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Abstract. We prove a universal (case-free) formula for the weighted enumeration of fac-
torizations of Coxeter elements into products of reflections valid in any well-generated
reflection group, in terms of the spectrum of an associated Laplacian matrix that we
introduce. This covers in particular all finite Coxeter groups. For symmetric groups
and for minimal length, our statement is an instance of the Matrix Tree theorem.

The formula is relative to the choice of a weighting system, that corresponds to the
choice of n free scalar parameters and of a parabolic tower of subgroups. This leads us
to introduce (a class of) variants of the Jucys-Murphy elements for every group, from
which we define a new notion of ‘tower equivalence’ of virtual characters. The main
technical point is to prove the tower equivalence between virtual characters naturally
appearing in the problem, and exterior products of the reflection representation.

Keywords: Coxeter groups, factorisations, matrix tree theorem, higher genus, Laplacian.

1 Introduction

More than a century after its discovery and despite its simplicity, Kirchoff’s “Matrix
Tree” theorem is still one of the most beautiful and remarkable enumeration formulas
in mathematics. It expresses the weighted number of labelled trees on the vertex-set
{1, 2, ..., n}, where each edge {i, j} receives an arbitrary complex weight ωij, as the de-
terminant of the so-called Laplacian matrix constructed form these weights. Kirchoff’s
theorem expresses the solution to an enumerative problem in terms of the spectrum of
a related operator, a paradigm that has now been widely used in enumeration. In this
work, we will solve an enumeration problem related to complex reflection groups by
relating it to the spectrum of a natural Laplacian operator that we introduce.

When all weights are equal to one, Kirchoff’s determinant evaluates to Cayley’s fa-
mous nn−2 formula that counts (unweighted) labelled trees of size n. Via the monodromy
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correspondence and the interpretation of trees as branched coverings of the sphere by it-
self, nn−2 is also the number of factorisations t1...tn−1 = (1, 2, ..., n) of the increasing long
cycle in the symmetric group Sn into a product of n− 1 transpositions. Thus Kirchoff’s
theorem can be viewed as a far-reaching weighted generalization of Cayley’s formula.

But Cayley’s formula has at least two other sorts of generalizations. The first one, mo-
tivated by the study of Hurwitz numbers, considers coverings of the sphere by a surface
of higher genus g, which amounts to enumerating factorizations t1...t` = (1, 2, . . . , n)
with ` = n − 1 + 2g. This was done by Jackson [9] (see also Shapiro, Shapiro, Vain-
stein [14]) who obtained a striking product form for the generating function of these
numbers. Jackson’s formula was unified with the matrix tree theorem in a beautiful pa-
per of Burman and Zvonkine [4] (independently, Alon and Kozma [1]), which was one
of the inspirations for this work. They show that the generating function of factorisa-
tions of arbitrary length of long cycles into transpositions in the group Sn, where the
transposition (i, j) receives the weight ωij, has the remarkable form

1
n!

et∑i λi ∏
i
(1− e−tλi), (1.1)

where the λi are the non zero eigenvalues of the Laplacian. When t → 0, one recovers
the matrix tree theorem, while Jackson’s unweighted formula corresponds to λi = n.

Another generalization of Cayley’s formula is to replace the symmetric group Sn by
some other finite group W of matrices, for example a real reflection group with transpo-
sitions and the long cycle replaced respectively by reflections and the so-called Coxeter
element. Such a generalization was conjectured by Looijenga and proved by Deligne
([7], crediting discussions with Tits and Zagier) and later rediscovered by Chapoton [5].
Here again, Deligne’s formula, as well as Bessis’ version [2] for complex reflection groups,
takes a remarkable product form as hnn!/|W| where h and n are parameters of the group
that we will encounter later in this paper. This formula was later generalized by the first
author and Stump [6], who show that factorizations of arbitrary length have a fully
factored generating function given by (here R denotes the set of reflections of W):

1
|W| e

t|R|(1− e−th)n. (1.2)

This gives a common generalisation of Jackson’s and Deligne’s formulas.
The remarkable product form of all these formulas, and the similarity between (1.2)

and (1.1), raise several natural questions: can these results be put under a common roof,
i.e. are they shadows of a more general universal result? What would be the “Laplacian”
for other groups? And, is there a conceptual explanation for this product form?

In this paper we will see that the answers to these questions are very much related.
We will give an explanation of the product form by the existence of a correspondence
between some virtual characters of reflection groups and the exterior powers of their
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reflection representations. This also leads us to the good framework for the level of
generality at which a general statement can be made, which turns out to involve towers
of subgroups and generalizations of the Jucys-Murphy elements.

2 Main results

Given a complex vector space V ∼= Cn, we call a finite subgroup W ≤ GL(V) a complex
reflection group of rank n if it is generated by unitary reflections, which are C-linear maps
whose fixed spaces are hyperplanes. We further say that W is irreducible if it has no stable
linear subspaces apart from V and {0}. A parabolic subgroup WX of W is the fixator of
some flat X :=

⋂
i∈I Hi. We say that a complex reflection group W is well-generated if

it can be generated by n reflections. Well-generated groups are precisely the ones for
which a class of Coxeter elements can be defined, see [8, §2.3]. In particular they include
the symmetric group with the long cycles, and more generally real reflection groups
with the product of all simple generators. The Coxeter number of the group, denoted
by h, is the order of its Coxeter element.

For such a group W with set of reflections R and a tower of parabolic subgroups

T :=
(
{1} = W0 < W1 < · · · < Wn = W

)
, (2.1)

we consider the weight function wT : R → ω := (ωi)
n
i=1 defined by the filtration of R by

T, namely wT(τ) := ωi if τ ∈ Wi \Wi−1. We study the exponential generating function
of weighted reflection factorizations of any element c of the Coxeter class C:

FACT
W(t, ω) := ∑

`≥0

t`

`! ∑
(τ1,··· ,τ` ,c)∈R`×C

τ1···τ`=c

wT(τ1) · · ·wT(τ`). (2.2)

Thm. 1 gives a product formula for (2.2) which is a simultaneous extension of both the
Chapuy-Stump formula (1.2) and (partially) the Burman-Zvonkine formula (1.1). For an
arbitrary complex reflection group W, we introduce first the W-Laplacian

LT
W(ω) := ∑

τ∈R
wT(τ)

(
id−τ

)
∈ GL(V). (2.3)

Theorem 1 (Main combinatorial result). For a well-generated reflection group W of rank n
and Coxeter number h, and a parabolic tower T, the weighted enumeration (2.2) is given by

FACT
W(t, ω) =

etwT(R)

h
·

n

∏
i=1

(
1− e−tλT

i (ω)
)
,

where wT(R) := ∑τ∈RwT(τ), and the λT
i (ω) are the eigenvalues of the W-Laplacian LT

W(ω).



4 Guillaume Chapuy, Theo Douvropoulos

The weighting systems of (2.2) are closely related to the notion of generalized Jucys
Murphy elements that we propose in this paper. Given a tower as in (2.1), we introduce
the elements J1, . . . , Jn in the group algebra C[W], where Ji is the sum of all reflections of
W that belong to Wi \Wi−1:

Ji := ∑
τ∈R∩Wi\Wi−1

τ ∈ C[W]. (2.4)

The cornerstone of the Okounkov-Vershik approach is that for the standard tower of Sn,
these elements generate the Gelfand-Tsetlin algebra, in particular they generate the cen-
ter of Sn and separate all conjugacy classes, hence all characters. For a general tower
as (2.1) this is no longer the case, which leads us to the following question: which char-
acters does this algebra separate? And what does it mean for characters to be separated,
or not? We will not answer these questions here, but our work shows that they de-
serve further interest. We say that two (virtual) characters of the group W are tower
equivalent if they are equal on the subalgebra C[JT] of C[W] generated by the gener-
alized Jucys-Murphy elements (2.4), for any choice of the parabolic tower T. As we
will see, Theorem 1 is a direct consequence of the following result, which is the main
representation-theoretic result of this paper and really the de facto explanation for the
nice factored form in Theorem 1.

Recall that for any character χ of W, we may define the Coxeter number of χ as the
normalized trace cχ := (dim χ)−1χ

(
∑

τ∈R
(1− τ)

)
(which is an integer, see [8, Cor. 4.16]).

Grouping characters with respect to this statistic was a key ingredient of the uniform
proof of the Chapuy-Stump formula in [8]. Here too, consider the virtual character

Pm := ∑
χ∈Ŵ, cχ=m

χ(c−1) · χ,

for any integer m. The main theorem in [8] implies that the (virtual) dimension of Pm is
(−1)k · (n

k) when m = kh and 0 otherwise. The following is a vast generalization.

Theorem 2 (Tower equivalence, main result). For W and T as in Theorem 1 we have that

Pm ≡ (−1)kχΛkVre f
(2.5)

if m = hk and Pm ≡ 0 otherwise. Here ≡ denotes tower equivalence, and χΛkVre f
is the character

of the k-th exterior power ΛkVre f of the reflection representation Vre f of W.

Tower equivalence sheds a new light on the existence of product formulas, even if (for
now) our proof of Theorem 2 is not case-free. In fact, all formulas in the field including
the ones in [7, 2, 6] first received non-case-free proofs, using computer verification. Only
very recently were case-free proofs of the Deligne formula obtained (for Weyl groups
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by Michel [11] and for arbitrary real groups by the second author [8]), and both prove
in fact the more general Chapuy-Stump formula, whose additional structure played an
important role in their discovery. We believe that our results, in addition to their intrinsic
interest, will play a similar role. In particular, the study of the generalized Jucys-Murphy
algebras can lead to interesting progress, and the links between Theorem 2 and the
unipotent characters Uχk

indexed by χk := χΛk(Vre f )
which appear in [11] could be further

investigated. This may lead in the future to a case-free proof of the Tower equivalence.
In fact, our paper already contains an example of this phenomenon. In Section 5, we

will give a generalization of the Matrix forest theorem to reflection groups. This relies on
our main theorem, and on other developments (Thm. 3) which are completely case-free
but were actually motivated by this generalization. As an unexpected bonus, we obtain
from these a new recursion for Coxeter numbers of parabolic subgroups (Cor. 4). In a
separate project we deduce from this a new uniform derivation of Deligne’s formula from
the Deligne-Reading recursion [13] (which so far had led only to case-by-case proofs).

Corollaries and further comments.
Looking at the first non-zero coefficient in FACT

W(t, ω) in Theorem 1, we obtain:

Corollary 1 (Matrix-tree with generalized Jucys-Murphy weights, for reflection groups).
Let W be a well-generated complex reflection group, T a parabolic tower, and assume the notation
and hypotheses of Theorem 1. Then the weighted number of reduced factorisations of a Coxeter
element into a product of transpositions is given by

∑
(τ1,τ2,...,τn ,c)∈Rn×C

τ1τ2...τn=c

wT(τ1)wT(τ2) . . . wT(τn) =
n!
h

det LT
W(ω), (2.6)

where LT
W(ω) is the Laplacian matrix.

In the case of the symmetric group, W = An, it is well known that the equivalence ≡
in Theorem 2 is an equality, which underlies the fact the the results of [4, 1] work with
arbitrary weights and no reference to a tower structure. Note that the usual practice
is to define the Laplacian matrix in type An = Sn+1 as an (n + 1) × (n + 1) matrix
having a zero eigenvalue. Here our matrix is defined directly as a generically invertible
n× n matrix but it is essentially the same object. For other groups, it seems hopeless to
expect a general factored formula under general weights as it already fails for dihedral
groups – for which computations can be done explicitely. Some isolated facts will be
discussed in the final long version, for example for the group Bn (signed permutations),
it is indeed possible to work under general weights at the price of defining the Laplacian
in a different, reducible, representation.

Plan of the paper. In Section 3 we discuss towers, generalized Jucys-Murphy ele-
ments, and generalizations of the Gelfand-Tsetlin basis. In Section 4 we show the equiv-
alence between Theorems 1 and 2 via the concept of Lie-like elements due to Burman
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and Zvonkine [4]. In Section 5 we give a version of the matrix-forest theorem for reflection
groups and some case-free developments concerning the Coxeter numbers of parabolics.
Section 6 contains a very partial sketch of the proofs of our main results.

3 Frobenius lemmas and Gelfand-Tsetlin decomposition

A classical technique in the enumeration of factorizations in groups is via a lemma of
Frobenius that relates the enumeration to character evaluations (see e.g. [6]). We give
here a variant of it (see also [4]) as it applies for the weighted case (2.2). To simplify
our formulas, we extend characters χ ∈ Ŵ to the power series C[W][[t]] by defining
χ
(
∑ ai · ti) := ∑ χ(ai) · ti, for any coefficients ai ∈ C[W].

Lemma 1 (weighted Frobenius). The enumeration of weighted factorizations (2.2) is given by

FACT
W(t, ω) = (1/h) · ∑

χ∈Ŵ

χ(c−1) · χ
(
etA(ω)

)
,

where A(ω) := ∑τ∈RwT(τ) · τ belongs to the group algebra C[W] and c is a Coxeter element.

Proof. Notice that if [w](α) denotes the coefficient of w in an element α of the group
algebra C[W], we can express the weighted enumeration of (2.2) as

∑
(τ1,τ2,...,τ` ,c)∈R`×C

τ1τ2...τ`=c

w(τ1)w(τ2) . . . w(τ`) = ∑
c∈C

[1]
(
A(ω)` · c−1) = [1]

(
A(ω)` ·C−1),

where 1 is the identity in W and C−1 := ∑c∈C c−1 is central in C[W] (recall that C is
the Coxeter conjugacy class). One can detect the coefficient [1](α) as the trace of α,
normalized by 1/|W|, under the regular representation C[W]. This is because in C[W]
all group elements apart from 1 act as fixed-point-free permutation matrices. We have

[1]
(
A(ω)` ·C−1) = 1

|W| · TrC[W]

(
A(ω)` ·C−1)

=
1
|W| ∑

χ∈Ŵ

χ(1) · χ
(
A(ω)` ·C−1) = |C||W| ∑

χ∈Ŵ

χ(c−1) · χ
(
A(ω)`

)
,

where for the second line we decompose the group algebra as C[W] ∼=
⊕

χ∈Ĝ χ(1) ·Uχ

with Uχ the representation afforded by χ, and use that the central element C−1 acts on
Uχ as multiplication by the scalar |C| · χ(c−1)/χ(1) (for any c ∈ C). Applying this to

all terms in the series (2.2) and noticing that χ
(
etA(ω)

)
= ∑`≥0 χ

(
A(ω)l) · tl

l!
and that

h = |W|/|C| for the Coxeter class C, the statement is proven.
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Jucys-Murphy elements, Gelfand-Tsetlin decomposition

The proof of Lemma 1 does not use the tower structure of the weight system wT and
actually works for arbitrary weight assignments. However it is often impractical as eval-
uating the traces χ(etA(ω)) amounts to calculating the multiset Specχ(A(ω)) of eigenval-
ues of A(ω) over the representation Uχ of W. Indeed, we will have

χ(etA(ω)) = ∑
`≥0

t`

`!
· ∑

λj(ω)∈Specχ(A(ω))

λj(ω)` = ∑
λj(ω)∈Specχ(A(ω))

etλj(ω), (3.1)

where the λj(ω) are a priori algebraic functions on the parameters ωi. We will show in
this section (Lem. 2), that for systems wT they are in fact linear in the ωi.

The element A(ω) belongs to the algebra C[J] := C[J1, ..., Jn] generated by the gener-
alized Jucys Murphy elements (2.4); it is equal to ∑n

i=1 ωi Ji. It is easy to see that C[J] is
commutative and in fact the Ji are simultaneously diagonalizable and hence their eigen-
values determine those of A(ω). In what follows we study the spectra of the Ji with a
technique inspired from the Okounkov-Vershik approach [16].

The notation ψ ↗ χ indicates that ψ and χ are characters of consecutive groups Wi−1
and Wi in the tower T, and that ψ appears with positive multiplicity in the restriction of
χ on Wi−1. If χ denotes a tuple of characters (χ0, χ1, · · · , χn) with χi ∈ Ŵi, we write

ResT(χ) := {χ : χi ↗ χi+1 and χn = χ} (3.2)

for the set of possible chains χ that may appear as we restrict χ down the tower T.
We can use the canonical projection into isotypic components to construct a decom-

position of Vχ (for any χ ∈ Ŵ) into spaces Vχ indexed by the chains χ ∈ ResT(χ) as
defined above. Start by writing Vχ(n) := Vχ and inductively define Vχ(i) as the χi-
isotypic component of Vχ(i + 1). At the last level, the spaces Vχ := Vχ(0) satisfy

Vχ =
⊕

χ∈ResT(χ)

Vχ. (3.3)

We call the expression above the Gelfand-Tsetlin decomposition of Vχ with respect to the
tower T. At each step i of the inductive construction, the character χi−1 appears with
multiplicity mχi−1,χi in the restriction of χi on Wi−1. Then, if we define

mult(χ) :=
n

∏
i=1

mχi−1,χi =
n

∏
i=1

(
χi−1,

yWi
Wi−1

χi
)

Wi−1
, (3.4)

and since dim(Vχ0) = 1 (W0 = {1}), we get that dim(Vχ) = mult(χ). In combinatorial
terms, (3.4) counts the number of chains of type χ in the branching graph for T.

The significance of the Gelfand-Tsetlin decomposition (3.3) in our setting is that it
provides simultaneous eigenspaces for the elements Ji. Indeed, consider in the group
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algebra C[W] the partial sums Ri := J1 + · · · + Ji so that Ji = Ri − Ri−1. Each Ri is a
central element of C[Wi] (it is the sum of all reflections of Wi) and therefore acts as scalar
multiplication by χ̃i(Ri) := χi(Ri)/χi(1) on each space Vχ(i).

Finally, we have by construction Vχ ⊂ Vχ(i) for all i, which means that (3.3) gives a
decomposition of Vχ in simultaneous eigenspaces of the Ri and thus by definition, also
of the Ji. Recalling that A(ω) = ∑n

i=1 ωi Ji and using (3.1), Lemma 1 becomes:

Lemma 2. For a tower T in W and with the Ri as above, the enumeration (2.2) is given by:

FACT
W(t, ω) =

1
h
· ∑

χ∈Ŵ

χ(c−1) ∑
χ∈ResT(χ)

mult(χ) · exp
(

t ·
n

∑
i=1

(
χ̃i(Ri)− χ̃i−1(Ri−1)

)
·ωi

)
Remark 1. All the arguments in this section, and in particular Lemma 2 above, work for
an arbitrary group G and tower of subgroups T. We hope that this method we introduced
here may be used successfully in other instances where similar weighted enumeration
questions are natural. An obvious first candidate would be the groups GLn(Fq) [10].

4 Lie-like elements and proof of Theorem 1

Theorem 2 relates the virtual characters appearing in the Frobenius formula to the exte-
rior powers Λk(Vre f ) of the reflection representation Vre f . The following lemma asserts
that reflections act as “Lie-like elements” on those exterior powers. It was first stated by
Burman and Zvonkine [4] in the context of type An (their proof trivially extends from
reflections to pseudo-reflections).

Lemma 3 ([4, Proposition 2.2]). Let W ≤ GL(V) be a complex reflection group and τ ∈ C[W]
be a pseudo-reflection. Then the action of 1− τ on ΛkV = V ∧V ∧ · · · ∧V is given by

k

∑
i=1

id ∧ · · · ∧ id ∧ (1− τ) ∧ id ∧ · · · ∧ id, (4.1)

where in the sum, (1− τ) appears at position i (and only the identity appear at other positions).

Corollary 2 ([4, Proposition 2.4]). Consider the “group algebra version” of the Laplacian,
namely the element L := ∑τ∈T xτ · (1− τ) in C[xτ][W]. Then the (n

k) eigenvalues of L on the
representation ΛkV are given by the sums

σi1 + σi2 + · · ·+ σik

for all 1 ≤ i1 < i2 < · · · < ik ≤ N, where σ1, σ2, . . . , σN are the eigenvalues of L on V.
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We are now ready to show how Theorem 2 implies Theorem 1. From Lemma 1, and
from the fact that L = wT(R)−A(ω) in previous notation, we have

FACT
W(t, ω) =

1
h

etwT(R) ∑
χ∈Ŵ

χ(c−1) · χ
(
e−tL) (4.2)

=
1
h

etwT(R) ∑
m≥0

Pm(e−tL), (4.3)

where we have grouped the characters χ ∈ Ŵ according to their Coxeter number cχ

using the notation Pm of Theorem 2. Since all the coefficients in the t-expansion of
etL are elements of C[J], we can use the tower equivalence in Theorem 2 and we get

FACT
W(t, w) =

1
h

etwT(R)
n

∑
k=0

(−1)kχΛkVre f
(e−tL) =

1
h

etwT(R)
n

∑
k=0

(−1)k ∑
λ

e−tλ,

where the last sum is taken over the eigenvalues λ of L on the representation ΛkVre f .
But Corollary 2 gives us these eigenvalues explicitly! We get

FACT
W(t, w) =

1
h

etwT(R)
n

∑
k=0

(−1)k ∑
1≤i1<···<ik≤n

e−tσi1
−···−tσik =

1
h

etwT(R)
n

∏
i=1

(1− e−tσi),

which is precisely Theorem 1.

Remark 2. A bit more work shows that for a given W, Theorem 1 is in fact equivalent to
Theorem 2. This relies on showing that the powers A(ω)` linearly generate C[J].

5 A Matrix-forest theorem for reflection groups

After Cor. 1, it is natural to ask for an analog of the whole Matrix-Forest theorem for
reflection groups; namely a combinatorial description of all the coefficients of the char-
acteristic polynomial of the W-Laplacian LT

W(ω). The answer, Corollary 3 below, was
initially guessed via computer calculations and suggested a relation with determinants
of smaller Laplacians. This led to the following much broader theorem.

For an arbitrary hyperplane arrangement A in a space V, we define the A-Laplacian
as a sum of rank 1 operators LA(ω) := ∑H∈A ωH(Id−sH) ∈ GL(V) with a family of
weights ω = (ωH)H∈A and where sH denotes the reflection across H. We write qdet for
the quasi-determinant of an operator, i.e. the product of its nonzero eigenvalues.

Theorem 3. For any arrangement A, the characteristic polynomial of LA(ω) is given by

det
(
t · Id+LA(ω)

)
= ∑

X∈LA
qdet

(
LAX(ωX)

)
· tdim(X),

where AX := {H ∈ A : H ⊃ X} denotes the localization on a flat X.
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Sketch. The proof is an almost immediate application of [3, Cor. 2.4] where a formula
is given for the characteristic polynomial of any sum of rank 1 operators. Instead of
summing over all linearly independent subcollections of hyperplanes we group them
together with respect to their intersection.

For reflection arrangements AW , any localization (AW)X is also a reflection arrange-
ment (for the group WX). Then combining Cor. 1 with Thm. 3 immediately gives the
following Corollary. One thing to notice is that any parabolic tower T in W defines a
parabolic tower W ′i := Wi

⋂
WX for any flat X.

Corollary 3. The characteristic polynomial of the W-Laplacian LW
T (ω) is given by

det(t · 1 + LW
T (ω)

)
= ∑

τ1···τn−k=cX
dim(X)=k

[WX : CWX(cX)] ·wT(τ1) · · ·wT(τn−k) ·
tk

(n− k)!
,

where the sum is over all Coxeter elements cX, over any parabolic subgroup WX.

Notice how Cor. 3 and Thm. 1 together imply a remarkable connection between arbitrary
length and reduced reflection factorizations for the parabolic and Coxeter classes.

Even more than this, Thm. 3 produces some very interesting numerology for re-
flection groups W. For instance, identifying all weights to 1, the eigenvalues of the
W-Laplacian equal, by definition, the Coxeter number h, so that Thm. 3 implies:

Corollary 4. If {hi(WX)} denotes the multiset of Coxeter numbers of the parabolic WX, then

(t + h)n = ∑
X∈LW

tdim(X) ·
rk(WX)

∏
i=1

hi(WX).

6 A glimpse at the proof of Theorem 2

In this section we only give an idea of the structure of our proofs (not even a sketch),
refering to the long version for complete proofs. Our proof uses the Sheppard-Todd
classification of well generated complex reflection groups (see [15]), into a finite set of
“exceptional” groups, and the three infinite families Sn, G(r, 1, n), G(r, r, n).

1- Exceptional groups. For any fixed group and a given tower, Theorem 1 (and thus
also Theorem 2, see Remark 2) can be proved from Lemma 2 provided one has access to
the irreducible characters. We ran this check for all exceptional groups and all conjugacy
classes of towers, using GAP3 and Sage.

2- Symmetric groups. For Sn, everything is already known, see [4]. The only char-
acters not vanishing the Coxeter element (the long cycle) are hooks, which correspond
to exterior powers of Vre f . Therefore the equivalence ≡ in Theorem 2 is an equality.

3- Other infinite types. The proof for infinite types G(r, 1, n) and G(r, r, n) is not as
simple and relies on three ingredients, all of which require proof:
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(i) The inductive nature of tower equivalence: In order to check that two virtual char-
acters χ1, χ2 of W (that take the same value on the sum of reflections) are tower
equivalent, it suffices to show that their restriction to any maximal parabolic sub-
group Wsub ⊂ W are tower equivalent (for the smaller group Wsub). Now, the maxi-
mal parabolics are well understood, and up to conjugation they are either symmetric
groups, or of the form:

G(r, 1, a)× Sn−a ↪→ G(r, 1, n) and G(r, r, a)× Sn−a ↪→ G(r, r, n).

(ii) The irreducible characters of groups G(r, d, n) are understood. They are generically
indexed by r-tuples of partitions of total size n, considered modulo the action of the
cyclic group Zd, see [6]. For example, the values of the (virtual) character Phk of
Theorem 2 for the group G(r, 1, n) is given (with h = rn) by

P(rn)k = 0h
n
k − ∑

0<q<r
ξ−q · qh

n
k−1,

where ξ is a primitive r-th root of unity, and qh
n
k := (0, ..., 0, hn

k , 0, ...0) where the hook
partition hn

k := (n− k, 1k) appears at the q-th position. Using either the Littlewood-
Richardson rule and its generalisation to G(r, 1, n) (e.g. [12]), or direct exterior prod-
uct calculations, the restriction of this character to a subgroup G(r, 1, a) × Sn−a can
explicitely be written.

(iii) It turns out, and this is a remarkable fact, that after cancellation of many terms, this
restriction of the character Phk to a parabolic subgroup can be put in an "recursive"
form. In the previous example of G(r, 1, n), we get after calculation

P(rn)k

y
G(r,1,a)×Sn−a

= ∑
i,j≥0,ε∈{0,1}

i+j+ε=k

P(ra)i ⊗ hn−a
j , (6.1)

where we see the quantity P(ra)i corresponding to the smaller group G(r, 1, a) appear.
From this formula, and from the easy fact that exterior products obey a similar recur-
sion, one can show by induction1 that Pnk is ideed equal to ΛkCn for all n and k.

The case of G(r, r, n) is similar in structure but much more complicated, as the charac-
ters involved are more numerous and do not involve only hooks but also quasi-hooks,
as already noticed in [6]. The computation of the restriction to a parabolic subgroup
is more involved and is only possible via a cautious use of the Littlewood-Richardson
rule, see the appendix in the long version. The same phenomenon as for G(r, 1, n)
arises, namely that after tedious calculations and simplifications, the restriction of the
virtual characters appearing in Theorem 2 have a "recursive" form w.r.t. to parabolic
subgroups, from which we can use induction. We refer again to the long version for
these calculations, that form a large part of the full version of this paper.
1The present sketch omits many details including initial conditions, and parabolic subgroups that are

single symmetric groups.
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representations, with special emphasis on branching rules, 2006.

[13] N. Reading. Chains in the noncrossing partition lattice. SIAM J. Discrete Math., 2008.

[14] B. Shapiro, M. Shapiro, and A. Vainshtein. Ramified coverings of S2 with one degen-
erate branch point and enumeration of edge-ordered graphs. In Topics in singularity
theory, volume 180 of Amer. Math. Soc. Transl. Ser. 2, pages 219–227. 1997.

[15] G.C. Shephard and J.A. Todd. Finite unitary reflection groups. Canad. J. Math., 1954.

[16] A. M. Vershik and A. Yu. Okounkov. A new approach to representation theory of
symmetric groups. II. (POMI), 307(10):57–98, 281, 2004.

http://homepage.univie.ac.at/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf
http://homepage.univie.ac.at/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf

	Introduction
	Main results
	Frobenius lemmas and Gelfand-Tsetlin decomposition
	Lie-like elements and proof of Theorem 1
	A Matrix-forest theorem for reflection groups
	A glimpse at the proof of Theorem 2

