International Journals

      • E. Duchi, J. Borga, E. Slivken, Almost square permutations are typically square, Ann. Inst. H. Poincaré Probab. Statist. B, to appear, arXiv:1910.04813.

      • E. Duchi, A code for square permutations and convex permutominoes, Discrete Math and Theoretical Computer Science, Vol 21, n. 2, \#2 (2019), arXiv:1904.02691 .

      • R. Cori, E. Duchi, V. Guerrini, S. Rinaldi, Families of parking functions counted by the Schroeder and Baxter numbers, Lattice Path Combinatorics and Applications, Springer Book Series "Developments of Mathematics", Editors: G. Andrewes, C. Krattenthaler, A. Krinik, (ISBN 978-3-030-11102-1) (2019).

      • E. Duchi, V. Guerrini, S. Rinaldi, A generating tree for permutations avoiding the pattern 122'3. Fundamenta Informaticae, vol 163, n. 1, 21-39, (2018).

      • E. Duchi, S. Rinaldi, S.Socci, Three dimensional polygons determined by permutations. Journal of Combinatorics, 9, 57-94 (2018).

      • E.Duchi, V.Guerrini, S.Rinaldi, G.Schaeffer, Fighting fish. Journal of Physics A: Mathematical and Theoretical 50.2 (2017).

      • F. Disanto, E. Duchi, R. Pinzani, S. Rinaldi, Polyominoes determined by permutations: enumeration via bijections. Annals of Combinatorics 16 no. 1, 57 75, (2012).

      • E. Duchi, S. Rinaldi, G. Schaeffer, The number of Z-convex polyominoes. Advances in Applied Mathematics 40 (2008), no. 1, 54 72, arXiv:0602124.

      • E. Duchi, G. Schaeffer, A combinatorial approach to jumping particles: The parallel TASEP. Random Structures and Algorithms 33(4): 434-451 (2008).

      • E. Duchi, R. Mantaci, H.D. Phan, D. Rossin, Bidimensional sand pile and ice pile models. Pure Math. Appl. (PU.M.A.) 17 no. 1-2, 71 96, (2006).

      • E. Duchi, S. Rinaldi, An object grammar for column-convex polyominoes, Annals of Combinatorics, Vol. 8 (1), (2004).

      • E. Duchi,  A. Frosini ,  S. Rinaldi , R. Pinzani,  A note on rational succession rules , Journal of Integer Sequences, Vol. 6, Article 03.01.7., (2003).

      • E. Duchi, J-M Fédou, S. Rinaldi, From object grammars to ECO-systems, Theoretical Computer Science, 314, 57-95, (2004).

      • E. Duchi,  R. Sulanke ,  On generalizing central Delannoy numbers to higher dimensions, Séminaire Lotharingien de Combinatoire, 51, Article B51c. (2004)

      • A. Del Lungo, E. Duchi, A. Frosini, S. Rinaldi, The enumeration of convex polyominoes by using ECO method(developed version of the paper presented at DMCS'2003),  The Electronic Journal of Combinatorics,  Vol. 11 (1), (2004) R60.

      • E. Duchi,  G. Schaeffer , A combinatorial approach to jumping particles, Journal of Combinatorial Theory, Series A.

      • S. Brlek, E. Duchi, E. Pergola, S. Rinaldi, On the equivalence problems for succession rules, (developed version of the paper presented at FPSAC'02), Discrete Mathematics 298 142-154, (2005).


      International Conferences
       
       

      • E. Duchi, V. Guerrini, S. Rinaldi, G. Schaeffer, Fighting fish: enumerative properties, Proceedings of 29th International Conference on Formal Power Series and Algebraic Combinatorics London (UK), (2017).

      • E. Duchi, D. Poulalhon and G. Schaeffer, Uniform random sampling of simple branched coverings of the sphere by itself. 25th ACM-SIAM Symposium on Discrete Algorithms (SODA'14)} , Portland (USA), (2014).

      • F. Disanto, E. Duchi, S. Rinaldi, G. Schaeffer: Permutations with few internal points. EuroComb 2011}, Budapest (Hongrie) . Acts published in Electronic Notes in Discrete Mathematics 38: 291-296 (2011).

      • E. Duchi and D. Poulalhon, On square permutations. Fifth Colloquium on Mathematics and Computer Science, 207 222, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, (2008).

      • E. Duchi, S. Rinaldi, G. Schaeffer, On the number of Z-convex polyominoes, FPSAC'2006 , Vienna (Austria), (2006).

      • E. Duchi, On some classes of Prudent Walks. FPSAC'2005, à Taormina (Italy)(2005).

      •  S. Brlek, E. Duchi,  E. Pergola,  R. Pinzani, Bijective construction of equivalent ECO-systems, International Colloquium on Mathematics and Computer Science: trees, algorithms and probability (MathInfo'2002), Versailles (France).

      •  
      • S. Brlek, E. Duchi, E. Pergola, S. Rinaldi, On the equivalence problems for succession rules, 14th International Conference on Formal Power Series and Algebraic Combinatorics, (FPSAC'02), Melbourne (Australia).

      •  
      • A. Del Lungo, E. Duchi,  A. Frosini, S. Rinaldi, The enumeration of convex polyominoes by using ECO method, International Conference Discrete Models for Complex Systems (DMCS'2003), Lyon (France). Acts published by Discrete Mathematics and Theoretical Computer Science.

      •  
      • E. Duchi, G. Schaeffer, Jumping particles I: maximal  flow regime, 16th International Conference on Formal Power Series and Algebraic Combinatorics, (FPSAC'04), Vancouver (Canada)(2004).
      •  
      • E. Duchi, G. Schaeffer, Jumping particles II: general boundary conditions, International Colloquium on Mathematics and Computer Science: trees, algorithms and probability (MathInfo'2004), Vienna (Austria). (2004)


      National and International Workshops
       
       

      • E. Duchi,  E. Pergola,  R. Pinzani, Equivalence of  ECO-systems, International workshop on Combinatorics of Searching, Sorting and Coding   (COSSAC'01), Ischia(Italy) (2001).

      •  
      • E. Duchi, G. Schaeffer, Approche combinatoire d'un modèle de particules. Rencontres ALEA'04, Luminy (France)(2004).


      Technical Reports
       
       

      • E. Duchi, J-M Fédou,C. Garcia,  E. Pergola, On the inversion of succession rules, rapport interne de l'I3S. (2002)



      Preprints

      • E. Duchi, V. Guerrini, S. Rinaldi, G.Schaeffer, Fighting fish: enumerative properties, en cours de révision arXiv:1611.04625 .

      • E. Duchi, D. Poulalhon, G.Schaeffer. Bijections for simple and double Hurwitz numbers. en cours de révision arXiv:1410.6521.

      Manuscripts

      • HDR, Polyominoes, permutominoes and permutations.

      • Phd Thesis, ECO method and Object Grammars: two methods for the enumeration of combinatorial objects.

    back to my home page