Bifix codes and interval exchanges

Francesco Dolce

Amiens, 25th November 2014

Joint work with:
V. Berthé, C. De Felice, J. Leroy, D. Perrin, C. Reutenauer and G. Rindone
Motivation

\[x = ababaababaababa \cdots \]

\[x = \varphi^\omega(a) \]

\[\varphi : \begin{cases} a &\mapsto ab \\ b &\mapsto a \end{cases} \]
Motivation

\[x = abaababaabaababa \ldots \]

Francesco Dolce (Paris-Est) Bifix Codes and Interval Exchanges Amiens, 25th Nov. 2014 3 / 28
Motivation

\[x = ab \, aa \, ba \, ba \, ab \, aa \, ba \, ba \ldots \]

\[
\begin{align*}
\{ & u = aa \\
& v = ab \\
& w = ba \\
\}
\end{align*}
\]
Motivation

\[x = v \ u \ w \ w \ v \ u \ w \ w \cdots \]
Interval exchange transformations

Let A be a finite set ordered by $<_1$ and $<_2$. An interval exchange transformation (IET) is a map $T : [0, 1] \rightarrow [0, 1]$ defined by

$$T(z) = z + \alpha_z \quad \text{if } z \in I_a.$$
A IET T is said to be *minimal* if for any $z \in [0, 1]$ the orbit $O(z) = \{ T^n(z) | n \in \mathbb{Z} \}$ is dense in $[0, 1]$.

T is said *regular* if the orbits of the separation points $\neq 0$ are infinite and disjoint.

Theorem [Keane, 1975]

A regular interval exchange transformation is minimal.
Natural coding

Let T be an IET relative to $(l_a)_{a \in A}$. The natural coding of T relative to $z \in [0, 1]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in l_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

\[\text{Diagram}\]
Natural coding

Let T be an IET relative to $(I_a)_{a \in A}$. The natural coding of T relative to $z \in [0, 1]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in I_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

α

T

$\Sigma_T(\alpha) = a$
Natural coding

Let T be an IET relative to $(l_a)_{a \in A}$. The natural coding of T relative to $z \in [0,1]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in l_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.
Natural coding

Let T be an IET relative to $(l_a)_{a \in A}$. The natural coding of T relative to $z \in [0, 1]$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^\omega$ defined by

$$a_n = a \text{ si } T^n(z) \in l_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

\[\Sigma_T(\alpha) = a b a\]
Natural coding

Let T be an IET relative to $(l_a)_{a \in A}$. The natural coding of T relative to $z \in [0, 1]$ is the infinite word $\Sigma_T(z) = a_0a_1\cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in l_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

$$\Sigma_T(\alpha) = a\ b\ a\ a$$
Let T be an IET relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [0,1]$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

\[a_n = a \quad \text{if} \quad T^n(z) \in I_a. \]

Example

The *Fibonacci word* is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

\[
\Sigma_T(\alpha) = a \ b \ a \ a \ b
\]
Let T be an IET relative to $(l_a)_{a \in A}$. The natural coding of T relative to $z \in [0,1]$ is the infinite word $\Sigma_T(z) = a_0a_1\cdots \in A^\omega$ defined by

$$a_n = a \quad \text{si} \quad T^n(z) \in l_a.$$

Example

The Fibonacci word is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α, i.e. $T(z) = z + \alpha \mod 1$.

$$T^2(\alpha) \quad T^5(\alpha) \quad \alpha \quad T^3(\alpha) \quad T(\alpha) \quad T^4(\alpha)$$

$$\Sigma_T(\alpha) = abaaaba\cdots$$
Proposition

If T is minimal, $F(\Sigma_T(z))$ does not depend on z.

When T is regular (minimal), $F(T) = F(\Sigma_T(z))$ is said a regular (minimal) interval exchange set.

Example

The **Fibonacci set** is the set of factors of a natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$.

\[
F(T) = \{ \varepsilon, a, b, aa, ab, ba, aab, aba, baa, \ldots \}
\]
Theorem

Let T be a regular IET defined over a quadratic field. Then the interval exchange set $F(T)$ is primitive morphic.

Example

\[|l_a|, |l_b| \in \mathbb{Q}[\sqrt{5}] \]

\[F(T) = F(x) \quad \text{with} \quad x = id \circ f^\omega(a) \]

\[f : \begin{cases}
 a \mapsto ab \\
 b \mapsto a
\end{cases} \]
Cylinders

For a word $w = b_0 b_1 \cdots b_{m-1}$, let's define

$$I_w = I_{b_0} \cap T^{-1}(I_{b_1}) \cap \cdots \cap T^{-m+1}(I_{b_{m-1}})$$

and $J_w = T^m(I_w)$.

Example

$$I_{aa} = I_a \cap T^{-1}(I_a), \quad I_{ab} = I_a \cap T^{-1}(I_b), \quad I_{ba} = I_b \cap T^{-1}(I_a), \quad I_{bb} = I_b \cap T^{-1}(I_b);$$

$$J_{aa} = T^2(I_a) \cap T(I_a), \quad J_{ab} = T^2(I_a) \cap T(I_b), \quad J_{ba} = T^2(I_b) \cap T(I_a), \quad J_{bb} = T^2(I_b) \cap T(I_b).$$
Cylinders

We denote by $<_1$ the lexicographic order on A^* induced by $<_1$ and by $<_2$ the lexicographic order on the reversal of the words induced by $<_2$.

Proposition

- $I_u < I_v$ if and only if $u <_1 v$ and u is not a prefix of v.
- $J_u < J_v$ if and only if $u <_2 v$ and u is not a suffix of v.

Example

\[
\begin{align*}
 &I_{aab} \quad I_{ab} \quad I_b \\
 &J_{ab} \quad J_{ba} \quad J_{aa}
\end{align*}
\]

\[
aab <_1 ab <_1 b \quad \text{while} \quad ab <_2 ba <_2 aa.
\]
A set $X \subset A^+$ of nonempty words over an alphabet A is a code if for every $m, n \geq 1$ and $x_1, \ldots, x_n, y_1, \ldots, y_m$,

$$x_1 \cdots x_n = y_1 \cdots y_m \implies n = m \quad \text{and} \quad x_i = y_i \quad \text{for} \quad i = 1, \ldots, n$$

A prefix code is a set of nonempty words which does not contain any proper prefix of its elements. A suffix code is defined symmetrically. A bifix code is a set which is both a prefix code and a suffix code.

Example

- $\{a, ab, ba\}$ is not a code.
- $\{aabb, ababb, abb\}$ is a prefix code but it’s not a suffix code.
- $\{aa, ab, ba\}$ is a bifix code.
Codes

A set $X \subset A^+$ of nonempty words over an alphabet A is a *code* if for every $m, n \geq 1$ and $x_1, \ldots, x_n, y_1, \ldots, y_m$,

$$x_1 \cdots x_n = y_1 \cdots y_m \implies n = m \quad \text{and} \quad x_i = y_i \quad \text{for} \quad i = 1, \ldots, n$$

A *prefix code* is a set of nonempty words which does not contain any proper prefix of its elements. A *suffix code* is defined symmetrically. A *bifix code* is a set which is both a prefix code and a suffix code.

Example

- $\{a, ab, ba\}$ is not a code.
- $\{aabb, ababb, abb\}$ is a prefix code but it’s not a suffix code.
- $\{aa, ab, ba\}$ is a bifix code.

A bifix code $X \subset S$ is *S-maximal* if it is not properly contained in a bifix code $Y \subset S$.
Proposition

Let T a minimal IET and $S = F(T)$. If X is a finite S-maximal bifix code, the families $(I_w)_{w \in X}$ and $(J_w)_{w \in X}$ are ordered partitions of $[0, 1]$, relatively to the orders $<_1$ and $<_2$.

Example

Let S be the Fibonacci set. The set $X = \{a, baab, bab\}$ is an S-maximal bifix code.

\[a <_1 baab <_1 bab \quad \text{and} \quad bab <_2 baab <_2 a. \]
Transformation associated with a bifix code

Let T be a regular IET and $S = F(T)$. Let X be a finite S-maximal bifix code on the alphabet A. Let’s define the transformation

$$T_X(z) = T_{|u|}(z) \quad \text{if } z \in I_u.$$
Transformation associated with a bifix code

Let T be a regular IET and $S = F(T)$. Let X be a finite S-maximal bifix code on the alphabet A. Let’s define the transformation

$$T_X(z) = T^{|u|}(z) \quad \text{if} \quad z \in I_u.$$

Example
Let T be a regular IET and $S = F(T)$. Let X be a finite S-maximal bifix code on the alphabet A. Let’s define the transformation $T_X(z) = T^{|u|}(z)$ if $z \in I_u$.

Example

![Diagram showing transformations and intervals]

Francesco Dolce (Paris-Est)
Bifix Codes and Interval Exchanges
Amiens, 25th Nov. 2014
Let T be a regular IET and $S = F(T)$. Let X be a finite S-maximal bifix code on the alphabet A. Let’s define the transformation

$$T_X(z) = T^{|u|}(z) \quad \text{if } z \in I_u.$$
A *coding morphism* for a prefix code $X \subset A^+$ is a morphism $f : B^* \to A^*$ which maps bijectively B onto X.

Example

Let’s consider the bifix code $X = \{aa, ab, ba\}$ on $A = \{a, b\}$ and let $B = \{u, v, w\}$. The map

$$f : \begin{cases}
 u \mapsto aa \\
 v \mapsto ab \\
 w \mapsto ba
\end{cases}$$

is a coding morphism for X.

Francesco Dolce (Paris-Est)

Bifix Codes and Interval Exchanges

Amiens, 25th Nov. 2014
Transformation associated with a coding morphism

Let \(f : B^* \to A^* \) be a coding morphism for \(X \). Let \((K_b)_{b \in B}\), with \(K_b = I_{f(b)} \). Let \(T_f \) be the IET relative to \((K_b)_{b \in B}\).

Proposition

If \(X \) is a finite \(S \)-maximal bifix code, one has \(T_f = T_X \).

Example

Let \(X = \{a, baab, bab\} \), \(B = \{u, v, w\} \) and

\[
\begin{align*}
f : u &\mapsto a, \\
v &\mapsto baab, \\
w &\mapsto bab.
\end{align*}
\]
Theorem [2014]

Let T a regular IET and $S = F(T)$. For any finite S-maximal bifix code X with coding morphism f, the transformation T_f is regular.

Example

$X = \{aa, ab, ba\}$ and $f : u \mapsto aa, \ v \mapsto ab, \ w \mapsto ba$.

Francesco Dolce (Paris-Est)
Bifix Codes and Interval Exchanges
Amiens, 25th Nov. 2014
IET on a stack

Let T a IET and G a transitive permutation group on a finite set Q. Let $\varphi : A^* \to G$ be a morphism and let $\psi : I \to G$ definend by $\psi(z) = \varphi(a)$ if $z \in I_a$. The skew product of T and G is the transformation U on $I \times Q$ definend by

$$U(z, q) = (T(z), q \psi(z))$$

$G = S_2$

$\varphi : a \mapsto (1), \ b \mapsto (12)$

$X = \{a, baab, bab\}$

Theorem [2014]

A regular interval exchange set has the finite index basis property a.

a A finite bifix code $X \subset S$ is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of F_A.
IET on a stack

Let T a IET and G a transitive permutation group on a finite set Q. Let $\varphi : A^* \to G$ be a morphism and let $\psi : I \to G$ definend by $\psi(z) = \varphi(a)$ if $z \in I_a$. The *skew product* of T and G is the transformation U on $I \times Q$ definend by

$$U(z, q) = (T(z), q \psi(z))$$

$G = S_2$

\[\varphi : a \mapsto (1), \ b \mapsto (12) \]

$X = \{ a, baab, bab \}$

Theorem [2014]

A regular interval exchange set has the finite index basis property\(^a\).

\[\text{a. A finite bifix code } X \subset S \text{ is an } S\text{-maximal bifix code of } S\text{-degree } d \text{ if and only if it is a basis of a subgroup of index } d \text{ of } F_A.\]
IET on a stack

Let \(T \) a IET and \(G \) a transitive permutation group on a finite set \(Q \). Let \(\varphi : A^* \to G \) be a morphism and let \(\psi : I \to G \) definend by \(\psi(z) = \varphi(a) \) if \(z \in I_a \). The *skew product* of \(T \) and \(G \) is the transformation \(U \) on \(I \times Q \) definend by

\[
U(z, q) = (T(z), q \psi(z))
\]

\[
G = S_2 \quad \quad \varphi : a \mapsto (1), \quad b \mapsto (12) \quad \quad X = \{a, baab, bab\}
\]

Theorem [2014]

A regular interval exchange set has the finite index basis property \(^a\).

\(^a\) A finite bifix code \(X \subset S \) is an \(S \)-maximal bifix code of \(S \)-degree \(d \) if and only if it is a basis of a subgroup of index \(d \) of \(F_A \).
IET on a stack

Let T a IET and G a transitive permutation group on a finite set Q. Let $\varphi : A^* \to G$ be a morphism and let $\psi : I \to G$ definend by $\psi(z) = \varphi(a)$ if $z \in I_a$. The skew product of T and G is the transformation U on $I \times Q$ definend by

$$U(z, q) = (T(z), q \psi(z))$$

$G = S_2$

$\varphi : a \mapsto (1), \ b \mapsto (12)$

$X = \{a, baab, bab\}$

Theorem [2014]

A regular interval exchange set has the finite index basis property a.

a. A finite bifix code $X \subset S$ is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of F_A.

Francesco Dolce (Paris-Est)

Bifix Codes and Interval Exchanges

Amiens, 25th Nov. 2014
Decoding

Let f be a coding morphism for a S-maximal prefix code. The decoding of x is the infinite word y s.t. $x = f(y)$.

Proposition

Let T be a minimal IET, $S = F(T)$, X a finite S-maximal prefix code and $f : B^* \rightarrow A^*$ a coding morphism. Then, for all $z \in [0, 1[$, one has $\Sigma_T(z) = f(\Sigma_{T^f}(z))$.
Example

\[T(\alpha) = a b a a b a b a b a b a a \cdots \]

\[\Sigma_T(\alpha) = \{ aa, ab, ba \} \text{ and } f : u \mapsto aa, v \mapsto ab, w \mapsto ba. \]

\[T_f(\alpha) = v u w w v u \cdots \]

\[\Sigma_{T_f}(\alpha) = v u w w v u \cdots \]

\[f (v u w w v u \cdots) = ab a a b a b a b a b a b a b a \cdots \]
Maximal bifix decoding

Let f be a coding morphism for a finite S-maximal bifix code $X \subset S$. The set $f^{-1}(S)$ is called a *maximal bifix decoding* of S.

Theorem [2014]

The family of regular interval exchange sets is closed under maximal bifix decoding.

Proof. $f^{-1}(S) = F(T_f)$.

Actually, this property is true for a larger class of sets...
Extension graphs

Let S be a biextendable set of words. For $w \in S$, we denote

$$L(w) = \{ a \in A \mid aw \in S \}, \quad R(w) = \{ a \in A \mid wa \in S \}$$

and

$$E(w) = \{ (a, b) \in A \times A \mid awb \in S \}.$$

The *extension graph* of w is the undirected bipartite graph $G(w)$ with vertices $L(w) \sqcup R(w)$ and edges $E(w)$.

Example

Let S be the Fibonacci set.

- $G(\varepsilon)$
 - a connected to a
 - b connected to b

- $G(a)$
 - a connected to a
 - b connected to b

- $G(b)$
 - a connected to a
Tree sets

We say that a biextendable set S is a *tree set* if the graph $G(w)$ is a tree (connected and acyclic) for all $w \in S$.

Example

Let $A = \{a, b, c\}$. The set S of factors of $a^*\{bc, bcba\}a^*$ is not a tree set.
Planar tree sets

Let $<_1$ and $<_2$ be two orders on A. For a set S and a word $w \in S$, the graph $G(w)$ is compatible with $<_1$ and $<_2$ if for any $(a, b), (c, d) \in E(w)$, one has

$$a <_1 b \implies b \leq_2 d$$

Example

Let S be the Fibonacci set. Set $a <_1 b$ and $b <_2 a$.

We say that a biextendable set S is a planar tree set w.r.t. $<_1$ and $<_2$ on A if for any $w \in S$, the graph $G(w)$ is a tree compatible with $<_1$ and $<_2$.
Example

Let $A = \{a, b, c\}$. The Tribonacci set is the set of factors of the Tribonacci word, i.e. is the fixpoint $x = f^\omega(a) = abacaba \cdots$ of the morphism

$$f : a \mapsto ab, \quad b \mapsto ac, \quad c \mapsto a.$$

It is not possible to find two orders on A making the three graphs planar.
Example

Let $A = \{a, b, c\}$. The Tribonacci set is the set of factors of the Tribonacci word, i.e. is the fixpoint $x = f^\omega(a) = abacaba \cdots$ of the morphism

$$f : a \mapsto ab, \quad b \mapsto ac, \quad c \mapsto a.$$

\[
\begin{align*}
G(\varepsilon) & \quad G(a) & \quad G(aba) \\
\begin{array}{c}
\text{a} \\
\text{\quad b} \\
\text{\quad c}
\end{array} & \quad \begin{array}{c}
\text{b} \\
\text{\quad a} \\
\text{\quad c}
\end{array} & \quad \begin{array}{c}
\text{c} \\
\text{\quad a} \\
\text{\quad b}
\end{array}
\end{align*}
\]

It is not possible to find two orders on A making the three graphs planar.

Theorem [Ferenczi, Zamboni, 2008]

A set S is a regular interval exchange set on A if and only if it is a uniformly recurrent planar tree set containing A.
Theorem [2014]

The family of uniformly recurrent tree set is closed under maximal bifix decoding.
Merci!