1}$ (\bot) \longrightarrow $\overrightarrow{\vdash Y^{-}, Y^{+}}$ (ax)

In isomorphisms of *distributed* formulas: units = fresh atoms **1** In the identity: $\overline{\vdash \top, 0}^{(\top)} \longrightarrow \overline{\vdash X^-, X^+}$ (ax) $rac{ectriangle 1}{ectriangle \perp,1} \stackrel{(1)}{(\perp)} \longrightarrow rac{ectriangle - Y^-, Y^+}{ectriangle Y^-, Y^+} \stackrel{(ax)}{(ax)}$ ⊤/0 1/⊥ π φ

In isomorphisms of *distributed* formulas: In the identity: $\overline{\vdash \top, 0}^{(\top)} \longrightarrow \overline{\vdash X^-, X^+}^{(ax)}$ $\frac{\overline{\vdash 1}^{(1)}}{\vdash \bot, 1}^{(\bot)} \longrightarrow \overline{\vdash Y^-, Y^+}^{(ax)}$

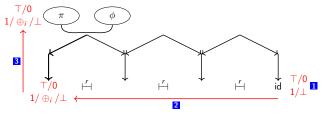


In isomorphisms of *distributed* formulas: In the identity: $\overline{\vdash \top, 0}^{(\top)} \longrightarrow \frac{\text{units} = \text{fresh atoms}}{\vdash X^-, X^+}^{(ax)}$ $\frac{\overline{\vdash 1}}{\vdash \bot, 1}^{(1)} \longrightarrow \overline{\vdash Y^-, Y^+}^{(ax)}$ Shape preserved by $\stackrel{r}{\vdash :} = \bigoplus_{i=1}^{i=1} \bigoplus_{i=1}^{(1)} \text{using distributivity}}$



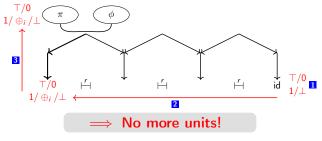
In isomorphisms of *distributed* formulas: units = fresh atoms **1** In the identity: $\overline{\vdash \top, 0}^{(\top)} \longrightarrow \overline{\vdash X^-, X^+}$ (ax) $\frac{\overline{\vdash 1}}{\vdash \bot, 1}^{(1)} \longrightarrow \overline{\vdash Y^{-}, Y^{+}}^{(ax)}$ 2 Shape preserved by $\stackrel{r}{\vdash}$: $\stackrel{\stackrel{r}{\vdash} 1}{\underset{\vdash}{\vdash} F} \stackrel{(1)}{\underset{\vdash}{\oplus} F}$ using distributivity 3 Cut-elimination in isom

3 Cut-elimination in isomorphisms cannot "completely" erase units rules



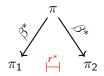
In isomorphisms of *distributed* formulas: units = fresh atoms **1** In the identity: $\overline{\vdash \top, 0}^{(\top)} \longrightarrow \overline{\vdash X^-, X^+}$ (ax) $\frac{-}{\vdash 1} \stackrel{(1)}{(\perp)} \longrightarrow \overline{+} \stackrel{(ax)}{+} \stackrel{(ax)}{(\perp)}$ 2 Shape preserved by $\stackrel{r}{\vdash}$: $\stackrel{\stackrel{r}{\vdash} 1}{\underset{\vdash}{\vdash} F} \stackrel{(1)}{\underset{\vdash}{\oplus} F}$ using distributivity 3 Cut-elimination in isom

3 Cut-elimination in isomorphisms cannot "completely" erase units rules



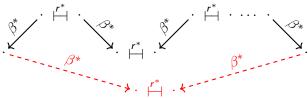
Parenthesis: Confluence up to

Needed:

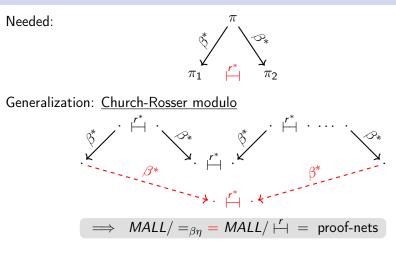


Parenthesis: Confluence up to

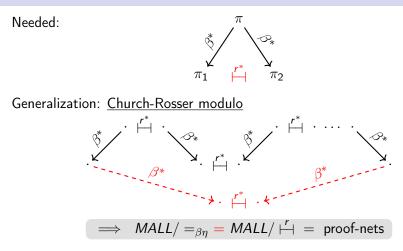
Generalization: Church-Rosser modulo



Parenthesis: Confluence up to

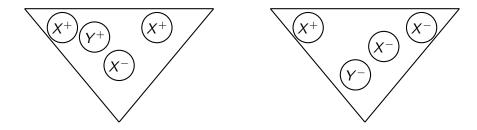


Parenthesis: Confluence up to

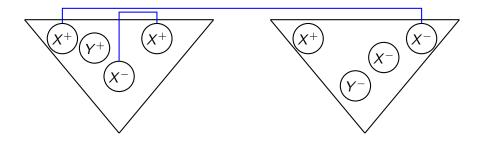


- Already proved for MALL [CP05]
- We reproved it by showing **Strong Normalization** and using a theorem from rewriting theory [Hue80]

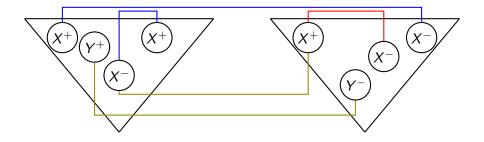
Use proof-nets



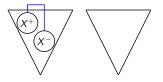
Use proof-nets

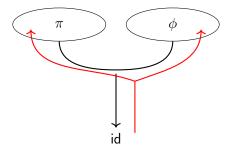


Use proof-nets

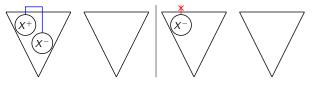


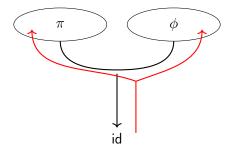
Forbidden configurations in distributed isomorphisms:



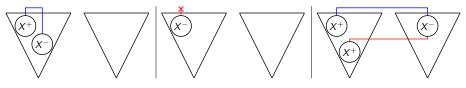


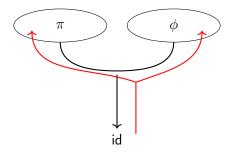
Forbidden configurations in distributed isomorphisms:



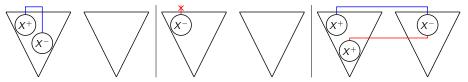


Forbidden configurations in distributed isomorphisms:

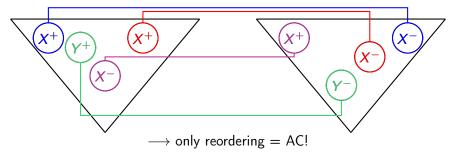




Forbidden configurations in distributed isomorphisms:



General shape:



▶ Isomorphisms in Multiplicative-Additive Linear Logic

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes$	
	A % $(B$ % $C) \simeq (A$ % $B)$ %	$C \qquad A \& (B \& C) \simeq (A \& B) \& C$
Commutativity	$A \otimes B \simeq B \otimes A A \aleph B \simeq B$	$\Im A A \oplus B \simeq B \oplus A A \& B \simeq B \& A$
Neutrality	$A \otimes 1 \simeq A$ $A \ \% \perp \simeq$	$A \qquad A \oplus 0 \simeq A \qquad A \& \top \simeq A$
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A$	\otimes C) A \Im (B & C) \simeq (A \Im B) & (A \Im C)
Annihilation	$A \otimes 0 \simeq 0$	$A ~ \mathfrak{P} \top \simeq \top$

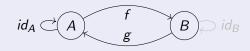
▶ Retractions in Multiplicative Linear Logic

► Isomorphisms in Multiplicative-Additive Linear Logic

Associativity	$A \otimes (B \otimes C) \simeq (A \otimes B) \otimes C$ $A \Im (B \Im C) \simeq (A \Im B) \Im C$	$A \oplus (B \oplus C) \simeq (A \oplus B) \oplus C$ $A \& (B \& C) \simeq (A \& B) \& C$
Commutativity	$A \otimes B \simeq B \otimes A A \Im B \simeq B \Im A$	$A \oplus B \simeq B \oplus A A \& B \simeq B \& A$
Neutrality	$A \otimes 1 \simeq A \qquad A \ \Im \perp \simeq A$	$A \oplus 0 \simeq A \qquad A \& \top \simeq A$
Distributivity	$A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$	$A \Im (B \& C) \simeq (A \Im B) \& (A \Im C)$
Annihilation	$A \otimes 0 \simeq 0$	A 73 $ op \simeq op$

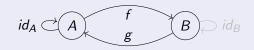
▶ Retractions in Multiplicative Linear Logic

In category theory: retraction $A \trianglelefteq B$



 $g \circ f = id_A$

In category theory: retraction $A \trianglelefteq B$



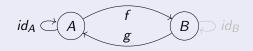
 $g \circ f = id_A$ $f \circ g = id_B$

 \longrightarrow Natural notion of sub-typing

Example

bool
$$\trianglelefteq$$
 nat with $f(b) := \begin{cases} 0 & \text{if } b \\ 1 & \text{otherwise} \end{cases}$ and $g(n) := \begin{cases} true & \text{if } n \ge 1 \\ false & \text{otherwise} \end{cases}$

In category theory: retraction $A \trianglelefteq B$

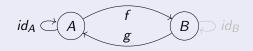


 $g \circ f = id_A$ $f \circ g = id_B$

 \longrightarrow Natural notion of sub-typing

In (linear) logic: retraction $A \leq B$ Proofs π of $A \vdash B$ and ϕ of $B \vdash A$ such that $\frac{A \vdash B}{A \vdash A} \stackrel{\phi}{}_{(cut)} =_{\beta\eta} \overline{A \vdash A} \stackrel{(ax)}{}_{ax} \text{ and } \frac{B \vdash A}{B \vdash B} \stackrel{\pi}{}_{(cut)} =_{\beta\eta} \overline{B \vdash B} \stackrel{(ax)}{}_{(ax)}$

In category theory: retraction $A \trianglelefteq B$



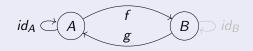
 $g \circ f = id_A$ $f \circ g = id_B$

 \longrightarrow Natural notion of sub-typing

In (linear) logic: retraction $A \leq B$ Proofs π of $A \vdash B$ and ϕ of $B \vdash A$ such that $\frac{A \vdash B}{A \vdash A} \stackrel{\phi}{}_{(cut)} =_{\beta\eta} \frac{}{A \vdash A} \stackrel{(ax)}{}_{ax} \text{ and } \frac{B \vdash A}{B \vdash B} \stackrel{\pi}{}_{(cut)} =_{\beta\eta} \frac{}{B \vdash B} \stackrel{(ax)}{}_{(ax)}$

$$A \trianglelefteq B \iff A^{\perp} \trianglelefteq B^{\perp}$$

In category theory: retraction $A \trianglelefteq B$



 $g \circ f = id_A$ $f \circ g = id_B$

 \longrightarrow Natural notion of sub-typing

In (linear) logic: retraction
$$A \leq B$$

Proofs π of $A \vdash B$ and ϕ of $B \vdash A$ such that

$$\frac{A \vdash B}{A \vdash A} \stackrel{\phi}{}_{(cut)} =_{\beta\eta} \overline{A \vdash A} \stackrel{(ax)}{}_{add} and \frac{B \vdash A}{B \vdash B} \stackrel{\pi}{}_{(cut)} =_{\beta\eta} \overline{B \vdash B} \stackrel{(ax)}{}_{(ax)}$$

$$A \trianglelefteq B \iff A^{\perp} \trianglelefteq B^{\perp}$$

а

Example: Beffara's retraction

 $A \trianglelefteq A \otimes (A^{\perp} \ \mathfrak{F} A)$

$$\mathsf{lso} \quad \stackrel{a}{\underset{f}{\overset{d}{\to}}} \stackrel{\longrightarrow}{\underset{b}{\leftarrow}} A \otimes \stackrel{(a,id)}{\underset{(b,f)}{\overset{(a,id}$$

Syntactic method:

- **1** Simplify using the **neutrality** equations
- **2** Remove the units
- 3 Analyze the shape of retractions to conclude

(rewriting theory) (sequent calculus) (proof-nets) Syntactic method:

- **1** Simplify using the **neutrality** equations
- 2 Remove the units
- 3 Analyze the shape of retractions to conclude

(rewriting theory) (sequent calculus) (proof-nets)

No conjecture; which shapes to look for?

Syntactic method:

- **1** Simplify using the **neutrality** equations
- 2 Remove the units
- 3 Analyze the shape of retractions to conclude

No conjecture; which *shapes* to look for?

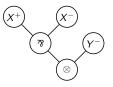
 \longrightarrow Problem purely in MLL proof-nets!

(rewriting theory) (sequent calculus) (proof-nets)

Proof-nets for MLL

• Formula

$$\begin{array}{rcl} A,B & ::= & \mid X^+ \mid X^- \\ & \mid A \otimes B \mid A \wr B \end{array}$$

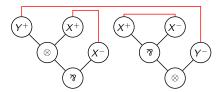


Proof-nets for MLL

• Formula

$$\begin{array}{rcl} A,B & ::= & \mid X^+ \mid X^- \\ & \mid A \otimes B \mid A \wr B \end{array}$$

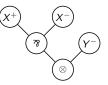
 Proof Structure formulas + axioms partitionning atoms



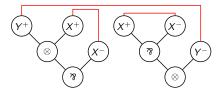
Proof-nets for MLL

• Formula

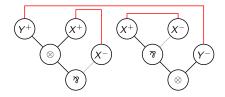
$$\begin{array}{rcl} A,B & ::= & \mid X^+ \mid X^- \\ & \mid A \otimes B \mid A \wr B \end{array}$$



 Proof Structure formulas + axioms partitionning atoms



• Danos-Regnier Criterion acyclic and <u>connected</u> correctness graphs



Retractions in proof-nets

In <u>MLL Proof-Nets</u>: retraction $A \trianglelefteq B$

Proof-nets \mathcal{R} of $\vdash A^{\perp}, B$ and \mathcal{S} of $\vdash B^{\perp}, A$ such that \mathcal{R} cut with \mathcal{S} reduces to id

Retractions in proof-nets

In <u>MLL Proof-Nets</u>: retraction $A \trianglelefteq B$

Proof-nets \mathcal{R} of $\vdash A^{\perp}, B$ and \mathcal{S} of $\vdash B^{\perp}, A$ such that \mathcal{R} cut with \mathcal{S} reduces to id

General case difficult:

$$\begin{aligned} R_4 = X_1^+ \otimes X_2^+ \otimes X_3^+ \otimes X_4^+ &\trianglelefteq (X_1^+ \otimes X_2^+ \otimes X_3^+ \otimes X_4^+) \mathfrak{P}(X_1^+ \otimes (X_1^- \mathfrak{P} \\ & (X_2^+ \otimes (X_2^- \mathfrak{P} \\ & (X_3^+ \otimes (X_3^- \mathfrak{P} \\ & (X_4^+ \otimes X_4^-))))))) \end{aligned}$$

Retractions in proof-nets

In <u>MLL Proof-Nets</u>: retraction $A \trianglelefteq B$

Proof-nets \mathcal{R} of $\vdash A^{\perp}, B$ and \mathcal{S} of $\vdash B^{\perp}, A$ such that \mathcal{R} cut with \mathcal{S} reduces to id

General case difficult:

$$\begin{aligned} R_4 = X_1^+ \otimes X_2^+ \otimes X_3^+ \otimes X_4^+ &\trianglelefteq (X_1^+ \otimes X_2^+ \otimes X_3^+ \otimes X_4^+) \mathfrak{P}(X_1^+ \otimes (X_1^- \mathfrak{P} \\ & (X_2^+ \otimes (X_2^- \mathfrak{P} \\ & (X_3^+ \otimes (X_3^- \mathfrak{P} \\ & (X_4^+ \otimes X_4^-)))))))) \end{aligned}$$

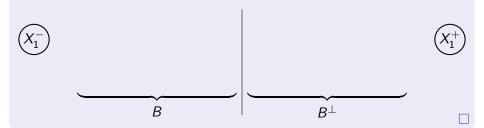
In <u>MLL Proof-Nets</u>: atomic retraction $X^+ \subseteq B$

Proof-nets \mathcal{R} of $\vdash X^-$, B and S of $\vdash B^{\perp}$, X^+ such that \mathcal{R} cut with S reduces to id

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

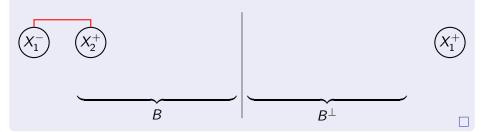
Proof.



Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

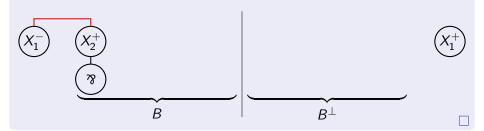
Proof.



Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

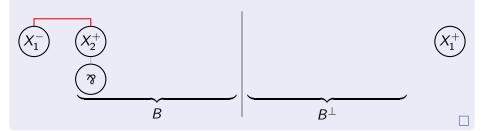
Proof.



Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

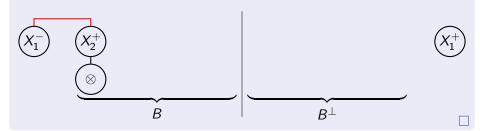
Proof.



Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

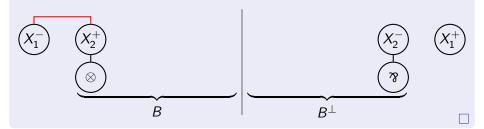
Proof.



Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

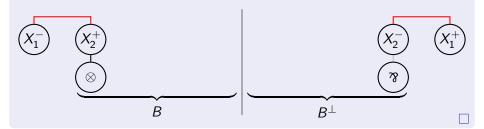
Proof.



Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

Proof.



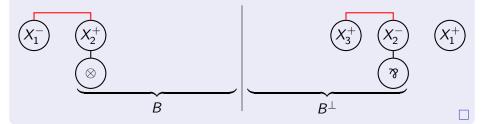
23 / 28

Key Result: finding a shape

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

Proof.



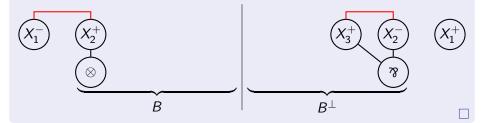
23 / 28

Key Result: finding a shape

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

Proof.



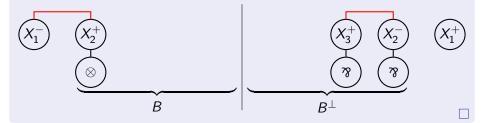
23 / 28

Key Result: finding a shape

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

Proof.



23 / 28

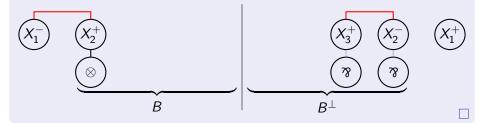
Key Result: finding a shape

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

Proof.

Follow a GOI path until finding it



23 / 28

Key Result: finding a shape

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

Key Result: finding a shape

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

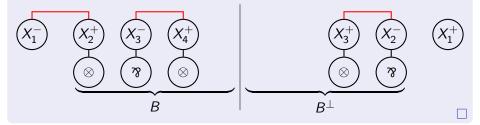
Proof.

Key Result: finding a shape

Lemma

In $X^+ \trianglelefteq B$ one of the two proof-nets contains

Proof.

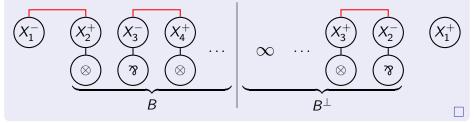


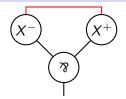
23 / 28

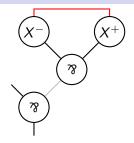
Key Result: finding a shape

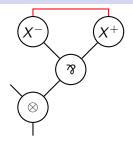
Lemma

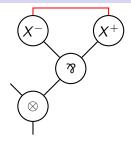
In $X^+ \trianglelefteq B$ one of the two proof-nets contains

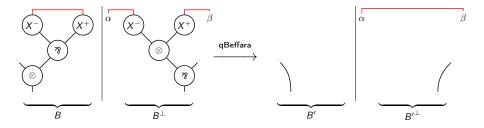


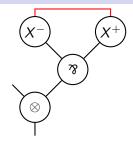


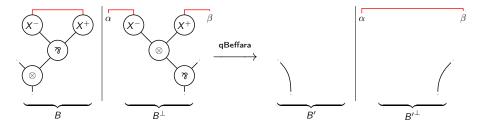












 \longrightarrow This rewriting **preserves** being a retraction!

Atomic retractions

Theorem

 $X^+ \trianglelefteq B$ iff B is obtained from X^+ by Beffara $A \trianglelefteq A \otimes (A^{\perp} \operatorname{P} A)$ and isomorphisms

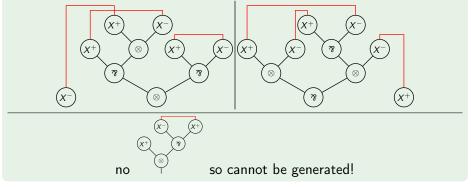
Atomic retractions

Theorem

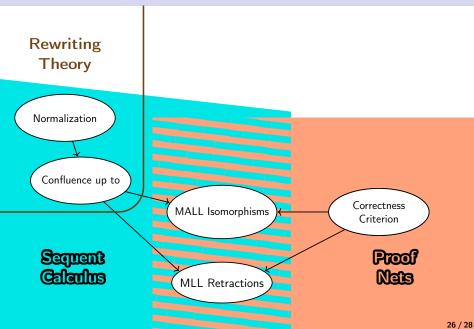
 $X^+ \trianglelefteq B$ iff B is obtained from X^+ by Beffara $A \trianglelefteq A \otimes (A^{\perp} \ \mathfrak{P} A)$ and isomorphisms

... but only at the level of formulas; Beffara does not give all proofs!

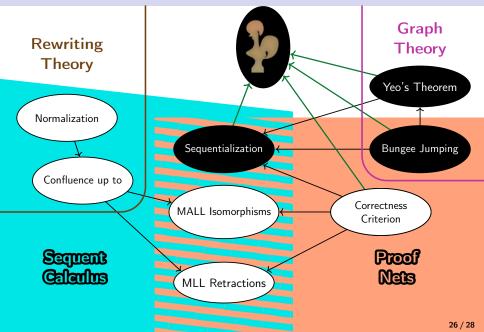
Proofs of $X^+ \trianglelefteq (X^+ \otimes X^-)$ $\Im ((X^+$ $\Im X^-) \otimes X^-)$



Thesis' Overview



Thesis' Overview



• We should have all tools to expend the confluence up to result to LL

- Isomorphisms for MELL or MALL with 1st order quantifiers (proof-nets)
- Characterize all retractions in MLL

Merci !

References I

[BD99] Vincent Balat and Roberto Di Cosmo. "A Linear Logical View of Linear Type Isomorphisms". In: Computer Science Logic. Ed. by Jörg Flum and Mario Rodríguez-Artalejo. Vol. 1683. Lecture Notes in Computer Science. Springer, 1999, pp. 250–265.

[CP05] Robin Cockett and Craig Pastro. "A Language For Multiplicative-additive Linear Logic". In: Electronic Notes in Theoretical Computer Science 122 (2005). Proceedings of the 10th Conference on Category Theory in Computer Science (CTCS 2004), pp. 23–65. DOI: /10.1016/j.entcs.2004.06.049. URL: https://www.sciencedirect.com/science/article/pii/ S1571066105000320.

References II

[GH83] Jerrold W. Grossman and Roland Häggkvist. "Alternating Cycles in Edge-Partitioned Graphs". In: Journal of Combinatorial Theory, Series B 34.1 (1983), pp. 77–81. ISSN: 0095-8956. DOI: 10.1016/0095-8956(83)90008-4. URL: https://www.sciencedirect.com/science/article/pii/ 0095895683900084.

[Gir87] Jean-Yves Girard. "Linear logic". In: *Theoretical Computer Science* 50 (1987), pp. 1–102. DOI: 10.1016/0304-3975(87)90045-4.

[HG05] Dominic Hughes and Rob van Glabbeek. "Proof Nets for Unit-free Multiplicative-Additive Linear Logic". In: ACM Transactions on Computational Logic 6.4 (2005), pp. 784–842. DOI: 10.1145/1094622.1094629.

References III

[Hue80] Gérard Huet. "Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract Properties and Applications to Term Rewriting Systems". In: *Journal of the ACM* 27.4 (Oct. 1980), pp. 797–821. DOI: 10.1145/322217.322230.

[Kot59] Anton Kotzig. "On the theory of finite graphs with a linear factor. II.". slo. In: *Matematicko-Fyzikálny Časopis* 09.3 (1959). In Slovak, with as original title Z teórie konečných grafov s lineárnym faktorom. II., pp. 136–159. URL: https://eudml.org/doc/29908.

[Lau05] Olivier Laurent. "Classical isomorphisms of types". In: Mathematical Structures in Computer Science 15.5 (Oct. 2005), pp. 969–1004.

References IV

[Ngu20] Lê Thành Dũng Nguyễn. "Unique perfect matchings, forbidden transitions and proof nets for linear logic with Mix". In: Logical Methods in Computer Science 16.1 (Feb. 2020). DOI: 10.23638/LMCS-16(1:27)2020.

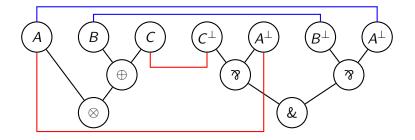
- [Sey78] Paul D. Seymour. "Sums of circuits". In: Graph Theory and Related Topics (1978). Ed. by J. A. Bondy and U. S. R. Murty, pp. 341–355.
- [Sol83] Sergei Soloviev. "The category of finite sets and cartesian closed categories". In: Journal of Soviet Mathematics 22.3 (1983), pp. 1387–1400.

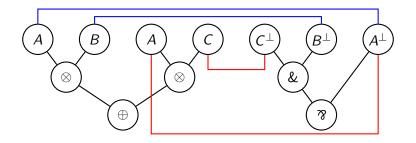
References V

- [SS79] D. J. Shoesmith and T. J. Smiley. "Theorem on Directed Graphs, Applicable to Logic". In: Journal of Graph Theory 3.4 (1979), pp. 401-406. DOI: 10.1002/jgt.3190030412. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt. 3190030412.
- [Sze04] Stefan Szeider. "On Theorems Equivalent with Kotzig's Result on Graphs with Unique 1-Factors". In: Ars Combinatoria 73 (2004), pp. 53-64. URL: https: //www.ac.tuwien.ac.at/files/pub/szeider-AC-2004.pdf.

[Yeo97] Anders Yeo. "A Note on Alternating Cycles in Edge-Coloured Graphs". In: Journal of Combinatorial Theory, Series B 69.2 (1997), pp. 222–225. DOI: 10.1006/jctb.1997.1728.

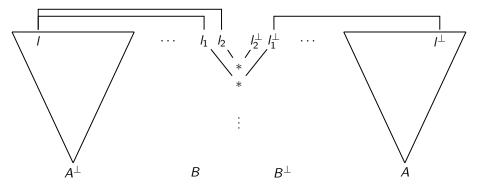
Proof-nets for $A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$





 $A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$ not of this shape

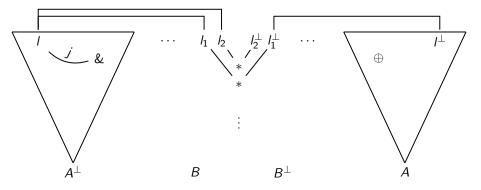
Correctness criterion to get this local shape from global distributivity



1 Forbidden configuration

 $A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$ not of this shape

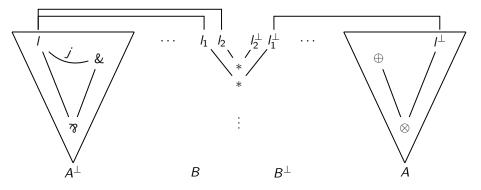
Correctness criterion to get this local shape from global distributivity



- **1** Forbidden configuration
- 2 Dependence on a &

 $A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$ not of this shape

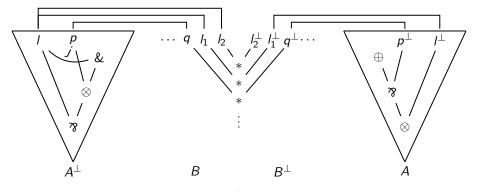
Correctness criterion to get this local shape from global distributivity



- **1** Forbidden configuration
- 2 Dependence on a &

 $A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$ not of this shape

Correctness criterion to get this local shape from global distributivity

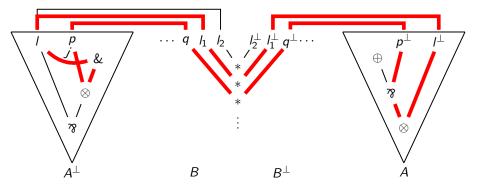


- 1 Forbidden configuration
- 2 Dependence on a &
- <u>3</u> ී below

4 Distributivity

 $A \otimes (B \oplus C) \simeq (A \otimes B) \oplus (A \otimes C)$ not of this shape

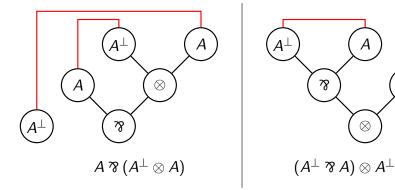
Correctness criterion to get this local shape from global distributivity



- 1 Forbidden configuration
- 2 Dependence on a &
- <u>3</u> ී below

Distributivity
 Forbidden cycle

Beffara $A \leq A \otimes (A^{\perp} \ \mathcal{F} A)$ is a retraction



Α

A-

Sequentialization [HG05]

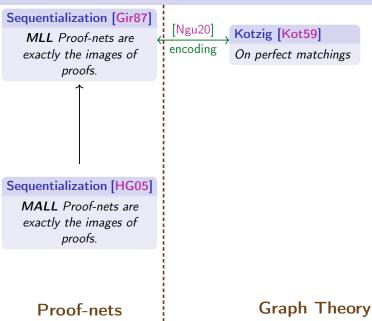
MALL Proof-nets are exactly the images of proofs.

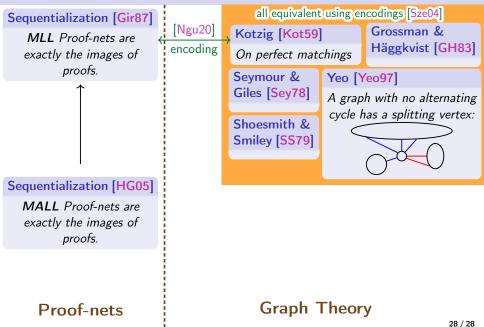
Sequentialization [Gir87]

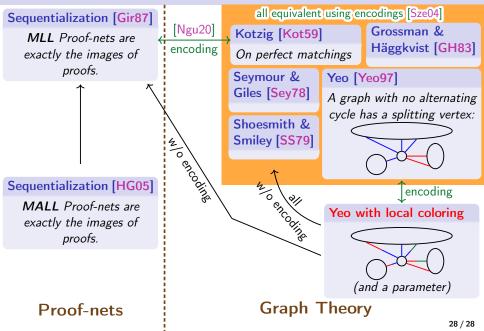
MLL Proof-nets are exactly the images of proofs.

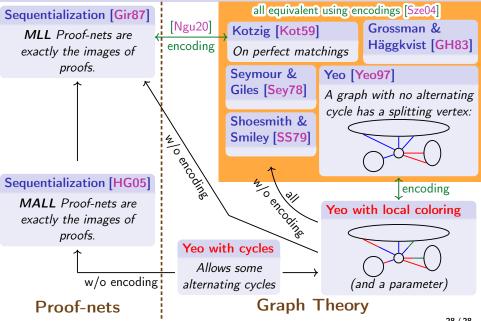
Sequentialization [HG05]

MALL Proof-nets are exactly the images of proofs.









Bungee Jumping

