Return words and palindromes in specular sets

Francesco Dolce

Praha, 24th May 2016

based on a joint work with

V. Berthé, C. De Felice, V. Delecroix,
J. Leroy, D. Perrin, C. Reutenauer, G. Rindone
return words

HOME SWEET HOME

palindromes

TACO CAT
Outline

Introduction

1. Specular sets
2. Return words
3. Palindromes

Conclusions
The *extension graph* of a word \(w \in S \) is the undirected bipartite graph \(\mathcal{E}(w) \) with vertices \(L(w) \sqcup R(w) \) and edges \(B(w) \), where

\[
\begin{align*}
L(w) &= \{ a \in A \mid aw \in S \}, \\
R(w) &= \{ a \in A \mid wa \in S \}, \\
B(w) &= \{ (a, b) \in A \times A \mid awb \in S \}.
\end{align*}
\]
The extension graph of a word $w \in S$ is the undirected bipartite graph $E(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$L(w) = \{a \in A \mid aw \in S\},$$
$$R(w) = \{a \in A \mid wa \in S\},$$
$$B(w) = \{(a, b) \in A \times A \mid awb \in S\}.$$
The \textit{extension graph} of a word \(w \in S \) is the undirected bipartite graph \(\mathcal{E}(w) \) with vertices \(L(w) \sqcup R(w) \) and edges \(B(w) \), where

\[
L(w) = \{ a \in A \mid aw \in S \}, \\
R(w) = \{ a \in A \mid wa \in S \}, \\
B(w) = \{ (a, b) \in A \times A \mid ab \in S \}.
\]

\textbf{Example (Fibonacci)}

\(S = \{ \varepsilon, a, b, aa, ab, ba, aab, aba, baa, bab, \ldots \} \).
The *extension graph* of a word \(w \in S \) is the undirected bipartite graph \(E(w) \) with vertices \(L(w) \sqcup R(w) \) and edges \(B(w) \), where

\[
\begin{align*}
L(w) &= \{ a \in A \mid aw \in S \}, \\
R(w) &= \{ a \in A \mid wa \in S \}, \\
B(w) &= \{ (a, b) \in A \times A \mid awb \in S \}.
\end{align*}
\]

Example (Fibonacci)

\(S = \{ \varepsilon, a, b, aa, ab, ba, aab, aba, baa, bab, \ldots \} \).
The extension graph of a word $w \in S$ is the undirected bipartite graph $E(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

\[
L(w) = \{ a \in A \mid aw \in S \}, \\
R(w) = \{ a \in A \mid wa \in S \}, \\
B(w) = \{ (a, b) \in A \times A \mid awb \in S \}.
\]

Example (Fibonacci)

$S = \{ \epsilon, a, b, aa, ab, ba, aab, aba, baa, bab, \ldots \}$.

![Diagram of extension graphs for \(\epsilon \), \(a \), and \(b \)]
The *extension graph* of a word \(w \in S \) is the undirected bipartite graph \(E(w) \) with vertices \(L(w) \sqcup R(w) \) and edges \(B(w) \), where

\[
L(w) = \{ a \in A \mid aw \in S \},
\]

\[
R(w) = \{ a \in A \mid wa \in S \},
\]

\[
B(w) = \{ (a, b) \in A \times A \mid ab \in S \}.
\]

Example (Fibonacci)

\[
S = \{ \varepsilon, a, b, aa, ab, ba, aab, aba, baa, bab, \ldots \}.
\]
The *extension graph* of a word $w \in S$ is the undirected bipartite graph $E(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
L(w) = \{a \in A \mid aw \in S\},
$$
$$
R(w) = \{a \in A \mid wa \in S\},
$$
$$
B(w) = \{(a, b) \in A \times A \mid awb \in S\}.
$$

Example (Fibonacci)

$S = \{\varepsilon, a, b, aa, ab, ba, aab, aba, baa, bab, \ldots\}$.

![Diagram](image-url)
A factorial set S is called a *tree set of characteristic* c if $E(w)$ is a tree for any nonempty $w \in S$, and $E(\varepsilon)$ is a union of c trees.
A factorial set S is called a *tree set* of *characteristic* c if $E(w)$ is a tree for any nonempty $w \in S$, and $E(\varepsilon)$ is a union of c trees.

Theorem

Families of (uniformly) recurrent tree sets of characteristic 1:

- Factors of Arnoux-Rauzy (*Sturmian*) words;

 [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

- Natural coding of regular interval exchanges.

 [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
A factorial set S is called a *tree set of characteristic* c if $E(w)$ is a tree for any nonempty $w \in S$, and $E(\varepsilon)$ is a union of c trees.

Theorem

Families of (uniformly) recurrent tree sets of characteristic 1:

- Factors of Arnoux-Rauzy (*Sturmian*) words;

 [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

- Natural coding of regular interval exchanges.

 [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Example (Tribonacci)

![Diagram of Tribonacci tree set](image)
Let $\theta : A \to A$ be an involution (possibly with some fixed point).
Let $\theta : A \to A$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Example

Let $\theta : a \mapsto a$, $b \mapsto d$, $c \mapsto c$, $d \mapsto b$.

The θ-reduction of the word $\text{daaacad}b$ is dac.
Let $\theta : A \to A$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Example

Let $\theta : a \mapsto a$, $b \mapsto d$, $c \mapsto c$, $d \mapsto b$.

The θ-reduction of the word $d\#a\#ac\#d\#$ is dac.
Let $\theta : A \to A$ be an involution (possibly with some fixed point).

A word is \textit{θ-reduced} if it has no factor of the form $a\theta(a)$ for $a \in A$.

Example

Let $\theta : a \mapsto a$, $b \mapsto d$, $c \mapsto c$, $d \mapsto b$.

The θ-reduction of the word $d a a a c d b$ is $d a c$.

A set is called \textit{θ-symmetric} if it is closed under taking inverses (under θ).

Example

The set $X = \{a, adc, b, cba, d\}$ is symmetric for $\theta : b \leftrightarrow d$ fixing a, c.
Let $\theta : A \to A$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Example

Let $\theta : a \mapsto a, \ b \mapsto d, \ c \mapsto c, \ d \mapsto b$.

The θ-reduction of the word daaacdb is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $X = \{a, \text{adc, b, cba, d}\}$ is symmetric for $\theta : b \leftrightarrow d$ fixing a, c.
Let $\theta : A \to A$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Example

Let $\theta : a \mapsto a$, $b \mapsto d$, $c \mapsto c$, $d \mapsto b$.

The θ-reduction of the word $daaadcb$ is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $X = \{a, adc, b, cba, d\}$ is symmetric for $\theta : b \leftrightarrow d$ fixing a, c.
Let $\theta : A \rightarrow A$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Example

Let $\theta : a \mapsto a, \ b \mapsto d, \ c \mapsto c, \ d \mapsto b$.

The θ-reduction of the word daaadbd is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $X = \{a, adc, b, cba, d\}$ is symmetric for $\theta : b \leftrightarrow d$ fixing a, c.
A *specular set* on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2.
A **specular set** on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2.

Example

Let $A = \{a, b\}$ and θ be the identity on A. The set of factors of $(ab)^\omega$ is a specular set.

$$
\begin{align*}
E(\varepsilon) & \\
\begin{array}{c}
a \\
b
\end{array} & \begin{array}{c}
b \\
a
\end{array}
\end{align*}
$$

$$
\begin{align*}
E(baba) & \\
\begin{array}{c}
a \\
b
\end{array} & \begin{array}{c}
b \\
a
\end{array}
\end{align*}
$$
A specular set on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2.

Example

Let $A = \{a, b\}$ and θ be the identity on A. The set of factors of $(ab)^\omega$ is a specular set.

Proposition [using J. Cassaigne (1997)]

The factor complexity of a specular set is given by $p_n = n(\text{Card}(A) - 2) + 2$ for all $n \geq 1$.
Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

\[T = \sigma_2 \circ \sigma_1 \]
Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

\[\Sigma T(z) = a \]
Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

\[\Sigma \mathcal{T}(z) = ab^{-1} \]
Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

\[\Sigma T(z) = ab^{-1}c \]
The natural coding of a linear involution without connections is a specular set.

\[\Sigma T(z) = ab^{-1}c b \]
Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

\[
\Sigma T(z) = ab^{-1}c b c^{-1}\cdots
\]
A *doubling transducer* is a transducer with set of states \{0, 1\} such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

Example

\[
\begin{align*}
\Sigma &= \{\alpha\} \\
A &= \{a, b\} \\
\end{align*}
\]

![Diagram](attachment:image.png)
A **doubling transducer** is a transducer with set of states \(\{0, 1\} \) such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A **doubling map** is a pair \(\delta = (\delta_0, \delta_1) \), where \(\delta_i(u) = v \) for a path starting at the state \(i \) with input label \(u \) and output label \(v \).

Example

\[
\Sigma = \{\alpha\} \\
A = \{a, b\}
\]

\[
\begin{align*}
\delta_0 (\alpha^\omega) &= (ab)^\omega \\
\delta_1 (\alpha^\omega) &= (ba)^\omega
\end{align*}
\]
A **doubling transducer** is a transducer with set of states \(\{0, 1\} \) such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A **doubling map** is a pair \(\delta = (\delta_0, \delta_1) \), where \(\delta_i(u) = v \) for a path starting at the state \(i \) with input label \(u \) and output label \(v \).

The **image** of a set \(T \) is \(\delta(T) = \delta_0(T) \cup \delta_1(T) \).

Example

\[
\Sigma = \{\alpha\} \\
A = \{a, b\}
\]

\[
\begin{align*}
\alpha & | a \\
0 \quad \rightarrow \quad 1 \quad \alpha & | b \\
\delta_0(\alpha^\omega) &= (ab)^\omega \\
\delta_1(\alpha^\omega) &= (ba)^\omega \\
\delta(\text{Fac}(\alpha^\omega)) &= \text{Fac}((ab)^\omega)
\end{align*}
\]
Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The image of a tree set of characteristic 1 closed under reversal is a specular set with respect to θ_A.
Example (two doublings of Fibonacci on $\Sigma = \{\alpha, \beta\}$)

$\text{Fac}(abaababa\ldots) \cup \text{Fac}(cdccdcdc\ldots)$

$\theta_A : \begin{cases}
\alpha \mapsto c \\
\beta \mapsto d \\
c \mapsto a \\
d \mapsto b
\end{cases}$
Example (two doublings of Fibonacci on $\Sigma = \{\alpha, \beta\}$)

\[\text{Fac}(abaababa \cdots) \cup \text{Fac}(cdcdcdcd \cdots) \]

\[\alpha | a \quad \beta | b \quad 0 \quad \alpha | c \quad \beta | d \quad 1 \]

$\theta_A : \begin{cases}
 a \mapsto c \\
 b \mapsto d \\
 c \mapsto a \\
 d \mapsto b
\end{cases}$

\[\text{Fac}(abcabcda \cdots) \cup \text{Fac}(cdcdedabc \cdots) \]

\[\beta | d \quad \alpha | a \quad 0 \quad \beta | b \quad 1 \quad \alpha | c \]

$\theta_A : \begin{cases}
 a \mapsto a \\
 b \mapsto d \\
 c \mapsto c \\
 d \mapsto b
\end{cases}$
A *right return word* to w in S is a nonempty word u such that $wu \in S$, starts and ends with w but has no w as an internal factor. Formally,

$$\mathcal{R}(w) = \{ u \in A^+ | \ wu \in (A^+w \setminus A^+wA^+) \cap S \}.$$

Example (Fibonacci)

$$\mathcal{R}(aa) = \{ baa, babaa \}.$$

$$\varphi(a)^\omega = ababaabaabaababaababaababaabaabaabaababaabab.$$
A **right return word** to \(w \) in \(S \) is a nonempty word \(u \) such that \(wu \in S \), starts and ends with \(w \) but has no \(w \) as an internal factor. Formally,

\[
\mathcal{R}(w) = \{ u \in A^+ \mid wu \in (A^+w \setminus A^+wA^+) \cap S \}.
\]

Example (Fibonacci)

\[
\mathcal{R}(aa) = \{ baa, babaa \}.
\]

\[
\varphi(a)^\omega = abaababaabaababaababaababaabaababaabaababaabaab\cdots
\]

Cardinality Theorem for Right Return Words [BDDDLPRR (2015)]

For any \(w \) in a recurrent specular set, one has

\[
\text{Card } (\mathcal{R}(w)) = \text{Card } (A) - 1.
\]
A complete return word to a set $X \subseteq S$ is a word starting and ending with a word of X but having no internal factor in X. Formally,

$$\mathcal{CR}(X) = S \cap (XA^+ \cap A^+X) \setminus A^+XA^+.$$

Example (Fibonacci)

$$\mathcal{CR}\{aa, bab\} = \{aabaa, aabab, babaa\}.$$

$$\varphi(a)^\omega = abaababaabaabab\ldots$$
A complete return word to a set $X \subset S$ is a word starting and ending with a word of X but having no internal factor in X. Formally,

$$\mathcal{CR}(X) = S \cap (XA^+ \cap A^+X) \setminus A^+XA^+.$$

Example (Fibonacci)

$$\mathcal{CR}\{aa, bab\} = \{aabaa, aabab, babaa\}.$$

$$\varphi(a)^\omega = abaababaabaababaababaababaababaababaababaababaababaababaabbab\cdots$$

Cardinality Theorem for Complete Return Words [BDDDLPRR (2015)]

Let S be a recurrent specular set and $X \subset S$ be a finite bifix code\(^1\) with empty kernel\(^2\). Then,

$$\text{Card}(\mathcal{CR}(X)) = \text{Card}(X) + \text{Card}(A) - 2.$$

1. **bifix code**: set that does not contain any proper prefix or suffix of its elements.
2. **kernel**: set of words of X which are also internal factors of X.

Francesco Dolce (Paris-Est)
Numeration 2016
Prague, 24 May 2016
13 / 23
Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.
Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Consider a word w not overlapping with w^{-1}.
A mixed return word to w is the word $N(u)$ obtained from $u \in CR(\{w, w^{-1}\})$ erasing the prefix if it is w and the suffix if it is w^{-1}.
Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Consider a word w not overlapping with w^{-1}.
A **mixed return word** to w is the word $N(u)$ obtained from $u \in CR\left(\{w, w^{-1}\}\right)$ erasing the prefix if it is w and the suffix if it is w^{-1}.

Cardinality Theorem for Mixed Return Words [BDDDLPRRR (2015)]

Let S be a recurrent specular set and $w \in S$ such that w, w^{-1} do not overlap. Then,

$$\text{Card}(\mathcal{MR}(w)) = \text{Card}(A).$$
A palindrome is a word $w = \tilde{w}$ as, for instance:
A palindrome is a word $w = \tilde{w}$ as, for instance:

eye, noon, sagas, racecar . . .
A *palindrome* is a word $w = \tilde{w}$ as, for instance:

- eye, noon, sagas, racecar . . .
- ici, été, coloc, kayak, radar, . . .
A palindrome is a word $w = \tilde{w}$ as, for instance:

- eye, noon, sagas, racecar . . .
- ici, été, coloc, kayak, radar, . . .
- non, osso, aveva, rossor, ottetto, . . .
A palindrome is a word $w = \tilde{w}$, as, for instance:

- eye, noon, sagas, racecar . . .
- ici, été, coloc, kayak, radar, . . .
- non, osso, aveva, rossor, ottetto, . . .
- \textbf{Jelenovi Pivo Nelej} (to a deer, don’t pour beer),
A palindrome is a word $w = \tilde{w}$ as, for instance:

- eye, noon, sagas, racecar . . .
- ici, été, coloc, kayak, radar, . . .
- non, osso, aveva, rossor, ottetto, . . .
- **Jelenovi Pivo Nelej** (*to a deer, don’t pour beer*), **Ital Platí**, . . .
Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n + 1$ palindrome factors.

A word with maximal number of palindromes is rich.
A factorial set is rich if all its elements are rich.

Example (Fibonacci)
$\text{Pal}(abaab) = \{ \varepsilon, a, b, aa, aba, baab \}$.
Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most $n + 1$ palindrome factors.

A word with maximal number of palindromes is *rich*. A factorial set is *rich* if all its elements are rich.

Example (Fibonacci)

$\text{Pal}(\text{abaab}) = \{\varepsilon, a, b, aa, aba, baab\}$.

Theorem [A. Glen, J. Justin, S. Widmer, L.Q. Zamboni (2009)]

Let S be a recurrent set closed under reversal. S is rich \iff every complete return word to a palindrome is a palindrome.
Families of rich sets:

- Factors of Arnoux-Rauzy (∗Sturmian∗) words.

 [X. Droubay, J. Justin, G. Pirillo (2001)]

- Natural coding of regular interval exchanges defined by a symmetric permutation.

 [P. Balázi, Z. Masáková, E. Pelantová (2007)]
Theorem

Families of rich sets:

- Factors of Arnoux-Rauzy (Sturmian) words.

 [X. Droubay, J. Justin, G. Pirillo (2001)]

- Natural coding of regular interval exchanges defined by a symmetric permutation.

 [P. Balázi, Z. Masáková, E. Pelantová (2007)]

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Recurrent tree sets of characteristic 1 closed under reversal are rich.
Let σ be an antimorphism.
A word w is a σ-palindrome if $w = \sigma(w)$.
Let σ be an antimorphism.
A word w is a σ-palindrome if $w = \sigma(w)$.

Example

Let $\sigma : A \leftrightarrow T, \; C \leftrightarrow G$.
The word $CTTAAG$ is a σ-palindrome.
Let σ be an antimorphism.
A word w is a σ-palindrome if $w = \sigma(w)$.

Example

Let $\sigma : A \leftrightarrow T, \ C \leftrightarrow G$.
The word CTTAAG is a σ-palindrome.

Theorem [Š. Starosta (2011)]

Let $\gamma_{\sigma}(w)$ be the number of transpositions of σ affecting w. Then,

$$\text{Card (Pal}_{\sigma}(w)) \leq |w| + 1 - \gamma_{\sigma}(w).$$

A word (set) is σ-rich if the equality holds (for all its elements).
Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.
Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$, with

$\sigma : A \leftrightarrow R, \ E \leftrightarrow T, \ I \leftrightarrow M, \ O \leftrightarrow U$ and

$\tau : A \leftrightarrow G, \ E \leftrightarrow P, \ U \leftrightarrow R$.

The following words are G-palindromes:
Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$, with

$\sigma : A \leftrightarrow R, E \leftrightarrow T, I \leftrightarrow M, O \leftrightarrow U$ and $\tau : A \leftrightarrow G, E \leftrightarrow P, U \leftrightarrow R$.

The following words are G-palindromes:

- **NUMERATION**, fixed by σ.
Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$, with $\sigma : A \leftrightarrow R, E \leftrightarrow T, I \leftrightarrow M, O \leftrightarrow U$ and $\tau : A \leftrightarrow G, E \leftrightarrow P, U \leftrightarrow R$.

The following words are G-palindromes:

- **NUMERATION**, fixed by σ,
- **PRAGUE**, fixed by τ,
Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$, with

\[
\sigma : A \leftrightarrow R, \ E \leftrightarrow T, \ I \leftrightarrow M, \ O \leftrightarrow U \quad \text{and} \quad \\
\tau : A \leftrightarrow G, \ E \leftrightarrow P, \ U \leftrightarrow R.
\]

The following words are G-palindromes:

- **NUMERATION**, fixed by σ,
- **PRAGUE**, fixed by τ,
- **PÍT**, fixed by $\sigma \tau \sigma$.
Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$, with

$\sigma : A \leftrightarrow R, \ E \leftrightarrow T, \ I \leftrightarrow M, \ O \leftrightarrow U$ and
$\tau : A \leftrightarrow G, \ E \leftrightarrow P, \ U \leftrightarrow R$.

The following words are G-palindromes:

- **NUMERATION**, fixed by σ,
- **PRAGUE**, fixed by τ,
- **PÍT**, fixed by $\sigma \tau \sigma$.

A word (set) is G-rich * if...
Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$, with

- $\sigma : A \leftrightarrow R$, $E \leftrightarrow T$, $I \leftrightarrow M$, $O \leftrightarrow U$ and
- $\tau : A \leftrightarrow G$, $E \leftrightarrow P$, $U \leftrightarrow R$.

The following words are G-palindromes:

- **NUMERATION**, fixed by σ,
- **PRAGUE**, fixed by τ,
- **PÍT**, fixed by $\sigma \tau \sigma$.

A word (set) is G-rich* if... “the number of G-palindromes if maximal”.
Theorem [E. Pelantová, Š. Starosta (2014)]

A set S closed under G is G-rich if for every $w \in S$, every complete return word to the G-orbit of w is fixed by a nontrivial element of G.
Theorem [E. Pelantová, Š. Starosta (2014)]

A set \(S \) closed under \(G \) is \(G \)-rich if for every \(w \in S \), every complete return word to the \(G \)-orbit of \(w \) is fixed by a nontrivial element of \(G \).

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

The specular set obtained as image under a doubling transducer \(\mathcal{A} \) is \(G_{\mathcal{A}} \)-rich.

\[
G_{\mathcal{A}} = \{ \text{id}, \sigma, \tau, \sigma \tau \} \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})
\]

with \(\sigma \) an antimorphism and \(\tau \) a morphism.
Conclusions

Summing up

- Tree and specular sets.

 Linear involutions and doubling maps.
Conclusions

Summing up

- Tree and specular sets.
 Linear involutions and doubling maps.

- Cardinality Theorems for return words.

\[
\begin{align*}
\text{Card } (\mathcal{R}(w)) &= \text{Card } (A) - 1 \\
\text{Card } (\mathcal{CR}(X)) &= \text{Card } (X) + \text{Card } (A) - 2 \\
\text{Card } (\mathcal{MR}(w)) &= \text{Card } (A)
\end{align*}
\]
Conclusions
Summing up

- Tree and specular sets.
 Linear involutions and doubling maps.

- Cardinality Theorems for return words.
 \[\text{Card} \left(R(w) \right) = \text{Card} \left(A \right) - 1 \]
 \[\text{Card} \left(CR(X) \right) = \text{Card} \left(X \right) + \text{Card} \left(A \right) - 2 \]
 \[\text{Card} \left(MR(w) \right) = \text{Card} \left(A \right) \]

- New family of G-rich sets.
 Specular sets obtained by doubling maps are G_A-rich.
Decidability of the tree (and specular) condition.

[work in progress with Julien Leroy and Revekka Kyriakoglou]
Further Research Directions
and other works in progress

- Decidability of the tree (and specular) condition.
 [work in progress with Julien Leroy and Revekka Kyriakoglou]

- Tree set and free groups.
 Tree set of $\chi = 1 \implies R(w)$ is a basis of the free group for every w
Further Research Directions
and other works in progress

- Decidability of the tree (and specular) condition.
 [work in progress with Julien Leroy and Revekka Kyriakoglou]

- Tree set and free groups.
 Tree set of $\chi = 1 \implies R(w)$ is a basis of the free group for every w

- New classes of G-rich sets (or new groups G).
Děkuji