

Towards less manipulable voting systems François Durand, Fabien Mathieu, Ludovic Noirie

Inria / Alcatel-Lucent Bell Labs France Displexity workshop

Introduction: voting systems

Context:

- Origins in politics.
- Applications in any situation of **collective choice**.

Questions:

- Is there a natural way to select a reasonable winner?
- Can we trust the electors?
- If not, is it possible to design a voting system that is resistant to manipulation?

Terminology warning: "manipulation"

- = internal manipulation by electors themselves
- = tactical voting
- \ne "bribery" (somebody pays electors to change their votes), etc.

Plan

Previously on voting systems...

In quest for a reasonable winner Presentation of manipulability Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing

Introduction Idea of the theorem in a particular case Generalization of the theorem

Conclusion and future work

Plan

Previously on voting systems...

In quest for a reasonable winner

Presentation of manipulability Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing

Introduction Idea of the theorem in a particular case Generalization of the theorem

Conclusion and future work

Manipulability of voting systems

A simplified framework

n electors. *m* candidates named A, B, C...

Each elector i has a **binary relation** r_i over the candidates, that represents her **preferences**.

• Example of *i*'s preferences: $A \sim B \succ D \succ C$.

Voting system $f : (r_1, \ldots, r_n) \rightarrow v \in \{A, B, C \ldots\}.$

Previously on voting systems... In quest for a reasonable winner

2 candidates: May's theorem

Plurality (= "uninominal à un tour"):

- Each elector votes for one candidate.
- The candidate with most votes gets elected.

May's theorem (1952): plurality is the only anonymous, neutral and positively responsive voting system for 2 candidates.

Independence of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		
	40	35	25
	А	В	С
Preferences	С	C	Α
	В	A	В

"Majority matrix":

	А	В	С	Victories
А				0
В				0
С				0

Independence of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		rs
	40	35	25
	А	В	С
Preferences	С	С	Α
	В	A	В

"Majority matrix":

	А	В	С	Victories
А		65		1
В	35			0
С				0

Independence of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		
	40	35	25
	А	В	С
Preferences	C	C	Α
	В	А	В

"Majority matrix":

	Α	В	C	Victories
А		65	40	1
В	35			0
С	60			1

Independence of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Example:	Electors		
	40	35	25
	А	В	С
Preferences	C	C	А
	В	А	В

"Majority matrix":

	А	В	С	Victories
А		65	40	1
В	35		35	0
С	60	65		2

Independence of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

E.g. if C wins, then she must win any electoral duel versus A or B. If it is the case, we say that she's a **Condorcet winner**.

Example:	Electors		
	40	35	25
	А	В	С
Preferences	C	C	А
	В	A	В

"Majority matrix":

	А	В	С	Victories
А		65	40	1
В	35		35	0
С	60	65		2

If we want to extend Plurality for $m \ge 3$ and respect IIA, then C must be elected. We then say that our voting system respects **Condorcet criterion**.

3 candidates or more: Condorcet's paradox

Example:	Electors		
	40	35	25
	А	В	С
Preferences	В	C	Α
	С	А	В

"Majority matrix":

	А	В	С	Victories
А		65	40	1
В	35		75	1
С	60	25		1

Condorcet's paradox (1785): A defeats B, B defeats C and C defeats A.

It's not possible to extend Plurality for $m \ge 3$ while respecting independence of irrelevant alternatives (IIA).

Arrow's theorem

We would like a voting system with the following properties.

- Non-dictatorship: there is not one elector who always decides alone.
- Unanimity: whenever all electors prefers A to B, candidate B cannot get elected.
- Independence of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Arrow's theorem

We would like a voting system with the following properties.

- Non-dictatorship: there is not one elector who always decides alone.
- Unanimity: whenever all electors prefers A to B, candidate B cannot get elected.
- Independence of irrelevant alternatives (IIA): if we remove one of the losing candidates, the winner should remain the same.

Arrow's theorem (1951): for $m \ge 3$ candidates, such a voting system does not exist.

 \Rightarrow For $m \ge 3$ candidates, there is no "natural", canonical way to aggregate binary relations of preferences from several electors in order to choose a winning candidate.

Extending the framework of preferences

Old framework: binary relations of preferences only.

Example of extended framework:

- Each elector has a **utility vector** about the candidates, e.g. (10, 10, 0, 2).
- ► This utility vector induces a binary relation of preferences over the candidates, e.g. A ~ B ≻ D ≻ C.

Extending the framework of preferences

Old framework: binary relations of preferences only.

Example of extended framework:

- Each elector has a **utility vector** about the candidates, e.g. (10, 10, 0, 2).
- ► This utility vector induces a binary relation of preferences over the candidates, e.g. A ~ B ≻ D ≻ C.

General extended framework:

- Each elector *i* has a **state** $\omega_i \in \Omega_i$,
- ► This state contains enough information so that we can extract her **binary relation of preference** $r_i = R_i(\omega_i)$.

Voting system
$$f : (\omega_1, \ldots, \omega_n) \rightarrow v \in \{A, B, C \ldots\}.$$

Escaping Arrow's theorem

Example: range voting.

- Each elector gives her utility vector, that is, a note for each candidate.
- The candidate with highest average (or median) wins.

This voting system is **non-dictatorial**, **unanimous** and **independent of irrelevant alternatives**... and infinitely many other voting systems are too!

So... have we won? Have we found a voting system that is fully satisfying?

Plan

Previously on voting systems...

In quest for a reasonable winner

Presentation of manipulability

Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing

Introduction Idea of the theorem in a particular case Generalization of the theorem

Conclusion and future work

Previously on voting systems...

Manipulability: an example

Voting system: range voting.

		Sincere		
		А	В	
Electors	80%	7	5	
	20%	2	5	
Average		6	5	
Winner		A		

Manipulability: an example

Voting system: range voting.

		Sincere		Tactical	
		А	В	А	В
Electors	80%	7	5	7	5
	20%	2	5	0	10
Average		6	5	5,6	6
Winner		A		В	

We say that this situation is **manipulable** for this voting system:

- A subset of electors, by casting a tactical ballot, may change the result to a candidate they prefer.
- I.e., sincere voting is not a strong Nash equilibrium.

Gibbard's theorem

Gibbard's theorem (1973): for any non-dictatorial voting system with at least 3 eligible candidates, there exists a situation that is manipulable by one elector.

I.e.: this situation is not even a weak Nash equilibrium.

Manipulability rate

We draw a situation $\omega = (\omega_1, \ldots, \omega_n)$ (states of all electors) according to a **probability measure** *P*.

Manipulability rate: what is the probability that this situation ω is manipulable for voting system *f*?

$$\rho_P(f) = P(\omega \text{ is } f \text{-manipulable}).$$

Manipulability is quite frequent

P = "Uniform spherical culture", n = 33 electors

Manipulability of voting systems

Plan

Previously on voting systems...

In quest for a reasonable winner Presentation of manipulability Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing

Introduction Idea of the theorem in a particular case Generalization of the theorem

Conclusion and future work

Manipulability of voting systems

Condorcification

Durand, Mathieu and Noirie (2012)

The **condorcification** of f is a new voting system f^c :

- Whenever there exists a Condorcet winner, designate her;
- Otherwise, use *f*.

If f has reasonable properties, then f^c is **at most as manipulable** as f:

- Any situation ω manipulable for f^c is manipulable for f;
- ▶ In particular, $\rho_P(f^c) \le \rho_P(f)$ for any probability measure *P*.

If f meets a simple condition, then f^c is **strictly less manipulable** than f. It is the case for all classical voting systems that do not meet Condorcet criterion already (except veto).

Plan

Previously on voting systems...

In quest for a reasonable winner Presentation of manipulability Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing Introduction

Idea of the theorem in a particular case Generalization of the theorem

Conclusion and future work

Goal

Some voting systems may not depend on binary relations of preference only.

Example: range voting (a note for each candidate).

Intuition:

- Binary relations of preference = necessary information (define Condorcet winner and coalitions).
- More information than that = more opportunities for lies.

Our goal: restrict to binary relations of preferences while reducing manipulability.

Restrict the scope of research for a voting system with the lowest manipulability.

Reminder of the framework

Electoral space:

- n: number of electors
- m: number of candidates
- ω_i : elector *i*'s state (utilities, etc.)

► r_i = R_i(ω_i): elector i's binary relation of preference over the candidates

Voting system:

$$f: (\omega_1, \ldots, \omega_n) \to v \in \{A, B \ldots\}.$$

Manipulability of voting system f: a more formal definition Situation $\omega = (\omega_1, \dots, \omega_n)$ is f-manipulable to situation ψ iff:

$$\begin{cases} f(\psi) \neq f(\omega), \\ \forall \text{ elector } i, \psi_i \neq \omega_i \Rightarrow f(\psi) \succ_{R_i(\omega_i)} f(\omega). \end{cases}$$

Situation ω is *f*-manipulable iff there exists such a ψ .

Manipulability indicator of f:

$$M_f(\omega) = igg| egin{array}{c} 1 ext{ if } \omega ext{ is } f ext{-manipulable,} \\ 0 ext{ otherwise.} \end{array}$$

With *P* a probability distribution used to draw the situation ω , the *manipulability rate* of *f* is:

$$\rho_P(f) = \int M_f(\omega) P(d\omega).$$

Manipulability of voting systems

Plan

Previously on voting systems...

In quest for a reasonable winner Presentation of manipulability Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing

Introduction Idea of the theorem in a particular case

Generalization of the theorem

Conclusion and future work

Manipulability of voting systems

2 electors, 2 candidates named A (-) and B (+). $\omega_i = (r_i, y_i)$, where $y_i \in]0, 1]$ is an intensity of preference.

2 electors, 2 candidates named A (-) and B (+). $\omega_i = (r_i, y_i)$, where $y_i \in]0, 1]$ is an intensity of preference.

2 electors, 2 candidates named A (-) and B (+). $\omega_i = (r_i, y_i)$, where $y_i \in]0, 1]$ is an intensity of preference. Voting system f: elect sign of the sum.

2 electors, 2 candidates named A (-) and B (+). $\omega_i = (r_i, y_i)$, where $y_i \in]0, 1]$ is an intensity of preference. Voting system f: elect sign of the sum.

E.g. do as if $y_1 = \frac{1}{3}$ and $y_2 = \frac{1}{2}$, whatever electors say.

- **Sliced** voting system f_y .
- Depends on r_1 and r_2 only.

2 electors, 2 candidates named A (-) and B (+). $\omega_i = (r_i, y_i)$, where $y_i \in]0, 1]$ is an intensity of preference. Voting system f: elect sign of the sum.

E.g. do as if $y_1 = \frac{1}{3}$ and $y_2 = \frac{1}{2}$, whatever electors say.

- **Sliced** voting system f_y .
- Depends on r_1 and r_2 only.

Red situations are less manipulable than before!

2 electors, 2 candidates named A (-) and B (+). $\omega_i = (r_i, y_i)$, where $y_i \in]0, 1]$ is an intensity of preference. Voting system f: elect sign of the sum.

E.g. do as if $y_1 = \frac{1}{3}$ and $y_2 = \frac{1}{2}$, whatever electors say.

- Sliced voting system f_y.
- Depends on r_1 and r_2 only.

Red situations are less manipulable than before!

If *r* and *y* are independent, then *f*'s manipulability rate is the average of its restrictions to such red figures.

A particular case for the slicing theorem

Elector *i*'s state: $\omega_i = (r_i, y_i)$

- ► r_i: elector i's binary relation of preference over the candidates
- y_i: additional information about elector i's preferences

Probability laws:

Assumption: random variables R and Y are independent.

•
$$(\Omega, P) = (\mathcal{R}, \mu) \times (\mathcal{Y}, \nu).$$

Does not mean that electors are independent!

Slicing theorem

Durand, Mathieu and Noirie (2013)

Lemma

For situations of type (r, y), slice f_y is less manipulable than f:

$$M_{f_y}(r,y) \leq M_f(r,y).$$

Sketch of proof: the same candidate is elected, but opportunities for tactical voting are limited (red situations in previous example).

Theorem

There exists y such that $\rho_P(f_y) \leq \rho_P(f)$.

Remark

If f respects Condorcet criterion, then any slice f_y does.

• Final voting system f_y is interesting (not dictatorial).

Proof of the theorem

For any y, we have:

$$\rho_P(f_y) = \int \mu(dr) \int \nu(dy') M_{f_y}(r, y')$$
(Fubbini)
= $\int \mu(dr) M_{f_y}(r, y).$ (Fubbini)

Manipulability of f:

$$\rho_{P}(f) = \int \nu(dy) \int \mu(dr) M_{f}(r, y)$$
(Fubbini)
$$\geq \int \nu(dy) \underbrace{\int \mu(dr) M_{f_{y}}(r, y)}_{=\rho_{P}(f_{y})}$$
(lemma)

So, there exists y such that $\rho_P(f_y) \leq \rho_P(f)$.

Plan

Previously on voting systems...

In quest for a reasonable winner Presentation of manipulability Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing

Introduction Idea of the theorem in a particular case Generalization of the theorem

Conclusion and future work

Decomposed electoral space

Particular case seen before

$$\begin{array}{c} \mu \longrightarrow r \\ \hline \nu \longrightarrow y \end{array} \xrightarrow{} \omega = (r, y) \\ \text{and } R(\omega) = r \end{array} (\Omega, P) = (\mathcal{R}, \mu) \times (\mathcal{Y}, \nu)$$

Decomposed electoral space

Particular case seen before

$$\begin{array}{c} \mu \longrightarrow r \\ \hline \nu \longrightarrow y \end{array} \xrightarrow{} \omega = (r, y) \\ \text{and } R(\omega) = r \end{array} \left(\Omega, P \right) = (\mathcal{R}, \mu) \times (\mathcal{Y}, \nu)$$

General case

Decomposed electoral space

Particular case seen before

General case

$$\begin{array}{c} \mu \longrightarrow r \\ \hline \nu \longrightarrow y \end{array} \xrightarrow{\pi} \omega = \pi(r, y) \\ \text{and } R(\omega) = r \end{array} \left((\Omega, P) = \pi((\mathcal{R}, \mu) \times (\mathcal{Y}, \nu)) \right)$$

Simpler (but equivalent) general case

$$\begin{array}{c} \mu \longrightarrow r \\ \hline \nu \longrightarrow y \end{array} \xrightarrow{\pi} \omega = y(r) \\ \text{and } R(\omega) = r \end{array} \qquad \begin{array}{c} \text{Each } y_i \text{ is a function } r_i \to \omega_i. \\ \pi \text{ is the evaluation.} \end{array}$$

Example of decomposed electoral space

n = 2 electors, m = 2 candidates.

 μ draws equiprobably:

- 1. Each elector has binary relation $A \succ B$,
- 2. Each elector has binary relation $B \succ A$.

 ν always draws functions y_1 and y_2 that each does:

$$\begin{array}{ll} \mathsf{A} \succ \mathsf{B} & \rightarrow & \mathcal{A} = (\mathsf{A} \succ \mathsf{B}, \mathsf{orange}) \\ \mathsf{B} \succ \mathsf{A} & \rightarrow & \mathcal{B} = (\mathsf{B} \succ \mathsf{A}, \mathsf{blue}). \end{array}$$

Then $P = \pi(\mu \times \nu)$ draws equiprobably:

- 1. Each elector is in state $\mathcal{A} = (A \succ B, \text{orange})$,
- 2. Each elector is in state $\mathcal{B} = (B \succ A, blue)$.

Example of *R*-decomposable electoral space

n = 2 electors, m = 2 candidates.

P draws equiprobably:

- 1. Each elector is in state $\mathcal{A} = (A \succ B, \text{orange})$,
- 2. Each elector is in state $\mathcal{B} = (B \succ A, blue)$.

Then:

- μ (the law of *R*) is like before,
- we can exhibit ν like before.

We say that space (Ω, P) is *R*-decomposable.

Definition of *R*-decomposable electoral space

What is given:

We want a probability measure ν that draws *n* functions y_i such that:

$$\left\{ \begin{array}{l} P = \pi(\mu \times \nu), \text{where } \pi \text{ is the evaluation}, \\ \left(\forall r \in R(\Omega), R(y(r)) = r \right), \ \nu \text{-almost surely for } y. \end{array} \right.$$

One elector: lemma of complementary random variable

Lemma

- (Ω, P) a probability space.
- R a random variable with values in a measurable space \mathcal{R} .

Assumption: \mathcal{R} is **finite** (and endowed with discrete σ -algebra). Then (Ω, P) is *R*-decomposable.

Sketch of proof

Independently for each possible value r, we choose y(r) according to P_r (conditional probability knowing r).

Several independent electors

Proposition

If electors are **independent**, then the electoral space is **R-decomposable**.

Sketch of proof

Apply lemma of complementary random variable to each elector.

Consequence

Slicing works: for any voting system f, there exists a sliced voting system f_y that is at most as manipulable as f.

Other criteria of decomposability

Independence is not a necessary condition. Cf. example with orange and blue electors.

- We know other sufficient conditions.
- We also know a necessary condition.
- But we know no simple equivalent condition for the *R*-decomposability of an electoral space.

Plan

Previously on voting systems...

In quest for a reasonable winner Presentation of manipulability Reducing manipulability, step 1: condorcification

Reducing manipulability, step 2: slicing

Introduction Idea of the theorem in a particular case Generalization of the theorem

Conclusion and future work

Existence of an optimal voting system

P: probability measure used to draw population preferences (with reasonable properties = decomposability).

When looking for a voting system whose **manipulation rate is minimal** (among systems with reasonable properties), we can restrict the research to the class of those that:

- depend on binary relations of preference only,
- respect Condorcet criterion.

For each pair (n, m), there is a finite number of such voting systems.

An optimal voting system exists.

Future work: know more about optimal voting systems

For each pair (n, m), number of voting systems that depend on binary relations of preference only and respect Condorcet criterion:

$$\sim m^{\left(\left(2^{(m^2)}\right)^n\right)}.$$

For the moment, we can give an optimal voting system explicitly for **very small** values: $n \le 5$ electors and $m \le 4$ candidates...

Conclusion

- For voting systems that rely on binary relations of preferences only, there is no canonical way to choose the winner (Arrow's theorem).
- For m ≥ 3 candidates, all non-dictatorial voting systems are subject to manipulation (Gibbard's theorem).
- We can limit manipulability by **condorcification** and **slicing**.
- There exists an optimal voting system that depends on binary relations of preferences only and respects Condorcet criterion.

Thanks for your attention! Questions?

Why would manipulability be a problem?

If electors do not vote sincerely, the collective decision relies on **false information**.

If electors do vote sincerely, they may be frustrated and find the system nonsensical, since a non-sincere ballot, **misrepresenting** their preferences, would have **defended these preferences better**.

Manipulability of voting systems

Restriction to sincere strategies (reduction)

Two-round system:

- Round 1: Fabien votes for A.
- Round 2, A versus B: Fabien votes for B.

Obviously, Fabien is not sincere!

Solution:

- do only one round,
- ask preferences directly,
- determine the corresponding sincere strategy automatically.
- = reduced voting system

People may still lie about their preferences. But they can no more use strategies that are obviously insincere!

Manipulability: an example

Voting system: plurality.

	Electors		
	40	35	25
	А	В	С
Preferences	В	C	А
	С	А	В
Sincere ballot	Α	В	С

Manipulability: an example

Voting system: plurality.

	Electors		
	40	35	25
	А	В	С
Preferences	В	С	А
	С	А	В
Sincere ballot	Α	В	С
Manipulation	А	С	С

We say that this situation is **manipulable** for this voting system:

- A subset of electors, by casting a tactical ballot, may change the result to a candidate that they prefer.
- ► I.e., sincere voting is not a strong Nash equilibrium.

