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Cooking

Mousse Recipe
Ingredients: chocolate, eggs

1 Warm the chocolate
2 Beat the whites
3 Add the yolks in the chocolate
4 Add the whites in the mixture

Same Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
4 Separate the eggs
5 Beat the whites
2 Get the chocolate
3 Warm the chocolate
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ The order of independent steps is meaningless for the result!
Different writings for a unique recipe
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Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality
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Another representation of recipes

Same Mousse Recipe
Ingredients: chocolate, eggs
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Diagrams solve the equality of recipes?

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Recipe 2
1 Get eggs
4 Separate eggs
5 Beat whites
2 Get chocolate
3 Warm chocolate
6 Add yolks
7 Add whites

Recipe 3
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
7 Add whites
6 Add yolks

Recipe 4
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
6 Add yolks
5 Beat whites
7 Add whites

−→ Some order in diagrams is still meaningless for causality!
Some commutations give different graphs but are the same recipe
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Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity
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Yet another representation of recipes

Recipe 4

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

6 Add yolks

5 Beat whites

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity
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Three representations of recipes or proofs

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net

C

hC

P

Y W

bW

M
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Formulas and Connectives

Mousse Recipe
Ingredients: chocolate, eggs

...

Recipe: produce mousse
from chocolate and eggs

∧ and, take both
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Formulas and Connectives

Dark or Milk Mousse
Ingredients: dark or milk chocolate, eggs

...

(dC ∨mC ) ∧ E

∧ and, take both
∨ or, take one
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Formulas and Connectives

Organic or Regular, Dark or Milk Mousse
Ingredients: dark or milk chocolate, organic
or regular eggs

...
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Formulas and Connectives

Mousses at a Restaurant
Desserts

Dark Chocolate Mousse
or

Milk Chocolate Mousse
(organic or regular eggs according to supplies)

(dC ∨ mC )⊗ (oE ∨ rE )

⊗ and, take both
∨ or, take one
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Formulas and Connectives

Mousses at a Restaurant
Desserts

Dark Chocolate Mousse
or

Milk Chocolate Mousse
(organic or regular eggs according to supplies)

(dC & mC )⊗ (oE ⊕ rE )

⊗ and, take both
& or, you choose one
⊕ or, someone else chooses one
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Equality of Formulas

⊗ and, take both
& or, you choose one
⊕ or, someone else chooses one

compare C ⊗ E and E ⊗ C

compare C ⊗ (Y ⊗W ) and (C ⊗ Y )⊗W

compare C ⊗ (oE ⊕ rE ) and (C ⊗ oE )⊕ (C ⊗ rE )

Again, different syntaxes / writings for a same underlying object

Transparent ways to go from one formula to the other, without losses
→ isomorphism

C ⊗ E ≃ E ⊗ C (associativity)
C ⊗ (Y ⊗W ) ≃ (C ⊗ Y )⊗W (commutativity)
C ⊗ (oE ⊕ rE ) ≃ (C ⊗ oE )⊕ (C ⊗ rE ) (distributivity)
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Multiplicative-Additive Linear Logic
Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net
C

hC

P

Y W

bW

M

Hilbert System
1 X−,X+

2 1
3 1⊕ H
4 X−,B ⊕ X+

5 ((1⊕ H)⊗ X−),B ⊕ X+

6 ((1⊕H)⊗X−)`(B⊕X+)

Sequent Calculus

⊢ 1
⊢ 1 ⊕ H

⊢ X−,X+

⊢ X−,B ⊕ X+

⊢ (1 ⊕ H)⊗ X−,B ⊕ X+

⊢ ((1 ⊕ H)⊗ X−) ` (B ⊕ X+)

Proof-Net
1

⊕

⊗

X− X+

⊕

`
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Multiplicative-Additive Linear Logic

A,B ::=

atoms︷ ︸︸ ︷
X+ | X− |

multiplicative︷ ︸︸ ︷
A ⊗

and
B | A

òr
B | 1

true
| ⊥
false

| A
and
& B | A

or
⊕ B |

true
⊤ |

false
0︸ ︷︷ ︸

additive

Hilbert System
1 X−,X+

2 1
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Plan

▶ Isomorphisms in Multiplicative-Additive Linear Logic

▶ Retractions in Multiplicative Linear Logic
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Isomorphisms
C ⊗ E behaves the same as E ⊗ C → isomorphism C ⊗ E ≃ E ⊗ C

In category theory: isomorphism A ≃ B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

In λ-calculus: isomorphism A ≃ B

Terms M : A → B and N : B → A such that
λxA.N(Mx) =βη λxA.x and λyB .M(Ny) =βη λyB .y

In (linear) logic: isomorphism A ≃ B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

rule commutations ⊢⊣r ⊆ =βη
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Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy
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Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy{

λ-calculus with products and unit type
Semantic (finite sets) [Sol83]

Cartesian closed categories

A× (B × C ) ≃ (A× B)× C A× B ≃ B × A 1 × A ≃ A

(A× B) → C ≃ A → (B → C ) 1 → A ≃ A
A → (B × C ) ≃ (A → B)× (A → C ) A → 1 ≃ 1

Reduces to Tarski’s High School Algebra Problem:
can all equalities involving product, exponential and 1 be found using only

a(bc) = (ab)c ab = ba 1a = a
cab = (cb)a a1 = a
(bc)a = baca 1a = 1
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Multiplicative Linear Logic
Syntactic (proof-nets) [BD99]

⋆-autonomous categories

Associativity
A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C
A ` (B ` C ) ≃ (A ` B) ` C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A
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Syntactic Method
Analyze pairs of proofs of isos
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Semantic Method
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where computation/equality is easy{
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Proof sketch

Syntactic method:
1 Simplify using the distributivity equations (rewriting theory)
2 Remove the units (sequent calculus)
3 Analyze the shape of isomorphisms to conclude (proof-nets)

Equations

distributed
formulas

1 distribution

2 remove units

full tablefull table

AC

unit-free ACunit-free AC

3 resolution

Syntax

equational theoryequational theory

sequent calculus

proof-netsproof-nets
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Proof 1/3: Distribution

Distributed Formula

Associativity
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Neutrality A⊗ 1 → A A `⊥ → A A⊕ 0 → A A&⊤ → A

Distributivity A⊗ (B ⊕ C ) → (A⊗ B)⊕ (A⊗ C ) A ` (B & C ) → (A ` B) & (A ` C )

Annihilation A⊗ 0 → 0 A `⊤ → ⊤

Proposition

E complete for distributed formulas
⇓

E + Neut. + Dist. + Anni. complete for all formulas

Associativity
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Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0

−→ (ax)
⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

=⇒ No more units!
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Parenthesis: Confluence up to

Needed: π

π1 π2⊢⊣r
∗

β
∗ β ∗

Generalization: Church-Rosser modulo

·

· ·

· ·

· · . . . ·

·
β
∗ ⊢⊣r

∗

β ∗

⊢⊣r
∗

β
∗ ⊢⊣r

∗

β ∗

· ·⊢⊣r
∗

β ∗ β
∗

=⇒ MALL/ =βη = MALL/ ⊢⊣r = proof-nets

Already proved for MALL [CP05]
We reproved it by showing Strong Normalization and using a
theorem from rewriting theory [Hue80]
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Proof 3/3: Shape of distributed isomorphisms

Use proof-nets

X+

X−

X−

X+

Y+

Y−

X+ X−
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Proof 3/3: Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

X+

X−

X− X+
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π ϕ
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Proof 3/3: Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

X+

X−

X− X+

X+

X−

General shape:

X+

X−

X−

X+

Y+

Y−

X+ X−X+

X−

X−

X+

Y+

Y−

X+ X−

−→ only reordering = AC!

17 / 28



Plan

▶ Isomorphisms in Multiplicative-Additive Linear Logic

Associativity
A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C A⊕ (B ⊕ C ) ≃ (A⊕ B)⊕ C
A ` (B ` C ) ≃ (A ` B) ` C A& (B & C ) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C ) ≃ (A⊗ B)⊕ (A⊗ C ) A ` (B & C ) ≃ (A ` B) & (A ` C )

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

▶ Retractions in Multiplicative Linear Logic
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Retractions

In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB
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Retractions

In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

−→ Natural notion of sub-typing

Example

bool � nat with f (b) :=

{
0 if b
1 otherwise

and g(n) :=

{
true if n ≥ 1
false otherwise

19 / 28



Retractions
In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

−→ Natural notion of sub-typing

In (linear) logic: retraction A � B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

A � B ⇐⇒ A⊥ � B⊥

Example: Beffara’s retraction

A � A⊗ (A⊥ ` A) also
a
A
f b

−→
�
←−

(a,id)

A⊗ (A ⊸ A)
(b,f )
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Simplifications in MLL

Syntactic method:
1 Simplify using the neutrality equations (rewriting theory)
2 Remove the units (sequent calculus)
3 Analyze the shape of retractions to conclude (proof-nets)

No conjecture; which shapes to look for?

−→ Problem purely in MLL proof-nets!
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Proof-nets for MLL

Formula

A,B ::= | X+ | X−

| A⊗ B | A ` B

X+

`

X−

⊗

Y−

Proof Structure
formulas +
axioms partitionning atoms

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−

Danos-Regnier Criterion
acyclic and connected
correctness graphs

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−
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Retractions in proof-nets

In MLL Proof-Nets: retraction A � B

Proof-nets R of ⊢ A⊥,B and S of ⊢ B⊥,A such that
R cut with S reduces to id

General case difficult:

R4 = X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4 � (X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4 )`(X+
1 ⊗ (X−1 `

(X+
2 ⊗ (X−2 `

(X+
3 ⊗ (X−3 `

(X+
4 ⊗ X−4 )))))))
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Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1

X+
2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥
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Using the found pattern

X− X+

`

⊗̀

X− X+

`

⊗
·

·︸ ︷︷ ︸
B

α β
X+X−

⊗

`
·

·︸ ︷︷ ︸
B⊥

qBeffara

−−−−→ ·

·︸ ︷︷ ︸
B ′

α β

·

·︸ ︷︷ ︸
B ′⊥

−→ This rewriting preserves being a retraction!
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Atomic retractions

Theorem

X+ � B iff B is obtained from X+ by Beffara A � A⊗ (A⊥ ` A) and
isomorphisms

. . . but only at the level of formulas; Beffara does not give all proofs!

Proofs of X+ � (X+ ⊗ X−) ` ((X+ ` X−)⊗ X−)

X−

X+

`

X+

⊗

X−

⊗

X+

`

X− X−

⊗

X−

`

X+

`

X−

⊗

X+

X+

no

X− X+

`

⊗

X+

so cannot be generated!
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Future Work

We should have all tools to expend the confluence up to result to LL
π

π1 π2⊢⊣r
∗

β
∗ β ∗

Isomorphisms for MELL or MALL with 1st order quantifiers
(proof-nets)
Characterize all retractions in MLL
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Proof-nets for A⊗ (B ⊕ C ) ≃ (A⊗ B)⊕ (A⊗ C )

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`
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Proof 3/3: Why the distributed shape?

A⊗ (B ⊕ C ) ≃ (A⊗ B)⊕ (A⊗ C ) not of this shape

Correctness criterion to get this local shape from global distributivity

A⊥ A

l

p

&

⊗

`

l⊥

p⊥

⊕

`

⊗

B B⊥

. . .

q

l1 l2 l⊥2 l⊥1

q⊥

. . .

∗

∗

∗

...

jj

1 Forbidden configuration

2 Dependence on a &

3 ` below

4 Distributivity
5 Forbidden cycle
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Beffara A � A⊗ (A⊥ ` A) is a retraction

A⊥

A

`

A⊥

⊗

A

A⊥

⊗

A

`
A⊥

A

A ` (A⊥ ⊗ A) (A⊥ ` A)⊗ A⊥

28 / 28



Around Sequentialization

Proof-nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]Sequentialization [Gir87]

MLL Proof-nets are
exactly the images of

proofs.

Sequentialization [HG05]

MALL Proof-nets are
exactly the images of

proofs.

Kotzig [Kot59]

On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding
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