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Abstract. Assuming t-round statistically hiding commitments in the stand-alone
model, we build a (t+ 2)-round statistically binding commitment secure against
selective opening attacks under parallel composition. In particular, assuming collision-
resistant hash functions, we build such commitments in 4 rounds.
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1 Introduction

Selective opening attacks against commitment schemes occur when the commitment
scheme is repeated in parallel and an adversary can choose depending on the commit-
phase transcript to see the values and openings to some subset of the committed bits.
Commitments are secure under such attacks if one can prove that the remaining, un-
opened commitments stay secret. Related notions such as chameleon blobs, equivo-
cal commitments, and trapdoor commitments have been widely studied in the litera-
ture [BCC88,BCY89,Fis01,Bea96,DCIO98,DCO99]. The notion of selective opening
security that we study here was defined by [DNRS03]. One of the primary motivations
of studying such commitment schemes is their application to parallel composition of
zero knowledge: when used as the commitment scheme in, say, the zero knowledge
protocol of [GMW86], that protocol remains zero knowledge under parallel compo-
sition (which is not known to be the case when using a commitment scheme without
selective opening attack security).

[BHY09, Xia11] studied the optimal round complexity for commitments secure
against selective opening attacks. [Xia11] claimed round-optimal constructions under
parallel composition, but it was subsequently shown in [ORSV11] that there were flaws
in the argument of [Xia11]. In particular, [ORSV11] gave a 3-round construction in the
case of computationally binding (and statistically hiding) commitments secure against
selective opening attacks. The (corrected) lower bound of [Xia11] states that this is
optimal (for black-box simulation).

[ORSV11] leave open the question of round-optimal black-box constructions of
statistically binding commitments secure against selective opening attacks. The statis-
tically binding commitment of [Xia11] is 5 rounds, but in light of the flaw discovered
by [ORSV11], the lower bound is 4 rounds.
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Our contribution: in this paper we construct a (t+2)-round scheme that is secure under
parallel composition assuming the existence of t-round stand-alone statistical hiding
commitments (SHC). In particular, 2-round SHC can be built from collision-resistant
hash functions [DPP93, DPP98, HM96], which gives an optimal 4-round construction
of statistically binding selective-opening attack secure commitments.

Our analysis introduces a novel simulation strategy that generalizes the Goldreich-
Kahan simulation strategy for constant-round zero knowledge [GK90]. At a high level,
our strategy differs from the Goldreich-Kahan simulation strategy because it allows the
simulator to continue even if the receiver aborts individual sessions, and it guarantees
that the simulator’s output distribution will be indistinguishable from the distribution
in an interaction with the honest sender even when taking into account the aborted
sessions. In contrast, the Goldreich-Kahan simulation strategy completely aborts if any
individual session is aborted.

2 Preliminaries

We adopt the following standard notation: for a distributionD and a variable x, x←R D
denotes that x is sampled according to D. For distributions D0,D1, we let ∆(D0,D1)
denote their statistical distance. We say that a function ε(n) is negligible if ε(n) ≤
n−ω(1). For a bit b, b denotes the complement of b. We frequently use underlined vari-
ables to represent vectors, e.g. b ∈ {0, 1}k and bi ∈ {0, 1} for every i ∈ [k].

A commitment protocol is given by a pair of interactive algorithms Send and Rec.
Both algorithms take an input indicating the phase (either com or decom) and a security
parameter 1n, which we often omit. Send takes a one-bit input and both algorithms may
be randomized.

Commit phase: Generate a transcript τ ←R 〈Rec(com),Send(com, b)〉. Send also gen-
erates an internal state variable σ.

Decommit phase: Generate (v, b′) ←R 〈Rec(decom, τ),Send(decom, b, σ)〉, where v
is the receiver’s view (including the entire transcript and its random coins) and
b′ ∈ {0, 1,⊥}, where ⊥ denotes that the receiver rejects the sender’s opening.

We will often omit the phase variable (i.e. either com, decom) and the state variable σ
when it is convenient and their values are implicitly defined by the context. In this paper
the round complexity refers only to the number of rounds in the commit phase, and we
work only with commitments with non-interactive openings (i.e. the opening consists
of a single message from sender to receiver).

We will study commitments under parallel composition, i.e. the commitment is ex-
ecuted many times simultaneously and, for each i, the i’th step of the commitment is
finished in all sessions before the i+ 1’th step begins in any session.

Definition 1 (Binding). Define Advbind to be the supremum over all possible strategies
Send∗ (computationally unbounded) that the probability of the following experiment
succeeds:

1. Generate τ ←R 〈Rec(com),Send∗(com)〉 along with sender state σ.



2. Generate (v0, b0)←R 〈Rec(decom, τ),Send∗(decom, 0, σ)〉 and
(v1, b1)←R 〈Rec(decom, τ),Send∗(decom, 1, σ)〉.

3. The experiment is a success if b0 = 0 and b1 = 1.

We say that (Rec,Send) is statistically binding if Advbind is negligible. We say it is
perfectly binding if Advbind = 0. We say it is computationally binding if the Advbind is
negligible when the supremum is taken over polynomial-size Send∗.

The binding property is preserved under parallel composition.

Definition 2 (Statistically hiding (stand-alone)). A commitment Send,Rec is (stand-
alone) statistically hiding (i.e. it is a SHC) if for all (possibly unbounded) Rec∗, it holds
that ∆(D0,D1) is negligible, where b ∈ {0, 1} and Db denotes the distribution of
τ ←R 〈Rec∗(com),Send(com, b)〉 along with the private coins of Rec∗.

Definition 3 (Hiding under selective opening attacks). A commitment is secure against
selective opening attacks with black-box simulation if for all k = poly(n), there is an
efficient simulator Simk such that the following holds. Define Advhide to be the supre-
mum over all polynomial-size cheating receiver strategies Rec∗, all polynomial-size
distinguisher circuits D, all inputs b, of the difference between the probability that D
outputs 1 in the following two experiments (in the following, I ⊆ [k] and bI denotes the
vector containing bi for i ∈ I , and likewise for τI , sigmaI ):

1. Let Send denote k parallel instances of the sender algorithm, Send1, . . . ,Sendk.
(a) Generate τi ←R 〈Rec∗(com),Send(com, bi)〉 along with sender state σi for all

i ∈ [k].
(b) Rec∗ outputs a set I ⊆ [k].
(c) Generate (v, bI)←R 〈Rec∗(decom, τI),Send(decom, bI , σI)〉.
(d) Output D(v, bI).

2. Simk samples random coins for Rec∗ and fixes them; in the following Simk queries
Rec∗ for this fixed choice of coins.
(a) Generate I ←R Sim

Rec∗

k (com).
(b) Generate v ←R Sim

Rec∗

k (decom, I, bI).
(c) Output D(v, bI).

Security against selective opening attacks holds if Advhide is negligible.

This definition is stronger than necessary for many applications (where security is
only needed with respect to certain message distributions and certain families of valid
subsets to be opened). However since we only study constructions in this paper, working
with this definition is stronger than working with weaker definitions.

3 Construction

Let SendSH,RecSH be the sender and receiver algorithms for a t-round statistically hid-
ing bit commitment. A construction for t = 2 exists based on collision-resistant hash
functions [DPP93, DPP98, HM96]. Let SendNI,RecNI be the sender and receiver al-
gorithms for a non-interactive perfectly binding commitment (e.g. based on one-way
permutations). Our commitment is given in Algorithm 1. The following two lemmas
prove the security of the commitment.



Send’s input: b ∈ {0, 1}.
Commitment phase

1. Rec samples β ←R {0, 1}n and commits to each bit in parallel using (SendSH,RecSH)
(namely, Rec plays the role of SendSH and Send plays the role of RecSH). Let ci denote
the transcript of the commitment to βi. If any ci is not well-formed, the protocol aborts.

2. Define M(b, η) =

(
b η ⊕ b
b η ⊕ b

)
For each i = 1, . . . , n in parallel, Send samples ηi ←R {0, 1}. In parallel, Send uses
SendNI to generate a commitment to all bits of M(b, ηi). Call this commitment di.
Send sends di to Rec. If any di is not well-formed, Rec aborts.

3. For each i ∈ [n] in parallel, Rec generates an opening φi to ci and sends it to Send.
Send calculates βi = RecSH(decom, ci, φi). If any βi = ⊥, Send aborts.

Opening phase

1. Send sends b to Rec, and for each i ∈ [n], Send opens the bits in di that correspond to
the row in M(b, ηi) that equals (b, βi ⊕ b).

2. For each i = 1, . . . , n, Rec computes the two bits in the row opened by Send, call these
(x0i , x

1
i ). Rec checks that x0i = b and x1i = b⊕ βi. If the check fails, then Rec rejects

and outputs ⊥, otherwise Rec outputs b.

Algorithm 1 4-round statistically binding and selective opening attack secure commitment



Lemma 1. Algorithm 1 is statistically binding.

Lemma 2. The simulator given in Algorithm 2 proves that Algorithm 1 is secure against
selective opening attacks.

Proof (of Lemma 1). Fix any Send∗ a (possibly cheating and computationally un-
bounded) sender strategy. Let (c, d, φ)←R 〈Rec(β),Send∗〉 be the commit-phase tran-
script: c denotes the n parallel SHC to β sent by Rec, d denotes the n non-interactive
commitments to matrices m1, . . . ,mn sent by Send∗ in response to c, and φ denotes
Rec’s opening of c. Note that given d, m = (m1, . . . ,mn) are well-defined because the
non-interactive commitment is perfectly binding.

We say that a matrix mi matches a bit βi if it holds that the bits in the first column
are different and the XOR of the two bits in each row equals βi. Formally, this holds if
m0,0
i 6= m1,0

i and also mj,0
i = mj,1

i ⊕ βi for all j ∈ {0, 1}. We say that m matches β if
for all i ∈ [n] it holds that mi matches βi.

Claim. Let (c, d, φ) denote a valid commit-phase transcript. Let β be the opening of c
using φ, and let m be the opening of d. Given this commit-phase transcript, Send∗ can
successfully break binding iff m matches β.

Proof. Suppose m matches β, then for each i ∈ [n] there exists a row in mi that equals
(0, βi) and a row that equals (1, βi). Therefore, it is possible for Send∗ to generate an
opening to the row that equals (b, b⊕ βi) for all b ∈ {0, 1}.

Suppose that Send∗ can open to both values of b ∈ {0, 1}. This means it can open
each di to (b, b⊕ βi) for both b ∈ {0, 1}. Since SendNI is perfectly binding, therefore it
must be that m matches β.

A standard argument says that soundness holds because the initial commitment to
β by Rec does not contain any information about β, therefore it is impossible for Send∗

to commit to m that will match β.
For the sake of completeness, we give a formal proof: by the statistical hiding

property of the initial commitment, we have that for any β, it holds that (c, d) ←R

〈Rec(β),Send∗〉 and (c, d) ←R 〈Rec(0n),Send∗〉 are n−ω(1)-close in statistical dis-
tance. Therefore we may write:

Advbind ≤ Pr
β←R{0,1}n

(c,d,φ)←R〈Rec(β),Send∗〉

[d opens to m matching β]

=
∑

β∈{0,1}n
2−n Pr

(c,d,φ)←R〈Rec(β),Send∗〉
[d opens to m matching β]

≤ 2−n
∑

β∈{0,1}n
Pr

(c,d,φ)←R〈Rec(0n),Send∗〉
[d opens to m matching β] + n−ω(1)

≤ 2−n + n−ω(1)

where the last inequality holds because if m matches one β, it cannot match any β′ 6=
β, and so the sum of the probabilities is bounded by 1. This means that Send∗ has a
negligible probability of breaking binding.



4 Analyzing the simulator

Proof (of Lemma 2). We use “initial commitment” to denote the SHC used by the re-
ceiver in the first step of the protocol. We use “final commitment” to denote the overall
selective-opening attack secure commitment we are trying to simulate. As is typical
with black-box simulation strategies, this simulator tries to rewind Rec∗ to discover
the values in the initial commitment, and then use those values to construct a final
commitment that can be opened to both 0 and 1. One subtlety where care is need is
the possibility of individual sessions aborting. We observe that, for each session j that
successfully completes the initial commitment, the simulator needs to successfully dis-
cover the committed βj just once (the receiver cannot change it, otherwise this would
contradict the binding property of the initial commitment). Once βj is discovered, the
simulator can always successfully open the final commitment to both 0 and 1 in session
j.

The idea is to successively increase the number of sessions where the simulator
knows βj , so that eventually Rec∗ will be non-aborting only in sessions where the
simulator can open to any value and therefore the simulation can be successfully ter-
minated. Care must be taken that one does not bias the distribution of non-aborting
sessions in the final transcript. The intuition is the following strategy: suppose at some
point we know that how to reveal arbitrary values for some set of sessions X . The next
time the simulator queries the receiver, if the set S of non-aborting sessions returned
satisfies S ⊆ X then the simulator can successfully open any subset of S that the re-
ceiver requests and so we can terminate the simulation. Otherwise, S 6⊆ X and so we
have increased the number of sessions where we know βj , and so in future samples we
have a better chance of being able to open all the non-aborting sessions to both 0 and
1. However, in order not to bias the distribution of opened sessions, in future iterations,
if the simulator receives a response from the receiver whose non-aborting sessions are
contained in X , we ignore it and resample. The actual simulator follows this intuition,
although there are details about how exactly to query the receiver that need to be taken
care of.

As in the case of constant-round zero knowledge, one point we must be careful
about is that the simulator must run in expected polynomial time. This is done by using
the Goldreich-Kahan strategy of estimating the success probability of queries, and then
setting a timeout based on this estimate. In the case of Goldreich-Kahan “success”
means obtaining a response without aborting sessions, while in our case success means
that the set of non-aborting sessions lies inside X but not inside Y , where Y ( X are
subsets that evolve during the course of simulation.

4.1 General observations.

The simulator is given in Algorithm 2. In the following we omit k from the notation
and write simply Sim. We can divide the simulator algorithm into two parts: the initial
commitment where the receiver commits to some βj (consisting of all the steps up to
Step 3), and the remainder. We will frequently analyze the simulator for a fixed value
of Rec∗’s random coins and a fixed initial commitment transcript, since this part is
executed exactly once and is distributed identically to the honest interaction.



Given oracle access to a cheating k-fold receiver Rec∗:

1. Initialize X,Y = ∅. Initialize variables β1, . . . , βk to empty. Initialize a counter t to
0 and a timeout T to 0.

2. Sample random coins for Rec∗ and fix them. Sample coins for the honest sender and
execute the initial commitment with Rec∗. Write Rec∗’s random coins and the initial
commitment phase transcript to the output.

3. Let Σ ⊆ [k] denote the set of sessions in which Rec∗ does not abort in the initial
commitment. In the following, only continue interaction in Σ.

4. In the following, if Rec∗ ever outputs an invalid opening of a commitment in session
j, the simulator interprets this as the receiver aborting in session j. The simulator also
checks the values of all the valid openings, and if Rec∗ ever opens the same commit-
ment to two distinct values then the simulator outputs “binding broken” and halts.

5. Define F (γ, β) =

(
γ β ⊕ γ
γ β ⊕ γ

)
.

6. First loop: Repeat the following:
(a) Dummy commitments: For each j ∈ Σ, i ∈ [n], sample γj

i ←R {0, 1}, νji ←R

{0, 1} and generate commitments to F (γj
i , ν

j
i ). Call these commitments dj =

(dj1, . . . , d
j
n). Send dj to Rec∗.

(b) Read Rec∗’s response, call this s. Let S ⊆ Σ be the set of non-aborting sessions
in s. Do the following:

i. If S = X = Y = ∅ (this can only occur in the first iteration), write the dj

and s to the output and halt.
ii. If S ⊆ Y , continue the loop.

iii. If S 6⊆ Y and S ⊆ X then break the loop.
iv. If S 6⊆ X then set Y ← X , X ← X ∪ S, and for all j ∈ S \X , set βj to be

the value that was opened by Rec∗. Continue the loop.
7. Calculate timeout: Repeat the following trial until (nk)2 successes occur: for each
j ∈ Σ, generate dj by the method in Step 6a, and let S′ denote the set of sessions in
Rec∗’s response that are not aborted; the trial is a success if S′ 6⊆ Y and S′ ⊆ X .
Let ` denote the number of repetitions that were used to obtain (nk)2 successes. Set
T = min( `

nk
, nk2nk) and set t = 0.

8. Second loop: Repeat the following while t ≤ T
(a) For j ∈ Σ, construct and send dj to the receiver, defined as:

i. For each j ∈ Σ \X , let dj be generated by the method in Step 6a.
ii. For j ∈ X and for each i ∈ [n], sample γj

i ←R {0, 1} and construct dji to be
a commitment to F (γj

i , β
j
i ).

(b) Let s be Rec∗’s response and S the set of non-aborted sessions in s.
i. If S ⊆ Y or S 6⊆ X then increment t and continue the loop.

ii. Otherwise, it must be that S 6⊆ Y and S ⊆ X . Write all the dj and s to the
output. Complete the simulation as follows:
A. Ask Rec∗ for a set I to be opened. If Rec∗ aborts, then the simulator

halts. Otherwise, Rec∗ picks a subset I ∈ I, I ⊆ S to be revealed and
the simulator asks for the values {bj}j∈I . Write I to the output.

B. For each j ∈ I , each i ∈ [n], the simulator outputs bj and an opening to
the row in F (γj

i , β
j
i ) that equals (bj , βj

i ⊕ bj).
C. Halt.

9. We exceeded the timeout, so output “timeout”.

Algorithm 2 Simulator Simk for Algorithm 1



Input: black-box access to a distribution D over [k].

1. Initialize X = Y = ∅.
2. Repeat the following:

(a) Sample S ←R D. If S = X = Y = ∅, output S and halt.
(b) If S ⊆ Y , continue the loop.
(c) If S 6⊆ Y and S ⊆ X , output S.
(d) If S 6⊆ X , then we have seen some new elements (S \ X). Set Y ← X and

X ← X ∪ S and continue the loop.

Algorithm 3 Abstraction of simulator

Fix any choice of Rec∗’s random coins and the initial commitment transcript, which
in turn fixes some Σ ⊆ [k] of non-aborting sessions so far. This defines a distribution
Ddummy as follows: construct dummy commitments dj for j ∈ Σ as in Step 6a and send
these to Rec∗, and let s denote the receiver’s response. Let S = S(s) denote the set of
sessions where s contains a non-aborting response (i.e. in those sessions, Rec∗ produces
a valid opening of the initial commitment). Let Ddummy denote the distribution over S
thus sampled.

For X ⊆ Σ, let qX denote

qX = Pr
S←RDdummy

[S 6⊆ X] (4.1)

Observe that q∅ is the probability that Rec∗’s response contains at least one non-
aborting session.

For Y ( X ⊆ Σ, define:

qX|Y = Pr
S←RDdummy

[S 6⊆ X | S 6⊆ Y ] (4.2)

Remark 1. For any Y ( X , it holds that qX = qX|Y · qY , and so qX = qX|∅ · q∅.

An abstraction of the simulator. The simulator basically solves the following prob-
lem: we are given black-box access to a distribution D over subsets of [k]. Each time
we obtain a sample S ←R D, we say that we have “seen” all the elements j ∈ S. The
goal is to output some S′ ⊆ [k] such that S′ is distributed identically to D, and each
element of S′ was already seen during the execution of the algorithm. (In our simulator,
having seen some j ∈ S means we have the opening for βj and so can equivocate in the
j’th session. We also have to do some additional work (Steps 7 and 8 in Algorithm 2)
because we want to output a complete transcript, not just S.)

In the setting of this abstract problem, the strategy of our simulator is given in
Algorithm 3.

The intuition why Algorithm 3 (and hence our simulator) produces a set that is
distributed according to D is the following claim: for any V ( U ⊆ Σ, if we run



Algorithm 3 with X = U, Y = V (rather than X = Y = ∅), then it outputs a random
S ←R D conditioned on S 6⊆ V . The reasoning is as follows.

– With probability 1 − qU |V we get a sample distributed according to S ←R D con-
ditioned on S ⊆ U and S 6⊆ V , and this is our output.

– With probability qU |V we get S 6⊆ U and so we see some new elements, and we
update X,Y . In this case we can use induction to show that, since the new value
Y is U , the final output will be distributed according to S ←R D conditioned on
S 6⊆ U .

Combining the two, the overall distribution is correct. (This intuition is formalized later
in Lemma 10.)

In the following we will analyze the simulator directly (i.e. with all the details per-
taining to outputting a transcript and not just the set of non-aborting sessions), but it
helps to keep this abstraction in mind for intuition.

4.2 Running time.

We first show that the expected running time of the simulator in Algorithm 2 is poly-
nomial. Clearly the steps before Step 6 are efficient, so fix any choice of random coins
for Rec∗ and any initial commitment transcript and let Σ be the set of non-aborting
sessions so far. We count the number of steps starting at Step 6 and afterwards.

We will count the number of iterations in each of the loops, and multiply this by
the number of steps each iteration takes. Therefore, let citeration denote the maximum
amount of time it takes in one iteration of any of the loops: it upper bounds the time
to construct dj , send them to Rec∗, and calculate S the set of sessions where Rec∗’s
responses are non-aborting and do not break binding, and compare S to Y and X , and
possibly updating Y,X . It holds that citeration = poly(n, k).

Let Σ∗ denote ∪S⊆supp(Ddummy)S. Suppose at some point in its execution, the sim-
ulator sets X = U and Y = V for some V ( U ⊆ Σ∗. Let cU,V denote the total
expected number of steps the simulator takes after having set X = U, Y = V .

Lemma 3. For all V ( U ⊆ Σ∗, let v = |V |, then it holds that cU,V ≤ (k−v)((nk)2+
4nk)citeration/qV .

Proof. We prove the lemma by induction.

Base case. Consider the base case where U = Σ∗ (and V ( Σ∗ is arbitrary). The
simulator repeatedly samples S until it obtains S 6⊆ V . It takes 1/qV executions of the
loop at Step 6 on average to sample S 6⊆ V . Each such execution takes citeration steps,
so this part contributes a total of citeration/qV on average.

Since U = Σ∗, therefore for any S 6⊆ V that is sampled, S ⊆ Σ∗ and so the
simulator goes to Step 7. We count the number of iterations needed to calculate the
timeout: a success in each trial means sampling S′ 6⊆ V , and so on average it takes
1/qV samples to get one success, and (nk)2/qV to get (nk)2 successes. Each sample
takes citeration steps, so overall we execute on average (nk)2citeration/qV steps.

Next, the simulator goes to the loop at Step 8. Here it executes at most T iterations.
There are two cases: either T ≤ 2nk/qV or T > 2nk/qV . The number of iterations



in the first case is at most 2nk/qV . By a standard Chernoff bound, the probability that
the second case occurs is at most 2−nk, and in this case we can apply the bound T ≤
nk2nk. Therefore the expected contribution of this loop is at most 2nkciteration/qV +
citerationnk ≤ (4nk − 1)citeration/qV .

Summing up, we get that cΣ∗,V ≤ ((nk)2 + 4nk)citeration/qV ≤ (k − v)((nk)2 +
4nk)citeration/qV .

Inductive case. Suppose U 6= Σ∗. Suppose the lemma holds for all U ′, V ′ where
|U ′| > |U |.

It takes on average 1/qV samples to obtain S 6⊆ V . Each sample takes citeration so
this contributes citeration/qV .

For the set S 6⊆ V that is sampled, there are two cases:

1. With conditional probability 1 − qU |V , we obtain S ⊆ U . Let us write pU,V =
1 − qU |V . In this case we calculate the timeout (Step 7). Calculating the timeout
takes on average 1/(qV pU,V ) samples to obtain a success, and each sample requires
citeration steps, so overall this contributes on average pU,V · (nk)2 · citeration/(qV ·
pU,V ) = (nk)2citeration/qV steps.
Next the simulator enters the loop at Step 8. This loop runs at most T times.
As with the base case, there are two cases: either T ≤ 2nk/(qV pU,V ) or T >
2nk/(qV pU,V ). As before, we may argue that in the first case T contributes at
most 2nk/(qV pU,V ) and the expected contribution of the second case is at most
nk, so overall the contribution is pU,V · citeration(2nk/(qV pU,V ) + nk) ≤ (4nk −
1)citeration/qV .

2. The other case is when S 6⊆ U . Such an S is sampled with conditional probability
qU |V . In this case we update the variables so that X = U ∪ S and Y = U , as well
as updating the values of the βj . From this point on, the remaining number of steps
spent in the loop is given by cU∪S,U . Since S 6⊆ U , therefore |U ∪ S| > |U | and
|U | ≥ v + 1, and we can apply the inductive hypothesis. That is, for any such S,
the inductive hypothesis states that

cU∪S,U ≤ (k − v − 1)((nk)2 + 4nk)citeration/qU

Therefore, by applying Remark 1, this contributes qU |V · (k − v − 1)((nk)2 +
4nk)citeration/qU = (k − v − 1)((nk)2 + 4nk)citeration/qV .

Taking the sum of all the terms we have cU,V ≤ (k − v)((nk)2 + 4nk)/qV .

Finally, we observe that the expected running time C of the simulator is bounded
by:

C = poly(n, k) + q∅ · ES [cS,∅ | S 6= ∅]

≤ poly(n, k) + q∅ · ES [k((nk)2 + 4nk)citeration/q∅ | S 6= ∅]

≤ poly(n, k)

The first poly(n, k) comes from the steps before Step 6 and the contribution from when
the very first iteration of the first loop samples S = ∅. The second term is the contribu-
tion from when S 6= ∅.



4.3 Indistinguishability

Next we prove that the output of the simulator is computationally indistinguishable
from the honest interaction. To do this we use a sequence of hybrid simulators, which
unlike the simulator know the input b during the entire simulation.

HSim(b)Rec
∗

which is identical to Sim except it knows the input b beforehand and
it has the following modifications:

1. In Step 6a, Step 7, and Step 8a, to construct dj for j ∈ Σ do the following: for each
i ∈ [n], sample ηji ←R {0, 1} and construct dji to be a commitment to M(bj , η

j
i )

(recall that M was defined in Algorithm 1).
2. In Step 8(b)iiB, for each j ∈ Σ, open the row in dji that equals (bj , β

j
i ⊕ bj).

Namely, it constructs all the commitments honestly, which it can do because it knows
b. Observe that the simulator can still successfully open its final commitments because
they are generated honestly (without relying on learning the βj sent in the initial com-
mitment by Rec∗).

We define a second hybrid BSim that is identical to HSim except it does not check
whether or not the openings given by Rec∗ are consistent (i.e. whether binding is ever
broken). However BSim still calculates and enforces the timeout.

We define a third hybrid TSim that is identical to BSim except it does not check the
timeout condition. (Namely, TSim is like HSim except it enforces neither the timeout
nor the binding broken conditions.)

Lemma 4. HSimRec∗(b) and BSimRec∗(b) both run in expected polynomial time.

Proof. The proof of the expected polynomial running time of Sim applies to each of
these simulators as well: it only used the fact that with high probability the timeout cal-
culation is accurate, and then afterwards bounds the running time by using the timeout.

Namely, one can apply the entire proof with the sole modification being the defini-
tion of the qX , qX|Y (Equation 4.1, Equation 4.2), which, instead of using Ddummy, are
now defined with respect to the following distribution Db:

Definition 4. Fix a transcript of the initial commitment. Let S ←R Db be defined as
follows: construct dj commitments to bj for j ∈ Σ as an honest sender would and send
them to Rec∗. Let S be the sessions in Rec∗’s response that are non-aborting.

Since the actual steps in each iteration of the loops at Step 6a, Step 7, and Step 8 (which
are the only differences between Sim and HSim) never really entered into the proof, one
can apply the rest of the proof for Sim to HSim.

Since the proof never used the fact that Sim sometimes outputs “binding broken”,
and since outputting “binding broken” can only reduce the running time, this same
argument also extends to BSim.

Let (SimRec∗ | b) denote the distribution of the output of the simulator, where the
“conditioned on b” notation emphasizes the fact that the simulator does not see b until
it requests some subset I to be opened, and even then it only sees bI . The follow-
ing four lemmas show that, by using these hybrids, it holds that (SimRec∗ | b) and
〈Send,Rec∗〉(b) are computationally indistinguishable.



Lemma 5. For all sufficiently large n, k and all b ∈ {0, 1}k, the two distributions
(SimRec∗ | b) and HSimRec∗(b) are computationally indistinguishable.

Lemma 6. For all sufficiently large n, k and all b ∈ {0, 1}k, the two distributions
HSimRec∗(b) and BSimRec∗(b) have negligible statistical distance.

Lemma 7. For all n, k and all b ∈ {0, 1}k, the two distributions BSimRec∗(b) and
TSimRec∗(b) have negligible statistical distance.

Lemma 8. For all n, k and all b ∈ {0, 1}k, the two distributions TSimRec∗(b) and
〈Send,Rec∗〉(b) are identical.

We now turn to proving these lemmas.

Proof (of Lemma 5, Sim and HSim are computationally indistinguishable.). Suppose
there exists an efficient distinguisher D, a polynomial P (n) and infinitely many n, k =

poly(n), b ∈ {0, 1}k such that D distinguishes (SimRec∗ | b) from HSimRec∗(b) with
advantage 1/P (n). We build a distinguisher that breaks hiding for (SendNI,RecNI).

Let C denote the maximum of the expected running times of HSimRec∗(b) and
(SimRec∗ | b) and the running time of the distinguisher D. Construct the following
algorithm E, which is supposed to distinguish oracle O1 from O2 taking input b ∈
{0, 1}, β ∈ {0, 1} and behaving as follows:

1. O1(b, β) outputs a commitment using SendNI to (b, β ⊕ b).
2. O2(b, β) outputs a commitment using SendNI to (b, β ⊕ b).

As advice E receives an input (n, k, b) where D achieves advantage 1/P (n).
E executes SimRec∗ (i.e. Algorithm 2) except for the following modifications. For

each j ∈ X ,

1. In Step 6a and Step 7, for each j ∈ Σ, i ∈ [n], construct dji as follows: E sam-
ples νji ←R {0, 1} and calculates by itself commitments under SendNI to the bits
(bj , ν

j
i ⊕ bj), call these dji,0. It calls O(bj , νji ) to get a commitment to two more

bits, call these dji,1. E creates dji by setting with probability 1/2 the commitments
dji,0 as the top row and dji,1 as the bottom row, and with probability 1/2 the other
way around.

2. In Step 8a, for each j ∈ Σ, i ∈ [n], generate dji as follows: E calculates by itself
commitments under SendNI to the bits (bj , β

j
i⊕bj), call these dji,0. It callsO(bj , βji )

to get a commitment to two more bits, call these dji,1. E creates dji by setting with
probability 1/2 the commitments dji,0 as the top row and dji,1 as the bottom row,
and with probability 1/2 the other way around.

3. In Step 8(b)iiB, opens the row in dji where it inserted dji,0.

Finally, E applies the distinguisher D to the output transcript and outputs the same
thing as D. Let EO(b) denote E run with oracle O and input b.

Claim. Pr[EO2(b) = 1] = Pr[D(SimRec∗ | b) = 1].



Proof. The only place where E differs from Sim is in how it constructs dj .
Let us look at Step 6a, the case of the other steps is identical (for Step 8a, replace νji

by βji ). For each j ∈ X, i ∈ [n], observe that dji constructed according to E using O2

gives a commitment to a matrix where one randomly chosen row equals (bj , ν
j
i ⊕ bj)

and the other row equals (bj , ν
j
i ⊕bj). This is the same as a commitment to F (γ, νji ) for

γ ←R {0, 1}, which is how Sim constructs dji . Since the openings to the non-interactive
commitments are deterministic given fixed dji , this means that the distribution of output
of EO2(b) is identical to the distribution of (SimRec∗ | b).

Claim. Pr[EO1(b) = 1] = Pr[D(HSimRec∗(b)) = 1]

Proof. Again it suffices to look only at the loop at Step 6a. For each j ∈ X, i ∈ [n],
observe that dji constructed according to E using O1 gives a commitment to a matrix
where one randomly chosen row equals (bj , ν

j
i ⊕ bj) and the other row equals (bj , ν

j
i ⊕

bj). This is the same as a commitment toM(bj , η) for η ←R {0, 1}, which is how HSim

constructs dji . Since the opening to the non-interactive commitments are deterministic
given fixed dji , this means that the distribution of output of EO1(b) is identical to the
distribution of HSimRec∗(b).

These two claims imply that E(·)(b) distinguishes between O1 and O2 with advan-
tage 1/P (n). Furthermore, the expected running time of E is bounded by 2C. Let us
truncate its running time to 6P (n)C, then the distinguishing advantage remains at least
1/(3P (n)). Furthermore, the fact that HSim and Sim are expected polynomial time
means that 6P (n)C is polynomial. By a standard hybrid argument, this can be trans-
formed into an efficient distinguisher for a single call toO1 vsO2. By another standard
argument, this can be transformed into an efficient distinguisher breaking the hiding
property of the commitment.

Proof (of Lemma 6, HSim and BSim are statistically close.). By definition, HSim and
BSim are identical except in the case that HSim outputs “binding broken”. This can
only happen with negligible probability: otherwise using a standard argument, e.g.
given in Goldreich-Kahan, if C bounds the expected running time of HSimRec∗(b) and
HSimRec∗(b) outputs “binding broken” with non-negligible 1/P (n), then by truncating
the execution of HSim at 2P (n)C we get an algorithm that outputs “binding broken”
with non-negligible probability 1

2P (n) . By Lemma 4 C = poly(n, k) and so this algo-
rithm is efficient. This can then be used to break the binding of the commitment used
by the receiver, which contradicts the computational binding property of the commit-
ment.

Proof (of Lemma 7, BSim and TSim are statistically close.).
By definition, BSim and TSim are identical except in the case that BSim times out.

We calculate this probability. For the following, fix any choice of b, Rec∗’s random
coins, and initial commitment from Rec∗.

Let BU,V denote the event that BSim breaks from the first loop with X = U, Y =
V . Since a timeout can only occur when BU,V occurs with U 6= ∅, we observe that:

Pr
BSim

[BSim times out] =
∑

V(U⊆Σ
Pr
BSim

[BSim times out ∧BU,V ] (4.3)



Since there are less than 22k choices for U, V , it suffices to show that each term of the
summation is bounded by 2−Ω(nk). To do this, we relate Pr[BU,V ] to the following
quantity:

δU,V = Pr
S←RDb

[S ⊆ U ∧ S 6⊆ V ] (4.4)

where Db is as defined in Definition 4. We claim that

Lemma 9. PrBSim[BU,V ] ≤ δU,V

Let us apply this lemma to complete the proof of the lemma; we will prove the
lemma later. By the lemma, all terms in Equation 4.3 satisfy either Pr[BU,V ] ≤ 2−nk

or δU,V > 2−nk. The second case is the only interesting one, so fix suchU, V . It suffices
to show that Pr[BSim times out | BU,V ] ≤ 2−Ω(nk).

Let T denote the timeout calculated in the simulation. Since each trial in the timeout
calculation is a success with probability δU,V , the expected number of trials necessary
to obtain (nk)2 successes is (nk)2

δU,V
. Therefore by a standard Chernoff bound, the prob-

ability that T < nk
2δU,V

is at most 2−nk. (Here the assumption that δU,V > 2−nk is
important, since by definition T is limited to be at most nk2nk.)

Conditioned on T ≥ nk
2δU,V

, the probability of timeout is at most (1 − δU,V )T ≤
2−nk/2. In total therefore Pr[BSim times out | BU,V ] ≤ 2−nk + 2−nk/2 < 2−nk/3.
Therefore, every term in Equation 4.3 is bounded by 2−Ω(nk) and since there are less
than 22k terms in total, the total probability of timeout is negligible.

We now prove Lemma 9.

Proof (of Lemma 9). Let α denote a vector of SendNI commitments (dj)j∈Σ . Let z
denote a pair containing a vector of queries α and a response s from Rec∗. For a fixing
of z = (α, s), let Z denote the set of non-aborting sessions in s.

For any z, letAz denote the event that the simulator breaks from the first loop where,
in the iteration that causes the loop to break, the query to Rec∗ are the queries in z and
the response received is the response in z. By definition, it holds that

Pr
BSim

[BU,V ] ≤
∑

z | Z 6⊆V,Z⊆U

Pr
BSim

[Az] (4.5)

The following says that PrBSim[Az] = Pr[(α, s) = z], where α are constructed as
honest commitments to b and s is Rec∗’s response (i.e. the same probability space as
Db). This implies that the RHS of Equation 4.5 is equal to δU,V and Lemma 9 follows.

Claim. For all z where Z 6= ∅, PrBSim[Az] = Pr[(α, s) = z].

Proof. Let Σ∗ =
⋃
S⊆supp(Db) S. If Z 6⊆ Σ∗ then Pr[Az] = Pr[(α, s) = z] = 0 and

we are done, so suppose that Z ⊆ Σ∗. For any V ( U ⊆ Σ∗, let ρU,V,z denote the
probability Az occurs, conditioned on BSim ever executing the first loop (Step 6) with
X = U, Y = V (but not necessarily breaking from the first loop with X = U, Y = V ).
We prove that

ρU,V,z = Pr[(α, s) = z | S 6⊆ V ] (4.6)



where S is the set of non-aborting sessions of the response contained in s. This would
imply the claim, since for any z with non-empty Z, we have

Pr
BSim

[Az] = Pr[S 6= ∅] · ES [ρS,∅,z | S 6= ∅] = Pr[(α, s) = z]

since it must be that the first iteration of the loop sampled S 6= ∅ and then conditioned
on this the probability of sampling z is given by ρS,∅,z . (This corresponds to our ear-
lier intuition that the abstract sampling algorithm of Algorithm 3 samples the correct
distribution.)

We prove Equation 4.6. If Z ⊆ V then both sides of Equation 4.6 are 0. So suppose
that Z 6⊆ V . There are two cases:

1. Suppose that Z ⊆ U . Let us look at the very first sample (α, s) satisfying S 6⊆ V
that is obtained after the simulator sets X = U, Y = V . If (α, s) 6= z then either
BSim breaks the loop with this different query/response, or else Y is updated to be
U ∪ S and in the subsequent iterations of the loop, Z is contained in the updated
Y , and so z can no longer possibly be sampled.
Therefore, the only contribution to the probability of z being sampled is when this
first sample (α, s) = z. This occurs with probability Pr[(α, s) = z | S 6⊆ V ].
In particular, this shows that Equation 4.6 holds for any V ( Σ∗ when U = Σ∗.

2. Suppose that Z 6⊆ U . Since the first point establishes Equation 4.6 when U = Σ∗,
we may use induction and assume that it holds for all ρU ′,U,z where |U ′| > |U |.
Since Z 6⊆ U , it follows that Az only occurs if BSim does not break the loop while
X = U . Therefore, ρU,V,z equals:∑
W 6⊆U

Pr[S =W | S 6⊆ V ]·ρU∪W,U,z

= Pr[(α, s) = z | S 6⊆ U ]
∑
W 6⊆U

Pr[S =W | S 6⊆ V ]

= Pr[(α, s) = z | S 6⊆ U ] Pr[S 6⊆ U | S 6⊆ V ]

= Pr[(α, s) = z | S 6⊆ V ]

where in the last step we use the fact that Z 6⊆ U and that for events A,B,C such
that A implies B implies C, it holds that Pr[A | B] Pr[B | C] = Pr[A | C].

Proof (of Lemma 8, TSim and 〈Send,Rec∗〉 are identical.).
By definition, the output of TSim and an honest interaction are identical up to the

end of the initial commitment, so fix any random coins of Rec∗ and fix any initial
commitment transcript. As in Lemma 9, let z be any tuple of queries to and responses
of Rec∗ to open its initial commitments, i.e. z is of the form (α, s). Let Z denote the set
of non-aborting sessions in s.

If Z = ∅, then it is clear that the probability that TSim outputs z is identical to the
probability of z being output in an honest transcript, since this can only be output in



the first iteration of the first loop in TSim and by definition this is identical to an honest
interaction.

So consider z such that Z 6= ∅. As in the proof of Lemma 9, let Az denote
the probability that the TSim breaks from the first loop and the last query to and re-
sponse received from Rec∗ before breaking being given by the tuple z. TSim and BSim
are completely identical in the first loop, so we can apply Equation 4.3 to show that
PrTSim[Az] = Pr[(α, s) = z].

Let A′z denote the event that TSim outputs z as the query/response in the step cor-
responding to Step 8(b)ii.

Lemma 10. For all z containing at least one non-aborting session, it holds that
PrTSim[A

′
z] = PrTSim[Az].

This combined with Equation 4.3 imply that PrTSim[A′z] = Pr[(α, s) = z].
If A′z occurs then z is written to the output. From the definition of the TSim, condi-

tioned on outputting z, the rest of the output, namely the choice of I and opening, are
identical to the honest interaction conditioned on outputting z. Since the probability of
outputting z is identical, this proves that TSimRec∗(b) and 〈Send,Rec∗〉(b) are identical.

It remains to prove Lemma 10.

Proof (of Lemma 10). If Az occurs, then it must be that TSim breaks out of the first
loop for some U, V satisfying Z 6⊆ V and Z ⊆ U . This is exactly the event BU,V
as defined in Lemma 9. Likewise, if A′z occurs then BU,V must occur for some Z 6⊆
V,Z ⊆ U . Therefore it suffices to show that for all U, V such that Z 6⊆ V,Z ⊆ U and
Pr[BU,V ] > 0, it holds that

Pr
TSim

[A′z | BU,V ] = Pr
TSim

[Az | BU,V ] (4.7)

since we could apply this as follows to deduce Lemma 10:

Pr[Az] =
∑

U,V |Z 6⊆V,Z⊆U

Pr[Az ∧BU,V ] =
∑

U,V |Z 6⊆V,Z⊆U

Pr[A′z ∧BU,V ] = Pr[A′z]

We now prove Equation 4.7. The LHS is equal to Pr[(α, s) = z | S 6⊆ V, S ⊆ U ]
because by definition of TSim, it generates α as honest commitments to b and gets a
response s satisfying S 6⊆ V and S ⊆ U (notice this requires the fact that there is no
timeout or binding broken condition).

To evaluate the RHS, let EU,V denote the event of TSim ever executing the first
loop with X = U, Y = V . By definition if BU,V occurs then so does EU,V . Therefore
we may develop:

Pr
TSim

[Az | BU,V ] =
PrTSim[Az ∧BU,V ]

PrTSim[BU,V ]

=
PrTSim[Az ∧BU,V | EU,V ]

PrTSim[BU,V | EU,V ]

In the last line, we can simplify the numerator to Pr[Az | EU,V ], because conditioned on
EU,V , Az implies BU,V . Since Z ⊆ U , it also holds that Pr[Az | EU,V ] = Pr[(α, s) =
z | S 6⊆ V ]. The denominator in the last line equals Pr[S ⊆ U | S 6⊆ V ].



Therefore we have that

Pr
TSim

[Az | BU,V ] =
Pr[(α, s) = z | S 6⊆ V ]

Pr[S ⊆ U | S 6⊆ V ]

Using the fact that (α, s) = z implies that S = Z ⊆ U , we can simplify the fraction
to Pr[(α, s) = z | S 6⊆ V, S ⊆ U ]. This proves Equation 4.7 for all U, V satisfying
Z 6⊆ V , Z ⊆ U .

5 Conclusion

Combined with [ORSV11, Xia11], we now have a fairly comprehensive view of com-
mitments with selective opening attack security (under parallel composition): for sta-
tistically hiding commitments there exist 3-round protocols and these are optimal for
black-box simulation [ORSV11,Xia11], and for statistically-binding commitments there
exist 4-round protocols and these are optimal for black-box simulation [ORSV11,Xia11].
Interestingly, the situation is the reverse of stand-alone commitments, where we know
non-interactive statistically-binding commitments yet the minimal complexity of statis-
tically hiding commitments is two rounds (without setup assumptions).

[ORSV11] showed that their statistically-hiding commitment is not only secure
under parallel composition but also under “concurrent-with-barrier” composition: the
commit-phase may occur with arbitrary scheduling of the messages, but the reveal phase
happens at the same time across all sessions. An interesting open question is to show
whether this is possible for statistically-binding commitments.
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