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2 DIISM, Università di Siena, Italy,
guerrini55@student.unisi.it, rinaldi@unisi.it

Abstract. In this paper we study the family of permutations avoiding the pattern 122+3
(trivially equivalent to those avoiding 1 23 4), which extend the popular 123-avoiding per-
mutations. In particular we provide an algorithmic description of a generating tree for these
permutations, that is a way to build every object of a given size n + 1 in a unique way
by performing local modifications on an object of size n. Our algorithm leads to a direct
bijection between 1 23 4-avoiding permutations and valley-marked Dyck paths. It extends
a known bijection between 123-avoiding permutations and Dyck paths, and makes explicit
the connection between these objects that was earlier obtained by Callan through a series
of non-trivial bijective steps. In particular our construction is simple enough to allow for
efficient exhaustive generation.

1 The notion of pattern avoidance and its mathematical framework

Patterns in permutations have been occasionally studied for over a century, but in the last two
decades this area has grown, with several published papers. The study of permutations which are
constrained by not having one or more subsequences ordered in various prescribed ways has been
motivated both by its combinatorial difficulty and by its appearance in some data structuring
problems in Computer Science.

Indeed, the study of permutation patterns started with Knuth’s consideration of stack-sorting
[21]. Knuth showed that a permutation π can be sorted by a stack if and only if π avoids 231,
and that stack-sortable permutations are enumerated by the Catalan numbers. Knuth also raised
questions about sorting with deques. Later, Tarjan investigated sorting by networks of stacks,
while Pratt showed that the permutation π can be sorted by a deque if and only if for all k, π
avoids

σ = 5 2 7 4 . . . 4k + 1 4k − 2 3 4k 1 and δ = 5 2 7 4 . . . 4k + 3 4k 1 4k + 2 3 ,

and every permutation that can be obtained from either of these by interchanging the last two
elements or the 1 and the 2 [23]. This set of permutations is infinite, and it is one of the first
examples of an infinite antichain of permutations. So, it is not immediately clear how long it takes
to decide if a permutation can be sorted by a deque. Rosenstiehl and Tarjan (1984) later presented
a linear (in the length of π) time algorithm to establish if π can be sorted by a deque [24].

It is well known that the number of permutations of length n avoiding any one classical pattern
of length 3 is the nth Catalan number, which counts a large amount of different combinatorial
objects [27]. There are many other results in this direction, relating pattern avoiding permutations
to various other combinatorial structures, either via bijections, or by analytic approaches. It now
seems clear that this field of research will continue growing for a long time to come, due to the
several problems that are related to other branches of combinatorics, other fields of mathematics,
and to other disciplines such as computer science, physics, computational biology and theoretical
physics.
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Recently, the notion of generalized pattern in permutations has been introduced and considered.
Whereas an occurrence of a classical pattern p in a permutation π is simply a subsequence of π
whose letters are in the same relative order (of size) as those in p, in an occurrence of a generalized
pattern, some letters of that subsequence may be required to be adjacent in the permutation. For
example, the classical pattern 1234 simply corresponds to an increasing subsequence of length four,
whereas an occurrence of the generalized pattern 1 23 4 would require the middle two letters of
that sequence to be adjacent in π. Thus, the permutation 23145 contains 1234 but not 1 23 4. We
point out that our notation differs from the usual one (which uses dashes) since we use the symbol

to indicate the elements of the pattern that are required to be adjacent in an occurrence.
Generalized patterns provide a significant addition to classical patterns and their connections

to other combinatorial structures. In fact the non-classical generalized patterns are likely to pro-
vide richer connections to other combinatorial structures than the classical ones do. Other than
combinatorics, generalized patterns find applications in other scientific areas such as, for instance,
in the genome rearrangement problem, which is one of the major trends in bioinformatics and
biomathematics [3,30], and discrete tomography [13,14,17].

It is also worth mentioning that the concept of substructure (or pattern) within a combinatorial
structure is now an essential notion in combinatorics, whose study has had many developments
in various branches of discrete mathematics. Nowadays, the research on permutation patterns
is being developed in several directions. One of them is to define and study analogues of the
concept of pattern in permutations in other combinatorial objects such as set partitions [18,19,26],
words [6,9], trees [12,25], matrices and polyominoes [16].

In this paper we will study permutations avoiding the generalized pattern 122+3, which is
equivalent to the pattern 1 23 4. These patterns are of great importance since they constutute a
neat but non trivial generalization of the popular pattern 123, and they have been considered in
some previous papers [10,15] leaving several open problems.

We will provide an algorithmic description of a generating tree for these permutations, that is a
way to build every object of a given size n+1 in a unique way by performing local modifications on
an object of size n. Our algorithm leads to a direct bijection between 1 23 4-avoiding permutations
and valley-marked Dyck paths. It extends a known bijection between 123-avoiding permutations
and Dyck paths, and makes explicit the connection between these objects that was earlier obtained
by Callan [10] through a series of non-trivial bijective steps. In particular our construction is simple
enough to allow for efficient exhaustive generation [3,30].

2 Getting started

We start recalling some basic facts on pattern avoiding permutations. For more details we address
the reader to [7]. A permutation σ = σ1σ2 . . . σn contains τ = τ1τ2 . . . τk if there exists i1 < i2 <
. . . < ik such that σia < σib if and only if τa < τb. Otherwise, σ avoids τ , and we denote AVn(τ)
the set of permutations σ of {1, . . . , n} that avoids a fixed permutation τ .

Among the several existing notions which extend the classical pattern avoidance, here we are
interested in the so-called bivincular patterns [1,11], and more precisely we consider the patterns
122+3 and 1 23 4:

i) a permutation π contains the pattern 122+3 if there are four indices i < j < k < t such that
πi < πj < πk = πj + 1 < πt;

ii) a permutation π contains the pattern 1 23 4 if there are three indices i < j < k such that
πi < πj < πj+1 < πk.

For instance, the permutation 4 1 7 3 5 2 6 contains the pattern 1 23 4 because of the entries
π2 = 1, π4 = 3, π5 = 5 π7 = 6, whereas π does not contain the pattern 122+3. We immediately
point out that 122+3-avoiding permutations are in one to one correspondances with 1 23 4-avoiding
ones via group inversion, i.e. π ∈ AV (122+3) if and only if π−1 ∈ AV (1 23 4), so we can study one
or the other set equivalently.
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Fig. 1. (a) The 123-avoiding permutation 9 7 6 8 3 5 4 1 2; (b) The corresponding Dyck path; (c)
A Dyck path with marked valleys.

Permutations avoiding 123 and permutations avoiding 122+3. Our interest in permutations
avoiding 122+3 is motivated by the fact that they form a natural extension of the class of 123-
avoiding permutations, which on their turn are perhaps the simplest and widely studied class of
permutations counted by the famous Catalan numbers, enumerating more than 200 combinatorial
structures, listed by Stanley in [28]. We recall that 123-avoiding permutations have a simple
characterization in terms of left-to-right minima and right-to-left maxima, where as usual, πi
is a left-to-right minimum (resp. right-to-left maxima) of π if πi = min{πj : j ≤ i} (resp. πi =
max{πj : j ≥ i}), and AVn(123) (resp. AVn(122+3)) denotes the set of 123- (resp. 122+3-) avoiding
permutations of length n.

Proposition 1. If a permutation π of length n belongs to AVn(123) then, for every index 1 ≤ i < n
we have that:

if πi is on the left of πi+1, then πi is a left-to-right minimum and πi+1 is a right-to-left maximum.

Observe that the previous characterization can be extended to AV (122+3) as follows.

Proposition 2. A permutation π of length n belongs to AVn(122+3) if and only if for every index
1 ≤ i < n we have that:

if πi is on the left of πi +1, then πi is a left-to-right minimum or πi +1 is a right-to-left maximum.

Krattenthaler’s bijection. Another popular structure counted by Catalan numbers is that of
Dyck paths, i.e. lattice paths in the first quadrant which begin at the origin, end on the x-axis,
and consist of up steps U = (1, 1), down steps D = (1,−1) (see Figure 1 (b)).

In [20] Krattenthaler shows the following bijection between 123-avoiding permutations and
Dyck paths. Let π be a 123-avoiding permutation, decomposed as π = wrmrwr−1mr−1 . . . w1m1,
where m1, . . . ,ms are the right-to-left maxima of π from right to left. By Proposition 1, for all i
the entries in wi are left-to-right minima, so they are in decreasing order and smaller than all the
entries of wi+1. Krattenthaler’s bijection consists in reading π from right to left and building the
corresponding Dyck path form right to left as follows: any right-to-left maximum mi is translated
into mi −mi−1 down steps (with m0 = 0), whereas any factor wi is translated into |wi| + 1 up
steps. Figure 1 (a) shows 123-avoiding permutation 9 7 6 8 3 5 4 1 2 with its right-to-left maxima
depicted in black, which is mapped in the Dyck path in Figure 1 (b).

The sequence A113227 and valley-marked Dyck paths. As already mentioned, the se-
quence counting 1 23 4 avoiding permutations is not new in combinatorics: in [15] Elizalde ob-
tained asymptotic bounds for these numbers. Moreover in [10] Callan proved that the family of
AV (1 23 4)-avoiding permutations is counted by the sequence A113227 in [22], whose first terms
are:

1, 2, 6, 23, 105, 549, 3207, 20577, 143239, 1071704, 8555388, 72442465, . . .
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More precisely, according to [10] the nth term pn of the sequence above can be expressed as
pn =

∑n
j=0 pn,j , where the terms pn,j satisfy the recurrence relation

p0,0 = 1
pn,0 = 0 if n ≥ 1,

pn,j = pn−1,j−1 + j
∑n−1

i=j pn−1,i for n ≥ j ≥ 1.
(1)

On the one hand Callan points out that there are some “simple” families of objects counted
by sequence A113227, for which it is easy to prove Recurrence (1): in particular Callan considers
increasing ordered trees with increasing leaves and valley-marked Dyck paths [10]. Let us briefly
illustrate Callan’s simple proof on the latter structures: valley-marked Dyck paths are Dyck paths
where every valley (i.e. factor DU) at level h is marked at a given level between 0 to h (see
Figure 1 (c)). One can easily prove that the number of valley-marked Dyck paths (briefly, VM-
Dyck paths) of semi-length n is pn, and more precisely, the number pn,j of VM-Dyck paths of
length n and with first ascent of length j satisfies recurrence (1). Indeed a VM-Dyck path of
semi-length n > 1 and first ascent of length j ≥ 1 can be uniquely obtained as follows:

i) adding a peak UD on the top of the first ascent of any VM-Dyck path of semi-length n − 1
and first ascent of length j − 1, thus giving the first term of (1);

ii) adding a peak UD at level j of the first ascent of any VM-Dyck path of semi-length n− 1 and
first ascent of length i ≥ j; in this case, we produce a new valley at level j − 1, and it can be
marked in j different ways, thus giving the second term of (1).

On the other hand Recurrence (1) appears to be difficult to understand directly on AV n(1 23 4).
Therefore, in order to enumerate these permutations, in [10] Callan presents a chain of several
non trivial bijections going from AV n(1 23 4) to increasing ordered trees with increasing leaves. In
view of the large amount of intermediary combinatorial structures involved, a natural question is
to find a direct bijection between 1 23 4-avoiding permutations or 122+3-avoiding permutations,
and one of the “simple” families satisfying recurrence A113227.

Our main result is a recursive bijection between 122+3-avoiding permutations and valley-
marked Dyck paths. Our construction is simple enough to yield for instance an efficient exhaustive
generation algorithm for these permutations.

Organization of the paper. In Section 2 we present a generation algorithm INSERTPOINT(π, i, j)
for 122+3-avoiding permutations, which receives as input a permutation π ∈ AVn(122+3) and two
indices i, j and returns a permutation in AVn+1(122+3). We prove in particular that, for every
122+3-avoiding permutation π′ of size n+ 1, there are exactly a permutation π of size n and two
indices i, j such that π′ is the output of INSERTPOINT(π, i, j). In Section 3 we present an analogous
algorithm INSERTPEAK(P, i, j) which inserts a peak UD in a specified position of a valley-marked
Dyck path of semi-length n, and marks the possibly obtained valley, producing in a unique way a
valley-marked Dyck path of semi-length n + 1. In the above two sections, we also show that the
recursive constructions of INSERTPOINT and INSERTPEAK can be both described by means of the
same generating tree, described by the succession rule with two labels ΩT :

ΩT =

 (1, 0)

(h, s)→ (h+ 1, s)(0, 1) . . . (0, h)(0, h+ 1)2 . . . (0, h+ s)s+1 .
(2)

This fact immediately yields a recursive bijection between 122+3-avoiding permutations and
VM-Dyck paths. Basics about generating trees and succession rules are recalled in Section 3,
while for further details we address the reader to [4,5,8]. Moreover we prove that, restricting to
123-avoiding permutations, our bijection reduces to Krattenthaler’s bijection between 123-avoiding
permutations and Dyck paths explained before, and we observe that our bijection can be performed
in an iterative (non-recursive) way.
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3 Generation of AV (122+3)

In this section we write down an algorithm INSERTPOINT that takes as input a permutation π of
AVn(122+3) and two positive integers i, j, and inserts a point in π in a position that depends on
i and j, and returns as output a permutation of AVn+1(122+3).

(a) (b)

Fig. 2. (a) The permutation π = 8 7 3 2 5 6 1 4, where h(π) = 2 and t(π) = 5; (b) The permutation
σ = 4 2 3 6 1 5, where h(σ) = 0 and t(σ) = 3. The threshold of both permutations is highlighted.

Before describing the algorithm INSERTPOINT we need to define the following parameters on π:

– the length h(π) of the (possible empty) maximal initial subsequence n (n − 1) . . . (n − h + 1)
of consecutive points of π, called double points. More precisely h(π) = h if and only if π =
nn− 1 . . . n− h+ 1πh+1 . . . πn and πh+1 6= n− h.

– the threshold index of π, denoted by t(π) = t, where t is the smallest index among {1, . . . , n+1}
that satisfies the two conditions:
(1) πt is not a left-to-right minimum;
(2) πt = n OR πt + 1 is on the left of πt OR πt + 1 = n− h(π).

If there is no point πt in π satisfying these two properties, then t(π) is set to be equal to n+ 1
(i.e. the threshold index is out of the permutation).
Figure 2 shows the threshold of two permutations. Observe that the condition πt+1 = n−h(π)
simply means that, if we remove the double points from π, then πt is placed just below the
maximal element (as in Figure 2 (b)). Note also that the threshold index t(π) is larger than
the parameter h(π), because any double point is a left-to-right minimum. If 1 ≤ t ≤ n, then
point πt is called the threshold of π.

– the parameter s(π) such that s(π) = t(π)− h(π)− 1.

Moreover, we define the set of admissible values for π, as the set of pairs (i, j) such that
1 ≤ i ≤ t(π) and (j = i or h(π) < j < i). This is the set of values of i and j for which
INSERTPOINT(π, i, j) returns an output. Finally, we define the label of π as the pair (h(π), s(π)).
Let LENGTH (resp. THRESHOLD, DOUBLE) be a function that computes the size n (resp. t(π), h(π))
of π ∈ AVn(122+3). The algorithm INSERTPOINT is given as Algorithm 1 below.

Proposition 3. Let π be a permutation of AVn(122+3) with label (h, s), where h = h(π) and s =
s(π). The application of INSERTPOINT(π, i, j), where i, j run over all admissible values, produces

a set of h + (s+1)(s+2)
2 permutations of length n + 1. More precisely, the multiset of the labels of

all permutations produced from π is

(h+ 1, s)(0, 1) . . . (0, h)(0, h+ 1)2 . . . (0, h+ s)s+1 . (3)

(the notation (x, y)g means that g permutations are being produced with label (x, y)).
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Algorithm 1: Insertion of a point in a 122+3-avoiding permutation.

Input : A permutation π and two positive integers i and j.
Output: A permutation τ .

1 INSERTPOINT (π, i, j);
2 n=LENGTH(π);
3 t=THRESHOLD(π);
4 h=DOUBLE(π);
5 if 1 ≤ i ≤ t and 1 ≤ j ≤ i then
6 if h = 0 then
7 Order the array [n+ 1, n, π1, . . . , πi−1] decreasingly;
8 Remove from it the last entry and call S the resulting array of length i;
9 Set x be equal to the (i+ 1− j)th element of S;

10 Build τ = π′1 . . . π
′
i−1 xπ

′
i . . . π

′
n, where π′k = πk if πk < x, and π′k = πk + 1 otherwise, for

k ∈ {1, . . . , n};
11 return τ ;

12 else
13 if j = i then
14 Build τ = π1 . . . πi−1 (n+ 1)πi . . . πn;
15 return τ ;

16 end
17 if h < j < i then
18 Build τ = π′2 . . . π

′
h π
′
h+1 . . . π

′
j (n− h)π′j+1 . . . π

′
i−1 (n+ 1)π′i . . . π

′
n, where π′k = πk if

πk < n− h, and π′k = πk + 1 otherwise, for k ∈ {1, . . . , n};
19 return τ ;

20 else
21 return error;
22 end

23 end

24 else
25 return error;
26 end

Proof. It is immediate to see that π = 1 has label (1, 0), since h(π) = 1 and s(π) = 0. Let us
consider a permutation π labeled by (h, s), then we have to distinguish two cases :

– h = 0;

CASE 1: If i = 1, then j = 1 and the previous algorithm inserts the element n + 1 at the
beginning of π, producing an output permutation τ labeled by (1, s).

CASE 2: Otherwise, for any i > 1 and every 1 ≤ j ≤ i, consider the set A = {n +
1, n, π1, . . . , πi−1}. The algorithm inserts in position i the j-th element of the setA\{minA}
increasingly ordered and, after normalizing, it obtains τ . Note that if x is the point added
in position i > 1, then x is the threshold of the output permutation τ . Indeed x is not a
left-to-right minimum of τ and x + 1 is not on its right or it is equal to the maximum of
τ . So, the threshold index of τ is i and τ has label (0, i− 1). Since 1 ≤ j ≤ i it means that
we obtain i permutations labeled by (0, i− 1) for i ∈ {2, . . . , t = s+ 1}.

– h > 0;

CASE 1: i ≤ h, i.e. the insertion is performed just before a double point: then j must be
equal to i and the permutation τ is obtained by adding to π the element n+ 1 in position
i. Then,

- if i = 1, τ has label (h+1, s); the number of double points increases by one, the threshold
index of the obtained permutation is t+ 1, so s(τ) = s.

- otherwise τ has no double points and the threshold t(τ) = i, i.e. n+1 is the new threshold
point of τ , which then has label (0, i− 1), for i ∈ {2, . . . , h}.
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8 7 3 2 5 6 1 4 −→ 9 8 7 3 2 5 6 1 4 8 9 7 3 2 5 6 1 4 8 7 9 3 2 5 6 1 4
(2,2) (3,2) i=j=1 (0,1) i=j=2 (0,2) i=j=3

8 7 3 9 2 5 6 1 4 8 3 6 9 2 5 7 1 4
(0,3) i=4,j=4 (0,3) i=4,j=3

8 7 3 2 9 5 6 1 4 8 3 2 6 9 5 7 1 4 8 3 6 2 9 5 7 1 4
(0,4) i=5,j=5 (0,4) i=5,j=4 (0,4) i=5,j=3

4 2 3 6 1 5 −→ 7 4 2 3 6 1 5
(0,2) (1,2) i=j=1

4 7 2 3 6 1 5 4 6 2 3 7 1 5
(0,1) i=2,j=2 (0,1) i=2,j=1

4 2 7 3 6 1 5 4 2 6 3 7 1 5 5 2 4 3 7 1 6
(0,2) i=3,j=3 (0,2) i=3,j=2 (0,2) i=3,j=1

Fig. 3. An example of the outputs of algorithm INSERTPOINT on a given permutation π and all
the admissible values i, j. For each permutation the threshold is underlined.

CASE 2: i > h. We have to split the two cases:
- j = i. If j = i the permutation τ is obtained by adding to π the point n+ 1 in position i,
therefore τ has no double points and the threshold t(τ) = i, i.e. n+ 1 is the new threshold
point of τ , so it has label (0, i− 1).
- If h < j < i, the algorithm adds in position i the element n + 1, then it removes the
leftmost double point n, inserts in position j the value n − h and, after normalizing, it
obtains τ . Note that also in this case the threshold index is i, because the point n− h+ 1
is on the right of n − h and then the point n − h, that is added in position j ≤ i, is not
a possible threshold index. Therefore the label of τ is (0, i− 1). Since h < j < i it means
that we obtain i−h−1 permutations labeled by (0, i−1) for i ∈ {h+1, . . . , t = s+h+1}.

Observe finally that the resulting multisets of labels in both cases can be written uniformly as (3).

Proposition 4. Any permutation τ obtained as output of INSERTPOINT avoids 122+3.

Proof. Let π be a 122+3-avoiding permutation, and i, j admissible values. First note that on the
left of the index threshold t(π) there is no occurrence of the pattern 122+. This means that the new
element x, inserted in π with INSERTPOINT(π, i, j), cannot create the pattern 122+3 by playing
the role of the 3. Moreover note that, by construction, x cannot be a left-to-right minimum. This
means that x cannot create the pattern 122+3 by playing the role of the 1. Therefore the new
point x inserted in π can only create an occurrence of 122+3 by playing the role of 2 or 2+.

Let us examine all the possible cases:

– h(π) = 0; Let us recall that the element x is inserted in position i of the permutation π, with
i ≤ t(π). If x = n+ 1 no occurrences of 122+3 can be created. If x = n then, by construction,
n + 1 is on the right of n, that is n cannot create the pattern 122+3 by playing the role of
the 2. It could create it by playing the role of 2+ but this is impossible since n − 1 is on the
right of n. Indeed, if it was on its left, then n − 1 would satisfy the conditions of threshold
of π and, at the same time, it would be on the left of t(π) (since i ≤ t(π)), thus leading to a
contradiction. Otherwise if x = πs, with s ≤ i, then by construction x + 1 lies on the left of
x. This means that x cannot create the pattern 122+3 by playing the role of the 2. It could
create it by playing the role of 2+ but we are going to show that this is impossible. In order
to do it we need to take account of the position of the element x− 1. If x− 1 is on the right
of x then x cannot create the pattern 122+3. Instead, if x− 1 is on the left of x and it is not
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n

n-k

n-1

n-k-2

n-k-1

...

Fig. 4. The plough configuration in a 122+3-avoiding permutation of length n.

a left-to-right minimum, then x − 1 must also be on the left of x + 1, since otherwise x − 1
would satisfy the conditions of threshold in π and, at the same time, it would be on the left of
t(π). Suppose now that x creates the pattern 122+3 in τ by playing the role of 2+, since we
showed that x− 1 is also on the left of x+ 1, then x+ 1 plays the role of 2+, together with the
1, 2, and 3 that are in the same pattern created by x. This means that removing x from τ and
coming back to π, an occurrence of the pattern is obtained, thus yielding to a contradiction.

– If h(π) 6= 0 and j = i, with i ≤ t(π), then n+ 1 is inserted in position i and no occurrences of
122+3 can be produced. If h < j < i, then n+1 is inserted in position i, and the leftmost double
point n is removed and the point y = n − h is inserted in position j < i. After normalizing
this array, τ is obtained. We need to check that y, which is not a left-to-right minimum, does
not form any 122+3 occurrence. Since y + 1 = n − h + 1 is a right-to-left maximum, then y
cannot create an occurrence of 122+3 by playing the role of 2. It could create an occurrence
of 122+3, but we have that this is impossible, since if y − 1 = n − h − 1 is on the left of y
then it must be a left-to-right minimum. Indeed, suppose that y − 1 is on the left of y and
it is not a left-to-right minimum. Since y − 1 is on the left of y, then it is also on the left of
y + 1 = n − h + 1, then it satisfies the conditions of threshold of π and, at the same time, it
would be on the left of t(π), thus giving a contradiction.

Figure 3 shows the applications of the algorithm INSERTPOINT to the permutation 8 7 3 2 5 6 1 4,
whose threshold is underlined, for all the admissible values of i and j.

Our aim is now to prove that each permutation of AVn(122+3) is produced exactly once by our
algorithm INSERTPOINT. To do this, we define a second algorithm REMOVEPOINT that deletes a point
from a permutation τ ∈ AVn(122+3) giving as output a triple (π, i, j), where π ∈ AVn−1(122+3)
and i, j depend on the deletion and we will prove that these two algorithms are inverse one of the
other.

The algorithm REMOVEPOINT is given as Algorithm 2 below: it takes as input a permutation
τ ∈ AV (122+3) of length n and returns a permutation π of length n−1 and two parameters i, j. A
crucial step in this algorithm is to check whether π contains a special configuration of points, called
plough configuration, graphically represented in Figure 4. Formally, τ ∈ AVn(122+3) contains the
plough configuration if the point τt = n, where t is the threshold index, and the index of the point
n− k− 1 (resp. n− k− 2) is greater than t (resp. smaller than t but greater than k+ 1), where k
is the cardinality of the starting (possibly empty) sequence having the form n − 1n − 2 . . . n − k
of τ .

Proposition 5. Any permutation π obtained as output of REMOVEPOINT avoids 122+3.

Proof. It is clear that if τt = n and τ does not contain the plough configuration, then the permu-
tation π, obtained by removing n still avoids 122+3. Then we still have to consider two cases:

– h(τ) = 0 and t(τ) 6= n; If t(τ) = n− 1 removing n− 1 could not create a 122+3 pattern since
n is a left-to-right maximum of τ . If t(τ) = x with x + 1 on its left, then removing x could
create a 122+3 pattern depending on the position of x − 1. If x − 1 is on the right of x + 1,
then removing x does not create any occurrence of 122+3 in π. If x− 1 is on the left of x+ 1
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Algorithm 2: Removing a point from a 122+3-avoiding permutation.

Input : A permutation τ .
Output: A permutation π and two positive integers i and j.

1 REMOVEPOINT (τ);
2 n=LENGTH(τ);
3 t=THRESHOLD(τ);
4 h=DOUBLE(τ);
5 if h = 0 then
6 if τt 6= n then
7 Set j be equal to the number of point of τ smaller than πt having index smaller than t;
8 Build π = τ ′1 . . . τ

′
t−1 τ

′
t+1 . . . τ

′
n where τ ′i = τi − 1 if τi > τt and τ ′i = τi otherwise; return

(π, t, j);

9 end
10 if τt = n and there exist some points forming the plough configuration then
11 Set j be equal to the index of point n− k − 2;
12 Build π = n− 1 τ ′1 . . . τ

′
j−1 τ

′
j+1 . . . τ

′
t−1 τ

′
t+1 . . . τ

′
n where τ ′i = τi − 1 if τi > n− k + 2 and

τ ′i = τi otherwise ;
13 return (π, t, j);

14 else
15 Build π = τ1 . . . τt−1 τt+1 . . . τn;
16 return (π, t, t);

17 end

18 else
19 Build π = τ2 . . . τn;
20 return (π, 1, 1);

21 end

then x − 1 is also on the left of x (since, by construction, x + 1 is on the left of x) and, by
construction, n is on the right of x. Then, since τ avoids 122+3, x− 1 must be a left-to-right
minimum and no occurrence of 122+3 can be generated removing it.

– t(τ) = n and there exist points forming the plough configuration; It is clear that since n−k−1
is a right-to-left maximum, removing point n− k − 2 no 122+3 occurrences are formed.

Observation 1 Let π be a permutation of AVn(122+3). The application of INSERTPOINT(π, i, j),
where i, j run over all admissible values, produces a set of permutations of length n+ 1 which can
be described by means of the following succession rule:

ΩT =

 (1, 0)

(r, s)→ (r + 1, s)(0, 1) . . . (0, r)(0, r + 1)2 . . . (0, r + s)s+1 .

Indeed, as pointed out in the description of INSERTPOINT, π = 1 has label (1, 0) and for a permu-
tation π with label (r, s), the admissible values of i, j are listed in table in Figure 1, where it is
also indicated the label of INSERTPOINT(π, i, j), and the notation (e, f)g means that there are g
permutations being produced with label (e, f):

We recall that ΩT is an object known in the literature under the same of succession rule. It
defines a generating tree, i.e. a labelled planar tree whose root has label (1, 0) and such that the
sons of a node with label (r, s) have labels according to ΩT . Due to our observation, every node
at level n of ΩT corresponds to a 122+3-avoiding permutation of n. Generating trees have wide
applications to problems concerned with the enumeration and the generation of combinatorial
objects [2,4,5,8].

Proposition 6. For any permutation τ ∈ AVn+1(122+3), INSERTPOINT ( REMOVEPOINT(τ)) = τ .
Conversely for any permutation π ∈ AVn+1(122+3) and admissible pair (i, j) for π, we have

REMOVEPOINT ( INSERTPOINT(π, i, j)) = (π, i, j).
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Admissible values Output label

i = j = 1 (r + 1, s)

i = j = 2 (0, 1)
...

...

i = j = r + 1 (0, r)

i = r + 2, r + 1 ≤ j ≤ r + 2 (0, r + 1)2

...
...

i = r + s+ 1, r + 1 ≤ j ≤ r + s+ 1 (0, r + s)s+1

Fig. 5. All the admissible values of i, j for a permutation π and the label corresponding to the
output of INSERTPOINT(π, i, j).

Proof. Let us start with the first point. The algorithm distinguishes two cases, depending whether
h = 0 and h > 0:

– h = 0:
• τt 6= n: REMOVEPOINT(τ) removes from τ the point in position t and normalizes the obtained

array. The output is a triple (π, i, j), where π is the normalized permutation, i = t and j is
given by the number of points on the left of τt and smaller than τt. Clearly the threshold
index of the resulting permutation is at least t so that (i, j) is an admissible pair for π and
INSERTPOINT correctly reconstruct τ using it.

• τt = n:
∗ if τ contains the plough configuration REMOVEPOINT(τ) removes from τ both points
τt = n and n− k − 2, then adds at the beginning the point n− 1 and normalizes the
obtained array. The output in this case is the triple (π, i, j), where π is the permutation
of length n− 1, i = t and j is the index of n− k− 2. Observe that π does not contain
the plough configuration anymore and starts with a sequence of double points so that
the last case of INSERTPOINT applies to reconstruct the plough configuration.

∗ otherwise, the algorithm simply removes the point τt = n and the output is (π, i, j),
where i = j = t and the permutation π has threshold index at least i; the inverse
operation is clearly given by case i = j of INSERTPOINT (with or without h = 0).

– h > 0; The output in this case is the triple (π, i, j), where π is the permutation obtained
removing the leftmost element, and i = j = 1. Clearly the inverse operation is to insert the
maximum at the leftmost position, as done by INSERTPOINT for i = j = 1.

The proof of the second assertion of the theorem follows a similar easy case analysis.

Recall here from [4,5,8] that the generating tree defined by the succession rule ΩT of Formula 2
is a labeled planar tree whose root has label (1, 0) and such that the sons of a node with label (h, s)
have labels according to ΩT . The previous proposition immediately yields the following theorem:

Theorem 1. Algorithm INSERTPOINT determines a generating tree for AV (122+3) that can be
described by succession rule ΩT . In particular, the nodes at level n of the generating tree of ΩT

are in one-to-one correspondence with 122+3-avoiding permutations of size n.

4 Generation of valley-marked Dyck paths

In this section we deal with the class of VM-Dyck paths. We are going to describe two algorithms
INSERTPEAK and REMOVEPEAK, whose composition results to be the identity, providing the exhaus-
tive generation of this family of objects. Moreover, assigning to each VM-Dyck path P a label
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Algorithm 3: Insertion of a peak in a VM-Dyck path.

Input : A VM-Dyck path P and two positive integers i and j.
Output: A VM-Dyck path T .

1 INSERTPEAK (P, i, j);
2 Write P = (U D 0)h Ukα according to (4);
3 if 1 ≤ i ≤ h+ k and j ≤ i then
4 if h = 0 then

5 Build the VM-Dyck path T = U iD j− 1Uk+1−i α;
6 return T ;

7 else
8 if j = i then
9 Let q = min{i, h+ 1};

10 Build the VM-Dyck path T = U iDq j− q (U D 0)h+1−qUk+q−i α;
11 return T ;

12 end
13 if h < j < i then

14 Build the VM-Dyck path T = U iDh+1 j− h− 1Uk+h+1−i α;
15 return T ;

16 else
17 return error;
18 end

19 end

20 else
21 return error;
22 end

(h, s) and considering all the admissible output of INSERTPEAK(P, i, j), for any i, j, we retrieve
the succession rule ΩT . In this section we use a formal representation of a VM-Dyck path P of
semi-length as a pair (P, v) where P is Dyck path of semi-length n (the underlying Dyck path of
P), m is the number of valleys of P , and v = (v1, . . . , vm) is an array whose ith entry indicates the
level where the ith valley of P is marked. We often use a compact representation of P, obtained by
replacing the occurrence of the ith factor DU in P (i.e., the ith valley of P ) by the factor D vi U .
For example the VM-Dyck path in Figure 1 (c) is represented as UUD 1UUUD 2UDD 0UDDD.

Let P be a VM-Dyck path. We represent P in a compact way using two indices h and k, as
follows:

P = (UD 0)hUkα (4)

where h ≥ 0 and k > 0 are chosen to be maximal. Observe that such a representation is not allowed
if the underlying Dyck path is a sequence of peaks, and in this case we write P = (UD 0)h UD,
and set k = 0.

Moreover, we introduce the parameter s = k − 1 if k 6= 0, or s = 0 otherwise.

Proposition 7. Let P be a VM-Dyck path of semi-length n with label (h, s). The application of

INSERTPEAK(P, i, j), where i, j run over all admissible values, produces a set of h + (s+1)(s+2)
2

VM-Dyck paths of semi-length n + 1. More precisely, the multiset of the labels of all VM-Dyck
paths produced from P is

(h+ 1, s)(0, 1) . . . (0, h)(0, h+ 1)2 . . . (0, h+ s)s+1 . (5)

Proof. It is immediate to see that the VM-Dyck path U D has label (1, 0). Let us consider a VM-
Dyck path P with indices h and k defined above and label (h, s), then we have to distinguish two
cases :

– h = 0; Consider the line y = i ≤ k, INSERTPEAK adds a peak to P at height i, which means
that the peak point lies on the line y = i. Then, a VM-Dyck path T is obtained by marking
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Algorithm 4: Removing a peak from a VM-Dyck path.

Input : A VM- Dyck path T .
Output: A VM- Dyck path P and two positive integers i and j.

1 REMOVEPEAK (T );

2 Write T = (U D 0)h Uk α such as h, k are maximal;
3 if h = 0 then

4 Write α = D`+1 aU β, with ` < k. Build the path P = (U D 0)` Uk−` β;
5 return (P, k, a+ `+ 1);

6 else

7 Build the path P = (U D 0)h−1 Uk α;
8 return (P, 1, 1);

9 end

the produced valley at level j − 1. If i = j = 1, we insert at the beginning of P a new UD
occurrence and we mark the valley originated at level y = 0. In this case, the output T has
label (1, s). Whereas, for any i > 1 and every 1 ≤ j ≤ i, we produce a new VM-path obtained
by inserting the peak UD at height i in a point of the first ascent of P and marking the
originated valley at level j − 1. In this case, the output T has label (0, i− 1).

– h > 0; we distinguish two cases:
• If i ≤ h then j must be equal to i and the path of T is obtained by replacing the prefix

(UD)i−1 of P with U iDi and by marking the originated valley at level 0. Then, if i = 1,
T has label (h+ 1, s), otherwise it has label (0, i− 1).

• If i > h, the path of T is obtained by deleting the prefix (UD)h of P, by adding a
Uh+1Dh+1 occurrence at level i, and by marking the originated valley at level j − h − 1.
Then for any i > h, and any j ≤ i, T has label (0, i− 1).

In Figure 6 is shown an example of the application of INSERTPEAK to a given VM-Dyck path, for
any admissible values i, j. By construction we have that:

Proposition 8. The output T of INSERTPEAK is a VM-Dyck path.

Our algorithm INSERTPEAK is given as Algorithm 3, where the two cases described above are
treated as one by the introduction of the value q which takes into account the minimum among i
and k + 1.

The inverse algorithm REMOVEPEAK is given as Algorithm 4. It decreases by one the semi-length
of a VM-Dyck path T by removing a peak and gives as output a triple (P, i, j), where i, j keep
track of the removed peak. The new path P obtained with REMOVEPOINT(T ) is clearly a VM-Dyck
path. The following statement, analogous to that of Proposition 6, is straightforward.

Proposition 9. For any VM-Dyck path P, we have

INSERTPEAK ( REMOVEPEAK(P)) = P.

Conversely for any VM-Dyck path P and admissible pair (i, j) for P, we have

REMOVEPEAK ( INSERTPEAK(P, i, j)) = (P, i, j).

These propositions prove that INSERTPEAK generates VM-Dyck paths and its generation can
be described by means of the generating tree ΩT .

5 A bijection between AV (122+3) and valley-marked Dyck paths

We recursively define a function ϕ which maps a permutation in AVn(122+3) onto a VM-Dyck
path of size n:



12

(1,2)

i=4, j=4i=4, j=3i=4, j=2

i=3, j=3i=3, j=2

i=2, j=2

i=1, j=1

(0,3)(0,3)(0,3)

(0,2)(0,2)

(0,1)

(2,2)

Fig. 6. All the VM-Dyck paths produced by the VM-Dyck path P on the left through the
application of INSERTPEAK(P, i, j). For each VM-Dyck path the corresponding label in ΩT is
reported.

i=j=3

415234123123121

(1,0) (0,1) (0,1) (1,1)
(0,2)

i=j=2 i=2, j=1 i=j=1

Fig. 7. The growth of a VM-Dyck path starting from the path UD and the corresponding 122+3-
avoiding permutations via the bijection ϕ. At each step the values i, j and the label of the object
in ΩT is reported.ϕ(1) = UD if n = 1

ϕ(INSERTPOINT(π, i, j)) = INSERTPEAK(ϕ(π), i, j) if n > 1.

The fact that ϕ is a bijection follows from the fact that in the generating tree of ΩT each 122+3-
avoiding permutation of size n (resp. VM-Dyck path of semi-length n) is uniquely identified by
a path from the root to a node at level n. Thus ϕ maps a permutation in AVn(122+3) onto the
VM-Dyck path which corresponds to the same path in ΩT (see Figure 7).

When restricting to 123-avoiding permutations, we have the following remarkable result.

Corollary 1. The restriction of ϕ to 123-avoiding permutations determines a bijection between
123-avoiding permutations of length n and Dyck paths of semi-length n which is precisely Krat-
tenthaler’s bijection (explained in Section 1)

Proof. On the one hand, Dyck paths can be naturally represented as VM-Dyck paths where every
valley is marked at the maximal level. By construction, every Dyck path of semi-length n + 1 is
obtained from a Dyck path P of semi-length n through the application of INSERTPEAK(P, i, i),
for any admissible i. On the other hand, any 123-avoiding permutation π of length n is a 122+3-
avoiding permutation whose threshold is the point n− h(π) and any permutation in AVn+1(123)
is obtained by inserting n + 1 in any point on the left of the threshold of π, namely by applying
INSERTPOINT(π, i, i), for any admissible i. It is easy to verify that restricting the previous bijection
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to these two subclasses of objects give us the same one-to-one correspondence as Krattenthaler’s
bijection. ut

The succession rule describing the growth of 123-avoiding permutations presented in Corol-
lary 1, denoted by ΩR, is a neat restriction of ΩT :

ΩR =

 (1, 0)

(h, s)→ (h+ 1, s)(0, 1) . . . (0, h+ s) .

Finally, adapting the general strategy of [2], the fact that we have a generating tree for
AV (122+3) with finitely many labels (two labels in our case) and such that each node produces at
least two valid children implies an amortized constant time generation algorithm (CAT) for codes
of permutations of AVn(122+3).
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