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Abstract

We consider the following problem: can we construct cortstannd zero-knowledge proofs (with
negligible soundness) faNP assuming only the existence of one-way permutations? Weeanthe
question in the negative for fully black-box constructigusing only black-box access to both the underlying
primitive and the cheating verifier) that satisfy a natuedtriction on the “adaptivity” of the simulator’s
queries. Specifically, we show that only languagesdA M have constant-round zero-knowledge proofs
of this kind.
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1 Introduction

A zero-knowledge proa$ a protocol wherein one party, the prover, convinces argshrty, the verifier, of the
validity of an assertion while revealing no additional khegge. Introduced by Goldwasser, Micali and Rackoff
in the 1980s [20], zero-knowledge proofs have played a akrtte in the design and study of cryptographic
protocols. In these applications, the main measure of effasi is theound complexityf the proof system, and

it is important to construct constant-round zero-knowkeggptocols folNP (with negligible soundness) under
minimal assumptions. In many cases, a computational zesddedge argument system (where both the zero-
knowledge and soundness guarantees hold against coropatitibounded adversaries) suffices, and we know
how to construct such protocols NP under the minimal assumption of one-way functions [10, Bigwever,

in this work, we focus on computational zero-knowledge pgystems, where the soundness guarantee must
hold against computationally unbounded adversaries.

A common intuition in constructing zero knowledge protacypically based on some form of commitments)
is that statistical (resp. computational) soundness spomds to using a statistically (resp. computationally)
binding commitment, while statistical (resp. computagihrzero knowledge corresponds to using statistically
(computationally) hiding commitments. One might also etpkat the round complexity of the resulting zero
knowledge protocol is roughly the same as the round comylekithe underlying commitment scheme.

However, the best known construction of computational #@@vledge proofs from one-way permutations
hasw(1) rounds [17, 7], and the minimal assumption from which we krimw to construct constant-round
computational zero-knowledge proofs fSiP is constant-round statisticallyiding commitments [15], which
seem to be a stronger assumption than one-way permuta86n23]. There are no known constructions of
constant-round computational zero knowledge proofs fromstant-round statisticallginding commitments.
We note that the latter may be constructed from one-way petioas [7] and one-way functions [30, 26]. This
raises the following intriguing open problem:

Can we base constant-round zero-knowledge proof@NiBron the existence of one-
way permutations?

We briefly survey what's known in this regard for constanisrd black-box zero-knowledge protocols (that
is, those using a black-box simulation strategy). We claitiat while we do know of non-black-box zero-
knowledge protocols [2, 22], these protocols are all zerovkedge arguments and not proofs.

Unconditional constructions. The only languages currently known to have constant-ro@nd-knowledge
proofs from assumptions weaker than statistically hidiogmmitment schemes are those that admit statistical
zero-knowledge proofs, which do not require any computali@ssumption at all. Even though this includes
languages believed to be outsideBPP such as graph isomorphism and graph non-isomorphism [1@]I6]
languages with statistical zero knowledge proofs lidiNM N coAM [1, 12] (and therefore do not include all
of NP unless the polynomial hierarchy collapses).

Lower bounds. Goldreich and Krawczyk [16] showed thatround zero-knowledge protocols and public-
coin constant-round zero-knowledge protocols with blaok-simulators exist only for languages BPPP.
Katz [28] showed that-round zero-knowledge proofs only exist for languageMm N coMA. Haitner et

al. [23] ruled out fully black-box constructions of condtaaund statistically hiding commitment schemes (in
fact, anyO(n/logn)-round protocol) from one-way permutations, which meaas te are unlikely to obtain
constant-round zero-knowledge proofs from one-way peatiaris via the approach in [15]. More recently,
Haitner et al. [25] established a partial converse to [18lnaly that any constant-round zero-knowledge
proof for NP that remains zero-knowledge under parallel compositioplies the existence of constant-
round statistically hiding commitments. Unlike the case $tand-alone zero-knowledge, we do not know



if there exists av(1)-round zero-knowledge proof system NP that remains zero-knowledge under parallel
composition, assuming only the existence of one-way peatioms. Indeed, zero-knowledge under parallel
composition appears to be a qualitively much stronger ggaquarantee than stand-alone zero-knowledge.

1.1 Our Result.

In this work, we establish new barriers towards constrgctzero-knowledge proof systems from one-way
permutations for all oNP:

Main Theorem (informal). Only languages iMMNcoAM admit a fully black-box construction
of zero-knowledge proofs starting from one-way permutetiovhere the construction relies on a
black-box simulation strategy with constant adaptivity.

A fully black-box construction (c.f. [36, 27]) is one thattnanly relies on a black-box simulation strategy,
but where the protocol relies on black-box access to thenyudg primitive. Adaptivity is a measure of how
much the black-box simulator relies on responses from pusviueries to the cheating verifier in order to
generate new queries. We point out that all known constmstof black-box simulators achieve adaptivity that
is linear in the round complexity of the protocol and therefoonstant adaptivity is a fairly natural restriction
for constant-round protocols. Apart from the restrictionaglaptivity, this is essentially the best one could hope
for in lieu of various positive results mentioned earlier:

e Our result only applies to constant-round protocols — mgrthe O(log n)-fold parallel repetition of
Blum’s Hamiltonicity protocol [7] sequentially yields @(1)-round black-box zero-knowledge proof
system forNP.

e Our result applies only to proofs, but not arguments — thetistee a fully black-box construction
of constant-round computational zero-knowledge argusmevith constant adaptivity from one-way
functions for all ofNP. [11, 34].

e We have unconditional constructions of constant-rountissizal black-box zero-knowledge proofs for
graph isomorphism and graph non-isomorphism, languagetahe inAMnNcoAM but are commonly
believed to lie outsid8BPP.

Limitations of our impossibilty result. Our impossibilty result imposes three main restrictionstloa
construction: black-box simulation strategy, black-b@cess to the one-way permutation, and bounded
adaptivity of the black-box simulator, amongst which adédiyt appears to be the greatest limitation. Our
current ability to prove general lower bounds for zero-klemge (without limitation to black-box simulation)

is relatively limited [18, 4]; moreover, non-black-box sifation strategies so far only yield arguments and not
proof systems. In the context of zero-knowledge protodbkse is no indication whether non-black-box access
to the underlying primitive has an advantage over black-#xmess to the primitive.

Extensions: the formal statement of our result (Theorem 3.3) is slightlyre general as we can obtain non-
trivial consequences even when the simulator’s adaptisigper-constant but sufficiently smaller than linear.
We defer discussion of these strengthenings to Section 3.4.



1.2 Proof overview

Recall that we start out with a constant-round zero-knogdegroof systen{P?, V) with constant adaptivity
for a languagel. and we want to show that lies in AM N coAM. The high level strategy is to extend
the Goldreich-Krawczyk lower bound for constant-round lm4boin protocols [16] to the private-coin setting.
Following [16] (also [32, 28, 25]), we consider a cheatingifier Vg that “resamples” new messages that
are distributed identically to the real verifier's messammditioned upon the partial transcript) every time
it is rewound. We will need to address the fact that we do nowkhow to simulate such &gy efficiently
for general private-coin protocols. The computational paxity of V5, comes up in two ways in [16]: first
to deduce that the zero-knowledge property holds agaimst aW;,, and second to derive an efficieAfM
protocol for the underlying languageand its complement.

To address the first issue, we rely on a result of Haitner §2al, which, roughly speaking, demonstrates the
existence of a one-way permutatiansecure in the presence oflg oracle (as long as the zero-knowledge
protocol has bounded round complexity, which is the case)hé&ke will then instantiate the zero-knowledge
protocol (P, V) with the permutationr. This will remain zero-knowledge against the cheatingfierg
sincer is one-way againsy,. Following [16, 28, 25], we may then deducéB®P™ ek algorithm for L.
(Such a statement was obtained independently by Pass akifagemramaniam [33]) Along the way, we will
exploit (as with [28, 25]) the fact thdf, V) is a proof system as we need soundness to hold against antheati
prover that is able to simuladéy, .

Next, we will essentially show th@dPP™Yek C AM N coAM from which our main result follows. Since
L already has a constant-round proof system by assumiptione AM. Thus, it suffices to show that
BPP™Vek C coAM. We do this by constructing AM protocol for L where the strategy is to have the
AM prover and verifier jointly simulate andV§ . In more detail, theA M verifier will pick the permutation

m at random from a space gbly(7"") permutations, wher&' is an upper bound on the running time of the
reduction in the zero-knowledge protocol andis the round complexity of the protocol; this turns out to
suffice as a one-way permutation for the result in [28]ext, we will have theA M prover and verifier jointly
simulate each oracle computation using a (constant-round public-coin) random samplingquoitfrom
[24]. Note that naively having thA M prover perform the computation df; ¢ fails for two reasons: a cheating
AM prover may resample messages from a distribution diffdrent the uniform distribution, and may not
answer all of theV§ queries “independently”. Finally, we rely on the constadagativity requirement of
(P, V) to partially parallelize the executions of the random samgpprotocol, so that the final protocol fdr
has constant round complexity.

2 Preliminaries

2.1 Definitions

Definition 2.1. A permutationr : {0,1}"™ — {0, 1}" is T-hard if for any circuitC of size at mosf", and fory
chosen uniformly at randonPr[C (y) = 7~ *(y)] < %, where the probability is taken over the choiceyoff,
givenz, 7(x) is also efficiently computable then we call such a permutadione way permutatio(OWP).

Definition 2.2. LetII,, be the set of all permutations frof0, 1} — {0, 1}". Then, using the notation of [13],
we definelly, ,, C II,, as{my, ,, | 7% n(a,b) = (7x(a),b) for somer;, € II;} In other words, a uniform element

1They obtained the result via a generic transformation froirage-coin protocols int§am-relativized public-coin protocols, upon
which the result then follows from the (relativized) lowerumd for constant-round public-coin protocols in [16].

2\We can instantiate the protoc@P, V) for L with the identity permutation for this purpose.

®*Having theAM verifier sample a random permutation “on the fly” does not wiekause the permutatianneeds to be defined
everywhere fol/gx to be well-defined.



of 11}, ,, is a random permutation on the fidsbits, and fixes the last — £ bits.

2.2 Zero-knowledge

In what follows we define a fully black-box construction ofakecomputational zero knowledge (CZK) from
one way permutations. For a more general definition of CZK&flerrthe reader to previous literature [14]. As

usual, we lehegl(n) be some function such thaggl(n) < ﬁ for all polynomialsp(n).

Notation: we will use the following notation for interactive protdso For any interactive protocol between
a proverP and a verifieV, we let2m denote the total number of rounds of communication, wheruad
consists of one message, either fréhio VV or from V' to P. We leto; denote the” message sent fro to
V, andg; thei*" response fronV to P. Note thato; is sent in roundi — 1 and3; is sent in roundi. Also,
having P always send the first message is without loss of generalityeasan setv; =1 to model a proof
whereV goes first. Fo € {1...,m}, we letay; = (a1,...,a;). LetV = (V1,...V;,) be the decomposition
of V into its next-message functions. Hergz, aj;,w) outputsf;, theith message sent by when using
input z, random coinsv, and receiving messages; from P. Let (P, V)(x) denote the verifier's view of an
execution of the interactive protocol on an inputThis view includes all messages,, sent by the prover, the
verifier's random coins, and (if V' is allowed access to an oracle) the answers to any oraclégiémay
have made. We say thaP, V') () accepts ifl,,(x, af,), w) = 1.

We will reserve calligraphi@®®, V, S to denote the prover, verifier, and simulator in a zero-keadge protocol,
and regularP, V to denote the prover and verifier in a (possibly non-zeroAkedge) interactive protocol.

Definition 2.3. A fully black-box construction of a (weak) computationar@dénowledge proof system from
one-way permutations for a languages a tuple of oracle proceduré®,), S, M) such that there exists a
polynomialT'(n) satisfying the following properties for every family of peutationsr = {7, },>1:

Efficiency. The running times o¥’, S, M are bounded by" = T'(n).
Completeness.For allz € L: Pr[(P™,V")(x) accepts > 1 — negl(n).

Soundness.For allz ¢ L and for all (possibly computationally unboundé#),

Pr[(P*,V™)(x) accepts < negl(n).

Black-Box Zero-Knowledge. For all (possibly computationally unbounded), D and for allx € L: if
Pr[D((P™,V*)(x)) = 1] — Pr[D(S™ (z)) = 1]| > 1/n
thenM can invertr, namely:
Pr [M™P(y) =n~(y)] > 1/T

We note that completeness and soundness hold even if theggymutations are not one-way. Al3d#;, D are
guantified aftetr is fixed and therefore may dependon

Comparison with standard definitions of zero-knowledge: The property that makes the above definition
weakzero knowledge is that we only require the distinguishingaathge to be smaller than'n, rather than
negligible (the choice of /n was arbitrary; any non-negligible function will do). Thisables us to consider
simulators that run istrict polynomial time; it is known that in the standard definitidrzero knowledge where
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the distinguishing advantage is negligible, no strict polyial-time black-box simulators exist for constant-
round protocols [3], although there are examples of nonkstx simulators [2]. It is useful for us to consider
strict polynomial-time simulators because defining aditptis more straight-forward for such simulators than
for expected polynomial-time simulators. This is discdssethe next section.

Nevertheless, we note here that any zero knowledge prosfisag the standard definition also satisfies the
weak definition above: if a simulatad’ satisfies the standard definition and runs in expected Tiéhen a
simulatorS satisfies the weak definition by runnig for at mos2n7” steps, and halting with a failure symbol
if S’ does not produce an output in that time. By ruling out black-bonstructions of weak zero knowledge
proofs from one-way permutations, we also rule out prodifisfying the standard definition. We note that the
same discussion applies to the runtime of the reductiorrighgo )M .

Simplifying assumptions: we assume for simplicity that on inputs of length ) and S only queryr on
inputs of lengthn.  We assume that in an honest interaction of the protocol]astemessage is from the
verifier V to the proverP and contains the verifier's random coins. Clearly this dogsaffect either zero
knowledge or soundness since it occurs after all “meanihgiessages are sent. This assumption allows us
to define a transcript to be accepting if the honest verifianldiaccept that transcript using the coins output
in the last message, and this definition remains meaningén éor transcripts generated by cheating verifiers.
We assume without loss of generality that the simul&toever asks the same query twice and that it only asks
refinemengueries. Namely, foi > 1 and for every queryy;) = (af;—1), ;) that the simulator queries to its
cheating verifier black bo¥*, it must have previously queried;_;; as well. We direct the reader to [15] for

a discussion of why this holds without loss of generality.

2.3 Adaptivity

Here we define thadaptivity of the simulator, namely how much it uses responses fromiqus\queries to
the verifier black-box in order to generate new queries. Allhe black-box simulators for constant-round
zero knowledge in the literature intuitively work the folling way: repeatedly query the cheating verifier with
dummy queries enough times until it leaks some secret, #a@md and use this secret to output a simulated
transcript [15, 5, 9, 10]. The simulator may use the vergianswers to determine whether to continue with
dummy queries or to proceed to the next step of the simulatiotie simulator runs irexpected polynomial
time (rather than strict polynomial time), this procedure lastiefinitely, making it hard to define the degree of
the simulator’s adaptivity. This is why we choose to workhwiteakzero knowledge, where the simulation is
strict polynomial time; the definition of adaptivity becosn@uch simpler and more intuitive in this setting. We
stress again that this only strengthens our result, as anyke@wledge proof system satisfying the standard
definition also satisfies the weak definition.

Definition 2.4. A simulator S running in time7" is said to be-adaptive if it can be decomposed inta- 1
oracle machines§ = (Si,...,S;, Si+1) with the following structure. Lek, w (respectively) be the input and
random coins foS. For all permutations and all cheating verifiery*, S™V" operates as follows:

1. Sf’v*(:n;w) generates at mo§t queriengl), e ,qi(pl) usingz,w. It sends these queries W and gets
back answerg; = (agl), e ,agpl)).
2. Foreachphasgl < j <'t, S;.“V* (z;w,d;—1) generates at mogt queriengj), . ,qé?) usingx,w and

a@;—1 which is the concatenation of all oracle answers from phases, j — 1. SJ’T’V* setsd; to be the

oracle answeragj), . ,ag) for the j’th phase, concatenated widh_;.

3. After obtaininga;, ST, ; (z;w, d;) computes the final output (notice it does so without callitig.



2.4 TheSampleWithSize protocol

In our proof, we will require a constant-round public-coangpling protocol from [24]. The verifier desires to
sample a random element from an efficiently decidableé?agting the help of an all-powerful prover, assuming
that the verifier knows (an approximation ¢f§|. Such protocols have a long history in theoretical computer
science [38, 21, 12, 1], but for us the most relevant priokvi®iGoldreichet al. [19].

The SampleWithSize protocol of [24] also guarantees that if the verifier knowsghat is a multiplicative
approximation of| R|, then the verifier can obtain a samplaistributed close to uniform ii. In addition,
given a partition ofR, the SampleWithSize provides asize s, that approximates the size of the set in the
partition thatz belongs to. We will use this protocol in Section 3.4 recuelyiv the size parametet, is used
with SampleWithSize to sample from the partition thatbelongs to, and so forth.

Theorem 2.5(Theorem 4.1 of [24]) There exists a constant-round public-coin protoSampleWithSize =
(Psws, Vsws) whose parties get as input:

1. Asetk C {0, 1}" represented as a polynomial-size circuit deciding meniiyeis R.
2. A positive integes € N, satisfyings € [(1 + (7-)%)|R]]

3. A partition A of R given by a labeling function : R — {0, 1}* such that two elements =’ € R are in
the same partition set ifh (z) = A(a2’), i.e. they share the same labe is given as a polynomial-size
circuit.

4. A security parametef > 1/poly(n) given in unary.

Let(P*, Vsws)(R, s, A, d) denote the interaction of the verifier with any provet, resulting either in an output
(z, s,) or “abort”. The protocol achieves the following guarantee:

1. Completeness: an interaction with the honest provéPsys, Vews)(R, s, A, §) aborts with probability
at most).

2. Correctness and soundness. when interacting with any (honest or deviating) prover, either
(conditioned on not aborting) the outp(t, s,) = (P*, Vsws)(R, s, A, §) satisfies both the following:

(@) With probability at least — 6, s, € [(1 4 §)|AL(A(x))]].
(b) Conditioned ors, € [(1 & &)|A~1(A(=))|], = is distributeds-close to uniform overz.

or else(P*, Vsws) (R, s, A, §) aborts with probability at least — ¢.

SampleWithSize is applied in [24] in a way that is similar to the setting ofstimiaperj.e. it is used to replace
oracle calls to a sampling oracle by invocations of thisquoL

3 Proof of main theorem

3.1 Overview

As discussed in the Introduction, our proof involves usingaaticular cheating verifier)s defined in
Section 3.2, with the following properties:

e V§k cannot invert a random permutatian This implies that the viewWP™, V) («) can be simulated
by a simulatorS™Vex () whenever: € L. (Section 3.3)
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e The simulatorS™Yek () cannot produce an accepting transcript whenevetr L. Together with the
previous property, this gives a way of decidihg(Section 3.3)

e One can efficiently generate a transcript accordin§d’s« () in a constant number of rounds with the
help of an all-powerful (but possibly cheating) prover. &rone can efficiently decide using the output
of S™Vex (x) whether or not: € L, this impliesL € AM N coAM. (Section 3.4)

3.2 DefiningV§

Informally, upon receiving a message, the cheating verifigformly chooses a new random tape consistent
with the transcript seen so far, and uses this to computeeiismessage. The formal definition follows, using
notation defined in Section 2.1.

Fix any black-box construction of weak zero knowledge frome-way permutationsP,V,S, M). Letw €
{0,1}T be a random tape for the honest verifiewhich is divided into next-message functiovis, . .., V,,,
then define

R ={w' € {0,137 | Vj < i, Vj(z,qp;w) = Vi(z,ap;0')} (3.1)

i.e. the set of random tapes that, given prover messagegroduce the same verifier messages as the random
tapew. For the special case wheie= 1, setR% = {0,1}" for all a; and allw. The cheating verifier
Vék = (Vék 1+ - Vék ) is defined below. To simplify notation, we omit the inpti(which is fixed), the
permutationr (which is sampled once and then fixed), and the random coib’§ of

® V&k 1(a1): choose a random tapeuniformly at random, storéxy, w) and output)s (o, w).

o Vi (ap) fori > 1t let ay = (aj—y), ). Look up the valuglaj;_;),w) stored during a previous
query. Choose/ «— R uniformly at random, storéx;,w’) and outputy; (e, o).

Recall that we assume the simulator never repeats queliesrdyymakes refinement queries. Therefdrg,
never tries to store inconsistent entries in the table)gfdnever queries its table for entries that do not exist.
Observe that the output ¢P™, Vi) (z) is distributed identically to the hone&P™, V™) (x). However,V§ is

not necessarily efficient, since there may be no way to safrtprieRfjm efficiently.

We want to construct a one-way permutation that remainswaein the presence of &g -oracle. To
accomplish this, we refer to a result of Haitner et al. [23hisk ruled out fully black-box constructions
of Q(n/logn)-round statistically hiding commitment schemes form orsrwermutations (where is the
security parameter). More generally and somewhat infdygriailey (building on and generalizing the works of
[13, 37, 39]) demonstrated oraclesSam with the following properties:

e 7 is a random permutation dnbits and is one-way in the presence &an-oracle, and

e Sam can be used to instantiate a cheating sender that breaksntied property of anym-round
statistically hiding commitment scheme, as longkag, mlog T, whereT is the running time of the
security reduction.

Moreover, the afore-mentioned cheating sender uses avipisa” strategy exactly aB; does, and therefore,
the Sam oracle can be used to efficiently instantiate our cheatingieestrategy. Haitner et al. prove that a
sufficently large random permutatianremains one-way in the presenceSamm. The following lemma follows
directly from their results.



Lemma 3.1(implicit in [23]). Supposd’, k satisfyT3™+2 < 2k/8_Then, for any oracle maching running in
timeT, it holds that:

P R™Vek — -1 <1/T
WEHk,m;—RUﬂ[ ) =" <1/

Proof. This is essentially a special case of [23, Theorem 5.1], westablished the above statement whéig

is replaced with a so-called sampling oraStem (refer to Appendix A or to [23] for the formal specification
of Sam). It is straight-forward to verify thaV§ is a special instance of tf&am oracle; whileSam resamples
preimages in arbitrary circuitd/;, only resamples preimages in the circuits computing the stovexifier's
next message functichFurthermore, the restrictions th&m imposes on its queries are imposedijy, as
well. In particular, we assum8& only makes refinement queries, and since there aresantyover messages
in a protocol, the longest sequence of refinement queri¢sSthaay ask is of lengthn. In the notation of [23],
then, we only allow queries afepth(n) = m. |

3.3 DecidingL using Vg
We prove thatS™Vex (x) generates an accepting transcript with high probabilignid only ifz € L.

Lemma 3.2. Given any fully black-box construction from one-way fumtsi of a constant-round weak zero
knowledge proofP, V, S, M) for a languageL, and anyn, k satisfyingl>™+2 < 2k/16 where2m = O(1) is
the round complexity of the proof system &ne- poly(n) is the strict polynomial bound on the running times
of V, S, M, the following hold:

1. Ifz € L, thenPrr 1, , s,vs, [S™Vox generates accepting transcript 2/3.

2. Ifz ¢ L, thenPrr_, , s.ve, [S™Vex generates accepting transcript 1/3.

Proof. We only prove the case of yes instances; no instances atedregactly as in the argument of [16] and
we defer it to the appendix.

Yes instances: We use the zero-knowledge property of the proof system teepttoat for allx € L:

Pr[S™Vek (z) outputs an accepting transcipt 2/3 (3.2)

The proof proceeds by contradiction, showing thagf flails to output an accepting transcript with sufficiently
high probability then, by the weak zero-knowledge propesty(P,V,S, M), M can invert a random
permutationr € IIj, .

As was noted before, the distributiod®™, V) (z) = (P™,V™)(z). Therefore, by the completeness of
the proof system, fox € L, the transcript{P™, Vi) (x) is accepted by the honest verifier with probability
1 — negl(n). More formally, Pr[V], (z, (P™, Vi) (z)) = 1] > 1 — negl(n).

For the sake of contradiction, assume tB&t"c« () outputs an accepting transcript with probability less than
2/3. That is,Pr[VF, (z,S™Vex(x)) = 1] < 2/3. Then we can use the honest verifieto distinguish between
the prover and simulator output, SinfBr[VT (z, (P™,VE)) = 1] — Pr[VF (z,S™Vex(2)) = 1]| > 1/3 —
negl(n). Therefore, by the weak black-box zero-knowledge propeftyP, )V, S, M), there exists an oracle
machine)M™VYcx-Y running in timeT that can break the one-waynessrofvith probability at least /7. We

“More specifically, letting); ,(;(w) = V{" (2, ai, w), where the first two inputs are hardwired into the circuitaid/Sam query
is (roughly) of the form(Vy ;. Vi afi—1)» Bi—1), Where some prior query t®am, (V ;_1), Vs ai—2), Bi—2), resulted in output
(w, Bi-1) such that’; ,;_;;(w) = Bi—1. Furthermore, because we assume that all simulator queeegfinement queries, the query
(Vi aii)s Vi arii—1), Bi—1) can only oceur ify; = (af;_y), o), as required bpam.
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can remove oracle accessidyy having M simulate) by making at most’ oracle calls tar for each call to
V. Thus, we get a machin&/ ™V« running in time7? such thatPrrer, ,, yru, [M™Vok(y) = 771 (y)] >
1/T > 1/T?. This yields a contradiction to Lemma 3.1, and (3.2) follows

3.4 Removingr and V§

Theorem 3.3. Suppose there is a black-box construction from a one-waynpttion of a constant-round weak
zero knowledge prodfP, V, S, M) for a languageL, whereS is t-adaptive. Ther, € AM N coAM]t].

Proof. We construct & (¢)-round interactive proofPs, V) for the complement languade which proves that

L € coAM[t]. The high-level idea is foF/s to emulate the computation 6~ éx and to use the all-powerful
prover to answer any queries the simulator makegdp. If the prover were always honest it would answer
these queries aB; would, allowingVs to emulateS™Yek exactly, and enabling him to decide (Recall
from Lemma 3.2 that with high probability™Ycx () produces an accepting transcriptific L.)

Two problems arise here. The first is that the prover may teediam the prescribed behavior. To handle
this, we replace each query 5, with an execution of théSampleWithSize sampling protocol from
Theorem 2.5. Recall that this protocol catches a cheatingeprwith high probability. The second problem
is that S™Yex makesO(T') queries toVg; if we ran theseSampleWithSize protocols sequentially, we
would have aO(T')-round protocol forL. Instead, we will exploit the-adaptivity of S to parallelize the
executions oSampleWithSize. Recall from Definition 2.4 thaS™V ek can be decomposed int§™Vex =
(Sf’véK, ...,8 1), each of which makes only parallel queriesfgy. To attain arO(t)-round protocol forL,

for each adaptive stepe [t], we will execute in parallel all of th8ampleWithSize executions corresponding
to the queries made hyj;.

Sampling 7 efficiently: our first observation is that sinee«— I1;, , andk = 9(3m + 2)log T' = O(log n),
such a permutation can be sampled efficientlyiigy Therefore, in the first step of the proof, our verifigs
will sample such a and send it to the prover, and they then both use this fixkat the rest of the proof.

The AM protocol for L:  The main tool we use is the protocgdmpleWithSize from [24], which was given
in Theorem 2.5. We construct adM proof system(Ps, Vs) for L that uses this protocol to emulate the
computation ofS™ Ve«

First we set up some notation. L&fYek = (Sf’véK,...,Sf’véK, 7_,) denote the decomposition of the
t-adaptive simulator as described in Definition 2.4. Sig® running time is bounded b¥’, for all j €

[t], S; makes at mosi’ oracle queries. Since for the rest of this proof we will be kirng with a fixedz
and a permutationr chosen once and then fixed, we will [Btdenote the honest verifier with these fixed
choices ofz, 7, and lety = (V4,...,V,,) its decomposition into next-message functions. Assumbouit
loss of generality that the simulator’s adaptivitis at leastn, which is half the number of rounds of the zero
knowledge proof and the number of messages sei. by

Define the error loss functiolass(5) = (1-)%, and letloss’(5) = & andloss’(6) = loss' ! (loss(5)). Then for

i € [t], we define the error paramet&r= loss™*(1/(ntT)). Itis easy to check thak_; = (13’6”)8 for all i
and furthermore; = (1/ntT)°®™) = 1/poly(n) as long asn = O(1).

We will use the definition ofz.,” given in Equation 3.1.

Protocol 3.4. The following protocol( Ps, Vs) takes inpute of lengthn, and the verifiel/s either accepts or
rejects by performing the following:



1. Vs samplesr < II; , and sends a description ofto Ps.

2. Vs allocates a lookup tabl€able that associateS's queriesay;) with entries(w, s). The table is initially
empty.

3. Vs samples random coins fa$™ ek and uses these random coins to emuldfe’ek as follows.

Sequentially for each adaptive stgp= 1 throughj = t, Vs emulates the computation ch;.T’VGK to
compute querie&ffl)], e ,a%. Vs engages in the following sub-protocol for all the queriestap; in
parallel. Letay; be one such query:

(@) Ifi =1thenVs setswy = 0", 59 = 2T 1f i > 1, thenVs looks upTabIe(oz[i_l}) = (wi_l, 32‘—1)-
(b) Vs setsA,, to be the circuit taking input and outputtingV; (a;); w)-
(c) Vs engages in th8ampleWithSize protocol with the prover on inpug;,” |, s;_1, Aayy, i
(d) If SampleWithSize aborts thenVs aborts, otherwiseVs attains an outputw;,s;), records
Table(ay;) = (wi, s;) and returngdy) = Vi(ay; wi).
4. Aftert adaptive steps/s runsS7, | on the obtained query responses in order to output a veriger .

5. Using the honest verifier algorithin, Vs checks where is an accepting view. If it is rejecting thér
accepts (since we want to decide the complemeiit)pbtherwisel’s rejects.

Vs's efficiency is clear. It is also clear that the protocol rumg)(¢) rounds. Completeness and soundness
follow from the following claim:

Claim 3.5. If Vs emulatesS™Vsx using SampleWithSize on inputz as described above, then both of the
following hold:

1. Completeness: The probability(Ps, Vs) aborts is at most /n.

2. Correctness and Soundness. For any (honest or cheating) prover*, let 7 denote the distribution of
views generated by in Step 4 of Protocol 3.4 whé¥s interacts withP*. Then, either (conditioned on
Vs not aborting) the statistical distance satisfies

A(r, 8™V (2)) < 2/n
or else(P*, Vs)(x) aborts with probabilityl — 1/n.

First we use Claim 3.5 to prove that Protocol 3.4 is a com@atesoundA M protocol for L, then we turn to
proving the claim.

Completeness of Protocol 3.4: If € L, then by the first item of Claim 3.5 the honest prover causes
Vs to abort with probability at most/n, and by the second item, conditioned on not abortings 2/n-
statistically close t&8™V ek (). Sincex € L, Lemma 3.2 says tha™ Ve« (x) produces a rejecting transcript
with probability at leas®/3. It follows thatr is a rejecting transcript with probability at lea&st3 — 2/n. Since

Vs accepts when is a rejecting transcripl/s will accept with probability at least/3 — 3 /n.

Soundness of Protocol 3.4: If x ¢ L, then by the second item of Claim 3.5, any prover either cause
to abort with probabilityl — 1/n, or, conditioned on not aborting, it holds thatis 2/n-statistically close
to S™VYek (). As in the completeness case, combining this with Lemmar8diés thatVs accepts with
probability at most /3 + 2/n. Regardless of the prover's strategy, the verifier accejitsprobability at most
1/3 +2/n. |
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3.4.1 Proof of Claim 3.5

Completeness The only timeVs might abort is in an invocation &ampleWithSize. Recall that an execution
with an honest prover ends in abort with probability at migst §,,. Since there are at mo&f’ invocations of
SampleWithSize, the probability that the honest prover causes any invoigdt abort is at most,,.t7 < 1/n.

Soundness We will use the definition of the set,” as given in Equation 3.1. Let us say that the good event
Good ; occurs if for allj € [t] the following is true for all invocations dampleWithSize in Vs's emulation of

vaVéK S’TvVéK-
, :

Y
e Vs has not aborted.

e Let oy be any query that was made in adaptive stepvherel < j/ < j. Then the responsey, s,,)
obtained by runninGampleWithSize with the prover satisfies,, € [(1 =+ &;)|R5,"|].

e Conditioned on the first two items; is §;-close to uniformly distributed ianjW.

Let us defineGood, to hold always. Notice that i7ood ; holds, thenGood ;; holds for allj’ < j.

Also defineAborts; to be the event thdts aborts somewhere in the emuIationSﬁ’VéK, . ,S;.T’VC*;K. Notice
that Aborts; is the event thals never aborts in the entire protocol.

Claim 3.6. Fix a prover strategyP*. Either for all j € [¢] it holds that
Pr[Good; | Goodj_1 N Aborts;| > 1 —1/(nt) (3.3)

or elsePr[Aborts;] > 1—1/n.

Using Claim 3.6 to prove Claim 3.5: Suppose’r[Aborts,] = Pr[Vs abort$ < 1 — 1/n (since otherwise we
are done). Then, sinc8ood always holds, Claim 3.6 followed by a union bound over alpstenplies that

Pr[Good; | Aborts) >1—1/n (3.4)

Sinced; < 4y, it holds for all j < ¢ that conditioned on eventiood ;, the outputs of the invocations of
SampleWithSize ared,,-statistically close to the outputs df;. Since there are at mosI’ queries, by the
triangle inequality their joint distribution is at mo&t'é,, = 1/n statistically far from the output ofg,. The
input x, the simulator's random coins, and the answers to the qgiedmpletely determine the output of the
simulator. Therefore

A((T | Goody),S™Vek(z)) < 1/n (3.5)

Combining Inequality 3.4 and Inequality 3.5, we obtain @i&.5.

Proving Claim 3.6: Let P* be an arbitrary, possibly cheating prover strategy. Ndtie¢ this prover strategy
may use dependencies between all the parallel instanGesnple\WithSize that are invoked in step However,

the soundness &ampleWithSize holds against all (possibly unbounded) prover strategiesoundness still
holds in each of the parallel instancesSaimpleWithSize. Therefore we can analyze each instance separately.

We prove Claim 3.6 by induction on the stepsinequality 3.3 holds foiGood, since we defined-ood to
always be true, therefore the base case is trivial. For tthective case, Suppose Inequality 3.3 holds for all

j' < 4 — 1. In thej'th step forj > 1, Vs invokes theSampleWithSize protocol for all ofo’VéK’s queries,
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conditioned onGood;—1. This conditioning implies that for all previous invocat®a;) that were answered
with (w, s,,), it holds thats,, € [(1 = ;)| R."|]. Let us say that such an outputiisaccurate.

The overall prover strategly™ induces prover strategies for each of thparallel invocations ddampleWithSize

generated b;Sf’véK. Since we invoke&ampleWithSize with error parameted;, if at least one such invocation
aborts with probability> 1 — §; > 1 — 1/n, then the overall protocol aborts with at least this proligbi

Suppose that’s does not abort with such high probability. Leg; be any query in thg'th adaptive step.
Let of;_y) be the prefix ofy;;, then becausé only asks refinement queries we know tgtalready queried
;1) and furthermore becausgood; ; holds it has recorded & ;-accurate answe, s,,) for a;_y) in its

table. By definitionp;_; = (155’6'”)8, therefore using the fact thab, s, ) is §; 1 -accurate fory;_j, Vs invokes

SampleWithSize with s, that is a good enough approximation Bf"”. Therefore Theorem 2.5 implies the
following two cases:

Case 1: there exists some query; made in thej'th adaptive step, such th&ampleWithSize caused/s to
abort with probability> 1 — §;. By the inductive hypothesis (Inequality 3.3 holds forgll..,j — 1) and a
union bound over all, ..., j — 1, it holds that

Pr[Good;_; | Aborts;_1] > 1—(j —1)/(nt)
Therefore we can deduce that

Pr[Vs abort$ > (1 — Pr[Aborts;_1]) Pr [Aborts; | Aborts;_1| + Pr[Aborts;_1]

> Pr [Abortsj A Goodj_ | Aborts;_1]

> Pr[Goodj_ | Abortsj—1] Pr[Aborts; | Good;_y, Aborts;_1]
> (1= 51— 4)

>1—-1/n

Case 2: for every queryay; in adaptive step, the invocation obampleWithSize on «; caused/s to abort
with probability < 1 — ;. In this case, by a union bound and the fact thatl ¢; for all queries in thej'th
adaptive stepl/s aborts with probability< 1—4;7". Furthermore, the correctness conditiorbefnpleWithSize
implies that conditioned on not aborting both the followmgd for every queryy;; made in roundj,

1. With probability> 1 — ¢; > 1 — §;, the output{w, s.,) of SampleWithSize is §;-accurate.

2. Conditioned onjw, s,,) beingd;-accurate, it holds that is distributeds;-close to uniform ianjM

Therefore by a union bound over dllqueries in round, it holds that
Pr[Good; | Good;—1 N Abortsj] > 1 — 06,7 >1—1/(nt)
|

Interpretation: Combining Theorem 3.3 with [8] it says that constant-rourehkvzero knowledge proofs
for NP based on one-way permutations with a constant-adaptivalaion are unlikely to exist unless the
polynomial hierarchy collapses; combining it with [35] &ys that such proofs fdNP with a polylog(n)-
adaptive simulator are unlikely to exist unless txonentialhierarchy collapses; and in general it says any
such proof forNP with a o(n)-adaptive simulator would imply a new interactive protofml coNP whose
round complexity beats linear, which is the best known [29].
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A The Sam Oracle [23]

For completeness, we provide a description of $hen oracle as defined in [23]Sam is given access to a
family of random permutations = {r,}°2, wherer, € II,,. Sam takes as input a circut'’..,, (possibly

prev
containingr-gates), and some outputof this circuit. It returns a uniform pre-image efunderCy.,. The

challenge is to constru&m such thatSam access enables uniform sampling of pre-images withoutlieigab
the user to invertr. To achieve this, several important restrictions on theigaere described below. A more

formal description can be found in [23].

Description of Sam: Sam takes as input a query= (C/le, Cfrey» 2) and outputgw’, 2’), such that:

e ' is chosen uniformly at random from the det | C7 _ (w) = 2}.

prev

! /
o 2/ = Clou(w).
The restrictions are as follows:

1. The input(CJ.,, ) was previously queried and resulted in outgut 2). Note that this restriction
imposes a forest structure on the queries.

2. Ol is arefinementof CF,. Formally: C7 i (w) = (Cr’;rev(w),@“(w)) for some circuitC™ and for
everyw.

3. The root query in every tree must include a security patamé such that for some functiodepth :
N — N, depth(n) specifies the maximum depth of that particular tree. Quani¢kat tree can (only)
have circuits containing ;-gates forj < n, and queries beyond depdlapth(n) receive outputl.

Technically, the above restrictions are enforced in [23§ivyng Sam access to a signature protocol, and having
him sign the output to every query, as well as the depth of tieeyg before returning a response. New queries
are required to include a signature on a prior query, demeatingjj that the first and third requirements have been
met. (The refinement property can be verifiedShyn independently.) Any query not meeting these restrictions
receives outputl. We direct the reader to [23] for the complete details, aasidehem implicit below.

We commented above that the first restriction imposes atfetegture on the queries. More specificallypat
queryis of the form(1",Cx..., L, 1), and is answered byam with (', 2), wherew’ chosen at uniformly at
random from the domain a@f..., andz’ = CZ . (w'). For all future legal queries of the for(@7;, Cirey s 2),

prev>

the parent query is defined in the natural way: it is (the fgqagry of the forrr(Cr’;rev, -, -) that resulted in output

z. We say (informally) that a circuit queriéam up to depthd if the maximum depth of any query tree is at
mostd.
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B Proof of No instances

Here, we use statistical soundness (following [25, 28, t6§rgue that for alk ¢ L:

Pr[S™Vek (z) outputs an accepting transcfipt 1/3 (2.1)

The proof proceeds by contradiction, showing thaf ibutputs an accepting transcript with high probability,
then there exists a cheating provef, that breaks the statistical soundness of the proof systeghl’Lthe
running time ofS, be the bound on the total number B§, queries made by, and letm be the round
complexity of the zero knowledge proof system. Startingrfrog,, we define a new (inefficient) prover
strategyP¢ which interacts with an external verifigtas follows:

1. Choose queries to forward . On inputz, P¢, picks a random subset of query indicEs =
{71, J2,-- - dm} C [T] of sizem. The setU represents the queries tiiag, will forward to the verifier

V.

2. SimulateS™VYex (z): Internally simulateS™Vex (z) step by step. We handle thih oracle queryg;, that
S makes toVg as follows. Lelg; = ;) for somei < m.

o If j ¢ U: SimulateVgy internally to answey;. More formally, look up the valuga;_},w)
stored during a previou¥s query. (Note that sinc& only makes refinement querieS, must
have made such a query.) Choosle— R, uniformly at random P, can do this since he is
computationally unbounded), stofey;),«w’) and outpud; (z, o), w’).

o If j € U: If ¢ = oy andi > 1, forward o; to the external’. Upon receivings; in response,
look up the stored valugx);_;;,w) and uniformly sample a random string « {w’ € RO A
Vi(z, a),w') = B;}. Store(ag;),w”) and outputs;.

Note that as long a§ outputs an accepting transcript with noticeable prob@bilihen interacting withVg
onz ¢ L then this cheating prové?¢, has a noticeable probability of outputting an acceptingscapt when
interacting with the honest verifie?. This happens ifP;x choosedU to include exactly the messages that
are used by in his output. P¢, succeeds in choosing the correct queries with probabititgast1/7°0™).
Thus, ifS outputs an accepting transcript with probabilityl /3 then’P¢, outputs an accepting transcript with
probability at least /3 - 1/7°(™) which is non-negligible whem = O(1). This is a contradiction of the fact
that the proof has negligible soundness error, thus (2lbwis.
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