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Abstract. A permutominide is a set of cells in the plane satisfying special connectivity con-
straints and uniquely defined by a pair of permutations. It naturally generalizes the con-
cept of permutomino, recently investigated by several authors and from different points of
view [1, 2, 4, 6, 7]. In this paper, using bijective methods, we determine the enumeration of
various classes of convex permutominides, including, parallelogram, directed convex, convex,
and row convex permutominides. As a corollary we have a bijective proof for the number of
convex permutominoes, which was still an open problem.
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1. Polyominides and Permutominides

We assume that the reader is confident with the concept of polyomino, and with the
most important classes of polyominoes, such as the parallelogram, the convex, the
directed convex, the row convex polyominoes. For the main definitions concerning
these objects we refer to [3].

We start by giving a simple generalization of the concept of a polyomino ad-
mitting the connection of cells not only by edges but also by vertices. In the plane
Z×Z a cell is a unit square having integer coordinates. Two cells are said to be
edge-connected if they have a common edge (see Figure 1 (a)), and vertex-connected
if they have a common vertex (see Figure 1 (b)).
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(a) (b) (c)

Figure 1: (a) cells connected by edges; (b) cells connected by vertices; (c) discon-
nected cells.

A polyominide is a finite union of cells such that any two of them can be connected
by means of a sequence of cells which are vertex-connected or edge-connected. It is
obvious that, requiring the connection only by edges, we obtain the polyominoes.
Polyominides are defined up to a translation. In this paper we will always consider
those having no “holes”, i.e., polyominides where the boundary is made exactly of
one component. A polyominide is said to be row convex (column convex, respec-
tively) if, for any two cells with the same ordinate (abscissa, respectively), the row
(column, respectively) containing them is connected, see Figure 2. Finally it is said
to be convex if it is both row and column convex.

(c)(b)(a)

Figure 2: (a) A polyominide with a hole; (b) a column convex (not row convex)
polyominide; (c) a column convex polyominide which is also a polyomino.

A cell of a polyominide is called an internal cell, if it is surrounded by 8 cells,
otherwise it is called an external cell. To any vertex V of an external cell we assign
a multiplicity μ(V ), which is given by the number of cells to which V belongs. An
extremal vertex of a polyominide is simply a vertex of one of its cells with multiplicity
1 or 3, see Figure 3. A side of a polyominide is any horizontal or vertical segment of
its boundary joining two of its extremal vertices, as depicted in Figure 3.

Let us now define the combinatorial object which will be treated in this paper.
A permutominide is a polyominide having exactly one side for every abscissa and
exactly one side for every ordinate. It is easy to check that the minimal bounding
rectangle containing a permutominide is always a square, and the side of such square
is called the size of the permutominide.

The name permutominide is due to the fact that each of these objects is actually
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multiplicity 2

multyplicity 3

multiplicity 1

Figure 3: Vertices and sides of a polyominide. Extremal vertices are highlighted.

defined by a pair of permutations, as graphically depicted in Figure 4. The formal
definition of this pair of permutations is quite laborious, and we prefer to omit it,
since it goes beyond the scopes of the present paper. The interested reader can find
all details on this subject in [4]. Permutominides which are also polyominoes are

(c)(b)(a)

Figure 4: (a) a permutominide P of size 6; (b) its associated permutations π1(P) =
(6, 4, 1, 5, 3, 2, 7), and (c) π2(P) = (7, 2, 5, 4, 1, 6, 3).

usually called permutominoes. Figure 5 depicts some important classes of permu-
tominoes. Permutominoes were introduced in [7], and then considered by Incitti
in [6] while studying the problem of determining the R̃-polynomials associated with
a pair (π1, π2) of permutations. Then permutominoes have been exhaustively studied
regarding enumeration and related combinatorial problems in [1, 2, 4].

The main enumerative results about convex permutominoes are the following:

i. the number of parallelogram permutominoes of size n is equal to the n-th Cata-
lan number,

Cn =
1

n + 1

(
2n
n

)
;

ii. the number of directed convex permutominoes of size n is equal to
(2n−1

n

)
;

iii. the number of convex permutominoes of size n is

2(n + 3)4n−2−
n
2

(
2n
n

)
, n ≥ 1. (1.1)
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We point out that formula (1.1) was proved using analytical techniques, and the prob-
lem of giving a bijective proof to (1.1) was pointed out independently in [2, 4, 5].
Moreover, the problem of enumerating row convex permutominoes is still open.

(c)(b)(a)

Figure 5: (a) a permutomino; (b) a convex permutomino; (c) a row convex permu-
tomino.

In this paper we study some combinatorial and enumerative properties of various
classes of convex permutominides. In the first part we give the enumeration of con-
vex, directed convex, and parallelogram permutominides, using bijective techniques.
Moreover, we show that both directed convex and convex permutominides have a ra-
tional generating function, while — as reported above — directed convex and convex
permutominoes have an algebraic (non rational) generating function.

A relevant justification for our study of convex permutominides is presented in the
second part of the paper. In fact, convex permutominoes can be obtained simply by
subtracting, from the convex permutominides, those whose boundary crosses itself.
As a consequence of our approach we are able to enumerate the latter class, thus we
provide the first bijective proof for (1.1).

Finally, we obtain the enumeration of row convex permutominides according to
their size. To do this we show a method to associate a permutation (the base per-
mutation) to a given permutominide, and conversely, we show how to obtain a set of
permutominides from a given permutation.

The table below reports the first terms of the number sequences treated in the
paper, and the main enumeration results obtained here.

class of
permutominides 1 2 3 4 5 6 7 closed form

parallelogram 1 3 10 35 126 426 . . .
(2n−1

n

)
directed-convex 1 4 16 64 256 1024 . . . 4n−1

convex 1 6 32 160 768 3584 . . . 2(n + 1)4n−2

row-convex 1 6 48 480 5768 80640 . . . (n + 1)!2n−2
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2. Enumeration of Convex Permutominides

In this section we provide the enumeration of some classes of convex permutominides
using bijective techniques. To begin with, we agree without loss of generality that the
lower leftmost vertex of the minimal bounding square of any permutominide is placed
in the origin (0, 0). We recall from [1, 2] that, given a convex permutominide, in
order to satisfy the convexity constraint, the points where its boundary crosses itself
(if any) must lie all on the main diagonal or all on the antidiagonal (see, for instance,
Figure 7).

Let us start by defining some classes of permutominides, which extend the classes
of directed convex and of parallelogram polyominoes, respectively. A convex permu-
tominide of size n is said to be directed if it contains a cell with lowest leftmost vertex
in position (0, 0) (see Figure 7 (a)). A directed convex permutominide is said to be
parallelogram if it contains a cell with upper rightmost vertex in position (n, n) (see
Figure 6 (a)).

Proposition 2.1. The number of parallelogram permutominides of size n is
(2n−1

n

)
,

n ≥ 1.

Proof. Let P be a parallelogram permutominide of size n; let p(P) be the path made of
the sequence of sides of P, starting from (0, 0) upwards, and following the boundary
of P until it reaches (n, n) (see Figure 6). Clearly, a parallelogram permutominide
P is uniquely determined by the path p(P). Moreover, p(P) is an unrestricted path
of length 2n made of north and east unit steps (denoted by N and E , respectively)
always starting with an N step. We remark that the ending step of p(P) may be an E
or an N step depending on the number of times the boundary crosses itself. So, the
number of such paths is

(2n−1
n

)
.

(b)(a)

Figure 6: (a) a parallelogram permutominide P; (b) the associated path p(P).

Proposition 2.2. The number of directed convex permutominides of size n is 4n−1,
n ≥ 1.

Proof. In a directed convex permutominide P of size n let us identify the following
points:
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A

(d)(c)

(b)(a)

p
2

p
1

C

B

A

C

B

Figure 7: (a) Case (i): A directed convex permutominide P; (b) the associated paths
p1 and p2, where the steps to be removed are dotted; (c) the path p(P); (d) the path
p̂(P) is obtained by removing from p(P) the highlighted steps.

• A is the origin (0, 0);
• B is the rightmost point among those having ordinate n;
• C is the highest point among those having abscissa n.

Clearly, B and C coincide if and only if P is a parallelogram permutominide.
Our aim is to build a path p(P) encoding P, similarly to what we did in Propo-

sition 2.1. We start building a path denoted by p1(P) (briefly, p1); such a path is
constituted by the sequence of sides of P starting from A with an N step and follow-
ing the boundary of P. The path p1 may end

(i) with a north step, on the line x = n (precisely, at C), if it crosses the main diagonal
an odd number of times (see Figure 7 (a) (b));

(ii) with an east step, on the line y = n (precisely, at B), if it crosses the main diagonal
an even number of times (see Figure 8 (a) (b)).

Let us consider the two cases separately, and define the path p2(P) (briefly, p2).

(i) We observe that p1 starts and ends with a north step, hence we may write p1 =
N p̂1N. If B and C coincide, then p2 is the empty path. Otherwise, p2(P) is made
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of the part of the boundary of P running from C to B counterclockwise (see
Figure 7 (b)). For our purpose, p2 can be uniquely decomposed as a sequence

p2 = W r1 Ns1 W r2 Ns2 · · ·W r2�+1 Ns2�+1 W r2�+2 Ns2�+2 · · · ,

where N (W , respectively) denotes a unit north (west, respectively) step and, for
each i, ri, si ≥ 1, and � ≥ 0.

The path p1 p2 uses north, east, and west unit steps, and one can easily see that
it completely encodes the permutominide P. To conclude our proof, we would
like now to encode the path p1 p2 as a word of length 2(n− 1) in the alphabet
{E, N}. We start by pointing out that the path p1 determines the abscissas of the
vertical sides in p2, so p1 p2 can be obtained uniquely from the knowledge of
p1 and of the lengths of the vertical sides in p2. So we map p1 p2 into the path
p(P), of length 2n:

p(P) = N p̂1N Es1Ns2 · · ·Es2�+1Ns2�+2 · · · ,

as depicted in Figure 7 (c). In practice, the ith sequence of north steps in p2,
denoted by Nsi , is mapped into Esi , if i is odd, and into Nsi otherwise. Now we
obtain the path p̂(P) from p(P), by removing the first and the last steps from p1
(as depicted in Figure 7 (d)):

p̂(P) = p̂1 Es1Ns2 · · ·Es2�+1Ns2�+2 · · · .

(ii) It is completely analogous to the previous one. In this case, p1 starts with a north
step and ends with an east step, hence p1 = N p̂1E . The path p2(P) is the empty
path, if B and C coincide, otherwise it is made of the part of the boundary of P
running from B to C, and then it can be written as

p2 = Sr1Es1Sr2Es2 · · ·Sr2�+1Es2�+1Sr2�+2Es2�+2 · · · ,

where S (E , respectively) denotes a unit south (east, respectively) step and, for
each i, ri, si ≥ 1. Now, as before, we map p1 p2 into the path

p(P) = N p̂1E Ns1 Es2 · · ·Ns2�+1Es2�+2 · · · ,

as depicted in Figure 8 (c). Now we obtain the path p̂(P) from p(P), by remov-
ing the first and the last steps from p1:

p̂(P) = p̂1Ns1Es2 · · ·Ns2�+1Es2�+2 · · · .

An easy computation reveals that the path p̂(P) has length 2(n−1).
To prove that the correspondence between P and p̂(P) is a bijection, we briefly

show how to determine p1 and p2 from p̂(P). If p̂(P) ends with abscissa greater than
or equal to n, then we fall in Case (i), and the path p̂1 is given by the longest prefix
of p̂(P) ending with abscissa equal to n. Otherwise, we fall in Case (ii), and then the
path p̂1 is given by the longest prefix of p̂(P) ending with ordinate equal to n−1.

Finally, we have proved that every directed convex permutominide of size n can
be encoded as a word of length 2(n−1) in the alphabet {E, N}.
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A
(d)(c)(b)(a)

C

B

A

C

B

Figure 8: (a) Case (ii): A directed convex permutominide P; (b) the associated paths
p1 and p2, where the steps to be removed are dotted; (c) the path p(P); (d) the path
p̂(P), obtained from p(P) by removing the highlighted steps.

By extending the previous bijection we obtain the following remarkable result.

Proposition 2.3. The number of convex permutominides of size n is 2(n + 1)4n−2,
n ≥ 1.

Proof. The number of directed convex permutominides was determined in Proposi-
tion 2.2, so it is sufficient to count the convex permutominides which are not directed
convex. Proving that the number of these permutominides with size n is equal to
(n−1)22n−3 leads to the thesis.

So, let P be a convex — but not directed convex — permutominide of size n. The
main idea is to define a mapping P → (p̂(P), h), where p̂(P) is an unrestricted path
of length 2n−3 using north and east unit steps, and h is a label belonging to the set
{1, . . . , n−1}.

Let us consider the following points on the boundary of P (see Figure 9 (a)):

- A = (0, h) is the lower leftmost vertex of P; clearly, 1 ≤ h ≤ n− 1; in our con-
struction, h is just the label of the path p̂(P) we are going to define;

- B is the rightmost point among those having ordinate n;

- C is the highest point among those having abscissa n;

- D is the leftmost point among those having ordinate 0.

We point out that B and C may coincide, while A and D are necessarily distinct, since
the permutominide P is assumed not to be directed. Now, three distinct cases may
occur:

(1) the boundary of P crosses itself on the main diagonal (Figure 9 (a));

(2) the boundary of P crosses itself on the anti-diagonal (Figure 11 (a));

(3) the boundary of P does not cross itself, i.e., P is a convex permutomino.

Due to the convexity constraint, a permutominide cannot satisfy both conditions (1)
and (2), so we study cases (1) and (2) separately, and for each of the two cases we
map P onto a pair (p̂(P), h), as previously explained.
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(1) The construction resembles the one described in Proposition 2.2. We start by
considering the path p1(P) (briefly, p1), given by the sequence of sides of P
starting from A with an N step and following the boundary of P (see Figure 9 (b)).
Again, p1 may terminate on x = n or on y = n, so we consider two subcases
separately:

(1.1) p1 terminates with a north step, i.e., on the line x = n, if it crosses the main
diagonal an odd number of times (see Figure 9);

(1.2) p1 terminates with an east step, i.e., on the line y = n, if it crosses the main
diagonal an even number of times (see Figure 10).

These two cases have to be studied separately, but as it happened in the proof of
Proposition 2.2, they are completely analogous.

(1.1) The path p1 starts and ends with a north step, hence we may write p1 =
N p̂1N. The path p2(P) (briefly, p2) is empty if B and C coincide, otherwise
it is made of the part of the boundary of P running counterclockwise from
C to B (see Figure 9 (b)). Then p2 can be uniquely decomposed as

p2 = W r1Ns1W r2Ns2 · · ·W r2�+1Ns2�+1W r2�+2Ns2�+2 · · ·W rt Nst ,

where, for each i, ri, si ≥ 1, and t ≥ 1. In practice, ri (si, respectively) is the
length of the ith sequence of west (north, respectively) steps in p2.

Similarly, the path p3(P) (briefly, p3) is made of the part of the boundary
of P running from D to A (see Figure 9 (b)). Now, p3 can be uniquely
decomposed as

p3 = Nk1W j1 · · ·Nkq−(2�+1)W jq−(2�+1)Nkq−2�W jq−2� · · ·Nkq−1W jq−1NkqW jq ,

where, for each i, ki, ji ≥ 1, q ≥ 1, i.e., ki ( ji, respectively) is the length of
the ith sequence of north (west, respectively) steps in p3.

One can easily observe that the path obtained by the concatenation of the
previously defined paths, namely, p3 p1 p2 completely encodes the permu-
tominide P. To conclude our proof, we encode the path p3 p1 p2 as a pair
( p̂(P), h), where p̂(P) is a word of length 2n− 3 in the alphabet {N, E},
and h is just the label of p̂(P).

We start by pointing out that the path p1 determines the abscissas of the
vertical sides in p2 and in p3, so p3 p1 p2 can be obtained uniquely from the
knowledge of p1, and of the lengths of the vertical sides in p2 and in p3.
Thus we map p3 p1 p2 into the path

p(P) =
(

X k1 · · ·Nkq−(2�+1)Ekq−2� · · ·Nkq−1 Ekq
)

N p̂1N(
Es1Ns2 · · ·Es2�+1Ns2�+2 · · ·Y st

)
,

as depicted in Figure 9 (c). We remark that p(P) starts with a sequence of
east steps (i.e., X = E), if and only if q is odd, otherwise it starts with a
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A

h

C

B

A

D

C

B

D

p
3

1
p

p
2

(a) (b)

(d)(c)

Figure 9: (a) A convex permutominide P satisfying condition (1.1); (b) the associated
path p3 p1 p2, where the steps to be removed are dotted; (c) the path p(P); (d) the path
p̂(P), obtained from p(P) by removing the highlighted steps, with label h.

sequence of north steps (i.e., X = N). Similarly, p(P) ends with a sequence
of north steps (i.e., Y = N), if and only if t is even, otherwise it ends with a
sequence of east steps (i.e., Y = E).

Now p(P) is a path in {E, N} of length 2n, and we obtain the path p̂(P)
from p(P), by removing three steps: The first and the last steps from p1,
and the step preceding p1, which is always an east step (see Figure 9 (d)).
Then we have

p̂(P) =
(

X k1 · · ·Nkq−(2�+1)Ekq−2� · · ·Nkq−1Ekq−1
)

p̂1(
Es1Ns2 · · ·Es2�+1Ns2�+2 · · ·Y st

)
.

(1.2) The construction is analogous to that explained in (1.1). Here p1 starts with
a north step and ends with an east step, hence we may write p1 = N p̂1E .
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The path p2(P) (briefly, p2) is empty if B and C coincide, otherwise it is
made up of the part of the boundary of P running clockwise from B to C
(see Figure 10 (b)). Then p2 can be uniquely decomposed as

p2 = Sr1Es1Sr2Es2 · · ·Sr2�+1Es2�+1Sr2�+2Es2�+2 · · ·Srt Est ,

where, for each i, ri, si ≥ 1, i.e., ri (si, respectively) is the length of the ith
sequence of south (east, respectively) steps in p2.
The path p3(P) (briefly, p3) is defined in the same way as in (1.1), and
similarly, we can write

p3 = Nk1W j1 · · ·Nkq−(2�+1)W jq−(2�+1)Nkq−2�W jq−2� · · ·Nkq−1W jq−1NkqW jq .

p

p

2
p

3

1

(b)(a)

h

A

D

B

C

D

A

B

C

(c) (d)

Figure 10: (a) A convex permutominide P satisfying condition (1.2); (b) the associ-
ated path p3 p1 p2, where the steps to be removed are dotted; (c) the path p(P); (d) the
path p̂(P), obtained from p(P) by removing the highlighted steps, with label h.

Again, we encode the path p3 p1 p2 in terms of a pair (p̂(P), h). Here, the
path p1 determines the ordinates of the horizontal sides in p2, and the ab-
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scissas of the vertical sides in p3, so p3 p1 p2 can be obtained uniquely from
the knowledge of p1, of the length of the horizontal sides in p2, and of the
length of the vertical sides in p3. Thus we map p3 p1 p2 into the path

p(P) =
(

X k1 · · ·Nkq−(2�+1)Ekq−2� · · ·Nkq−1Eqt
)

N p̂1E(
Ns1 Es2 · · ·Ns2�+1Es2�+2 · · ·Y st

)
,

as depicted in Figure 10 (c). We remark that p(P) starts with a sequence
of east steps (i.e., X = E), if and only if q is odd, otherwise it starts with a
sequence of north steps (i.e., X = N); moreover, p(P) ends with a sequence
of north steps (i.e., Y = N), if and only if t is odd, otherwise it ends with a
sequence of east steps (i.e., Y = E).
Now the path p̂(P) is obtained from p(P), by removing three steps: The
first and the last steps from p1, and the step preceding p1, which is always
an east step (see Figure 10 (d)). Then we have

p̂(P) =
(

X k1 · · ·Nkq−(2�+1)Ekq−2� · · ·Nkq−1Ekq−1
)

p̂1(
Ns1Es2 · · ·Ns2�+1Es2�+2 · · ·Y st

)
.

(2) Now we consider the case where the boundary of P crosses itself on the anti-
diagonal (Figure 11 (a)). Similarly to the previous cases, we build up three paths
p1, p2, and p3. The path p1(P) (briefly, p1) is, as usual, given by the sequence of
sides of P starting from A with an N step and following the boundary of P (see
Figure 11 (b)). In this case, due to the convexity constraint, p1 must terminate on
the line y = n, then it starts with a north step, and ends with an east step, and we
may write p1 = N p̂1E . Now we need to identify the subpaths p2 and p3.

So, let p2 be the part of the boundary of P, running clockwise from B to C, and
remaining weakly above the anti-diagonal. Such a path is made of south and east
unit steps, and we may encode it as

p2 = Sr1Es1Sr2Es2 · · ·Sr2�+1Es2�+1Sr2�+2Es2�+2 · · ·Srt Est ,

where, for each i, ri, si ≥ 1, i.e., ri (si, respectively) is the length of the ith se-
quence of south (east, respectively) steps in p2. Similarly, the path p3 is the part
of the boundary of P, running clockwise from D to A, and remaining weakly be-
low the anti-diagonal. Such a path is made of north and west unit steps, and we
may encode it as

p3 = Nk1W j1 · · ·Nkq−(2�+1)W jq−(2�+1)Nkq−2�W jq−2� · · ·Nkq−1W jq−1NkqW jq .

Now, our representation follows the usual scheme, and leads us to encode the
path p3 p1 p2 as a pair (p̂(P), h). Clearly, the path p3 p1 p2 completely encodes
P. Moreover, p3 p1 p2 can be obtained uniquely from the knowledge of p1, of the
length of the horizontal sides in p2, and of the lengths of the vertical sides in p3.
Thus we map p3 p1 p2 into the path

p(P) =
(

X k1 · · ·Nkq−(2�+1)Ekq−2� · · ·Nkq−1Eqt
)

N p̂1E
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(d)(c)

Figure 11: (a) A convex permutominide P satisfying condition (2); (b) the associated
path p(P) = p1 p2 p3; (c) the path p(P), where the steps to be removed are empha-
sized; (d) the path p̂(P), labelled h.

(
Ns1Es2 · · ·Ns2�+1Es2�+2 · · ·Y st

)
,

as depicted in Figure 11 (c). We remark that p(P) starts with a sequence of east
steps (i.e. X = E), if and only if q is odd, otherwise it starts with a sequence of
north steps (i.e., X = N); moreover, p(P) ends with a sequence of north steps
(i.e., Y = N), if and only if t is odd, otherwise it ends with a sequence of east
steps (i.e., Y = E).

Now the path p̂(P) is obtained from p(P) by removing three steps: The first and
the last steps from p1, and the step preceding p1, which is always an east step
(see Figure 11 (d)). Then we have

p̂(P) =
(

X k1 · · ·Nkq−(2�+1)Ekq−2� · · ·Nkq−1 Ekq−1
)

p̂1(
Ns1 Es2 · · ·Ns2�+1Es2�+2 · · ·Y st

)
.
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(3) The mapping described in case (2) actually does not require that the boundary
of the permutominide crosses itself. Then, if P is a permutomino, we apply the
mapping of case (2), and obtain the pair (p̂(P), h).

We now prove that the above defined mapping P→ (p̂(P), h) is indeed a bijection.
So let us start from a given pair (p, h), where p is a path of length 2n−3 using north
and east unit steps, and 1 ≤ h ≤ n − 1, and we show how to uniquely determine
a convex (non directed) permutominide P of size n, with lowest leftmost vertex in
A = (0, h), and such that p̂(P) = p.

To begin with, we decompose the path p into three subpaths, called p̂1, p̂2, and
p̂3. The path p̂3 is given by the prefix of P with length h−1. Let us denote by p̂12 the
path obtained by removing p̂3 from p. To establish the point which divides p̂12 into
the subpaths p̂1 and p̂2, we have to consider the following two factorizations of p̂12:

• p̂12 = αβ , with |α|N = n−h−1, where |α|N denotes the number of north steps
in α;

• p̂12 = α ′β ′, with |α ′|E = n−1, where |α ′|E denotes the number of east steps in
α ′.

Let us consider the following two cases separately.

(i) |α| ≤ |α ′|, it means that the path p1(P) of the permutominide P we are building
up terminates on y = n. In this case, p̂1 is given by the longest prefix α ′′ of p̂12
such that |α ′′|N = n− h− 1, and we set p3 = p̂3E , p1 = N p̂1E , and p2 = p̂2.
Then we are able to determine the coordinates of the point B = (|p1|E , n). Now,
the path p1, running from A to B, may cross the main diagonal, and in this case
we fall into case (1.2). Otherwise, we fall into case (2) or (3).

(ii) |α| > |α ′|, it means that the path p1(P) of the permutominide P we are building
up terminates on x = n (then it satisfies condition (1.1)). In this case, p̂1 is
given by the longest prefix α ′′ of p̂12 such that |α ′′|E = n, and we set p3 = p̂3E ,
p1 = N p̂1N, and p2 = p̂2. Then we are able to determine the coordinates of the
point C = (n, h + |p1|N).

Now, the three paths p1, p2, and p3 have been determined, the path p1 begins
at point A and terminates at B, in case (i) or in C, in case (ii). Then, inverting the
construction described for cases (1) and (2) it is easy to construct the unique permu-
tominide P such that p1 = p1(P), p2 = p2(P), and p3 = p3(P).

A consequence of the results in Propositions 2.2 and 2.3 is that the generating
functions of convex and of directed convex permutominides are rational ones. This is
a rather surprising result, since the generating functions of directed convex and con-
vex permutominoes are instead algebraic ones. This fact will be further investigated
in the next section, where we show the reason of the algebraicity of the generating
function of convex permutominoes.
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3. A Bijective Proof for the Number of Convex Permutominoes

In this section we will give a bijective proof of formula (1.1) for the number of convex
permutominoes. Let us consider the following classes:

• P(n) is the class of convex permutominides of size n;
• C(n) is the class of convex permutominoes of size n;
• T1(n) is the class of convex permutominides of size n whose boundary crosses

itself on the main diagonal;
• T2(n) is the class of convex permutominides of size n whose boundary crosses

itself on the anti-diagonal.

Clearly, P(n) = C(n)∪ T1(n)∪ T2(n). Moreover, T1(n) and T2(n) are disjoint
sets, and they have the same cardinality. Since we know the cardinality of P(n), it
is sufficient to enumerate T1(n) to determine the number of convex permutominoes.
More precisely,

|C(n)| = |P(n)|−2 |T1(n)| . (3.1)

Proposition 3.1. The cardinality of T1(n) is equal to n
4

(2n
n

)
− 4n−1

2 .

Proof. Let P be a convex permutominide in T1(n), and let I = (i, i) be the first point
on the main diagonal where the boundary of P crosses itself. We easily see that I
uniquely decomposes P into two parts: On the south-west of I we have a (south-
west) directed convex permutomino, while on the north-east of I we have a (north-
east) directed convex permutominide. We remark that, since the boundary of P must
cross itself, 0 < i < n (see Figure 12).

I

Figure 12: A convex permutominide in T1(n), and its unique decomposition.

We know from [4] that the number of directed convex permutominoes of size n
is equal to

(2n−1
n

)
, while from Proposition 2.2 we have that the number of directed
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convex permutominides of size n is equal to 4n−1. Hence, according to our decompo-
sition, we have that the cardinality of T1(n) is given by

n−1

∑
h=1

(
2h−1

h

)
4n−h−1 =

n
4

(
2n
n

)
−

4n−1

2
.

From the results of Propositions 2.3 and 3.1, and following Equation (3.1), we
have a formula for the number of convex permutominoes of given size. We remark
that it is the first purely bijective proof of such a result.

Corollary 3.2. The number of convex permutominoes of size n is

|C(n)| = 2(n + 3)4n−2−
n
2

(
2n
n

)
, n ≥ 1.

4. Enumeration of Row Convex Permutominides

In this section we show an easy way to compute the number of row convex per-
mutominides of given size. Here we use an approach different from that applied in
Section 3. The main idea is to represent a row convex permutominide P by means of
a permutation π(P) (called the base permutation of P).

4.1. The Base of a Permutominide

Let P be a permutominide of size n. For simplicity of representation, we now
assume that the minimal bounding square of P is placed in (1, 1). To each vertical
side v in the boundary of P we assign the integer x(v) ∈ {1, . . . , n + 1}, i.e., the ab-
scissa common to all the points of v. Since there is exactly one vertical side for each
abscissa, from now on we will identify the vertical side by means of its associated
number. It is now possible to associate to P a permutation π(P) of length n + 1 by
defining a total order on its vertical sides. First of all, to each vertical side v of P
we uniquely associate a pair of integers (y(v), l(v)), where y(v) is the ordinate of the
lowest point of v and l(v) is the length of v.

It is important to observe that in any permutominide there are no two vertical sides
v �= v ′ such that (y(v), l(v)) = (y(v ′), l(v ′)). Now, if v and v ′ are two vertical sides of
P, we say that v ≤ v ′ if and only if (y(v), l(v)) ≤ (y(v ′), l(v ′)) in the lexicographical
order. It is clear that this is a total order on the set of the vertical sides of P, with
minimum (1, 1).

Now, the permutation π(P) is defined as follows: π(P)(i) = j if and only if the
vertical side v such that x(v) = i is the jth element in the previously defined order.
Clearly, π(P) is a permutation of length n + 1, and it is called the base permutation
of P (or simply the base of P).

For instance, the permutation associated with the permutominide of size 4 in the
figure below is π(P) = (3, 5, 4, 2, 1): Indeed its vertical sides are totally ordered as
5 < 4 < 1 < 3 < 2, as it is shown in the table on the right.
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P =

54321

1

2

4
5

3 x(e) (y(e), l(e))
1 (2,3)
2 (3,2)
3 (3,1)
4 (1,3)
5 (1,1)

We would like to remark that the base permutation π(P) of a permutominide P
has nothing to do with the pair (π1(P), π2(P)) of permutations defining the permuto-
minide, mentioned in the introductory section. For instance, it is easy to see that the
same base permutation can be associated to different permutominides, as shown in
Figure 13.

Figure 13: The four row convex permutominides with base permutation (5, 4, 3, 2, 1).

4.2. The Number of Row-Convex Permutominides

Let us focus on the class of row convex permutominides. We characterize the
set of row convex permutominides having the same base permutation, and then we
determine the enumeration of this class. The following result is straightforward.

Proposition 4.1. Let P be a permutominide; P is row convex if and only if, for any
two different vertical sides v and v ′, y(v) = y(v ′) = � implies � = 1.

Concerning the class of row convex permutominides, the permutation π(P) has
a very simple interpretation. In practice, let P be a row convex permutominide and
let v1, . . . , vn+1 be its vertical sides, from left to right. The permutation π(P) can be
defined as

π(P)(i) =

{
y(vi)+ 1, if y(vi) �= 1 or l(vi) > 1;

1, otherwise.

It seems now natural to study the set of row convex permutominides having the same
base permutation, so for a given permutation π of length n ≥ 2, let us consider the set

P(π) = {P : P is a row convex permutominide of size n−1, and π(P) = π} .
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1
(b)(a)

1 2
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6

7

8
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7
6

5

4
3

2

Figure 14: (a) the path defined by the permutation (6, 8, 1, 5, 4, 9, 3, 2, 7) and the
subset S = {5, 7, 8}; for simplicity, the vertical side vi is represented by its index i;
(b) the associated row convex permutominide.

Proposition 4.2. Let π be a permutation of length n. Then the cardinality of the set
P(π) is equal to 2n−3.

Proof. We give a constructive way to build the 2n−3 row convex permutominides
with base permutation π . Let us consider the following points on the plane: v1 =(
π−1(1), 1

)
, vi =

(
π(i)−1, i−1

)
, for i > 1 and let S = {i1, . . . , ik}, with 3 < i1 <

· · · < ik ≤ n.
Let us consider the path defined as follows (see Figure 14 (a))

- it starts from v2 and connects it to v1 by means of a sequence of horizontal unit
steps (they can be east or west steps depending on the relative positions of v1 and
v2);

- it connects v1 to v3 by means of a sequence of north unit steps followed by a
sequence of horizontal unit steps;

- it connects v3 to vi1 by means of a sequence of north steps followed by a sequence
of horizontal steps;

- it connects vir to vir+1 by means of a sequence of north steps followed by a se-
quence of horizontal steps;

- then it connects vik to the line y = n + 1 by means of a sequence of north steps.

It can be easily proved that there is a unique way to build a row convex permutominide
P(S) such that π(P) = π with the defined path as a subpath of its boundary (see
Figure 14 (b)).

Since to every subset S of the set {4, 5, . . . , n} we can uniquely associate a row
convex permutominide P(S) in P(π), then the cardinality of the latter set is equal to
2n−3.

Figure 13 depicts the four row convex permutominides of size 4 with base (5, 4, 3,

2, 1). The following result is a direct consequence of the previous statements.

Proposition 4.3. The number of row convex permutominides of size n is equal to
2n−2(n + 1)! .
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