Palindromes and Tree Sets

Francesco DOLCE

Atelier
“Combinatoire des mots et pavages”
“Combinatorics on Words and Tilings”
Workshop

Montréal, 4 avril 2017
«You can summon him by trying to take on his characteristics - relaxing, fantasising that you’re ‘cool’, and letting go of your frustration momentarily. Visualise him zipping along on his skateboard, accompanied by a slight breeze and his Mantra: ‘Neeeeooow’».
GoFlowolFoG

«You can summon him by trying to take on his characteristics - relaxing, fantasising that you’re ‘cool’, and letting go of your frustration momentarily. Visualise him zipping along on his skateboard, accompanied by a slight breeze and his Mantra: ‘Neeeeooow’»

«We decided that the 'name' of the Spirit would [...] be Go Flow. This was mirrored to give the name GoFlowolFoG - which sounds suitably ‘magical’»
A palindrome is a word $w = \tilde{w}$ as, for instance:

- non, esse, aveva, rossor, ottetto, ...
A palindrome is a word $w = \tilde{w}$ as, for instance:

- non, esse, aveva, rossor, ottetto, ...
- eye, noon, sagas, racecar, ...
- ici, été, coloc, kayak, ...
A *palindrome* is a word $w = \tilde{w}$ as, for instance:

- non, esse, aveva, rossor, ottetto, ...
- eye, noon, sagas, racecar, ...
- ici, été, coloc, kayak, ...
- saippuakivikauppias, ...
A **palindrome** is a word $w = \tilde{w}$ as, for instance:

- non, esse, aveva, rossor, ottetto, …
- eye, noon, sagas, racecar, …
- ici, été, coloc, kayak, …
- saippuakivikauppias, …
- ojo, somos, reconocer, …
- Krk, potop, ici, …
- топот, довод, кабак,
- وَلَوْ، وَدُ، مُهِم، آبَا، …
- À Laval elle l’avalà, …
Palindromes

A palindrome is a word $w = \tilde{w}$ as, for instance:

- non, esse, aveva, rossor, ottetto, ...
- eye, noon, sagas, racecar, ...
- ici, été, coloc, kayak, ...
- saippuakivikauppias, ...
- ojo, somos, reconocer, ...
- Krk, potop, ici, ...
- топот, довод, кабак,
- وَلَوْ , وَذُ , مُهِمْ , آبَا ,
- À Laval elle l’avalala, ...
Conway's Criterion: B, C, D, E palindromes.

\[B = \downarrow\rightarrow\downarrow, \quad C = \leftarrow\downarrow\rightarrow\rightarrow\rightarrow\leftarrow, \]
\[D = \uparrow\rightarrow\rightarrow\leftarrow\leftarrow\leftarrow\rightarrow\rightarrow\rightarrow\uparrow, \quad E = \uparrow\uparrow. \]
Conway's Criterion: B, C, D, E palindromes.

\[
\begin{align*}
B &= 303, & C &= 23033032, \\
D &= 1001333331001, & E &= 11.
\end{align*}
\]
Theorem [A. Blondin-Massé, A. Garon, S. Labbé (2013)]

If $AB\hat{A}\hat{B}$ is a BN-factorisation of a Fibonacci tile, then A and B are palindromes.

$A = 0103032303010, \quad B = 3032321232303,$
Theorem [A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé (2009)]

If $AB\hat{A}\hat{B}$ and $CD\hat{C}\hat{D}$ are the BN-factorisation of a prime double square, then A, B, C, D are palindromes.
A word of length n has at most $n + 1$ palindrome factors.

A word with maximal number of palindromes is full (or rich).
Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most $n + 1$ palindrome factors

A word with maximal number of palindromes is **full** (or **rich**).

Example

- **Trump**, **Putin**, **Le Pen**, **Fillon** are rich.
- **Trudeau**, **Merkel**, **Gentiloni**, **Mélenchon** are not rich.
Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most $n + 1$ palindrome factors.

A word with maximal number of palindromes is *full* (or *rich*).

Example

- **Trump, Putin, Le Pen, Fillon** are rich.
- **Trudeau, Merkel, Gentiloni, Mélenchon** are not rich.

<table>
<thead>
<tr>
<th>FRANÇOIS</th>
<th>= 8</th>
<th>and</th>
<th>Card ({$\varepsilon, F, R, A, N, \zeta, O, I, S$}) = 9 = 8 + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENELope</td>
<td>= 8</td>
<td>and</td>
<td>Card ({$\varepsilon, P, E, N, L, O, ENЕ$}) = 7 < 8 + 1</td>
</tr>
</tbody>
</table>
Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length \(n \) has at most \(n + 1 \) palindrome factors

A word with maximal number of palindromes is \textit{full} (or \textit{rich}).
A factorial set is \textit{full} if all its elements are full.

Example (Fibonacci)

Let \(S \) be the set of factors of the fixed-point \(\varphi^\omega(0) \) of

\[
\varphi : 0 \mapsto 01, \quad 1 \mapsto 0.
\]

Every word \(w \in S \) is full. For instance,

\[
\text{Pal}(01001) = \{\varepsilon, 0, 1, 00, 010, 1001\}.
\]
Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed under reversal with $p_n = (\text{Card}(A) - 1)n + 1$ having a unique right special factor for each length.

Examples

- **Fibonacci**: factors of the fixed-point $\varphi^\omega(0)$, where
 \[\varphi : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases} \]

- **Tribonacci**: factors of the fixed-point $\psi^\omega(0)$, where
 \[\psi : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 02 \\ 2 \mapsto 0 \end{cases} \]
Arnoux-Rauzy sets

Definition
An Arnoux-Rauzy set is a factorial set closed under reversal with $p_n = (\text{Card}(A) - 1)n + 1$ having a unique right special factor for each length.

Examples
- **Fibonacci**: factors of the fixed-point $\varphi^\omega(0)$, where $\varphi : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases}$.
- **Tribonacci**: factors of the fixed-point $\psi^\omega(0)$, where $\psi : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 02 \\ 2 \mapsto 0 \end{cases}$.

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
Arnoux-Rauzy sets are full.
Interval exchanges

Let \((I_\alpha)_{\alpha \in A}\) and \((J_\alpha)_{\alpha \in A}\) be two partitions of a semi-interval \(I\).
An interval exchange transformation (IET) is a map \(T : I \rightarrow I\) defined by

\[T(z) = z + y_\alpha \quad \text{if } z \in I_\alpha. \]
Interval exchanges

Let \((I_\alpha)_{\alpha \in A}\) and \((J_\alpha)_{\alpha \in A}\) be two partitions of a semi-interval \(I\).

An interval exchange transformation (IET) is a map \(T : I \to I\) defined by

\[T(z) = z + y_\alpha \quad \text{if} \quad z \in I_\alpha. \]
Interval exchanges

Let $(I_\alpha)_{\alpha \in A}$ and $(J_\alpha)_{\alpha \in A}$ be two partitions of a semi-interval I.

An interval exchange transformation (IET) is a map $T : I \rightarrow I$ defined by

$$T(z) = z + y_\alpha \quad \text{if } z \in I_\alpha.$$
Interval exchanges

Let \((I_\alpha)_{\alpha \in A}\) and \((J_\alpha)_{\alpha \in A}\) be two partitions of a semi-interval \(I\).

An interval exchange transformation (IET) is a map \(T : I \to I\) defined by

\[T(z) = z + y_\alpha \quad \text{if } z \in I_\alpha. \]
Interval exchanges

Let \((I_{\alpha})_{\alpha \in A}\) and \((J_{\alpha})_{\alpha \in A}\) be two partitions of a semi-interval \(I\). An interval exchange transformation (IET) is a map \(T : I \to I\) defined by

\[
T(z) = z + y_{\alpha} \quad \text{if} \quad z \in I_{\alpha}.
\]
Interval exchanges

T is \textit{minimal} if for any point $z \in I$ the orbit $O(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in I.

T is \textit{regular} if the orbits of the separation points are infinite and disjoint.

\textbf{Theorem [M. Keane (1975)]}

A regular interval exchange transformation is minimal.
Interval exchanges

T is *minimal* if for any point $z \in I$ the orbit $O(z) = \{T^n(z) | n \in \mathbb{Z}\}$ is dense in I.

T is *regular* if the orbits of the separation points are infinite and disjoint.

Theorem [M. Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

Diagram showing the transformation T and the orbits of separation points.
Interval exchanges

The *natural coding* of T relative to $z \in I$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = \alpha \quad \text{if} \quad T^n(z) \in I_\alpha.$$
The **natural coding** of \(T \) relative to \(z \in I \) is the infinite word \(\Sigma_T(z) = a_0a_1 \cdots \in A^\omega \) defined by

\[
a_n = \alpha \quad \text{if} \quad T^n(z) \in l_\alpha.
\]

Example (Fibonacci, \(z = (3 - \sqrt{5})/2 \))

\[
\Sigma_T(z) = 0
\]
The *natural coding* of T relative to $z \in I$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^\omega$ defined by

$$a_n = \alpha \quad \text{if} \quad T^n(z) \in l_\alpha.$$

Example (Fibonacci, $z = (3 - \sqrt{5})/2$)

$$\Sigma_T(z) = 01$$
The *natural coding* of T relative to $z \in I$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^\omega$ defined by

$$a_n = \alpha \quad \text{if} \quad T^n(z) \in I_\alpha.$$
The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = \alpha \text{ if } T^n(z) \in I_\alpha.$$

Example (Fibonacci, $z = (3 - \sqrt{5})/2$)

$\Sigma_T(z) = 0100$
Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = \alpha \quad \text{if} \quad T^n(z) \in I_\alpha.$$

Example (Fibonacci, $z = (3 - \sqrt{5})/2$)

\[
\Sigma_T(z) = 01001
\]
Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_T(z) = a_0a_1 \cdots \in A^\omega$ defined by

$$a_n = \alpha \quad \text{if} \quad T^n(z) \in I_\alpha.$$

Example (Fibonacci, $z = (3 - \sqrt{5})/2$)

$\Sigma_T(z) = 010010 \cdots$
Interval exchanges

The set $\mathcal{L}(T) = \bigcup_{z \in I} \text{Fac}(\Sigma_T(z))$ is said a (minimal, regular) interval exchange set.

Remark. If T is minimal, $\text{Fac}(\Sigma_T(z))$ does not depend on the point z.

Example (Fibonacci)

$$\mathcal{L}(T) = \{ \varepsilon, 0, 1, 00, 01, 10, 001, 010, 100, \ldots \}$$
Interval exchanges

The set \(\mathcal{L}(T) = \bigcup_{z \in I} \text{Fac}(\Sigma_T(z)) \) is said a (minimal, regular) interval exchange set.

Remark. If \(T \) is minimal, \(\text{Fac}(\Sigma_T(z)) \) does not depend on the point \(z \).

Example (Fibonacci)

\[
\mathcal{L}(T) = \{ \varepsilon, 0, 1, 00, 01, 10, 001, 010, 100, \ldots \}
\]

Proposition

Regular interval exchange sets have factor complexity \(p_n = (\text{Card}(A) - 1)n + 1 \).
Interval exchanges

Theorem [P. Baláži, Z. Masáková, E. Pelantová (2007)]

Regular interval exchange sets closed under reverse are full.

\[T \text{ closed under reverse} \iff \pi = (n \ n-1 \cdots 2 \ 1) \]
The *extension graph* of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
L(w) = \{ a \in A \mid aw \in S \}, \quad R(w) = \{ a \in A \mid wa \in S \}, \quad B(w) = \{ (a,b) \in A \mid awb \in S \}.
$$

Example (Fibonacci, $S = \{ \varepsilon, 0, 1, 00, 01, 10, 001, 010, 100, 101, \ldots \}$)

\[
\begin{align*}
\mathcal{E}(\varepsilon) & \quad \mathcal{E}(0) & \quad \mathcal{E}(1) \\
0 & \quad 0 & \quad 0 \\
1 & \quad 1 & \quad 1 \\
\end{align*}
\]
Definition

A factorial set S is called a tree set (of characteristic 1) if $E(w)$ is a tree for any $w \in S$.

Tree
A factorial set S is called a *tree set* (of characteristic 1) if $E(w)$ is a tree for any $w \in S$.
Definition

A factorial set S is called a tree set (of characteristic 1) if $E(w)$ is a tree for any $w \in S$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]
A factorial set S is called a tree set (of characteristic 1) if $E(w)$ is a tree for any $w \in S$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
Tree sets

Definition

A factorial set S is called a *tree set* (of characteristic 1) if $E(w)$ is a tree for any $w \in S$.

\[n(\text{Card}(A) - 1) + 1 \]

Arnoux - Rauzy (unif.) rec.

Sturm

regular interval exchange (unif.) rec.

[D., Perrin (2016)]
Tree sets

Definition

A factorial set S is called a **tree set** (of characteristic 1) if $E(w)$ is a tree for any $w \in S$.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

A (uniformly) recurrent tree set closed under reversal is full.
Let σ be an antimorphism.
A word w is a σ-palindrome if $w = \sigma(w)$.

Example
Let $\sigma : A \leftrightarrow T$, $C \leftrightarrow G$.
The word $CTTAAG$ is a σ-palindrome.
Let σ be an antimorphism.
A word w is a σ-palindrome if $w = \sigma(w)$.
Let σ be an antimorphism.

A word w is a σ-palindrome if $w = \sigma(w)$.

Theorem [Š. Starosta (2011)]

$$\text{Card}(\text{Pal}_\sigma(w)) \leq |w| + 1 - \gamma_\sigma(w)$$

with $\gamma_\sigma(w) = \# \text{ transposition acting on } w$.

A word (resp. set) is σ-full if the equality holds (resp. for all its elements).
σ-palindromes

Let σ be an antimorphism. A word w is a σ-palindrome if $w = \sigma(w)$.

Theorem [Š. Starosta (2011)]

$$\text{Card}(\text{Pal}_\sigma(w)) \leq |w| + 1 - \gamma_\sigma(w)$$

with $\gamma_\sigma(w) = \#$ transposition acting on w.

A word (resp. set) is σ-full if the equality holds (resp. for all its elements).

Example

Let $\sigma : I \leftrightarrow M, \ O \leftrightarrow T$ and $\tau = J \leftrightarrow O, \ K \leftrightarrow R$, fixing all other letters.
σ-palindromes

Let σ be an antimorphism. A word w is a σ-palindrome if $w = \sigma(w)$.

Theorem [Š. Starosta (2011)]

\[
\text{Card}(\text{Pal}_\sigma(w)) \leq |w| + 1 - \gamma_\sigma(w) \quad \text{with} \quad \gamma_\sigma(w) = \# \text{ transposition acting on } w.
\]

A word (resp. set) is σ-full if the equality holds (resp. for all its elements).

Example

Let $\sigma : I \leftrightarrow M, O \leftrightarrow T$ and $\tau = J \leftrightarrow O, K \leftrightarrow R$, fixing all other letters.

\[
\text{Card}(\text{Pal}_\sigma(\text{TIMO})) = \text{Card}(\{\varepsilon, IM, TIMO\}) = 3 = 4 + 1 - 2
\]
\(\sigma \)-palindromes

Let \(\sigma \) be an antimorphism.

A word \(w \) is a \(\sigma \)-palindrome if \(w = \sigma(w) \).

Theorem [Š. Starosta (2011)]

\[
\text{Card}(\text{Pal}_\sigma(w)) \leq |w| + 1 - \gamma_\sigma(w) \quad \text{with } \gamma_\sigma(w) = \# \text{ transposition acting on } w.
\]

A word (resp. set) is \(\sigma \)-full if the equality holds (resp. for all its elements).

Example

Let \(\sigma : I \leftrightarrow M, \ 0 \leftrightarrow T \) and \(\tau = J \leftrightarrow O, \ K \leftrightarrow R \), fixing all other letters.

\[
\text{Card}(\text{Pal}_\sigma(\text{TIMO})) = \text{Card}(\{\varepsilon, \text{IM}, \text{TIMO}\}) = 3 = 4 + 1 - 2
\]

\[
\text{Card}(\text{Pal}_\tau(\text{JARKKO})) = \text{Card}(\{\varepsilon, \text{A}, \text{RK}\}) = 3 < 5 = 6 + 1 - 2
\]
Let G be a group containing at least one antimorphism. A word w is a \textit{G-palindrome} if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

\textit{G-palindromes}
Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$ with

\[
\begin{align*}
\sigma &: A \leftrightarrow E, \ I \leftrightarrow V, \ R \leftrightarrow X, \ O \leftrightarrow L \\
\tau &: A \leftrightarrow J, \ L \leftrightarrow S
\end{align*}
\]

and fixing the other letters.

The following are G-palindromes:
Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$ with

\[
\begin{align*}
\sigma &\colon A \leftrightarrow E, \ I \leftrightarrow V, \ R \leftrightarrow X, \ O \leftrightarrow L \\
\tau &\colon A \leftrightarrow J, \ L \leftrightarrow S
\end{align*}
\]

and fixing the other letters.

The following are G-palindromes:

- **XAVIER**, fixed by σ,

Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$ with

- $\sigma : A \leftrightarrow E$, $I \leftrightarrow V$, $R \leftrightarrow X$, $O \leftrightarrow L$
- $\tau : A \leftrightarrow J$, $L \leftrightarrow S$ fixing the other letters.

The following are G-palindromes:

- XAVIER, fixed by σ,
- ÉLISE, fixed by τ,
Let \(G \) be a group containing at least one antimorphism.

A word \(w \) is a \(G \text{-}\)palindrome if there exists a nontrivial \(g \in G \) s.t. \(w = g(w) \).

Example

Let \(G = \langle \sigma, \tau \rangle \) with \(\sigma : A \leftrightarrow E, \ I \leftrightarrow V, \ R \leftrightarrow X, \ O \leftrightarrow L \) and \(\tau : A \leftrightarrow J, \ L \leftrightarrow S \) fixing the other letters.

The following are \(G \text{-}\)palindromes:

- **XAVIER**, fixed by \(\sigma \),
- **ÉLISE**, fixed by \(\tau \),
- **JOSÉ**, fixed by \(\sigma \tau \sigma \).
Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$ with

$\sigma: A \leftrightarrow E, \ I \leftrightarrow V, \ R \leftrightarrow X, \ O \leftrightarrow L$

and $\tau: A \leftrightarrow J, \ L \leftrightarrow S$ fixing the other letters.

The following are G-palindromes:

- **XAVIER**, fixed by σ,
- **ÉLISE**, fixed by τ,
- **JOSÉ**, fixed by $\sigma \tau \sigma$,

while **NADIA** is fixed only by id.

G-palindromes
Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w = g(w)$.

Example

Let $G = \langle \sigma, \tau \rangle$ with $\sigma : A \leftrightarrow E$, $I \leftrightarrow V$, $R \leftrightarrow X$, $O \leftrightarrow L$ and $\tau : A \leftrightarrow J$, $L \leftrightarrow S$ fixing the other letters.

The following are G-palindromes:

- **XAVIER**, fixed by σ,
- **ÉLISE**, fixed by τ,
- **JOSÉ**, fixed by $\sigma \tau \sigma$,

while **NADIA** is fixed only by id.

A word (set) is G-full if “the number of G-palindromes is maximal”.
Doubling transducer

A *doubling transducer* is a transducer with set of states \(\{q_0, q_1\} \) such that:

1. the input automata is a group automaton,
2. the output labels of the edges are all distinct.

Example

\[
\begin{align*}
\Sigma &= \{\alpha\} \\
A &= \{a, b\}
\end{align*}
\]
Doubling transducer

A *doubling transducer* is a transducer with set of states \(\{q_0, q_1\} \) such that:

1. the input automata is a group automaton,
2. the output labels of the edges are all distinct.

\(\delta_0, \delta_1 : \Sigma^* \to A^* \) are defined by \(\delta_i(u) = v \) for a path starting at \(q_i \) with input label \(u \) and output label \(v \).

Example

\[
\Sigma = \{\alpha\} \\
A = \{a, b\}
\]

\[
\begin{array}{c}
\delta_0(\alpha^3) = aba \\
\delta_1(\alpha^3) = bab
\end{array}
\]
A **doubling transducer** is a transducer with set of states \(\{ q_0, q_1 \} \) such that:

1. the input automata is a group automaton,
2. the output labels of the edges are all distinct.

\(\delta_0, \delta_1 : \Sigma^* \to A^* \) are defined by \(\delta_i(u) = v \) for a path starting at \(q_i \) with input label \(u \) and output label \(v \).

The **image** of a set \(T \) is \(\delta_0(T) \cup \delta_1(T) \).

Example

\[
\begin{align*}
\Sigma &= \{ \alpha \} \\
A &= \{ a, b \} \\
\delta_0(\alpha^3) &= aba \\
\delta_1(\alpha^3) &= bab \\
\delta(\alpha^*) &= (\varepsilon + a)(ba)^*(\varepsilon + b)
\end{align*}
\]
Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Let \(S \) be a recurrent tree set \textbf{closed under reversal}.
The image of \(S \) by a doubling transducer is \(G \)-full, with \(G \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \).

Example (doubling of Fibonacci)

\[
\begin{align*}
q_0 & \quad 0|0 \quad \{010\} \\
0|2 \quad q_1
\end{align*}
\]

\[
\begin{align*}
1|3 \quad 0|0 \quad \{010\} \rightarrow \{012, 230\} \\
1|1 \quad 0|2 \quad q_1
\end{align*}
\]
G-palindromes

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Let S be a recurrent tree set **closed under reversal**.
The image of S by a doubling transducer is G-full, with $G \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.

Example (doubling of Fibonacci)

Diagram:

- States: q_0, q_1.
- Transitions:
 - $0|0$ from q_0 to q_1.
 - $0|2$ from q_0 to q_0.
 - $1|1$ from q_1 to q_1.
 - $1|3$ from q_0 to q_0.

- Productions:
 - $\{010\} \rightarrow \{012, 230\}$

- Transducers:
 - $\sigma: 0 \leftrightarrow 2, \ 1 \leftrightarrow 3$
 - $\tau: 0, 2 \leftrightarrow, \ 1 \leftrightarrow 3$

- $G = \{\text{id}, \sigma, \tau, \sigma\tau\}$
MERCI CREM

THANK YOU YOYO KNIGHT