
Identity of Proofs and Formulas
using Proof-Nets

in Multiplicative-Additive Linear Logic

Rémi Di Guardia

supervised by Olivier Laurent

23 September 2024

1 / 28

Cooking

Mousse Recipe
Ingredients: chocolate, eggs

1 Warm the chocolate
2 Beat the whites
3 Add the yolks in the chocolate
4 Add the whites in the mixture

Same Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
4 Separate the eggs
5 Beat the whites
2 Get the chocolate
3 Warm the chocolate
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ The order of independent steps is meaningless for the result!
Different writings for a unique recipe

2 / 28

Cooking

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

Same Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
4 Separate the eggs
5 Beat the whites
2 Get the chocolate
3 Warm the chocolate
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ The order of independent steps is meaningless for the result!
Different writings for a unique recipe

2 / 28

Cooking

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

Another? Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
4 Separate the eggs
5 Beat the whites
2 Get the chocolate
3 Warm the chocolate
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ The order of independent steps is meaningless for the result!
Different writings for a unique recipe

2 / 28

Cooking

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

Same Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
4 Separate the eggs
5 Beat the whites
2 Get the chocolate
3 Warm the chocolate
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ The order of independent steps is meaningless for the result!
Different writings for a unique recipe

2 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
2 Get the chocolate
3 Warm the chocolate
4 Separate the eggs
5 Beat the whites
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Another representation of recipes

Same Mousse Recipe
Ingredients: chocolate, eggs

1 Get the eggs
4 Separate the eggs
5 Beat the whites
2 Get the chocolate
3 Warm the chocolate
6 Add the yolks in the chocolate
7 Add the whites in the mixture

−→ Better representation by following causality

3 / 28

Diagrams solve the equality of recipes?

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Recipe 2
1 Get eggs
4 Separate eggs
5 Beat whites
2 Get chocolate
3 Warm chocolate
6 Add yolks
7 Add whites

Recipe 3
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
7 Add whites
6 Add yolks

Recipe 4
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
6 Add yolks
5 Beat whites
7 Add whites

−→ Some order in diagrams is still meaningless for causality!
Some commutations give different graphs but are the same recipe

4 / 28

Diagrams solve the equality of recipes?

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Recipe 2
1 Get eggs
4 Separate eggs
5 Beat whites
2 Get chocolate
3 Warm chocolate
6 Add yolks
7 Add whites

Recipe 3
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
7 Add whites
6 Add yolks

Recipe 4
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
6 Add yolks
5 Beat whites
7 Add whites

−→ Some order in diagrams is still meaningless for causality!
Some commutations give different graphs but are the same recipe

4 / 28

Diagrams solve the equality of recipes?

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Recipe 2
1 Get eggs
4 Separate eggs
5 Beat whites
2 Get chocolate
3 Warm chocolate
6 Add yolks
7 Add whites

Recipe 3
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
7 Add whites
6 Add yolks

Recipe 4
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
6 Add yolks
5 Beat whites
7 Add whites

−→ Some order in diagrams is still meaningless for causality!
Some commutations give different graphs but are the same recipe

4 / 28

Diagrams solve the equality of recipes?

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Recipe 2
1 Get eggs
4 Separate eggs
5 Beat whites
2 Get chocolate
3 Warm chocolate
6 Add yolks
7 Add whites

Recipe 3
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
7 Add whites
6 Add yolks

Recipe 4
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
6 Add yolks
5 Beat whites
7 Add whites

−→ Some order in diagrams is still meaningless for causality!
Some commutations give different graphs but are the same recipe

4 / 28

Diagrams solve the equality of recipes?

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Recipe 2
1 Get eggs
4 Separate eggs
5 Beat whites
2 Get chocolate
3 Warm chocolate
6 Add yolks
7 Add whites

Recipe 3
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
7 Add whites
6 Add yolks

Recipe 4
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
6 Add yolks
5 Beat whites
7 Add whites

−→ Some order in diagrams is still meaningless for causality!
Some commutations give different graphs but are the same recipe

4 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 1

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

5 Beat whites

6 Add yolks

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Yet another representation of recipes

Recipe 4

1 Get eggs

2 Get chocolate

3 Warm chocolate

4 Separate eggs

6 Add yolks

5 Beat whites

7 Add whites

−→ Parallelize everything
The remaining order is causality!
Unique writing for a recipe: canonicity

5 / 28

Three representations of recipes or proofs

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net

C

hC

P

Y W

bW

M

6 / 28

Three representations of recipes or proofs

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net

C

hC

P

Y W

bW

M

6 / 28

Three representations of recipes or proofs

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net

C

hC

P

Y W

bW

M

6 / 28

Three representations of recipes or proofs

Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net

C

hC

P

Y W

bW

M

6 / 28

Formulas and Connectives

Mousse Recipe
Ingredients: chocolate, eggs

...

Recipe: produce mousse
from chocolate and eggs

∧ and, take both

7 / 28

Formulas and Connectives

Mousse Recipe
Ingredients: chocolate, eggs

...

C and E

∧ and, take both

7 / 28

Formulas and Connectives

Mousse Recipe
Ingredients: chocolate, eggs

...

C ∧ E

∧ and, take both

7 / 28

Formulas and Connectives

Dark or Milk Mousse
Ingredients: dark or milk chocolate, eggs

...

(dC ∨mC) ∧ E

∧ and, take both
∨ or, take one

7 / 28

Formulas and Connectives

Organic or Regular, Dark or Milk Mousse
Ingredients: dark or milk chocolate, organic
or regular eggs

...

(dC ∨mC) ∧ (oE ∨ rE)

∧ and, take both
∨ or, take one

7 / 28

Formulas and Connectives

Organic or Regular, Dark or Milk Mousse
Ingredients: dark or milk chocolate, organic
or regular eggs

...

(dC ∨mC)⊗ (oE ∨ rE)

⊗ and, take both
∨ or, take one

7 / 28

Formulas and Connectives

Mousses at a Restaurant
Desserts

Dark Chocolate Mousse
or

Milk Chocolate Mousse
(organic or regular eggs according to supplies)

(dC ∨ mC)⊗ (oE ∨ rE)

⊗ and, take both
∨ or, take one

7 / 28

Formulas and Connectives

Mousses at a Restaurant
Desserts

Dark Chocolate Mousse
or

Milk Chocolate Mousse
(organic or regular eggs according to supplies)

(dC & mC)⊗ (oE ⊕ rE)

⊗ and, take both
& or, you choose one
⊕ or, someone else chooses one

7 / 28

Equality of Formulas

⊗ and, take both
& or, you choose one
⊕ or, someone else chooses one

compare C ⊗ E and E ⊗ C

compare C ⊗ (Y ⊗W) and (C ⊗ Y)⊗W

compare C ⊗ (oE ⊕ rE) and (C ⊗ oE)⊕ (C ⊗ rE)

Again, different syntaxes / writings for a same underlying object

Transparent ways to go from one formula to the other, without losses
→ isomorphism

C ⊗ E ≃ E ⊗ C (associativity)
C ⊗ (Y ⊗W) ≃ (C ⊗ Y)⊗W (commutativity)
C ⊗ (oE ⊕ rE) ≃ (C ⊗ oE)⊕ (C ⊗ rE) (distributivity)

8 / 28

Equality of Formulas

⊗ and, take both
& or, you choose one
⊕ or, someone else chooses one

compare C ⊗ E and E ⊗ C

compare C ⊗ (Y ⊗W) and (C ⊗ Y)⊗W

compare C ⊗ (oE ⊕ rE) and (C ⊗ oE)⊕ (C ⊗ rE)

Again, different syntaxes / writings for a same underlying object

Transparent ways to go from one formula to the other, without losses
→ isomorphism

C ⊗ E ≃ E ⊗ C (associativity)
C ⊗ (Y ⊗W) ≃ (C ⊗ Y)⊗W (commutativity)
C ⊗ (oE ⊕ rE) ≃ (C ⊗ oE)⊕ (C ⊗ rE) (distributivity)

8 / 28

Equality of Formulas

⊗ and, take both
& or, you choose one
⊕ or, someone else chooses one

compare C ⊗ E and E ⊗ C

compare C ⊗ (Y ⊗W) and (C ⊗ Y)⊗W

compare C ⊗ (oE ⊕ rE) and (C ⊗ oE)⊕ (C ⊗ rE)

Again, different syntaxes / writings for a same underlying object

Transparent ways to go from one formula to the other, without losses
→ isomorphism

C ⊗ E ≃ E ⊗ C (associativity)
C ⊗ (Y ⊗W) ≃ (C ⊗ Y)⊗W (commutativity)
C ⊗ (oE ⊕ rE) ≃ (C ⊗ oE)⊕ (C ⊗ rE) (distributivity)

8 / 28

Equality of Formulas

⊗ and, take both
& or, you choose one
⊕ or, someone else chooses one

compare C ⊗ E and E ⊗ C

compare C ⊗ (Y ⊗W) and (C ⊗ Y)⊗W

compare C ⊗ (oE ⊕ rE) and (C ⊗ oE)⊕ (C ⊗ rE)

Again, different syntaxes / writings for a same underlying object

Transparent ways to go from one formula to the other, without losses
→ isomorphism

C ⊗ E ≃ E ⊗ C (associativity)
C ⊗ (Y ⊗W) ≃ (C ⊗ Y)⊗W (commutativity)
C ⊗ (oE ⊕ rE) ≃ (C ⊗ oE)⊕ (C ⊗ rE) (distributivity)

8 / 28

Multiplicative-Additive Linear Logic
Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net
C

hC

P

Y W

bW

M

Hilbert System
1 X−,X+

2 1
3 1⊕ H
4 X−,B ⊕ X+

5 ((1⊕ H)⊗ X−),B ⊕ X+

6 ((1⊕H)⊗X−)`(B⊕X+)

Sequent Calculus

⊢ 1
⊢ 1 ⊕ H

⊢ X−,X+

⊢ X−,B ⊕ X+

⊢ (1 ⊕ H)⊗ X−,B ⊕ X+

⊢ ((1 ⊕ H)⊗ X−) ` (B ⊕ X+)

Proof-Net
1

⊕

⊗

X− X+

⊕

`

9 / 28

Multiplicative-Additive Linear Logic
Recipe 1
1 Get eggs
2 Get chocolate
3 Warm chocolate
4 Separate eggs
5 Beat whites
6 Add yolks
7 Add whites

Hilbert System
1 E
2 C
3 hC
4 Y W
5 bW
6 P
7 M

Sequent Calculus

C ⊢ C
C ⊢ hC

E ⊢ E
E ⊢ Y W
E ⊢ Y bW

C E ⊢ P bW
C E ⊢ M

Proof-Net
C

hC

P

Y W

bW

M

Hilbert System
1 X−,X+

2 1
3 1⊕ H
4 X−,B ⊕ X+

5 ((1⊕ H)⊗ X−),B ⊕ X+

6 ((1⊕H)⊗X−)`(B⊕X+)

Sequent Calculus

⊢ 1
⊢ 1 ⊕ H

⊢ X−,X+

⊢ X−,B ⊕ X+

⊢ (1 ⊕ H)⊗ X−,B ⊕ X+

⊢ ((1 ⊕ H)⊗ X−) ` (B ⊕ X+)

Proof-Net
1

⊕

⊗

X− X+

⊕

` 9 / 28

Multiplicative-Additive Linear Logic

A,B ::=

atoms︷ ︸︸ ︷
X+ | X− |

multiplicative︷ ︸︸ ︷
A ⊗

and
B | A

òr
B | 1

true
| ⊥
false

| A
and
& B | A

or
⊕ B |

true
⊤ |

false
0︸ ︷︷ ︸

additive

Hilbert System
1 X−,X+

2 1
3 1⊕ H
4 X−,B ⊕ X+

5 ((1⊕ H)⊗ X−),B ⊕ X+

6 ((1⊕H)⊗X−)`(B⊕X+)

Sequent Calculus

⊢ 1
⊢ 1 ⊕ H

⊢ X−,X+

⊢ X−,B ⊕ X+

⊢ (1 ⊕ H)⊗ X−,B ⊕ X+

⊢ ((1 ⊕ H)⊗ X−) ` (B ⊕ X+)

Proof-Net
1

⊕

⊗

X− X+

⊕

` 9 / 28

Multiplicative-Additive Linear Logic

A,B ::=

atoms︷ ︸︸ ︷
X+ | X− |

multiplicative︷ ︸︸ ︷
A ⊗

and
B | A

òr
B | 1

true
| ⊥
false

| A
and
& B | A

or
⊕ B |

true
⊤ |

false
0︸ ︷︷ ︸

additive

Hilbert System
1 X−,X+

2 1
3 1⊕ H
4 X−,B ⊕ X+

5 ((1⊕ H)⊗ X−),B ⊕ X+

6 ((1⊕H)⊗X−)`(B⊕X+)

Sequent Calculus

⊢ 1
⊢ 1 ⊕ H

⊢ X−,X+

⊢ X−,B ⊕ X+

⊢ (1 ⊕ H)⊗ X−,B ⊕ X+

⊢ ((1 ⊕ H)⊗ X−) ` (B ⊕ X+)

Proof-Net
1

⊕

⊗

X− X+

⊕

` 9 / 28

Plan

▶ Isomorphisms in Multiplicative-Additive Linear Logic

▶ Retractions in Multiplicative Linear Logic

10 / 28

Isomorphisms
C ⊗ E behaves the same as E ⊗ C → isomorphism C ⊗ E ≃ E ⊗ C

In category theory: isomorphism A ≃ B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

In λ-calculus: isomorphism A ≃ B

Terms M : A → B and N : B → A such that
λxA.N(Mx) =βη λxA.x and λyB .M(Ny) =βη λyB .y

In (linear) logic: isomorphism A ≃ B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

rule commutations ⊢⊣r ⊆ =βη

11 / 28

Isomorphisms
C ⊗ E behaves the same as E ⊗ C → isomorphism C ⊗ E ≃ E ⊗ C

In category theory: isomorphism A ≃ B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

In λ-calculus: isomorphism A ≃ B

Terms M : A → B and N : B → A such that
λxA.N(Mx) =βη λxA.x and λyB .M(Ny) =βη λyB .y

In (linear) logic: isomorphism A ≃ B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

rule commutations ⊢⊣r ⊆ =βη

11 / 28

Isomorphisms
C ⊗ E behaves the same as E ⊗ C → isomorphism C ⊗ E ≃ E ⊗ C

In category theory: isomorphism A ≃ B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

In λ-calculus: isomorphism A ≃ B

Terms M : A → B and N : B → A such that
λxA.N(Mx) =βη λxA.x and λyB .M(Ny) =βη λyB .y

In (linear) logic: isomorphism A ≃ B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

rule commutations ⊢⊣r ⊆ =βη

11 / 28

Isomorphisms
C ⊗ E behaves the same as E ⊗ C → isomorphism C ⊗ E ≃ E ⊗ C

In category theory: isomorphism A ≃ B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

In λ-calculus: isomorphism A ≃ B

Terms M : A → B and N : B → A such that
λxA.N(Mx) =βη λxA.x and λyB .M(Ny) =βη λyB .y

In (linear) logic: isomorphism A ≃ B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

rule commutations ⊢⊣r ⊆ =βη

11 / 28

Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy

12 / 28

Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy{

λ-calculus with products and unit type
Semantic (finite sets) [Sol83]

Cartesian closed categories

A× (B × C) ≃ (A× B)× C A× B ≃ B × A 1 × A ≃ A

(A× B) → C ≃ A → (B → C) 1 → A ≃ A
A → (B × C) ≃ (A → B)× (A → C) A → 1 ≃ 1

Reduces to Tarski’s High School Algebra Problem:
can all equalities involving product, exponential and 1 be found using only

a(bc) = (ab)c ab = ba 1a = a
cab = (cb)a a1 = a
(bc)a = baca 1a = 1

12 / 28

Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy{

Multiplicative Linear Logic
Syntactic (proof-nets) [BD99]

⋆-autonomous categories

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C
A ` (B ` C) ≃ (A ` B) ` C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A

12 / 28

Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy{

Polarized Linear Logic
Semantic (games, forest isomorphisms) [Lau05]

Control Categories

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C
A ` (B ` C) ≃ (A ` B) ` C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) A ` (B & C) ≃ (A ` B) & (A ` C)

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

Seely
!(A& B) ≃ !A⊗ !B ?(A⊕ B) ≃ ?A ` ?B

!⊤ ≃ 1 ?0 ≃ ⊥

����⊤⊗ A

12 / 28

Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy{

Polarized Linear Logic
Semantic (games, forest isomorphisms) [Lau05]

Control Categories

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C
A ` (B ` C) ≃ (A ` B) ` C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) A ` (B & C) ≃ (A ` B) & (A ` C)

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

Seely
!(A& B) ≃ !A⊗ !B ?(A⊕ B) ≃ ?A ` ?B

!⊤ ≃ 1 ?0 ≃ ⊥

����⊤⊗ A
12 / 28

Literature on isomorphisms

Goal: obtain an equational theory

Syntactic Method
Analyze pairs of proofs of isos
→ get information on their formulas

Semantic Method
Find a model with the same isos but
where computation/equality is easy{

Multiplicative-Additive Linear Logic
Syntactic [thesis]

⋆-autonomous categories with finite products

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C
A ` (B ` C) ≃ (A ` B) ` C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) A ` (B & C) ≃ (A ` B) & (A ` C)

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

Seely
!(A& B) ≃ !A⊗ !B ?(A⊕ B) ≃ ?A ` ?B

!⊤ ≃ 1 ?0 ≃ ⊥

12 / 28

Proof sketch

Syntactic method:
1 Simplify using the distributivity equations (rewriting theory)
2 Remove the units (sequent calculus)
3 Analyze the shape of isomorphisms to conclude (proof-nets)

Equations

distributed
formulas

1 distribution

2 remove units

full tablefull table

AC

unit-free ACunit-free AC

3 resolution

Syntax

equational theoryequational theory

sequent calculus

proof-netsproof-nets

13 / 28

Proof 1/3: Distribution

Distributed Formula

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A ` (B ` C) ≃ (A ` B) ` C
A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 → A A `⊥ → A A⊕ 0 → A A&⊤ → A

Distributivity A⊗ (B ⊕ C) → (A⊗ B)⊕ (A⊗ C) A ` (B & C) → (A ` B) & (A ` C)

Annihilation A⊗ 0 → 0 A `⊤ → ⊤

Proposition

E complete for distributed formulas
⇓

E + Neut. + Dist. + Anni. complete for all formulas

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A ` (B ` C) ≃ (A ` B) ` C
A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) A ` (B & C) ≃ (A ` B) & (A ` C)

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

14 / 28

Proof 1/3: Distribution

Distributed Formula

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A ` (B ` C) ≃ (A ` B) ` C
A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 → A A `⊥ → A A⊕ 0 → A A&⊤ → A

Distributivity A⊗ (B ⊕ C) → (A⊗ B)⊕ (A⊗ C) A ` (B & C) → (A ` B) & (A ` C)

Annihilation A⊗ 0 → 0 A `⊤ → ⊤

Proposition

E complete for distributed formulas
⇓

E + Neut. + Dist. + Anni. complete for all formulas

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A ` (B ` C) ≃ (A ` B) ` C
A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) A ` (B & C) ≃ (A ` B) & (A ` C)

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤
14 / 28

Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0

−→ (ax)
⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

=⇒ No more units!

15 / 28

Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0 −→ (ax)

⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

=⇒ No more units!

15 / 28

Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0 −→ (ax)

⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

π ϕ

id
⊤/0
1/⊥

⊤/0
1/⊥

⊤/0
1/⊥

=⇒ No more units!

15 / 28

Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0 −→ (ax)

⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

π ϕ

id
⊤/0
1/⊥ 1⊢⊣r ⊢⊣r ⊢⊣r

⊤/0
1/⊕i /⊥

2

⊤/0
1/⊕i /⊥

3

=⇒ No more units!

15 / 28

Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0 −→ (ax)

⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

2 Shape preserved by ⊢⊣r :

(1)
⊢ 1

⊕i
⊢ F

(⊥)
⊢ ⊥,F

using distributivity

π ϕ

id
⊤/0
1/⊥ 1⊢⊣r ⊢⊣r ⊢⊣r⊤/0

1/⊕i /⊥
2

⊤/0
1/⊕i /⊥

3

=⇒ No more units!

15 / 28

Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0 −→ (ax)

⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

2 Shape preserved by ⊢⊣r :

(1)
⊢ 1

⊕i
⊢ F

(⊥)
⊢ ⊥,F

using distributivity

3 Cut-elimination in isomorphisms cannot “completely” erase units rules
π ϕ

id
⊤/0
1/⊥ 1⊢⊣r ⊢⊣r ⊢⊣r⊤/0

1/⊕i /⊥
2

⊤/0
1/⊕i /⊥

3

=⇒ No more units!

15 / 28

Proof 2/3: Remove the units
In isomorphisms of distributed formulas: units = fresh atoms

1 In the identity: (⊤)
⊢ ⊤, 0 −→ (ax)

⊢ X−,X+

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

−→ (ax)
⊢ Y−,Y+

2 Shape preserved by ⊢⊣r :

(1)
⊢ 1

⊕i
⊢ F

(⊥)
⊢ ⊥,F

using distributivity

3 Cut-elimination in isomorphisms cannot “completely” erase units rules
π ϕ

id
⊤/0
1/⊥ 1⊢⊣r ⊢⊣r ⊢⊣r⊤/0

1/⊕i /⊥
2

⊤/0
1/⊕i /⊥

3

=⇒ No more units!
15 / 28

Parenthesis: Confluence up to

Needed: π

π1 π2⊢⊣r
∗

β
∗ β ∗

Generalization: Church-Rosser modulo

·

· ·

· ·

· · . . . ·

·
β
∗ ⊢⊣r

∗

β ∗

⊢⊣r
∗

β
∗ ⊢⊣r

∗

β ∗

· ·⊢⊣r
∗

β ∗ β
∗

=⇒ MALL/ =βη = MALL/ ⊢⊣r = proof-nets

Already proved for MALL [CP05]
We reproved it by showing Strong Normalization and using a
theorem from rewriting theory [Hue80]

16 / 28

Parenthesis: Confluence up to

Needed: π

π1 π2⊢⊣r
∗

β
∗ β ∗

Generalization: Church-Rosser modulo

·

· ·

· ·

· · . . . ·

·
β
∗ ⊢⊣r

∗

β ∗

⊢⊣r
∗

β
∗ ⊢⊣r

∗

β ∗

· ·⊢⊣r
∗

β ∗ β
∗

=⇒ MALL/ =βη = MALL/ ⊢⊣r = proof-nets

Already proved for MALL [CP05]
We reproved it by showing Strong Normalization and using a
theorem from rewriting theory [Hue80]

16 / 28

Parenthesis: Confluence up to

Needed: π

π1 π2⊢⊣r
∗

β
∗ β ∗

Generalization: Church-Rosser modulo

·

· ·

· ·

· · . . . ·

·
β
∗ ⊢⊣r

∗

β ∗

⊢⊣r
∗

β
∗ ⊢⊣r

∗

β ∗

· ·⊢⊣r
∗

β ∗ β
∗

=⇒ MALL/ =βη = MALL/ ⊢⊣r = proof-nets

Already proved for MALL [CP05]
We reproved it by showing Strong Normalization and using a
theorem from rewriting theory [Hue80]

16 / 28

Parenthesis: Confluence up to

Needed: π

π1 π2⊢⊣r
∗

β
∗ β ∗

Generalization: Church-Rosser modulo

·

· ·

· ·

· · . . . ·

·
β
∗ ⊢⊣r

∗

β ∗

⊢⊣r
∗

β
∗ ⊢⊣r

∗

β ∗

· ·⊢⊣r
∗

β ∗ β
∗

=⇒ MALL/ =βη = MALL/ ⊢⊣r = proof-nets

Already proved for MALL [CP05]
We reproved it by showing Strong Normalization and using a
theorem from rewriting theory [Hue80]

16 / 28

Proof 3/3: Shape of distributed isomorphisms

Use proof-nets

X+

X−

X−

X+

Y+

Y−

X+ X−

17 / 28

Proof 3/3: Shape of distributed isomorphisms

Use proof-nets

X+

X−

X−

X+

Y+

Y−

X+ X−

17 / 28

Proof 3/3: Shape of distributed isomorphisms

Use proof-nets

X+

X−

X−

X+

Y+

Y−

X+ X−

17 / 28

Proof 3/3: Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

X+

X−

X− X+

X+

X−

π ϕ

id

17 / 28

Proof 3/3: Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

X+

X−

X−

X+

X+

X−

π ϕ

id

17 / 28

Proof 3/3: Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

X+

X−

X− X+

X+

X−

π ϕ

id

17 / 28

Proof 3/3: Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

X+

X−

X− X+

X+

X−

General shape:

X+

X−

X−

X+

Y+

Y−

X+ X−X+

X−

X−

X+

Y+

Y−

X+ X−

−→ only reordering = AC!

17 / 28

Plan

▶ Isomorphisms in Multiplicative-Additive Linear Logic

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C
A ` (B ` C) ≃ (A ` B) ` C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) A ` (B & C) ≃ (A ` B) & (A ` C)

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

▶ Retractions in Multiplicative Linear Logic

18 / 28

Plan

▶ Isomorphisms in Multiplicative-Additive Linear Logic

Associativity
A⊗ (B ⊗ C) ≃ (A⊗ B)⊗ C A⊕ (B ⊕ C) ≃ (A⊕ B)⊕ C
A ` (B ` C) ≃ (A ` B) ` C A& (B & C) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) A ` (B & C) ≃ (A ` B) & (A ` C)

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤

▶ Retractions in Multiplicative Linear Logic

18 / 28

Retractions

In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

19 / 28

Retractions

In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

−→ Natural notion of sub-typing

Example

bool � nat with f (b) :=

{
0 if b
1 otherwise

and g(n) :=

{
true if n ≥ 1
false otherwise

19 / 28

Retractions
In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

−→ Natural notion of sub-typing

In (linear) logic: retraction A � B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

A � B ⇐⇒ A⊥ � B⊥

Example: Beffara’s retraction

A � A⊗ (A⊥ ` A) also
a
A
f b

−→
�
←−

(a,id)

A⊗ (A ⊸ A)
(b,f)

19 / 28

Retractions
In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

−→ Natural notion of sub-typing

In (linear) logic: retraction A � B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

A � B ⇐⇒ A⊥ � B⊥

Example: Beffara’s retraction

A � A⊗ (A⊥ ` A) also
a
A
f b

−→
�
←−

(a,id)

A⊗ (A ⊸ A)
(b,f)

19 / 28

Retractions
In category theory: retraction A � B

A B
f

g
idA idB

g ◦ f = idA
f ◦ g = idB

−→ Natural notion of sub-typing

In (linear) logic: retraction A � B

Proofs π of A ⊢ B and ϕ of B ⊢ A such that
π

A ⊢ B
ϕ

B ⊢ A
(cut)

A ⊢ A

=βη
(ax)

A ⊢ A and
ϕ

B ⊢ A
π

A ⊢ B
(cut)

B ⊢ B

=βη
(ax)

B ⊢ B

A � B ⇐⇒ A⊥ � B⊥

Example: Beffara’s retraction

A � A⊗ (A⊥ ` A) also
a
A
f b

−→
�
←−

(a,id)

A⊗ (A ⊸ A)
(b,f)

19 / 28

Simplifications in MLL

Syntactic method:
1 Simplify using the neutrality equations (rewriting theory)
2 Remove the units (sequent calculus)
3 Analyze the shape of retractions to conclude (proof-nets)

No conjecture; which shapes to look for?

−→ Problem purely in MLL proof-nets!

20 / 28

Simplifications in MLL

Syntactic method:
1 Simplify using the neutrality equations (rewriting theory)
2 Remove the units (sequent calculus)
3 Analyze the shape of retractions to conclude (proof-nets)

No conjecture; which shapes to look for?

−→ Problem purely in MLL proof-nets!

20 / 28

Simplifications in MLL

Syntactic method:
1 Simplify using the neutrality equations (rewriting theory)
2 Remove the units (sequent calculus)
3 Analyze the shape of retractions to conclude (proof-nets)

No conjecture; which shapes to look for?

−→ Problem purely in MLL proof-nets!

20 / 28

Proof-nets for MLL

Formula

A,B ::= | X+ | X−

| A⊗ B | A ` B

X+

`

X−

⊗

Y−

Proof Structure
formulas +
axioms partitionning atoms

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−

Danos-Regnier Criterion
acyclic and connected
correctness graphs

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−

21 / 28

Proof-nets for MLL

Formula

A,B ::= | X+ | X−

| A⊗ B | A ` B

X+

`

X−

⊗

Y−

Proof Structure
formulas +
axioms partitionning atoms

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−

Danos-Regnier Criterion
acyclic and connected
correctness graphs

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−

21 / 28

Proof-nets for MLL

Formula

A,B ::= | X+ | X−

| A⊗ B | A ` B

X+

`

X−

⊗

Y−

Proof Structure
formulas +
axioms partitionning atoms

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−

Danos-Regnier Criterion
acyclic and connected
correctness graphs

X+

⊗

Y+

`

X−

X+

`

X−

⊗

Y−

21 / 28

Retractions in proof-nets

In MLL Proof-Nets: retraction A � B

Proof-nets R of ⊢ A⊥,B and S of ⊢ B⊥,A such that
R cut with S reduces to id

General case difficult:

R4 = X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4 � (X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4)`(X+
1 ⊗ (X−1 `

(X+
2 ⊗ (X−2 `

(X+
3 ⊗ (X−3 `

(X+
4 ⊗ X−4)))))))

In MLL Proof-Nets: atomic retraction X+ � B

Proof-nets R of ⊢ X−,B and S of ⊢ B⊥,X+ such that
R cut with S reduces to id

22 / 28

Retractions in proof-nets

In MLL Proof-Nets: retraction A � B

Proof-nets R of ⊢ A⊥,B and S of ⊢ B⊥,A such that
R cut with S reduces to id

General case difficult:

R4 = X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4 � (X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4)`(X+
1 ⊗ (X−1 `

(X+
2 ⊗ (X−2 `

(X+
3 ⊗ (X−3 `

(X+
4 ⊗ X−4)))))))

In MLL Proof-Nets: atomic retraction X+ � B

Proof-nets R of ⊢ X−,B and S of ⊢ B⊥,X+ such that
R cut with S reduces to id

22 / 28

Retractions in proof-nets

In MLL Proof-Nets: retraction A � B

Proof-nets R of ⊢ A⊥,B and S of ⊢ B⊥,A such that
R cut with S reduces to id

General case difficult:

R4 = X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4 � (X+
1 ⊗ X+

2 ⊗ X+
3 ⊗ X+

4)`(X+
1 ⊗ (X−1 `

(X+
2 ⊗ (X−2 `

(X+
3 ⊗ (X−3 `

(X+
4 ⊗ X−4)))))))

In MLL Proof-Nets: atomic retraction X+ � B

Proof-nets R of ⊢ X−,B and S of ⊢ B⊥,X+ such that
R cut with S reduces to id

22 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1

X+
2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

`

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

`

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

`

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

`

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it

Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

`

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it
Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it
Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it
Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗

. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Key Result: finding a shape

Lemma
In X+ � B one of the two proof-nets contains

X− X+

`

Proof.
Follow a GOI path until finding it
Invariant: every X+ of B is above a ⊗, and every X− above a `

X−1 X+
1X+

2

⊗

X−2

`

X+
3

⊗

X−3

`

X+
4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

23 / 28

Using the found pattern

X− X+

`

⊗̀

X− X+

`

⊗
·

·︸ ︷︷ ︸
B

α β
X+X−

⊗

`
·

·︸ ︷︷ ︸
B⊥

qBeffara

−−−−→ ·

·︸ ︷︷ ︸
B ′

α β

·

·︸ ︷︷ ︸
B ′⊥

−→ This rewriting preserves being a retraction!

24 / 28

Using the found pattern

X− X+

`

`

⊗

X− X+

`

⊗
·

·︸ ︷︷ ︸
B

α β
X+X−

⊗

`
·

·︸ ︷︷ ︸
B⊥

qBeffara

−−−−→ ·

·︸ ︷︷ ︸
B ′

α β

·

·︸ ︷︷ ︸
B ′⊥

−→ This rewriting preserves being a retraction!

24 / 28

Using the found pattern

X− X+

`

`

⊗

X− X+

`

⊗
·

·︸ ︷︷ ︸
B

α β
X+X−

⊗

`
·

·︸ ︷︷ ︸
B⊥

qBeffara

−−−−→ ·

·︸ ︷︷ ︸
B ′

α β

·

·︸ ︷︷ ︸
B ′⊥

−→ This rewriting preserves being a retraction!

24 / 28

Using the found pattern

X− X+

`

`

⊗

X− X+

`

⊗
·

·︸ ︷︷ ︸
B

α β
X+X−

⊗

`
·

·︸ ︷︷ ︸
B⊥

qBeffara

−−−−→ ·

·︸ ︷︷ ︸
B ′

α β

·

·︸ ︷︷ ︸
B ′⊥

−→ This rewriting preserves being a retraction!

24 / 28

Using the found pattern

X− X+

`

`

⊗

X− X+

`

⊗
·

·︸ ︷︷ ︸
B

α β
X+X−

⊗

`
·

·︸ ︷︷ ︸
B⊥

qBeffara

−−−−→ ·

·︸ ︷︷ ︸
B ′

α β

·

·︸ ︷︷ ︸
B ′⊥

−→ This rewriting preserves being a retraction!
24 / 28

Atomic retractions

Theorem

X+ � B iff B is obtained from X+ by Beffara A � A⊗ (A⊥ ` A) and
isomorphisms

. . . but only at the level of formulas; Beffara does not give all proofs!

Proofs of X+ � (X+ ⊗ X−) ` ((X+ ` X−)⊗ X−)

X−

X+

`

X+

⊗

X−

⊗

X+

`

X− X−

⊗

X−

`

X+

`

X−

⊗

X+

X+

no

X− X+

`

⊗

X+

so cannot be generated!

25 / 28

Atomic retractions

Theorem

X+ � B iff B is obtained from X+ by Beffara A � A⊗ (A⊥ ` A) and
isomorphisms

. . . but only at the level of formulas; Beffara does not give all proofs!

Proofs of X+ � (X+ ⊗ X−) ` ((X+ ` X−)⊗ X−)

X−

X+

`

X+

⊗

X−

⊗

X+

`

X− X−

⊗

X−

`

X+

`

X−

⊗

X+

X+

no

X− X+

`

⊗

X+

so cannot be generated!
25 / 28

Thesis’ Overview

Sequent
Calculus
Sequent
Calculus

Proof
Nets
Proof
Nets

Rewriting
Theory

Correctness
Criterion

Normalization

Confluence up to

MALL Isomorphisms

MLL Retractions

Graph
Theory

Sequentialization

Yeo’s Theorem

Bungee Jumping

Correctness
Criterion

26 / 28

Thesis’ Overview

Sequent
Calculus
Sequent
Calculus

Proof
Nets
Proof
Nets

Rewriting
Theory

Correctness
Criterion

Normalization

Confluence up to

MALL Isomorphisms

MLL Retractions

Graph
Theory

Sequentialization

Yeo’s Theorem

Bungee Jumping

Correctness
Criterion

26 / 28

Future Work

We should have all tools to expend the confluence up to result to LL
π

π1 π2⊢⊣r
∗

β
∗ β ∗

Isomorphisms for MELL or MALL with 1st order quantifiers
(proof-nets)
Characterize all retractions in MLL

27 / 28

Merci !

References I

[BD99] Vincent Balat and Roberto Di Cosmo. “A Linear Logical View of
Linear Type Isomorphisms”. In: Computer Science Logic. Ed. by
Jörg Flum and Mario Rodríguez-Artalejo. Vol. 1683. Lecture
Notes in Computer Science. Springer, 1999, pp. 250–265.

[CP05] Robin Cockett and Craig Pastro. “A Language For
Multiplicative-additive Linear Logic”. In: Electronic Notes in
Theoretical Computer Science 122 (2005). Proceedings of the
10th Conference on Category Theory in Computer Science
(CTCS 2004), pp. 23–65. DOI:
/10.1016/j.entcs.2004.06.049. URL:
https://www.sciencedirect.com/science/article/pii/
S1571066105000320.

27 / 28

https://doi.org//10.1016/j.entcs.2004.06.049
https://www.sciencedirect.com/science/article/pii/S1571066105000320
https://www.sciencedirect.com/science/article/pii/S1571066105000320

References II

[GH83] Jerrold W. Grossman and Roland Häggkvist. “Alternating Cycles
in Edge-Partitioned Graphs”. In: Journal of Combinatorial
Theory, Series B 34.1 (1983), pp. 77–81. ISSN: 0095-8956. DOI:
10.1016/0095-8956(83)90008-4. URL:
https://www.sciencedirect.com/science/article/pii/
0095895683900084.

[Gir87] Jean-Yves Girard. “Linear logic”. In: Theoretical Computer
Science 50 (1987), pp. 1–102. DOI:
10.1016/0304-3975(87)90045-4.

[HG05] Dominic Hughes and Rob van Glabbeek. “Proof Nets for
Unit-free Multiplicative-Additive Linear Logic”. In: ACM
Transactions on Computational Logic 6.4 (2005), pp. 784–842.
DOI: 10.1145/1094622.1094629.

27 / 28

https://doi.org/10.1016/0095-8956(83)90008-4
https://www.sciencedirect.com/science/article/pii/0095895683900084
https://www.sciencedirect.com/science/article/pii/0095895683900084
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1094622.1094629

References III

[Hue80] Gérard Huet. “Confluent Reductions: Abstract Properties and
Applications to Term Rewriting Systems: Abstract Properties and
Applications to Term Rewriting Systems”. In: Journal of the ACM
27.4 (Oct. 1980), pp. 797–821. DOI: 10.1145/322217.322230.

[Kot59] Anton Kotzig. “On the theory of finite graphs with a linear
factor. II.”. slo. In: Matematicko-Fyzikálny Časopis 09.3 (1959).
In Slovak, with as original title Z teórie konečných grafov s
lineárnym faktorom. II., pp. 136–159. URL:
https://eudml.org/doc/29908.

[Lau05] Olivier Laurent. “Classical isomorphisms of types”. In:
Mathematical Structures in Computer Science 15.5 (Oct. 2005),
pp. 969–1004.

27 / 28

https://doi.org/10.1145/322217.322230
https://eudml.org/doc/29908

References IV

[Ngu20] Lê Thành Dũng Nguy˜̂en. “Unique perfect matchings, forbidden
transitions and proof nets for linear logic with Mix”. In: Logical
Methods in Computer Science 16.1 (Feb. 2020). DOI:
10.23638/LMCS-16(1:27)2020.

[Sey78] Paul D. Seymour. “Sums of circuits”. In: Graph Theory and
Related Topics (1978). Ed. by J. A. Bondy and U. S. R. Murty,
pp. 341–355.

[Sol83] Sergei Soloviev. “The category of finite sets and cartesian closed
categories”. In: Journal of Soviet Mathematics 22.3 (1983),
pp. 1387–1400.

27 / 28

https://doi.org/10.23638/LMCS-16(1:27)2020

References V

[SS79] D. J. Shoesmith and T. J. Smiley. “Theorem on Directed
Graphs, Applicable to Logic”. In: Journal of Graph Theory 3.4
(1979), pp. 401–406. DOI: 10.1002/jgt.3190030412. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.
3190030412.

[Sze04] Stefan Szeider. “On Theorems Equivalent with Kotzig’s Result
on Graphs with Unique 1-Factors”. In: Ars Combinatoria 73
(2004), pp. 53–64. URL: https:
//www.ac.tuwien.ac.at/files/pub/szeider-AC-2004.pdf.

[Yeo97] Anders Yeo. “A Note on Alternating Cycles in Edge-Coloured
Graphs”. In: Journal of Combinatorial Theory, Series B 69.2
(1997), pp. 222–225. DOI: 10.1006/jctb.1997.1728.

27 / 28

https://doi.org/10.1002/jgt.3190030412
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190030412
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190030412
https://www.ac.tuwien.ac.at/files/pub/szeider-AC-2004.pdf
https://www.ac.tuwien.ac.at/files/pub/szeider-AC-2004.pdf
https://doi.org/10.1006/jctb.1997.1728

Proof-nets for A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C)

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`

27 / 28

Proof 3/3: Why the distributed shape?

A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) not of this shape

Correctness criterion to get this local shape from global distributivity

A⊥ A

l

p

&

⊗

`

l⊥

p⊥

⊕

`

⊗

B B⊥

. . .

q

l1 l2 l⊥2 l⊥1

q⊥

. . .

∗

∗

∗

...

jj

1 Forbidden configuration

2 Dependence on a &

3 ` below

4 Distributivity
5 Forbidden cycle

27 / 28

Proof 3/3: Why the distributed shape?

A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) not of this shape

Correctness criterion to get this local shape from global distributivity

A⊥ A

l

p

&

⊗

`

l⊥

p⊥

⊕

`

⊗

B B⊥

. . .

q

l1 l2 l⊥2 l⊥1

q⊥

. . .

∗

∗

∗

...

j

j

1 Forbidden configuration
2 Dependence on a &

3 ` below

4 Distributivity
5 Forbidden cycle

27 / 28

Proof 3/3: Why the distributed shape?

A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) not of this shape

Correctness criterion to get this local shape from global distributivity

A⊥ A

l

p

&

⊗

`

l⊥

p⊥

⊕

`

⊗

B B⊥

. . .

q

l1 l2 l⊥2 l⊥1

q⊥

. . .

∗

∗

∗

...

j

j

1 Forbidden configuration
2 Dependence on a &

3 ` below

4 Distributivity
5 Forbidden cycle

27 / 28

Proof 3/3: Why the distributed shape?

A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) not of this shape

Correctness criterion to get this local shape from global distributivity

A⊥ A

l p

&

⊗

`

l⊥p⊥

⊕

`

⊗

B B⊥

. . . q l1 l2 l⊥2 l⊥1 q⊥. . .

∗
∗

∗

...

j

j

1 Forbidden configuration
2 Dependence on a &

3 ` below

4 Distributivity

5 Forbidden cycle

27 / 28

Proof 3/3: Why the distributed shape?

A⊗ (B ⊕ C) ≃ (A⊗ B)⊕ (A⊗ C) not of this shape

Correctness criterion to get this local shape from global distributivity

A⊥ A

l p

&

⊗

`

l⊥p⊥

⊕

`

⊗

B B⊥

. . . q l1 l2 l⊥2 l⊥1 q⊥. . .

∗
∗

∗

...

j

j

1 Forbidden configuration
2 Dependence on a &

3 ` below

4 Distributivity
5 Forbidden cycle

27 / 28

Beffara A � A⊗ (A⊥ ` A) is a retraction

A⊥

A

`

A⊥

⊗

A

A⊥

⊗

A

`
A⊥

A

A ` (A⊥ ⊗ A) (A⊥ ` A)⊗ A⊥

28 / 28

Around Sequentialization

Proof-nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]Sequentialization [Gir87]

MLL Proof-nets are
exactly the images of

proofs.

Sequentialization [HG05]

MALL Proof-nets are
exactly the images of

proofs.

Kotzig [Kot59]

On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding

28 / 28

Around Sequentialization

Proof-nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]

Sequentialization [Gir87]

MLL Proof-nets are
exactly the images of

proofs.

Sequentialization [HG05]

MALL Proof-nets are
exactly the images of

proofs.

Kotzig [Kot59]

On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding

28 / 28

Around Sequentialization

Proof-nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]

Sequentialization [Gir87]

MLL Proof-nets are
exactly the images of

proofs.

Sequentialization [HG05]

MALL Proof-nets are
exactly the images of

proofs.

Kotzig [Kot59]

On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding

28 / 28

Around Sequentialization

Proof-nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]Sequentialization [Gir87]

MLL Proof-nets are
exactly the images of

proofs.

Sequentialization [HG05]

MALL Proof-nets are
exactly the images of

proofs.

Kotzig [Kot59]

On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding

28 / 28

Around Sequentialization

Proof-nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]Sequentialization [Gir87]

MLL Proof-nets are
exactly the images of

proofs.

Sequentialization [HG05]

MALL Proof-nets are
exactly the images of

proofs.

Kotzig [Kot59]

On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding

28 / 28

Around Sequentialization

Proof-nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]Sequentialization [Gir87]

MLL Proof-nets are
exactly the images of

proofs.

Sequentialization [HG05]

MALL Proof-nets are
exactly the images of

proofs.

Kotzig [Kot59]

On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding

28 / 28

Bungee Jumping

v

x u

d

f1 f2

ω

p

e

x
c

28 / 28

	Context
	Several representations
	Formulas

	Isomorphisms in Multiplicative-Additive Linear Logic
	Retractions in Multiplicative Linear Logic
	Conclusion
	References
	Secrets

