Coxeter factorizations and the Matrix Tree theorem with
generalized Jucys-Murphy weights

Guillaume Chapuy, Theo Douvropoulos

UMN Combinatorics Seminar, April 24, 2020

Slides available at my website linked in the abstract (www.irif.fr/~douvr001/)

Paris VII, IRIF and CNRS, ERC CombiTop
Counting trees and counting factorizations
Counting trees and counting factorizations

Theorem (Cayley 1889, +other people). There are n^{n-2} trees on n labeled vertices.

Example, $n = 3$:

$3^3 - 1 = 3$
Counting trees and counting factorizations

Theorem (Cayley 1889, +other people). There are n^{n-2} trees on n labeled vertices.

Example, $n = 3$:

$3^{3-1} = 3$

Corollary (Denes, 1959).

Call a permutation $c \in S_n$ a long cycle if it is conjugate to $(12 \cdots n)$. There are $n^{n-2} \cdot (n-1)!$ minimal length factorizations $\tau_1 \cdots \tau_{n-1} = c$ of long cycles $c \in S_n$ in transpositions τ_i.

Counting trees and counting factorizations

Theorem (Cayley 1889, +other people). There are n^{n-2} trees on n labeled vertices.

Example, $n = 3$:

$$3^{3-1} = 3$$

Corollary (Denes, 1959).

Call a permutation $c \in S_n$ a **long cycle** if it is conjugate to $(12 \cdots n)$. There are $n^{n-2} \cdot (n-1)!$ minimal length factorizations $\tau_1 \cdots \tau_{n-1} = c$ of long cycles $c \in S_n$ in transpositions τ_i.

Caution: All long cycles appear here! Some long cycles do not appear here!
What if we add weights?
What if we add weights?

$L_{K_4}(\omega) := \begin{bmatrix}
\sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\
-\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\
-\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j}
\end{bmatrix}$

Laplacian Matrix

1
\omega_{12}

2
\omega_{13}
\omega_{24}

3
\omega_{34}

4
\omega_{14}
\omega_{23}
What if we add weights?

$$L_{K_4}(\omega) := \begin{bmatrix}
\sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\
-\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\
-\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j}
\end{bmatrix}$$

Theorem ((weighted) Matrix Tree theorem).

The Laplacian of a graph G on n vertices counts the spanning trees of G via the formula

$$\sum_{T \text{ a sp. tree for } G} w(T) = \frac{1}{n} \prod_{\lambda_i \neq 0} \lambda_i(\omega),$$

where the $\lambda_i(\omega)$ are the eigenvalues of the Laplacian L_G and wt the natural weight on trees.
What if we add weights?

$L_{K_4}(\omega) := \begin{bmatrix}
\sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\
-\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\
-\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j}
\end{bmatrix}$

Laplacian Matrix

\textbf{Theorem} ((weighted) Matrix Tree theorem).

The Laplacian of a graph G on n vertices counts the spanning trees of G via the formula

$$\sum_{T \text{ a sp. tree for } G} w(T) = \frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega),$$

where the $\lambda_i(\omega)$ are the eigenvalues of the Laplacian L_G and w the natural weight on trees.

Example for $G = K_4$:

$q\det(L_{K_4}(\omega)) := \prod_{\lambda_i \neq 0} \lambda_i(\omega) = 4 \cdot w_{12} \cdot w_{13} \cdot w_{14} + 4 \cdot w_{12} \cdot w_{23} \cdot w_{14} + 4 \cdot w_{13} \cdot w_{23} \cdot w_{14} + \cdots$
Corollary (the Denes argument).

The weighted count of factorizations of long cycles \(c \in S_n \) in transpositions \(\tau_i \) is given via

\[
\sum_{\tau_1 \cdots \tau_{n-1} = c} w(\tau_1) \cdots w(\tau_{n-1}) = \left(\frac{1}{n} \prod_{\lambda_i \neq 0} \lambda_i(\omega) \right) \cdot (n-1)!,
\]

where the \(\lambda_i(\omega) \) are the eigenvalues of the Laplacian \(L_{K_n} \) and \(w((i,j)) = \omega_{ij} \).
Same for factorizations!

\[
L_{K_4}(\omega) := \begin{bmatrix}
\sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\
-\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\
-\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j}
\end{bmatrix}
\]

Laplacian Matrix

Corollary (the Denes argument).

The weighted count of factorizations of long cycles \(c \in S_n \) in transpositions \(\tau_i \) is given via

\[
\sum_{\tau_1 \cdots \tau_{n-1} = c} \omega(\tau_1) \cdots \omega(\tau_{n-1}) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega) \right) \cdot (n - 1)!,
\]

where the \(\lambda_i(\omega) \) are the eigenvalues of the Laplacian \(L_{K_n} \) and \(\omega((ij)) = \omega_{ij} \).

Example for \(G = K_4 \):

\[
qdet \left(L_{K_4}(\omega) \right) := \prod_{\lambda_i \neq 0} \lambda_i(\omega) = 4 \cdot w_{12} \cdot w_{13} \cdot w_{14} + 4 \cdot w_{12} \cdot w_{23} \cdot w_{14} + 4 \cdot w_{13} \cdot w_{23} \cdot w_{14} + \cdots
\]

\[
(14)(13)(12) = (1234) \quad (12)(23)(14) = (1423) \quad (13)(23)(14) = (1432)
\]

\[
(14)(12)(13) = (1324) \quad (12)(14)(23) = (1423) \quad (13)(14)(23) = (1432)
\]

\[
(12)(13)(14) = (1432) \quad (14)(12)(23) = (1234) \quad (14)(13)(23) = (1324)
\]

\[
\cdots \quad \cdots \quad \cdots
\]
Counting arbitrary length factorizations of long cycles
Counting arbitrary length factorizations of long cycles

If \(\mathcal{R} \) denotes the set of transpositions of \(S_n \) and \(\mathcal{C} \) the class of long cycles, we write

\[
F_{S_n}(N) := \#\{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c\}.
\]
Counting arbitrary length factorizations of long cycles

If \mathcal{R} denotes the set of transpositions of S_n and \mathcal{C} the class of long cycles, we write

$$F_{S_n}(N) := \# \{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c\}.$$

For example $F_{S_n}(n-1) = n^{n-2} \cdot (n-1)!$ and $F_{S_n}(k) = 0$ for $k \leq n-2$.
Counting arbitrary length factorizations of long cycles

If \mathcal{R} denotes the set of transpositions of S_n and \mathcal{C} the class of long cycles, we write

$$F_{S_n}(N) := \# \{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} | \tau_1 \cdots \tau_N = c\}.$$

For example $F_{S_n}(n - 1) = n^{n-2} \cdot (n - 1)!$ and $F_{S_n}(k) = 0$ for $k \leq n - 2$.

Now, consider the exponential generating function

$$\mathcal{F}_{S_n}(t) = \sum_{N \geq 0} F_{S_n}(N) \cdot \frac{t^N}{N!}.$$
Counting arbitrary length factorizations of long cycles

If \mathcal{R} denotes the set of transpositions of S_n and \mathcal{C} the class of long cycles, we write

$$F_{S_n}(N) := \#\{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c\}.$$

For example $F_{S_n}(n-1) = n^{n-2} \cdot (n-1)!$ and $F_{S_n}(k) = 0$ for $k \leq n - 2$.

Now, consider the exponential generating function

$$\mathcal{F}_{S_n}(t) = \sum_{N \geq 0} F_{S_n}(N) \cdot \frac{t^N}{N!}.$$

Theorem (Jackson '88 and Shapiro-Shapiro-Vainshtein '96). For the symmetric group S_n:

$$\mathcal{F}_{S_n}(t) = \frac{e^{t\binom{n}{2}}}{n} \cdot (1 - e^{-tn})^{n-1}.$$
Counting arbitrary length factorizations of long cycles

If \mathcal{R} denotes the set of transpositions of S_n and \mathcal{C} the class of long cycles, we write

$$F_{S_n}(N) := \#\{ (\tau_1, \ldots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c \}.$$

For example $F_{S_n}(n - 1) = n^{n-2} \cdot (n - 1)!$ and $F_{S_n}(k) = 0$ for $k \leq n - 2$.

Now, consider the exponential generating function

$$\mathcal{F}_{S_n}(t) = \sum_{N \geq 0} F_{S_n}(N) \cdot \frac{t^N}{N!}.$$

Theorem (Jackson '88 and Shapiro-Shapiro-Vainshtein '96). For the symmetric group S_n:

$$\mathcal{F}_{S_n}(t) = e^{t\binom{n}{2}/n} \cdot \left(1 - e^{-tn}\right)^{n-1}.$$

Notice that

$$\left[\frac{t^{n-1}}{(n-1)!} \right] \mathcal{F}_{S_n}(t) = \frac{1}{n} \cdot n^{n-1} \cdot (n-1)! = n^{n-2} \cdot (n-1)!.$$

exp. gen. fnc.
Can we do both at the same time?
Can we do both at the same time?

We consider \(\binom{n}{2} \) parameters \(\omega := (\omega_{ij})_{i<j} \) that form a weight system \(w((ij)) = \omega_{ij} \) for the transpositions \((ij) \in S_n \). If \(C \) is the class of the long cycles, define:

\[
F_{S_n}(t, \omega) := \sum_{N \geq 0} \frac{t^N}{N!} \sum_{(\tau_1, \cdots, \tau_N, c) \in R^N \times C} w(\tau_1) \cdot w(\tau_2) \cdots w(\tau_N).
\]
Can we do both at the same time?

We consider \(\binom{n}{2} \) parameters \(\omega := (\omega_{ij})_{i<j} \) that form a weight system \(w((ij)) = \omega_{ij} \) for the transpositions \((ij) \in S_n\). If \(C \) is the class of the long cycles, define:

\[
F_{S_n}(t, \omega) := \sum_{N \geq 0} \frac{t^N}{N!} \sum_{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times C, \tau_1 \cdots \tau_N = c} w(\tau_1) \cdot w(\tau_2) \cdots w(\tau_N).
\]

Theorem (Burman-Zvonkine '08, Alon-Kozma '10).

The exponential generating function above is given via the product formula:

\[
F_{S_n}(t, \omega) = \frac{e^{tw(\mathcal{R})}}{n} \cdot \prod_{\lambda_i \neq 0} \left(1 - e^{-t\lambda_i(\omega)} \right),
\]

where \(w(\mathcal{R}) = \sum_{i<j} \omega_{ij} \) and the \(\lambda_i(\omega) \) are the eigenvalues of the Laplacian \(L_{K_n}(\omega) \).
Can we do both at the same time?

We consider \(\binom{n}{2} \) parameters \(\omega := (\omega_{ij})_{i<j} \) that form a weight system \(w((ij)) = \omega_{ij} \) for the transpositions \((ij) \in S_n \). If \(C \) is the class of the long cycles, define:

\[
\mathcal{F}_{S_n}(t, \omega) := \sum_{N \geq 0} \frac{t^N}{N!} \sum_{(\tau_1, \ldots, \tau_N, c) \in \mathcal{R}^N \times C} w(\tau_1) \cdot w(\tau_2) \cdots w(\tau_N).
\]

Theorem (Burman-Zvonkine '08, Alon-Kozma '10).
The exponential generating function above is given via the product formula:

\[
\mathcal{F}_{S_n}(t, \omega) = \frac{e^{tw(\mathcal{R})}}{n} \cdot \prod_{\lambda_i \neq 0} \left(1 - e^{-t\lambda_i(\omega)} \right),
\]

where \(w(\mathcal{R}) = \sum_{i<j} \omega_{ij} \) and the \(\lambda_i(\omega) \) are the eigenvalues of the Laplacian \(L_{K_n}(\omega) \).

Taking the leading term then gives:

\[
\left[\frac{t^{n-1}}{(n-1)!} \right] \mathcal{F}_{S_n}(t, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega) \right) \cdot (n - 1)!,
\]

Exp. gen. fnc.
Can we do both at the same time?

We consider \(\binom{n}{2} \) parameters \(\omega := (\omega_{ij})_{i<j} \) that form a weight system \(w((ij)) = \omega_{ij} \) for the transpositions \((ij) \in S_n \). If \(C \) is the class of the long cycles, define:

\[
\mathcal{F}_{S_n}(t, \omega) := \sum_{N \geq 0} \frac{t^N}{N!} \sum_{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times C} w(\tau_1) \cdot w(\tau_2) \cdots w(\tau_N).
\]

Theorem (Burman-Zvonkine '08, Alon-Kozma '10).
The exponential generating function above is given via the product formula:

\[
\mathcal{F}_{S_n}(t, \omega) = \frac{e^{tw(\mathcal{R})}}{n} \cdot \prod_{\lambda_i \neq 0} \left(1 - e^{-t\lambda_i(\omega)}\right),
\]

where \(w(\mathcal{R}) = \sum_{i<j} \omega_{ij} \) and the \(\lambda_i(\omega) \) are the eigenvalues of the Laplacian \(L_{K_n}(\omega) \).

Taking the leading term then gives:

\[
\left[\frac{t^{n-1}}{(n-1)!} \right] \mathcal{F}_{S_n}(t, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega) \right) \cdot (n-1)!,
\]

which is in fact a new proof of the (weighted) Matrix Tree theorem after Denes’ argument.
A complete poset of formulas?

\[F_{S_n}(t, \omega) = \frac{e^{tw(R)}}{n} \cdot \prod_{\lambda_i \neq 0} (1 - e^{-t\lambda_i(\omega)}) \]

\[F_{S_n}(n - 1, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega) \right) \cdot (n - 1)! \]

\[F_{S_n}(t) = \frac{e^{t(n/2)}}{n} \cdot (1 - e^{-tn})^{n-1} \]

\[F_{S_n}(n - 1) = n^{n-2} \cdot (n - 1)! \]
A complete poset of formulas?

\[
F_{S_n}(t, \omega) = \frac{e^{tw(R)}}{n} \cdot \prod_{\lambda_i \neq 0} (1 - e^{-t\lambda_i(\omega)})
\]

Taking leading term

\[
F_{S_n}(n - 1, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega)\right) \cdot (n - 1)!
\]

Forgetting the weights

\[
F_{S_n}(n - 1) = n^{n-2} \cdot (n - 1)!
\]

Forgetting the weights

\[
F_{S_n}(t) = \frac{e^{t{n\choose 2}}}{n} \cdot (1 - e^{-tn})^{n-1}
\]

Taking leading term
A complete poset of formulas? Not yet!

\[\mathcal{F}_{S_n}(t, \omega) = \frac{e^{tw(R)}}{n} \cdot \prod_{\lambda_i \neq 0} \left(1 - e^{-t\lambda_i(\omega)} \right) \]

Taking leading term

\[F_{S_n}(n - 1, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega) \right) \cdot (n - 1)! \]

Forgetting the weights

\[\mathcal{F}_{S_n}(t) = \frac{e^{t(n \choose 2)}}{n} \cdot (1 - e^{-tn})^{n-1} \]

Taking leading term

\[F_{S_n}(n - 1) = n^{n-2} \cdot (n - 1)! \]

Forgetting the weights
Complex reflection groups and Coxeter elements
A finite subgroup $W \leq \text{GL}(V)$, for some $V \cong \mathbb{C}^n$ is called a complex reflection group if it is generated by pseudo-reflections. These are \mathbb{C}-linear maps t that fix a hyperplane. If W is generated by n reflections we say that it is well-generated.
Complex reflection groups and Coxeter elements

A finite subgroup $W \leq \text{GL}(V)$, for some $V \cong \mathbb{C}^n$ is called a complex reflection group if it is generated by pseudo-reflections. These are \mathbb{C}-linear maps t that fix a hyperplane. If W is generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family $G(r, p, n)$ of monomial groups
2. 34 exceptional cases indexed G_4 to G_{37}.
Complex reflection groups and Coxeter elements

A finite subgroup \(W \leq \text{GL}(V) \), for some \(V \cong \mathbb{C}^n \) is called a complex reflection group if it is generated by pseudo-reflections. These are \(\mathbb{C} \)-linear maps \(t \) that fix a hyperplane. If \(W \) is generated by \(n \) reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family \(G(r, p, n) \) of monomial groups
2. 34 exceptional cases indexed \(G_4 \) to \(G_{37} \).

Definition. Well-generated groups \(W \) possess Coxeter elements \(c \). Those are:
1. In the symmetric group \(S_n \), just any long cycle.
A finite subgroup $W \leq \text{GL}(V)$, for some $V \cong \mathbb{C}^n$ is called a complex reflection group if it is generated by pseudo-reflections. These are \mathbb{C}-linear maps t that fix a hyperplane. If W is generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family $G(r, p, n)$ of monomial groups
2. 34 exceptional cases indexed G_4 to G_{37}.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group S_n, just any long cycle.
2. In a real reflection group W, a product of the simple generators in any order and any element conjugate to that.
A finite subgroup $W \leq \text{GL}(V)$, for some $V \cong \mathbb{C}^n$ is called a complex reflection group if it is generated by pseudo-reflections. These are \mathbb{C}-linear maps t that fix a hyperplane. If W is generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:

1. an infinite 3-parameter family $G(r, p, n)$ of monomial groups
2. 34 exceptional cases indexed G_4 to G_{37}.

Definition. Well-generated groups W possess Coxeter elements c. Those are:

1. In the symmetric group S_n, just any long cycle.
2. In a real reflection group W, a product of the simple generators in any order and any element conjugate to that.
3. Equivalently for real W, c is an element whose order satisfies $|c| \cdot n = 2|R|$, and which has an invariant plane that is not orthogonal to any root and which it rotates by $2\pi i/|c|$.
A finite subgroup $W \leq \text{GL}(V)$, for some $V \cong \mathbb{C}^n$ is called a complex reflection group if it is generated by pseudo-reflections. These are \mathbb{C}-linear maps t that fix a hyperplane. If W is generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family $G(r, p, n)$ of monomial groups
2. 34 exceptional cases indexed G_4 to G_{37}.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group S_n, just any long cycle.
2. In a real reflection group W, a product of the simple generators in any order and any element conjugate to that.
3. Equivalently for real W, c is an element whose order satisfies $|c| \cdot n = 2|R|$, and which has an invariant plane that is not orthogonal to any root and which it rotates by $2\pi i/|c|$.
Complex reflection groups and Coxeter elements

A finite subgroup $W \leq \text{GL}(V)$, for some $V \cong \mathbb{C}^n$ is called a complex reflection group if it is generated by pseudo-reflections. These are \mathbb{C}-linear maps t that fix a hyperplane. If W is generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family $G(r, p, n)$ of monomial groups
2. 34 exceptional cases indexed G_4 to G_{37}.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group S_n, just any long cycle.
2. In a real reflection group W, a product of the simple generators in any order and any element conjugate to that.
3. Equivalently for real W, c is an element whose order satisfies $|c| \cdot n = 2|R|$, and which has an invariant plane that is not orthogonal to any root and which it rotates by $2\pi i / |c|$.
4. In the general complex case, c is a Springer $e^{2\pi i / h}$-regular element where h is the Gordon-Griffeth Coxeter number $(|R| + |A|)/n$.

Arbitrary length reflection factorizations of Coxeter elements c
Arbitrary length reflection factorizations of Coxeter elements c

If \mathcal{R} denotes the set of reflections of W and \mathcal{C} the class of Coxeter elements, we write

$$F_W(N) := \# \{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c \}.$$
Arbitrary length reflection factorizations of Coxeter elements c

If \mathcal{R} denotes the set of reflections of W and \mathcal{C} the class of Coxeter elements, we write

$$F_W(N) := \# \{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c\}.$$

We consider as before the exponential generating function:

$$\mathcal{F}_W(t) := \sum_{N \geq 0} F_W(N) \cdot \frac{t^N}{N!}.$$
Arbitrary length reflection factorizations of Coxeter elements c

If \mathcal{R} denotes the set of reflections of W and \mathcal{C} the class of Coxeter elements, we write

$$F_W(N) := \#\{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c\}.$$

We consider as before the exponential generating function:

$$F_W(t) := \sum_{N \geq 0} F_W(N) \cdot \frac{t^N}{N!}.$$

Theorem (Chapuy-Stump, ’12).

If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

$$F_W(t) = \frac{e^{t|\mathcal{R}|}}{h} (1 - e^{-th})^n.$$
Arbitrary length reflection factorizations of Coxeter elements \(c \)

If \(\mathcal{R} \) denotes the set of reflections of \(W \) and \(\mathcal{C} \) the class of Coxeter elements, we write

\[
F_W(N) := \# \{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c\}.
\]

We consider as before the exponential generating function:

\[
F_W(t) := \sum_{N \geq 0} F_W(N) \cdot \frac{t^N}{N!}.
\]

Theorem (Chapuy-Stump, '12).

If \(W \) is well-generated, of rank \(n \), and \(h \) is the order of the Coxeter element \(c \), then

\[
F_W(t) = \frac{e^{t|\mathcal{R}|}}{h} (1 - e^{-th})^n.
\]

Notice that

\[
[t^n] F_W(t) = \frac{1}{h} \cdot h^n \cdot n! = |\mathcal{C}| \cdot \frac{h^n n!}{|W|}.
\]
Arbitrary length reflection factorizations of Coxeter elements c

If \mathcal{R} denotes the set of reflections of W and \mathcal{C} the class of Coxeter elements, we write

$$F_W(N) := \# \{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times \mathcal{C} \mid \tau_1 \cdots \tau_N = c\}.$$

We consider as before the exponential generating function:

$$F_W(t) := \sum_{N \geq 0} F_W(N) \cdot \frac{t^N}{N!}.$$

Theorem (Chapuy-Stump, '12).

*If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

$$F_W(t) = \frac{e^{t|R|}}{h} (1 - e^{-th})^n.$$

Notice that

$$\left[\frac{t^n}{n!}\right] F_W(t) = \frac{1}{h} \cdot h^n \cdot n! = |\mathcal{C}| \cdot \frac{h^n n!}{|W|}.$$

Looijenga-Deligne-Arnol’d-Chapoton-Reading-Bessis formula for the chain number of the noncrossing lattice $NC'(W)$
A bigger poset of formulas!
A bigger poset of formulas!

\[F_{S_n}(t, \omega) = \frac{e^{tw(R)}}{n} \cdot \prod_{\lambda_i \neq 0} \left(1 - e^{-t\lambda_i(\omega)}\right) \]

\[F_{S_n}(n-1, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega)\right) \cdot (n-1)! \]

\[F_{S_n}(t) = \frac{e^{t{n\choose 2}}}{n} \cdot (1 - e^{-tn})^{n-1} \]

\[F_{S_n}(n-1) = n^{n-2} \cdot (n-1)! \]

\[F_{W}(t) = \frac{e^{t|R|}}{h} \cdot (1 - t^{-th})^n \]

\[F_{W}(n) = h^{n-1} \cdot n! \]
A bigger poset of formulas!

\[
\mathcal{F}_{S_n}(t, \omega) = \frac{e^{tw(\mathcal{R})}}{n} \cdot \prod_{\lambda_i \neq 0} \left(1 - e^{-t\lambda_i(\omega)}\right)
\]

\[
F_{S_n}(n-1, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega)\right) \cdot (n-1)!
\]

Leading term

Leading term

Leading term

\[
F_{W}(n) = h^{n-1} \cdot n!
\]

Leading term

Leading term

\[
F_{S_n}(n-1) = n^{n-2} \cdot (n-1)!
\]

\[
W = S_n
\]
A bigger poset of formulas!

$F_{S_n}(t, \omega) = \frac{e^{tw(R)}}{n} \cdot \prod_{\lambda_i \neq 0} (1 - e^{-t\lambda_i(\omega)})$

$F_{S_n}(n-1, \omega) = \left(\frac{1}{n} \cdot \prod_{\lambda_i \neq 0} \lambda_i(\omega)\right) \cdot (n-1)!$

$F_{S_n}(n) = n^{n-2} \cdot (n-1)!$

$F_W(n) = h^{n-1} \cdot n!$
Factorizations of Coxeter elements with Jucys-Murphy weights
Consider a (maximal) tower of parabolic subgroups

\[T := (\{1\} = W_0 \leq W_1 \leq W_2 \leq \cdots \leq W_n = W), \]
Factorizations of Coxeter elements with Jucys-Murphy weights

Consider a (maximal) tower of parabolic subgroups

\[T := (\{1\} = W_0 \leq W_1 \leq W_2 \leq \cdots \leq W_n = W), \]

and a weight system \(w_T \) on reflections \(\tau \in R \) with parameters \(\omega := (\omega_i) \) assigned by:

\[w_T(\tau) = \omega_i \quad \text{if and only if} \quad \tau \in W_i \setminus W_{i-1}. \]
Factorizations of Coxeter elements with Jucys-Murphy weights

Consider a (maximal) tower of parabolic subgroups

\[T := (\{1\} = W_0 \leq W_1 \leq W_2 \leq \cdots \leq W_n = W), \]

and a weight system \(w_T \) on reflections \(\tau \in R \) with parameters \(\omega := (\omega_i) \) assigned by:

\[w_T(\tau) = \omega_i \text{ if and only if } \tau \in W_i \setminus W_{i-1}. \]

If \(C \) denotes the class of Coxeter elements, define the exponential generating function

\[\mathcal{F}_W^T(t, \omega) := \sum_{N \geq 0} \frac{t^N}{N!} \sum_{(\tau_1, \cdots, \tau_N, c) \in R^N \times C} w_T(\tau_1) \cdot w_T(\tau_2) \cdots w_T(\tau_N). \]
Consider a (maximal) tower of parabolic subgroups
\[T := (\{1\} = W_0 \leq W_1 \leq W_2 \leq \cdots \leq W_n = W), \]
and a weight system \(w_T \) on reflections \(\tau \in R \) with parameters \(\omega := (\omega_i) \) assigned by:
\[w_T(\tau) = \omega_i \quad \text{if and only if} \quad \tau \in W_i \setminus W_{i-1}. \]
If \(C \) denotes the class of Coxeter elements, define the exponential generating function
\[
F^T_W(t, \omega) := \sum_{N \geq 0} \frac{t^N}{N!} \sum_{(\tau_1, \cdots, \tau_N, c) \in R^N \times C} w_T(\tau_1) \cdot w_T(\tau_2) \cdots w_T(\tau_N).
\]

Theorem 1 (Chapuy, D. '19). For any parabolic tower \(T \), the function \(F^T_W(t, \omega) \) is given as
\[
F^T_W(t, \omega) = e^{tw_T(R)} \cdot \frac{1}{h} \cdot \prod_{i=1}^{n} \left(1 - e^{-t\lambda^T_i(\omega)} \right),
\]
Consider a (maximal) tower of parabolic subgroups

\[T := (\{1\} = W_0 \leq W_1 \leq W_2 \leq \cdots \leq W_n = W), \]

and a weight system \(w_T \) on reflections \(\tau \in \mathcal{R} \) with parameters \(\omega := (\omega_i) \) assigned by:

\[w_T(\tau) = \omega_i \quad \text{if and only if} \quad \tau \in W_i \setminus W_{i-1}. \]

If \(C \) denotes the class of Coxeter elements, define the exponential generating function

\[F^T_W(t, \omega) := \sum_{N \geq 0} \frac{t^N}{N!} \sum_{(\tau_1, \cdots, \tau_N, c) \in \mathcal{R}^N \times C} w_T(\tau_1) \cdot w_T(\tau_2) \cdots w_T(\tau_N). \]

Theorem 1 (Chapuy, D. ’19). For any parabolic tower \(T \), the function \(F^T_W(t, \omega) \) is given as

\[F^T_W(t, \omega) = e^{tw_T(\mathcal{R})} \cdot \frac{1}{h} \cdot \prod_{i=1}^{n} \left(1 - e^{-t\lambda^T_i(\omega)} \right), \]

where \(\{\lambda_i^T(\omega)\} \) are the eigenvalues of the \(W \)-Laplacian:

\[L^T_W(\omega) := \sum_{\tau \in \mathcal{R}} w_T(\tau) \cdot (1 - \rho_V(\tau)) \in \text{GL}(V). \]

(\(\rho_V \) is the reflection representation of \(W \))
Why call it the W-Laplacian?
Why call it the W-Laplacian?

$L_{K_4}(\omega) := \begin{bmatrix}
\sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\
-\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\
-\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j}
\end{bmatrix}$

Laplacian Matrix

\begin{tikzpicture}
 \node (1) at (0,0) [circle,fill,inner sep=2pt] {} node[above]{1};
 \node (2) at (2,0) [circle,fill,inner sep=2pt] {} node[above]{2};
 \node (3) at (2,2) [circle,fill,inner sep=2pt] {} node[above]{3};
 \node (4) at (0,2) [circle,fill,inner sep=2pt] {} node[above]{4};
 \draw (1) -- (2) node[midway,above right]{ω_{12}};
 \draw (1) -- (3) node[midway,above]{ω_{13}};
 \draw (1) -- (4) node[midway,above left]{ω_{14}};
 \draw (2) -- (3) node[midway,above left]{ω_{23}};
 \draw (2) -- (4) node[midway,above]{ω_{24}};
 \draw (3) -- (4) node[midway,above]{ω_{34}};
\end{tikzpicture}
Why call it the W-Laplacian?

$$L_{K_4}(\omega) := \begin{bmatrix} \sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\ -\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\ -\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\ -\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j} \end{bmatrix}$$

Laplacian Matrix

1 \quad \omega_{12} \\
\omega_{14} \quad 2 \\
\omega_{13} \quad \omega_{23} \\
\omega_{34} \quad 3 \\
\omega_{41} \\

$$\begin{bmatrix} \sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\ -\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\ -\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\ -\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j} \end{bmatrix} = \sum_{i < j} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \omega_{ij} & -\omega_{ij} & 0 \\ 0 & -\omega_{ij} & \omega_{ij} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \sum_{i < j} \omega_{ij} \cdot \left(1 - \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)$$
Why call it the W-Laplacian?

$L_{K_4}(\omega) := \begin{bmatrix}
\sum_{j \neq 1} \omega_{1j} & -\omega_{12} & -\omega_{13} & -\omega_{14} \\
-\omega_{12} & \sum_{j \neq 2} \omega_{2j} & -\omega_{23} & -\omega_{24} \\
-\omega_{13} & -\omega_{23} & \sum_{j \neq 3} \omega_{3j} & -\omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & \sum_{j \neq 4} \omega_{4j}
\end{bmatrix}$

Laplacian Matrix

So that the definition

$L_T^W(\omega) := \sum_{\tau \in R} w_T(\tau) \cdot \left(1 - \rho_V(\tau)\right) \in GL(V)$

is a direct generalization of the graph Laplacian.
A (maximally ?) good poset of formulas!
A (maximally ?) good poset of formulas!

\[\mathcal{F}_n(t, \omega) = \frac{e^{tw(R)}}{n} \prod_{\lambda_i \neq 0} (1 - e^{-t\lambda_i(\omega)}) \]

\[\mathcal{F}_n(n-1, \omega) = \left(\frac{1}{n} \prod_{\lambda_i \neq 0} \lambda_i(\omega) \right) \cdot (n-1)! \]

\[F_{n-1}(n, \omega) = \left(\frac{1}{h} \prod_{i=1}^{n} \lambda_i^T(\omega) \right) \cdot (n-1)! \]

\[F_W(t) = \frac{e^{t|R|}}{h} \cdot (1 - t^{-th})^n \]

\[F_{n-1}(n, \omega) = \left(\frac{1}{h} \prod_{i=1}^{n} \lambda(T_i(\omega)) \right) \cdot (n-1)! \]

\[F_W(n) = h^{n-1} \cdot n! \]
A (maximally ?) good poset of formulas!

\[F_{W}^{T}(t, \omega) = \frac{e^{tw_{T}(R)}}{h} \cdot \prod_{i=1}^{n} (1 - e^{-t\lambda_{i}^{T}(\omega)}) \]

\[W = S_{n} \]

Leading term

\[F_{W}(t) = \frac{e^{t|R|}}{h} \cdot (1 - t^{-th})^{n} \]

\[F_{W}(\omega) = \frac{1}{h} \cdot \prod_{i=1}^{n} \lambda_{i}^{T}(\omega) \cdot (n - 1)! \]

\[\omega_{i} = 1 \]

Leading term

\[F_{S_{n}}(t) = \frac{e^{t(\frac{n}{2})}}{n} \cdot (1 - e^{-tn})^{n-1} \]

\[F_{S_{n}}^{T}(t, \omega) = \frac{e^{tw(TR)}}{n^{2}} \cdot \prod_{i \neq 0} (1 - e^{-t\lambda_{i}(\omega)}) \]

Leading term

\[F_{S_{n}}(n - 1, \omega) = \left(\frac{1}{n} \cdot \prod_{i \neq 0} \lambda_{i}(\omega) \right) \cdot (n - 1)! \]

\[F_{S_{n}}(n - 1) = n^{n-2} \cdot (n - 1)! \]

\[W = S_{n} \]

Leading term

\[F_{W}(n) = h^{n-1} \cdot n! \]

\[\omega_{i} = 1 \]
Representation theoretic interpretation
The filtration of \mathcal{R} by the tower T defines natural analogs of the Jucys-Murphy elements:

$$C[W] \ni J_i := \sum_{\tau \in \mathcal{R} \text{ and } \tau \in W_i \setminus W_{i-1}} \tau,$$

and we write $C[J] := C[J_1, \ldots, J_n]$ for the (commutative) algebra they generate.
Representation theoretic interpretation

The filtration of \mathcal{R} by the tower T defines natural analogs of the Jucys-Murphy elements:

$$\mathbb{C}[W] \ni J_i := \sum_{\tau \in \mathcal{R} \text{ and } \tau \in W_i \setminus W_{i-1}} \tau,$$

and we write $\mathbb{C}[J] := \mathbb{C}[J_1, \ldots, J_n]$ for the (commutative) algebra they generate.

Definition. We say that two virtual characters ψ_1 and ψ_2 of W are tower equivalent, and write $\psi_1 \equiv \psi_2$, if they agree on the subalgebra $\mathbb{C}[J]$ of $\mathbb{C}[W]$ for any choice of T.

Definition. We say that two virtual characters ψ_1 and ψ_2 of W are tower equivalent, and write $\psi_1 \equiv \psi_2$, if they agree on the subalgebra $\mathbb{C}[J]$ of $\mathbb{C}[W]$ for any choice of T.

[Diagram]
Representation theoretic interpretation

The filtration of \mathcal{R} by the tower T defines natural analogs of the Jucys-Murphy elements:

$$\mathbb{C}[W] \ni J_i := \sum_{\tau \in \mathcal{R} \text{ and } \tau \in W_i \setminus W_{i-1}} \tau,$$

and we write $\mathbb{C}[J] := \mathbb{C}[J_1, \cdots, J_n]$ for the (commutative) algebra they generate.

Definition. We say that two virtual characters ψ_1 and ψ_2 of W are tower equivalent, and write $\psi_1 \equiv \psi_2$, if they agree on the subalgebra $\mathbb{C}[J]$ of $\mathbb{C}[W]$ for any choice of T.

Theorem 2 (Chapuy, D. '19). Our Thm. 1 can be rephrased as the tower equivalence:

$$\sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \chi \equiv \sum_{k=1}^{n} (-1)^k \cdot \bigwedge (V_{\text{ref}}).$$
The filtration of \mathcal{R} by the tower T defines natural analogs of the Jucys-Murphy elements:

$$\mathbb{C}[W] \ni J_i := \sum_{\tau \in \mathcal{R} \text{ and } \tau \in W_i \setminus W_{i-1}} \tau,$$

and we write $\mathbb{C}[J] := \mathbb{C}[J_1, \cdots, J_n]$ for the (commutative) algebra they generate.

Definition. We say that two virtual characters ψ_1 and ψ_2 of W are tower equivalent, and write $\psi_1 \equiv \psi_2$, if they agree on the subalgebra $\mathbb{C}[J]$ of $\mathbb{C}[W]$ for any choice of T.

Theorem 2 (Chapuy, D. ’19). Our Thm. 1 can be rephrased as the tower equivalence:

$$\sum_{\chi \in \widehat{W}} \chi(c^{-1}) \cdot \chi \equiv \sum_{k=1}^{n} (-1)^k \cdot \wedge(V_{\text{ref}}).$$

That the virtual characters agree on the identity $\text{id} \in W$ and the element of the group algebra $\mathbb{R} := \sum_{i=1}^{n} J_i = \sum_{\tau \in \mathcal{R}} \tau$ is in fact equivalent with the Chapuy-Stump formula.

It has relatively difficult uniform proofs.
The product form is forced by the tower equivalence (Thm. 2)
The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

\[F_T^W(t, \omega) = \frac{e^{tw(R)}}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \chi(-L_T^W(\omega)^N) \cdot \frac{t^N}{N!}, \]

where we write \(L_T^W(\omega) \) for the Laplacian element \(\sum_{\tau \in \mathbb{R}} w_T(\tau)(\text{id} - \tau) \in \mathbb{C}[W] \).
The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

\[\mathcal{F}_W^T(t, \omega) = \frac{e^{tw(R)}}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \chi(-L_W^T(\omega)^N) \cdot \frac{t^N}{N!}, \]

where we write \(L_W^T(\omega) \) for the Laplacian element \(\sum_{\tau \in R} w_T(\tau)(\text{id} - \tau) \in \mathbb{C}[W]. \)

By Theorem 2 we can rewrite this as

\[\mathcal{F}_W^T(t, \omega) = \frac{e^{tw(R)}}{h} \sum_{k=0}^{n} (-1)^k \left(\bigwedge_k (V_{\text{ref}}) \right) (-L_W^T(\omega)^N) \cdot \frac{t^N}{N!} \]
The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

\[
\mathcal{F}_W^T(t, \omega) = \frac{e^{tw(R)}}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \chi(-L_W^T(\omega)^N) \cdot \frac{t^N}{N!},
\]

where we write \(L_W^T(\omega) \) for the Laplacian element \(\sum_{\tau \in R} w_T(\tau)(id - \tau) \in \mathbb{C}[W] \).

By Theorem 2 we can rewrite this as

\[
\mathcal{F}_W^T(t, \omega) = \frac{e^{tw(R)}}{h} \sum_{k=0}^{n} (-1)^k \left(\bigwedge^k (V_{\text{ref}}) \right) \left(-L_W^T(\omega)^N \right) \cdot \frac{t^N}{N!}
= \frac{e^{tw(R)}}{h} \sum_{k=0}^{n} (-1)^k \sum_{\sigma_j(\omega) \in \text{Spec} \left(\bigwedge^k (V_{\text{ref}}) \right)} e^{-t\sigma_j(\omega)}
\]
The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

\[\mathcal{F}^T_W(t, \omega) = \frac{e^{tw(\mathcal{R})}}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \chi(-\mathcal{L}^T_W(\omega)^N) \cdot \frac{t^N}{N!}, \]

where we write \(\mathcal{L}^T_W(\omega) \) for the Laplacian element \(\sum_{\tau \in \mathcal{R}} w_T(\tau)(\text{id} - \tau) \in \mathbb{C}[W] \).

By Theorem 2 we can rewrite this as

\[
\mathcal{F}^T_W(t, \omega) = \frac{e^{tw(\mathcal{R})}}{h} \sum_{k=0}^{n} (-1)^k \left(\bigwedge^k (V_{\text{ref}}) \right) (-\mathcal{L}^T_W(\omega)^N) \cdot \frac{t^N}{N!} = \frac{e^{tw(\mathcal{R})}}{h} \sum_{k=0}^{n} (-1)^k \sum_{\sigma_j(\omega) \in \text{Spec} \left(\bigwedge^k (V_{\text{ref}}) \right)} e^{-t\sigma_i(\omega)}
\]

Burman’s theory of Lie-like elements completely determines the eigenvalues of \(\mathcal{L}^T_W(\omega) \) on \(\bigwedge^k (V_{\text{ref}}) \). They are precisely the \(k \)-sums of the eigenvalues of the \(W \)-Laplacian \(\mathcal{L}^T_W(\omega) \).
The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

\[
\mathcal{F}_W^T(t, \omega) = \frac{e^{tw(R)}}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \chi(-L^T_W(\omega)^N) \cdot \frac{t^N}{N!},
\]

where we write \(L^T_W(\omega)\) for the Laplacian element \(\sum_{\tau \in R} w_T(\tau)(id - \tau) \in \mathbb{C}[W]\).

By Theorem 2 we can rewrite this as

\[
\mathcal{F}_W^T(t, \omega) = e^{tw(R)} h \sum_{k=0}^{n} (-1)^k \sum_{\sigma_j(\omega) \in \text{Spec}\left(\bigwedge^k(V_{\text{ref}})\right)} e^{-t\sigma_i(\omega)}
\]

Burman’s theory of Lie-like elements completely determines the eigenvalues of \(L^T_W(\omega)\) on \(\bigwedge^k(V_{\text{ref}})\). They are precisely the \(k\)-sums of the eigenvalues of the \(W\)-Laplacian \(L^T_W(\omega)\).

So now, we have

\[
\mathcal{F}_W^T(t, \omega) = \frac{e^{tw(R)}}{h} \sum_{k=0}^{n} (-1)^k \sum_{1 \leq i_1 \leq \ldots \leq i_k \leq n} e^{-t\lambda_{i_1}(\omega) - \ldots - t\lambda_{i_k}(\omega)} = \frac{e^{tw(R)}}{h} \cdot \prod_{i=1}^{n} (1 - e^{-t\lambda_{i}(\omega)}).
\]
Ingredients of our proof
Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

\[\mathcal{F}_W(t) = \frac{1}{\hbar} \sum_{\chi \in \hat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp \left(t \cdot \tilde{\chi}(\mathcal{R}) \right) \]

becomes
Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

$$\mathcal{F}_W(t) = \frac{1}{h} \sum_{\chi \in \hat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp (t \cdot \tilde{\chi}(\mathcal{R}))$$

becomes

$$\mathcal{F}_W^T(t, \omega) = \frac{1}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \sum_{\chi \in \text{Res}_T(\chi)} \text{mult}(\chi) \cdot \exp \left(t \cdot \sum_{i=1}^{n} (\tilde{\chi}_i(\mathcal{R}_i) - \tilde{\chi}_{i-1}(\mathcal{R}_{i-1})) \cdot \omega_i \right),$$

where the second summation is over all chains of characters $\chi = (\chi_n, \chi_{n-1}, \cdots, \chi_0)$ that appear as we restrict the character χ of W down the tower T.
Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

\[\mathcal{F}_W(t) = \frac{1}{h} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp \left(t \cdot \tilde{\chi}(\mathcal{R}) \right) \]

becomes

\[\mathcal{F}_W^T(t, \omega) = \frac{1}{h} \sum_{\chi \in \widehat{W}} \chi(c^{-1}) \cdot \sum_{\chi \in \text{Res}_T(\chi)} \text{mult}(\chi) \cdot \exp \left(t \cdot \sum_{i=1}^{n} (\tilde{\chi}_i(\mathcal{R}_i) - \tilde{\chi}_{i-1}(\mathcal{R}_{i-1})) \cdot \omega_i \right), \]

where the second summation is over all chains of characters \(\chi : (\chi = \chi_n, \chi_{n-1}, \cdots, \chi_0) \) that appear as we restrict the character \(\chi \) of \(W \) down the tower \(T \).

This is one way to cover the exceptional cases. It took about 500 CPU hours!
Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

\[\mathcal{F}_W(t) = \frac{1}{h} \sum_{\chi \in \hat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp \left(t \cdot \tilde{\chi}(\mathcal{R}) \right) \]

becomes

\[\mathcal{F}^T_W(t, \omega) = \frac{1}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \sum_{\chi \in \text{Res}_T(\chi)} \text{mult}(\chi) \cdot \exp \left(t \cdot \sum_{i=1}^{n} (\tilde{\chi}_i(\mathcal{R}_i) - \tilde{\chi}_{i-1}(\mathcal{R}_{i-1})) \cdot \omega_i \right), \]

where the second summation is over all chains of characters \(\chi : (\chi = \chi_n, \chi_{n-1}, \cdots, \chi_0) \) that appear as we restrict the character \(\chi \) of \(W \) down the tower \(T \).

This is one way to cover the exceptional cases. It took about 500 CPU hours!

2) A non-trivial recursion in the infinite families \(G(r, 1, n) \) and \(G(r, r, n) \).
Their characters and parabolic subgroups are indexed by combinatorial objects and restriction to (parabolic) subgroups can be described via a variant of the Littlewood-Richardson’s rules (John Stembridge’s notes were very helpful).
Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

$$\mathcal{F}_W(t) = \frac{1}{h} \sum_{\chi \in \hat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp \left(t \cdot \tilde{\chi}(\mathcal{R}) \right)$$

becomes

$$\mathcal{F}^T_W(t, \omega) = \frac{1}{h} \sum_{\chi \in \hat{W}} \chi(c^{-1}) \cdot \sum_{\chi \in \text{Res}_T(\chi)} \text{mult}(\chi) \cdot \exp \left(t \cdot \sum_{i=1}^{n} \left(\tilde{\chi}_i(\mathcal{R}_i) - \tilde{\chi}_{i-1}(\mathcal{R}_{i-1}) \right) \cdot \omega_i \right),$$

where the second summation is over all chains of characters $\chi : (\chi = \chi_n, \chi_{n-1}, \cdots, \chi_0)$ that appear as we restrict the character χ of W down the tower T.

This is one way to cover the exceptional cases. It took about 500 CPU hours!

2) A non-trivial recursion in the infinite families $G(r, 1, n)$ and $G(r, r, n)$.
Their characters and parabolic subgroups are indexed by combinatorial objects and restriction to (parabolic) subgroups can be described via a variant of the Littlewood-Richardson’s rules (John Stembridge’s notes were very helpful).

3) Burman’s theory of Lie-like elements and our ability to experiment in Sage-Gap-Chevie were key. Also a love for the ”Okounkov-Vershik approach” (thanks Vic!).
A W-matrix forest theorem!
A W-matrix forest theorem!

The whole characteristic polynomial of the Laplacian of a graph G has a combinatorial interpretation. This is usually referred to as the (weighted) Matrix-forest theorem:

$$\det (x + L_G(\omega)) = \sum_{\mathcal{F}} w(\mathcal{F}) \cdot x^{c(\mathcal{F})},$$

where the sum is over all forests \mathcal{F} of rooted trees in G, and where $c(\mathcal{F})$ counts the number of trees in the forest (and hence also roots).
A W-matrix forest theorem!

The whole characteristic polynomial of the Laplacian of a graph G has a combinatorial interpretation. This is usually referred to as the (weighted) Matrix-forest theorem:

$$\det (x + L_G(\omega)) = \sum_{\mathcal{F}} \mathbf{w}(\mathcal{F}) \cdot x^{c(\mathcal{F})},$$

where the sum is over all forests \mathcal{F} of rooted trees in G, and where $c(\mathcal{F})$ counts the number of trees in the forest (and hence also roots).

Theorem 3 (Chapuy, D. '19). The characteristic polynomial of the W-Laplacian is given as

$$\det (x + L_W^T(\omega)) = \sum_{\tau_1 \cdots \tau_{n-k} = c_X} |C_{W_X}(c_X)| \cdot \mathbf{w}_T(\tau_1) \cdots \mathbf{w}_T(\tau_{n-k}) \cdot \frac{x^k}{(n-k)!},$$

where the sum is over (reduced) reflection factorizations of any Coxeter element c_X of any parabolic subgroup W_X.
A W-matrix forest theorem!

The whole characteristic polynomial of the Laplacian of a graph G has a combinatorial interpretation. This is usually referred to as the (weighted) Matrix-forest theorem:

$$\det (x + L_G(\omega)) = \sum_{\mathcal{F}} w(\mathcal{F}) \cdot x^{c(\mathcal{F})},$$

where the sum is over all forests \mathcal{F} of rooted trees in G, and where $c(\mathcal{F})$ counts the number of trees in the forest (and hence also roots).

Theorem 3 (Chapuy, D. '19). *The characteristic polynomial of the W-Laplacian is given as

$$\det (x + L_W^T(\omega)) = \sum_{\mathcal{F}} |C_{W_X}(c_X)| \cdot w_T(\tau_1) \cdots w_T(\tau_{n-k}) \cdot \frac{x^k}{(n-k)!},$$

where the sum is over (reduced) reflection factorizations of any Coxeter element c_X of any parabolic subgroup W_X.

Corollary (Chapuy, D. '19). *If we set all weights equal to 1 we get a generalization of the Deligne-Arnol’d-Bessis formula $\text{Hur}(W) = \frac{h^n n!}{|W|}$:*

$$(x + h)^n = \sum_{X \in \mathcal{L}_A} |W_X| \cdot \text{Hur}(W_X) \cdot \frac{x^{\dim(X)}}{(\text{codim}(X))!}.$$
A Laplacian $L_A(\omega)$ for general hyperplane arrangements
A Laplacian $L_{\mathcal{A}}(\omega)$ for general hyperplane arrangements

Let \mathcal{A} a hyperplane arrangement in some $V \cong \mathbb{C}^n$ and $\omega := (\omega_i)_{i=1}^N$ a weight system for each of its N-many hyperplanes H_i.
A Laplacian $L_{\mathcal{A}}(\omega)$ for general hyperplane arrangements

Let \mathcal{A} a hyperplane arrangement in some $V \cong \mathbb{C}^n$ and $\omega := (\omega_i)_{i=1}^N$ a weight system for each of its N-many hyperplanes H_i.

Definition. We give an \mathcal{A}-Laplacian matrix as

$$GL(V) \ni L_{\mathcal{A}}(\omega) := \sum_{i=1}^N \omega_i \cdot (\text{Id}(n) - S_{H_i}),$$

where $\text{Id}(n)$ is the $(n \times n)$ identity matrix and S_{H_i} denotes the orthogonal reflection across H_i.
A Laplacian $L_A(\omega)$ for general hyperplane arrangements

Let A a hyperplane arrangement in some $V \cong \mathbb{C}^n$ and $\omega := (\omega_i)_{i=1}^N$ a weight system for each of its N-many hyperplanes H_i.

Definition. We give an A-Laplacian matrix as

$$
GL(V) \ni L_A(\omega) := \sum_{i=1}^{N} \omega_i \cdot (\text{Id}(n) - S_{H_i}),
$$

where $\text{Id}(n)$ is the $(n \times n)$ identity matrix and S_{H_i} denotes the orthogonal reflection across H_i.

Lemma (Burman et al. ’15). *(Abstract Matrix-forest theorem)*

For each hyperplane $H_i \in A$ choose an orthogonal vector r_i of unit norm. Then

$$
\det \left(x + L_A(\omega) \right) = \sum_{\{r_{i_1}, \ldots, r_{i_k}\}} \omega_{i_1} \cdots \omega_{i_k} \cdot \det \left(\langle r_{i_s}, r_{i_t} \rangle \right)_{s,t=1}^k \cdot x^{n-k},
$$

where the sum is over all linearly independent sets of vectors r_i (and $k = 0 \ldots n$).
A recursion for the \mathcal{A}-Laplacian
A recursion for the \mathcal{A}-Laplacian

Lemma (Burman et al. '15). *(Abstract Matrix-forest theorem)*

For each hyperplane $H_i \in \mathcal{A}$ choose an orthogonal vector r_i of unit norm. Then

$$\det (x + L_A(\omega)) = \sum_{\{r_{i_1}, \ldots, r_{i_k}\}} \omega_{i_1} \cdots \omega_{i_k} \cdot \det (\langle r_{i_s}, r_{i_t} \rangle)_{s,t=1}^k \cdot x^{n-k},$$

where the sum is over all linearly independent sets of vectors r_i (and $k = 0 \ldots n$).
A recursion for the \mathcal{A}-Laplacian

Lemma (Burman et al. '15). (Abstract Matrix-forest theorem)
For each hyperplane $H_i \in \mathcal{A}$ choose an orthogonal vector r_i of unit norm. Then

$$\det(x + L_{\mathcal{A}}(\omega)) = \sum_{\{r_{i_1}, \ldots, r_{i_k}\}} \omega_{i_1} \cdots \omega_{i_k} \cdot \det(\langle r_{i_s}, r_{i_t} \rangle)_{s, t=1}^{k} \cdot x^{n-k},$$

where the sum is over all linearly independent sets of vectors r_i (and $k = 0 \ldots n$).

Proposition (Chapuy, D. '19). The characteristic polynomial of the \mathcal{A}-Laplacian matrix satisfies

$$\det(x + L_{\mathcal{A}}(\omega)) = \sum_{X \in \mathcal{L}_{\mathcal{A}}} \text{qdet}(L_{\mathcal{A}_X}(\omega)) \cdot x^{\dim(X)},$$

where $\mathcal{L}_{\mathcal{A}}$ denotes the intersection lattice of \mathcal{A} and qdet stands for quasideterminant.
A recursion for the \mathcal{A}-Laplacian

Lemma (Burman et al. ’15). *(Abstract Matrix-forest theorem)*

For each hyperplane $H_i \in \mathcal{A}$ choose an orthogonal vector r_i of unit norm. Then

$$
\det \left(x + L_{\mathcal{A}}(\omega) \right) = \sum_{\{r_i_1, \ldots, r_i_k\}} \omega_{i_1} \cdots \omega_{i_k} \cdot \det \left(\langle r_{i_s}, r_{i_t} \rangle \right)_{s,t=1}^k \cdot x^{n-k},
$$

where the sum is over all linearly independent sets of vectors r_i (and $k = 0 \ldots n$).

Proposition (Chapuy, D. ’19). *The characteristic polynomial of the \mathcal{A}-Laplacian matrix satisfies*

$$
\det \left(x + L_{\mathcal{A}}(\omega) \right) = \sum_{X \in \mathcal{L}_{\mathcal{A}}} \qdet \left(L_{\mathcal{A}X}(\omega) \right) \cdot x^{\dim(X)},
$$

where $\mathcal{L}_{\mathcal{A}}$ denotes the intersection lattice of \mathcal{A} and \qdet stands for quasideterminant.

Corollary. *Our W-Matrix-forest theorem.*
A recursion for the A-Laplacian

Lemma (Burman et al. '15). (*Abstract Matrix-forest theorem*)

For each hyperplane $H_i \in A$ choose an orthogonal vector r_i of unit norm. Then

$$\det \left(x + L_A(\omega) \right) = \sum_{\{r_{i_1}, \ldots, r_{i_k}\}} \omega_{i_1} \cdots \omega_{i_k} \cdot \det \left(\langle r_{i_s}, r_{i_t} \rangle \right)_{s,t=1}^k \cdot x^{n-k},$$

where the sum is over all linearly independent sets of vectors r_i (and $k = 0 \ldots n$).

Proposition (Chapuy, D. '19). *The characteristic polynomial of the A-Laplacian matrix satisfies*

$$\det \left(x + L_A(\omega) \right) = \sum_{X \in \mathcal{L}_A} \text{qdet} \left(L_A X(\omega) \right) \cdot x^{\dim(X)},$$

where \mathcal{L}_A denotes the intersection lattice of A and \text{qdet} stands for quasideterminant.

Corollary. *Our W-Matrix-forest theorem.*

The recursion looks very similar to Brieskorn’s lemma:

$$\text{Poin}(V \setminus A, t) = \sum_{X \in \mathcal{L}_A} \text{rank} \left(H^{\text{top}}(V \setminus A_X) \right) \cdot t^{\dim(X)},$$

which in fact shows furthermore a natural decomposition of the corresponding cohomology spaces. Could the previous proposition be interpreted in a similar way?
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.
A uniform proof of the chain number \(\frac{h^n n!}{|W|} \) of \(NC(W) \).

Write \(\text{Hur}(W) \) for the number of reduced reflection factorizations of a fixed Coxeter element \(c \):

\[
\text{Hur}(W) = \# \{(\tau_1, \cdots, \tau_n) \in R^n : \tau_1 \cdots \tau_n = c \} = \frac{h^n n!}{|W|}.
\]
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

Write $Hur(W)$ for the number of reduced reflection factorizations of a fixed Coxeter element c:

$$Hur(W) = \#\{ (\tau_1, \cdots, \tau_n) \in R^n : \tau_1 \cdots \tau_n = c \} = \frac{h^n n!}{|W|}.$$
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

Write $\text{Hur}(W)$ for the number of reduced reflection factorizations of a fixed Coxeter element c:

$$\text{Hur}(W) = \#\{(\tau_1, \cdots, \tau_n) \in \mathcal{R}^n : \tau_1 \cdots \tau_n = c\} = \frac{h^n n!}{|W|}.$$

The Deligne-Reading recursion:

$$\text{Hur}(W) = \frac{h}{2} \sum_{s \in S} \text{Hur}(W_{\langle s \rangle}).$$

Only recently we have uniform proofs. They are all quite involved!
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

Write $\text{Hur}(W)$ for the number of reduced reflection factorizations of a fixed Coxeter element c:

$$\text{Hur}(W) = \#\{(\tau_1, \cdots, \tau_n) \in R^n : \tau_1 \cdots \tau_n = c\} = \frac{h^n n!}{|W|}.$$

The Deligne-Reading recursion:

$$\text{Hur}(W) = \frac{h}{2} \sum_{s \in S} \text{Hur}(W_{\langle s \rangle}).$$

A stupid recursion:

$$\text{Hur}(W) = \sum_{L \in \mathcal{L}^1_{A_W/W}} \text{Krew}(L) \cdot \text{Hur}(W_L),$$

Only recently we have uniform proofs. They are all quite involved!
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

Write $\text{Hur}(W)$ for the number of reduced reflection factorizations of a fixed Coxeter element c:

$$\text{Hur}(W) = \#\{(\tau_1, \cdots, \tau_n) \in R^n : \tau_1 \cdots \tau_n = c\} = \frac{h^n n!}{|W|}.$$

The Deligne-Reading recursion:

$$\text{Hur}(W) = \frac{h}{2} \sum_{s \in S} \text{Hur}(W_{\langle s \rangle}).$$

A stupid recursion:

$$\text{Hur}(W) = \sum_{L \in \mathcal{L}_W^1 / W} \text{Krew}(L) \cdot \text{Hur}(W_L),$$

indeed this is equivalent as enumerating factorizations with respect to just the last reflection:

$$\tau_1 \cdots \tau_{n-1} \cdot \tau_n = c_L \cdot c.$$
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

Write $\text{Hur}(W)$ for the number of reduced reflection factorizations of a fixed Coxeter element c:

$$\text{Hur}(W) = \#\{(\tau_1, \cdots, \tau_n) \in \mathcal{R}^n : \tau_1 \cdots \tau_n = c\} = \frac{h^n n!}{|W|}.$$

The Deligne-Reading recursion:

$$\text{Hur}(W) = \frac{h}{2} \sum_{s \in S} \text{Hur}(W_{(s)}).$$

A stupid recursion:

$$\text{Hur}(W) = \sum_{L \in \mathcal{L}_{1,W}/W} \text{Krew}(L) \cdot \text{Hur}(W_L),$$

indeed this is equivalent as enumerating factorizations with respect to just the last reflection:

$$\tau_1 \cdots \tau_{n-1} \cdot \underbrace{\tau_n}_{c_L} = c.$$

The point is that we know:

$$\text{Krew}(X) = \frac{\prod_{i=1}^{\dim(X)}(h + 1 - b_i^X)}{[N(X) : W_X]}$$

and

$$\text{Krew}(L) = \frac{h}{[N(L) : W_L]}.$$
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

Write $Hur(W)$ for the number of reduced reflection factorizations of a fixed Coxeter element c:

$$Hur(W) = \#\{ (\tau_1, \cdots, \tau_n) \in R^n : \tau_1 \cdots \tau_n = c \} = \frac{h^n n!}{|W|}.$$

The Deligne-Reading recursion:

$$Hur(W) = \frac{h}{2} \sum_{s \in S} Hur(W_{\langle s \rangle}).$$

A stupid recursion:

$$Hur(W) = \sum_{L \in L^1_{\mathcal{A}_W} / W} Krew(L) \cdot Hur(W_L),$$

indeed this is equivalent as enumerating factorizations with respect to just the last reflection:

$$\underbrace{\tau_1 \cdots \tau_{n-1}}_{c_L} \cdot \tau_n = c.$$

The point is that we know:

$$Krew(X) = \prod_{i=1}^{\dim(X)} \left(h + 1 - b_i^X \right) / \left[N(X) : W_X \right]$$ and

$$Krew(L) = \frac{h}{\left[N(L) : W_L \right]}.$$

Uniformely!

Case by case.
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

So, now the stupid recursion:

$$\text{Hur}(W) = \sum_{L \in \mathcal{L}_{A_W}/W} Krew(L) \cdot \text{Hur}(W_L),$$
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

So, now the stupid recursion:

$$Hur(W) = \sum_{L \in L^1_{A_W/W}} Krew(L) \cdot Hur(W_L),$$

becomes

$$Hur(W) = \sum_{L \in L^1_{A_W/W}} \frac{h}{[N(L) : W_L]} \cdot Hur(W_L),$$
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

So, now the stupid recursion:

$$Hur(W) = \sum_{L \in L_{AW}^1/W} Krew(L) \cdot Hur(W_L),$$

becomes

$$Hur(W) = \sum_{L \in L_{AW}^1/W} \frac{h}{[N(L) : W_L]} \cdot Hur(W_L),$$

which after plugging in the formula to be proven demands that

$$h^{n-1} n! = \sum_{L \in L_{AW}^1/W} \frac{|W|}{|N(L)|} \cdot (\prod_{i=1}^{n-1} h_i(W_L)) \cdot (n - 1)!,$$
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

So, now the stupid recursion:

$$Hur(W) = \sum_{L \in L_{AW}^1/W} Krew(L) \cdot Hur(W_L),$$

becomes

$$Hur(W) = \sum_{L \in L_{AW}^1/W} \frac{h}{|N(L) : W_L|} \cdot Hur(W_L),$$

which after plugging in the formula to be proven demands that

$$h^{n-1} n! = \sum_{L \in L_{AW}^1/W} \frac{|W|}{|N(L)|} \cdot \left(\prod_{i=1}^{n-1} h_i(W_L) \right) \cdot (n - 1)!, $$

and now summing over all flats (instead of orbits of flats):

$$n \cdot h^{n-1} = \sum_{L \in L_{AW}^1} \prod_{i=1}^{n-1} h_i(W_L).$$
A uniform proof of the chain number $\frac{h^n n!}{|W|}$ of $NC(W)$.

So, now the stupid recursion:

$$\text{Hur}(W) = \sum_{L \in \mathcal{L}_{AW}^1/W} \text{Krew}(L) \cdot \text{Hur}(WL),$$

becomes

$$\text{Hur}(W) = \sum_{L \in \mathcal{L}_{AW}^1/W} \frac{h}{|N(L) : WL|} \cdot \text{Hur}(WL),$$

which after plugging in the formula to be proven demands that

$$h^{n-1} n! = \sum_{L \in \mathcal{L}_{AW}^1/W} \frac{|W|}{|N(L)|} \cdot \left(\prod_{i=1}^{n-1} h_i(W_L) \right) \cdot (n - 1)!,$$

and now summing over all flats (instead of orbits of flats):

$$n \cdot h^{n-1} = \sum_{L \in \mathcal{L}_{AW}^1} \prod_{i=1}^{n-1} h_i(W_L).$$

But in fact the recursion for the characteristic polynomial of the W-Laplacian gives us more:

$$(h + x)^n = \sum_{X \in \mathcal{L}_{AW}} \left(\prod_{i=1}^{\text{codim}(X)} h_i(X) \right) \cdot x^{\text{dim}(X)}.$$
The end!
The end!

Thank you very much!
A combinatorial description of the eigenvalues of the W-Laplacian
A combinatorial description of the eigenvalues of the W-Laplacian

\[
A = \begin{bmatrix}
\cdot & \cdot & & & & \\
2 & 1 & 0 & 1 & 2 & 4 \\
0 & 3 & 0 & 1 & 2 & 4 \\
0 & 0 & 2 & 0 & 0 & 8 \\
0 & 0 & 0 & 4 & 2 & 4 \\
0 & 0 & 0 & 0 & 6 & 4 \\
0 & 0 & 0 & 0 & 0 & 10 \\
\end{bmatrix}
\]

\[
\{\lambda_i(\omega)\} = \left\{ \begin{array}{l}
2\omega_1 + \omega_2 + \omega_4 + 2\omega_5 + 4\omega_6, \\
3\omega_2 + \omega_4 + 2\omega_5 + 4\omega_6, \\
2\omega_3 + 8\omega_6, \\
4\omega_4 + 2\omega_5 + 4\omega_6, \\
6\omega_5 + 4\omega_6, \\
10\omega_6 \end{array} \right\}
\]