Cyclic Sieving for reduced reflection factorizations of the Coxeter element

Theo Douvropoulos

Paris VII, IRIF (ERC CombiTop)

July 18, 2018
The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i's are transpositions.

Theo Douvropoulos (Paris VII, IRIF)
A C.S.P. for reflection factorizations of c
July 18, 2018
The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i’s are transpositions.

For example, the 3^1 factorizations

\[
(12)(23) = (123) \quad (13)(12) = (123) \quad (23)(13) = (123).
\]
The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i’s are transpositions.

For example, the 3^1 factorizations

$$(12)(23) = (123) \quad (13)(12) = (123) \quad (23)(13) = (123).$$

Theorem (Deligne-Arnol’d-Bessis)

For a well-generated, complex reflection group W, with Coxeter number h, there are $\frac{h^n n!}{|W|}$ (minimal length) reflection factorizations $t_1 \cdots t_n = c$ of the Coxeter element c.

Theo Douvropoulos (Paris VII, IRIF)
Ingredients:

1. A set X.
2. A polynomial $X(q)$.
3. A cyclic group $C = \langle c \rangle$ of some order n, acting on X.

Definition (Reiner-Stanton-White)

We say that the triple $(X, X(q), C)$ exhibits the cyclic sieving phenomenon if for all d,

$$\{x \in X : c^d \cdot x = x\} = X(\zeta_d),$$

where ζ is a(n) primitive nth root of unity.

The polynomial $X(q)$ is sometimes a statistic on a combinatorial object, a Poincare polynomial, a Hilbert Series, a formal character. (for more, have a look at What is... Cyclic Sieving?)
What is a Cyclic Sieving Phenomenon (CSP)?

Ingredients:
1. A set X.
2. A polynomial $X(q)$.
3. A cyclic group $C = \langle c \rangle$ of some order n, acting on X.

Definition (Reiner-Stanton-White)
We say that the triple $(X, X(q), C)$ exhibits the cyclic sieving phenomenon if for all d,

$$\# \{ x \in X : c^d \cdot x = x \} = X(\zeta^d),$$

where ζ is a(ny) primitive n^{th} root of unity.
Ingredients:

1. A set X.
2. A polynomial $X(q)$.
3. A cyclic group $C = \langle c \rangle$ of some order n, acting on X.

Definition (Reiner-Stanton-White)

We say that the triple $(X, X(q), C)$ exhibits the cyclic sieving phenomenon if for all d,

$$\# \{ x \in X : c^d \cdot x = x \} = X(\zeta^d),$$

where ζ is any primitive n^{th} root of unity.

The polynomial $X(q)$ is sometimes a statistic on a combinatorial object, a Poincare polynomial, a Hilbert Series, a formal character.. (for more, have a look at What is... Cyclic Sieving?).
W is a well-generated complex reflection group of rank n, c is a Coxeter element of W and the t_i’s are reflections.

1. $X = \text{Red}_W(c)$ (:= \{factorizations $t_1 \cdots t_n = c$ \}) enumerated by $\frac{h^n n!}{|W|}$.
A CSP for reduced reflection factorizations of c

W is a well-generated complex reflection group of rank n, c is a Coxeter element of W and the t_i’s are reflections.

1. $X = \text{Red}_W(c)$ (:= \{factorizations $t_1 \cdots t_n = c$ \}) enumerated by $\frac{h^n n!}{|W|}$.

2. $X(q) = \prod_{i=1}^{n} \frac{[hi]_q}{[di]_q}$ (for $W = S_n$, $X(q) = \prod_{i=2}^{n-1} [n]_q$),

where the d_i’s are the invariant degrees of W and $[n]_q := \frac{1-q^n}{1-q}$.
A CSP for reduced reflection factorizations of c

W is a well-generated complex reflection group of rank n, c is a Coxeter element of W and the t_i’s are reflections.

1. \(X = \text{Red}_W(c) (:= \{\text{factorizations } t_1 \cdots t_n = c \})\) enumerated by \(\frac{h^n n!}{|W|}\).

2. \(X(q) = \prod_{i=1}^{n} \frac{[hi]_q}{[d_i]_q}\) (for \(W = S_n\), \(X(q) = \prod_{i=2}^{n-1} [n]_q\)),

where the d_i’s are the invariant degrees of W and \([n]_q := \frac{1-q^n}{1-q}\).

3. C is any of the following options:

 1. \(\Psi_{\text{cyc}} : (t_1, \cdots, t_n) \rightarrow (c t_n, t_1, \cdots, t_{n-1}),\) of order \(nh\).
W is a well-generated complex reflection group of rank n, c is a Coxeter element of W and the t_i’s are reflections.

1. \(X = \text{Red}_W(c) \) (:= \{factorizations \(t_1 \cdots t_n = c \} \) enumerated by \(\frac{h^n n!}{|W|} \).

2. \(X(q) = \prod_{i=1}^{n} \frac{[hi]_q}{[d_i]_q} \) (for \(W = S_n \), \(X(q) = \prod_{i=2}^{n-1} [n]_q \),

where the \(d_i \)'s are the invariant degrees of \(W \) and \([n]_q := \frac{1-q^n}{1-q} \).

3. C is any of the following options:
 1. \(\Psi_{\text{cyc}}: (t_1, \cdots, t_n) \rightarrow (c^{t_n}, t_1, \cdots, t_{n-1}) \), of order \(nh \),
 2. \(\Phi_{\text{cyc}}: (t_1, \cdots t_n) \rightarrow (c^{t_n}) t_1, c t_n, t_2, \cdots, t_{n-1} \), of order \((n-1)h\),
A CSP for reduced reflection factorizations of c

W is a well-generated complex reflection group of rank n, c is a Coxeter element of W and the t_i's are reflections.

1. $X = \text{Red}_W (c) \ (:= \{ \text{factorizations } t_1 \cdots t_n = c \})$ enumerated by $\frac{h^n n!}{|W|}$.

2. $X(q) = \prod_{i=1}^{n} \frac{[hi]_q}{[di]_q}$ (for $W = S_n$, $X(q) = \prod_{i=2}^{n-1} [n]_q$),

where the d_i's are the invariant degrees of W and $[n]_q := \frac{1-q^n}{1-q}$.

3. C is any of the following options:
 - $\Psi_{\text{cyc}} : (t_1, \cdots, t_n) \rightarrow (c t_n, t_1, \cdots, t_{n-1})$, of order nh,
 - $\Phi_{\text{cyc}} : (t_1, \cdots, t_n) \rightarrow (c t_n, c t_n, t_2, \cdots, t_{n-1})$, of order $(n-1)h$,
 - $\text{Twist} : (t_1, \cdots, t_n) \rightarrow \left((t_1 \cdots t_{n-1}) t_n, (t_1 \cdots t_{n-2}) t_{n-1}, \cdots, t_1, t_2, t_1 \right)$, $2h$,
 - ...

where $w t := wt w^{-1}$ stands for conjugation.
A CSP for reduced reflection factorizations of c

Theorem (D. ’17, Conjectured in Williams’ Cataland)

For an irreducible, well-generated complex reflection group W, with degrees d_1, \cdots, d_n, Coxeter element c and Coxeter number $h = d_n$, the triple

$$\left(\text{Red}_W(c), \prod_{i=1}^n \frac{[hi]_q}{[di]_q}, C \right),$$

where C is any of the previous cyclic groups, exhibits the cyclic sieving phenomenon.
Theorem (D. ’17, Conjectured in Williams’ Cataland)

For an irreducible, well-generated complex reflection group W, with degrees d_1, \cdots, d_n, Coxeter element c and Coxeter number $h = d_n$, the triple

$$\left(\text{Red}_W(c), \prod_{i=1}^{n} \frac{[hi]_q}{[d_i]_q}, C \right),$$

where C is any of the previous cyclic groups, exhibits the cyclic sieving phenomenon.

For $W = S_4$, we have:

$$X(q) = [4]_q^2 \cdot [4]_q^3 = \frac{1 - q^8}{1 - q^2} \cdot \frac{1 - q^{12}}{1 - q^4}.$$

$$\zeta = e^{2\pi i/12}, \quad \zeta^4 = e^{2\pi i/3}$$

$$X(\zeta^4) = 1 \cdot (1 + \zeta^{12} + \zeta^{24} + \zeta^{32}) = 4.$$

$$X(\zeta) = X(\zeta^2) = X(\zeta^3) = X(\zeta^6) = 0.$$

The other orbit is free and contains $12 \cdot 23 \cdot 34$. The other orbit is free and contains $12 \cdot 34 \cdot 24$.
Coxeter elements via Springer

Theorem (For us definition)

Coxeter elements are characterized by having an eigenvector \vec{v}, which lies on no reflection hyperplane, with eigenvalue $\zeta = e^{2\pi i/h}$, where $h = \frac{|R| + |R^*|}{n}$.
Theorem (For us definition)

Coxeter elements are characterized by having an eigenvector \(\vec{v} \), which lies on no reflection hyperplane, with eigenvalue \(\zeta = e^{2\pi i / h} \), where \(h = \frac{|R| + |R^*|}{n} \).

For the symmetric group \(S_n \), the Coxeter element is the (any) long cycle \((12 \cdots n)\); its eigenvectors are of the form \((\zeta^{n-1}, \zeta^{n-2}, \cdots, \zeta, 1)\).
Coxeter elements via Springer

Theorem (For us definition)

Coxeter elements are characterized by having an eigenvector \vec{v}, which lies on no reflection hyperplane, with eigenvalue $\zeta = e^{2\pi i/h}$, where $h = \frac{|R| + |R^*|}{n}$.

For the symmetric group S_n, the Coxeter element is the (any) long cycle $(12 \cdots n)$; its eigenvectors are of the form $(\zeta^{n-1}, \zeta^{n-2}, \cdots, \zeta, 1)$.

For real reflection groups:
Towards a geometric construction of the Coxeter element

Theorem (Steinberg)

W acts freely on the complement of the hyperplane arrangement $V^{\text{reg}} := V \setminus \bigcup H$. That is, $\rho : V^{\text{reg}} \to W \setminus V^{\text{reg}}$ is a covering map.
Towards a geometric construction of the Coxeter element

Theorem (Steinberg)

W acts freely on the complement of the hyperplane arrangement $V^\text{reg} := V \setminus \bigcup H$. That is, $\rho : V^\text{reg} \to W \setminus V^\text{reg}$ is a covering map.

\[
1 \hookrightarrow \pi_1(V^\text{reg}) \xrightarrow{\rho^*} \pi_1(W \setminus V^\text{reg}) \xrightarrow{\pi} W \to 1
\]

\[
\begin{array}{c}
\| & \| \\
\pi_1(V^\text{reg}) & \pi_1(W \setminus V^\text{reg}) \\
P(W) & B(W)
\end{array}
\]
Towards a geometric construction of the Coxeter element

Theorem (Steinberg)

\[W \text{ acts freely on the complement of the hyperplane arrangement } V^{\text{reg}} := V \setminus \bigcup H. \text{ That is, } \rho : V^{\text{reg}} \to W \setminus V^{\text{reg}} \text{ is a covering map.} \]

\[1 \hookrightarrow \pi_1(V^{\text{reg}}) \xrightarrow{\rho_*} \pi_1(W \setminus V^{\text{reg}}) \xrightarrow{\pi} W \to 1 \]

\[P(W) \hspace{1cm} B(W) \]

Theorem (Shephard-Todd-Chevalley, GIT)

\[W \text{ is realized as the group of deck transformations of a covering map } \rho \text{ which is explicitly given via the fundamental invariants } f_i. \]
The loop δ maps to the Coxeter element c.

As we vary y, the slice $L_y \sim = C$ intersects the discriminant hypersurface $H := W \setminus \bigcup H$ in n-many points (with multiplicity). Loops around these points (that are prescribed by a choice of a base star) map to factorizations of c. We call this construction a labeling map and we write $\text{rlbl}(y, c_1, \ldots, c_k)$, to indicate the dependence on the base star.
The loop δ maps to the Coxeter element c.

As we vary y, the slice $L_y \cong \mathbb{C}$ intersects the discriminant hypersurface $\mathcal{H} := W \setminus \bigcup H$ in n-many points (with multiplicity).
1. The loop δ maps to the Coxeter element c.

2. As we vary y, the slice $L_y \cong \mathbb{C}$ intersects the discriminant hypersurface $\mathcal{H} := W \setminus \bigcup H$ in n-many points (with multiplicity).

3. Loops around these points (that are prescribed by a choice of a base star) map to factorizations of c.

Theo Douvropoulos (Paris VII, IRIF)
The loop δ maps to the Coxeter element c.

As we vary y, the slice $L_y \cong \mathbb{C}$ intersects the discriminant hypersurface $\mathcal{H} := W \setminus \bigcup H$ in n-many points (with multiplicity).

Loops around these points (that are prescribed by a choice of a base star) map to factorizations of c.

We call this construction a *labeling map* and we write

$$\text{rlbl} \left(y, \begin{array}{c} \delta \\ \end{array} \right) = (c_1, \cdots, c_k),$$

to indicate the dependence on the base star.
We define the LL map:

$$LL : Y \rightarrow \{ \text{centered configurations} \}$$

$$y \rightarrow \text{multiset } L_y \cap \mathcal{H}.$$
The Lyashko-Looijenga (LL) morphism

We define the LL map:

$$LL : Y \rightarrow \{ \text{centered configurations} \} \quad \{ \text{of } n \text{ points in } \mathbb{C} \}$$

$$y \rightarrow \text{multiset } L_y \cap H.$$

Algebraically, it is given as:

$$(f_1, \cdots, f_{n-1}) \xrightarrow{LL} (\alpha_2(f), \cdots, \alpha_n(f)),$$

where α_i is weighted homogeneous of degree h_i.

Our polynomial $X(q)$ is precisely the Hilbert series:

$$Hilb(LL^{-1}(0), q) = \prod_{i=1}^{n} [h_i] q^{d_i}.$$
We define the LL map:

\[LL : Y \to \{ \text{centered configurations of } n \text{ points in } \mathbb{C} \} \]

\[y \to \text{multiset } L_y \cap \mathcal{H}. \]

Algebraically, it is given as:

\[(f_1, \cdots, f_{n-1}) \xrightarrow{LL} (\alpha_2(f), \cdots, \alpha_n(f)), \]

where \(\alpha_i \) is weighted homogeneous of degree \(h_i \).

It is a finite morphism whose degree is:

\[\deg(LL) = \frac{h^n n!}{|\mathcal{W}|} \quad (= |\text{Red}_W(c)|). \]
The Lyashko-Looijenga (LL) morphism

We define the LL map:

\[LL : Y \to \{ \text{centered configurations of } n \text{ points in } \mathbb{C} \} \]

\[y \to \text{multiset } L_y \cap \mathcal{H}. \]

Algebraically, it is given as:

\[(f_1, \cdots, f_{n-1}) \xrightarrow{LL} (\alpha_2(f), \cdots, \alpha_n(f)), \]

where \(\alpha_i \) is weighted homogeneous of degree \(h_i \).

It is a finite morphism whose degree is:

\[\text{deg}(LL) = \frac{h^n n!}{|W|} \quad (= |\text{Red}_W(c)|). \]

Our polynomial \(X(q) \) is precisely the Hilbert series:

\[\text{Hilb} \left(LL^{-1}(0), q \right) = \prod_{i=1}^{n} \frac{[h_i]_q}{[d_i]_q}. \]
Bessis’ trivialization theorem

Theorem (Bessis)

The points in a generic fiber $LL^{-1}(e)$ of the LL map are in bijection with reduced reflection factorizations of the Coxeter element c. The bijection is given by the labeling map and depends non-trivially on a choice of base-star for the configuration e.

\[LL^{-1}(e) \ni y \rightarrow \text{rlbl} \left(y, \begin{array}{c} \vdots \end{array} \right) \in \text{Red}_W(c). \]
Bessis’ trivialization theorem

Theorem (Bessis)

The points in a generic fiber $LL^{-1}(e)$ of the LL map are in bijection with reduced reflection factorizations of the Coxeter element c. The bijection is given by the labeling map and depends non-trivially on a choice of base-star for the configuration e.

$$LL^{-1}(e) \ni y \rightarrow \text{rlbl} \left(y, \begin{array}{c} \delta \end{array} \right) \in \text{Red}_W(c).$$

This remarkably relies on the numerological coincidence $\deg(LL) = |\text{Red}_W(c)|$.
The cyclic actions $\Psi, \Phi, Twist, \cdots$ via the rlbl map

$$\text{rlbl} \left(y'', \bigcirc \right) = \text{rlbl} \left(y, \bigcirc \right) = (b_1, b_2, b_3) \quad \text{rlbl} \left(y'', \bigcirc \right) = (b_1, b_2, b_3).$$

$$(b_1, b_2, b_3) = (b_2, b_3, b_1 b_2 b_3) \quad \text{i.e. } \text{rlbl}(y) = \Psi^{-1} \cdot \text{rlbl}(y'')$$
Proof of the CSP (sketch)

\(X(q) = \text{Hilb} (LL^{-1}(0), q) = \prod_{i=1}^{n} \frac{[h_i]_q}{[d_i]_q} \)
Proof of the CSP (sketch)

1. \(X(q) = \text{Hilb} \left(LL^{-1}(0), q \right) = \prod_{i=1}^{n} \frac{[hi]_q}{[d_i]_q} \)

2. For \(k \)-symmetric point configurations \(e \), the fiber \(LL^{-1}(e) \) carries a natural (scalar) action of a cyclic group \(C_{kh} = \langle \xi \rangle \leq \mathbb{C}^* \), \(\xi = e^{2\pi i / kh} \), given by:

\[
 y \in LL^{-1}(e), \quad \xi \star y = \xi \star (f_1, \cdots, f_{n-1}) := (\xi^{d_1} f_1, \cdots, \xi^{d_{n-1}} f_{n-1})
\]
Proof of the CSP (sketch)

1. \(X(q) = \text{Hilb}(LL^{-1}(0), q) = \prod_{i=1}^{n} \frac{[hi]_q}{[di]_q} \)

2. For \(k \)-symmetric point configurations \(e \), the fiber \(LL^{-1}(e) \) carries a natural (scalar) action of a cyclic group \(C_{kh} = \langle \xi \rangle \leq \mathbb{C}^* \), \(\xi = e^{2\pi i/kh} \), given by:

\[
y \in LL^{-1}(e), \quad \xi \star y = \xi \star (f_1, \cdots, f_{n-1}) := (\xi^{d_1}f_1, \cdots, \xi^{d_{n-1}}f_{n-1})
\]

3. This scalar action on the fiber \(LL^{-1}(e) \) is equivalent to some combinatorial action \(\Phi, \Psi, \text{Twist}, \cdots \):

\[
\text{rlbl}(\xi \star y) = \Psi \cdot \text{rlbl}(y).
\]
Proof of the CSP (sketch)

1. \(X(q) = \text{Hilb}(LL^{-1}(0), q) = \prod_{i=1}^{n} \frac{[hi]_q}{[d_i]_q} \)

2. For \(k \)-symmetric point configurations \(e \), the fiber \(LL^{-1}(e) \) carries a natural (scalar) action of a cyclic group \(C_{kh} = \langle \xi \rangle \leq \mathbb{C}^* \), \(\xi = e^{2\pi i/kh} \), given by:

\[
y \in LL^{-1}(e), \quad \xi \ast y = \xi \ast (f_1, \ldots, f_{n-1}) := (\xi^{d_1}f_1, \ldots, \xi^{d_{n-1}}f_{n-1})
\]

3. This scalar action on the fiber \(LL^{-1}(e) \) is equivalent to some combinatorial action \(\Phi, \Psi, \text{Twist}, \ldots \):

\[
\text{rlbl}(\xi \ast y) = \Psi \cdot \text{rlbl}(y).
\]

4. On the other hand, any fiber \(LL^{-1}(e) \) is a flat deformation of the special fiber \(LL^{-1}(0) \) and retains part of its \(\mathbb{C}^* \)-structure:

\[
LL^{-1}(e) \cong_{C_{kh}} LL^{-1}(0).
\]
proof of the CSP (sketch)

1. \[X(q) = \text{Hilb}(LL^{-1}(0), q) = \prod_{i=1}^{n} \frac{[hi]_q}{[d_i]_q} \]

2. For \(k \)-symmetric point configurations \(e \), the fiber \(LL^{-1}(e) \) carries a natural (scalar) action of a cyclic group \(C_{kh} = \langle \xi \rangle \leq \mathbb{C}^*, \xi = e^{2\pi i/kh} \), given by:

 \[y \in LL^{-1}(e), \quad \xi \star y = \xi \star (f_1, \cdots, f_{n-1}) := (\xi^{d_1}f_1, \cdots, \xi^{d_{n-1}}f_{n-1}) \]

3. This scalar action on the fiber \(LL^{-1}(e) \) is equivalent to some combinatorial action \(\Phi, \Psi, \text{Twist}, \cdots \):

 \[\text{rlbl}(\xi \star y) = \Psi \cdot \text{rlbl}(y). \]

4. On the other hand, any fiber \(LL^{-1}(e) \) is a flat deformation of the special fiber \(LL^{-1}(0) \) and retains part of its \(\mathbb{C}^* \)-structure:

 \[LL^{-1}(e) \cong_{C_{kh}} LL^{-1}(0). \]

5. This allows Hilbert series \(\text{Hilb}(LL^{-1}(0), q) \) to give a CSP for the \(C_{kh} \) (scalar) action on \(LL^{-1}(e) \), and hence the combinatorial actions \(\Psi, \cdots \) as well.
Lemma (See much more generally in Broer-Reiner-Smith-Webb)

Let \(f : \mathbb{C}^n \to \mathbb{C}^n \) be a polynomial morphism, finite and quasi-homogeneous. Consider further a point \(\epsilon \), such that the fiber \(f^{-1}(\epsilon) \) is stable under weighted multiplication by \(c := e^{-2\pi i/N} \) for some number \(N \). Then, if \(C_N = \langle c \rangle \), we have the isomorphism of \(C_N \)-modules:

\[
(f^{-1}(\epsilon)) \cong_{C_N} (f^{-1}(0)).
\]

In particular, the triple \((f^{-1}(\epsilon), \text{Hilb}(f^{-1}(0), q), C_N) \) exhibits the CSP.
Lemma (See much more generally in Broer-Reiner-Smith-Webb)

Let \(f : \mathbb{C}^n \rightarrow \mathbb{C}^n \) be a polynomial morphism, finite and quasi-homogeneous. Consider further a point \(\epsilon \), such that the fiber \(f^{-1}(\epsilon) \) is stable under weighted multiplication by \(c := e^{-2\pi i/N} \) for some number \(N \). Then, if \(C_N = \langle c \rangle \), we have the isomorphism of \(C_N \)-modules:

\[
 f^{-1}(\epsilon) \cong_{C_N} f^{-1}(0).
\]

In particular, the triple \(\left(f^{-1}(\epsilon), \text{Hilb} \left(f^{-1}(0), q \right), C_N \right) \) exhibits the CSP.

1. Springer’s theorem \(\mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n) \cong_{W \times C} \mathbb{C}[W] \), and in particular the CSP for the \(q \)-binomial \(\binom{n}{k}_q \).
CSP’s through finite quasi-homogeneous morphisms

Lemma (See much more generally in Broer-Reiner-Smith-Webb)

Let \(f : \mathbb{C}^n \rightarrow \mathbb{C}^n \) be a polynomial morphism, finite and quasi-homogeneous. Consider further a point \(\epsilon \), such that the fiber \(f^{-1}(\epsilon) \) is stable under weighted multiplication by \(c := e^{-2\pi i/N} \) for some number \(N \). Then, if \(C_N = \langle c \rangle \), we have the isomorphism of \(C_N \)-modules:

\[
f^{-1}(\epsilon) \cong_{C_N} f^{-1}(0).
\]

In particular, the triple \((f^{-1}(\epsilon), \text{Hilb}(f^{-1}(0), q), C_N) \) exhibits the CSP.

1. Springer’s theorem \(\mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n) \cong_{W \times C} \mathbb{C}[W] \), and in particular the CSP for the \(q \)-binomial \(\binom{n}{k}_q \).
2. Primitive factorizations \(w \cdot t_1 \cdots t_k = c \), counted by \(\frac{h^{\dim(X)}(\dim(X))!}{[N(X) : W_X]} \).

Theo Douvropoulos (Paris VII, IRIF)

A C.S.P. for reflection factorizations of c
CSP’s through finite quasi-homogeneous morphisms

Lemma (See much more generally in Broer-Reiner-Smith-Webb)

Let \(f : \mathbb{C}^n \to \mathbb{C}^n \) be a polynomial morphism, finite and quasi-homogeneous. Consider further a point \(\epsilon \), such that the fiber \(f^{-1}(\epsilon) \) is stable under weighted multiplication by \(c := e^{-2\pi i/N} \) for some number \(N \). Then, if \(C_N = \langle c \rangle \), we have the isomorphism of \(C_N \)-modules:

\[
f^{-1}(\epsilon) \cong_{C_N} f^{-1}(0).
\]

In particular, the triple \(\left(f^{-1}(\epsilon), \text{Hilb} \left(f^{-1}(0), q \right), C_N \right) \) exhibits the CSP.

1. Springer’s theorem \(\mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n) \cong W \times C \mathbb{C}[W] \), and in particular the CSP for the \(q \)-binomial \(\binom{n}{k}_q \).
2. Primitive factorizations \(w \cdot t_1 \cdots t_k = c \), counted by \(\frac{h^{\dim(X)}(\dim(X))!}{[N(X) : W_X]} \).
3. (Possibly..) many of the factorization enumeration formulas in \(S_n \) that have geometric interpretation. In particular, the Goulden-Jackson formula:

\[
\text{Fact}_{[\lambda_1, \ldots, \lambda_m]}((n)) = n^{m-1} \prod_{i=1}^{m} \frac{(l(\lambda_i) - 1)!}{\text{Aut}(\lambda_i)}.
\]
Thank you!