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1 Introduction

A zero-knowledge proofis a protocol wherein one party, the prover, convinces another party, the verifier, of the
validity of an assertion while revealing no additional knowledge. Introduced by Goldwasser, Micali and Rackoff
in the 1980s [20], zero-knowledge proofs have played a central role in the design and study of cryptographic
protocols. In these applications, the main measure of efficiency is theround complexityof the proof system, and
it is important to construct constant-round zero-knowledge protocols forNP (with negligible soundness) under
minimal assumptions. In many cases, a computational zero-knowledge argument system (where both the zero-
knowledge and soundness guarantees hold against computationally bounded adversaries) suffices, and we know
how to construct such protocols forNP under the minimal assumption of one-way functions [10, 31].However,
in this work, we focus on computational zero-knowledge proof systems, where the soundness guarantee must
hold against computationally unbounded adversaries.

A common intuition in constructing zero knowledge protocols (typically based on some form of commitments)
is that statistical (resp. computational) soundness corresponds to using a statistically (resp. computationally)
binding commitment, while statistical (resp. computational) zero knowledge corresponds to using statistically
(computationally) hiding commitments. One might also expect that the round complexity of the resulting zero
knowledge protocol is roughly the same as the round complexity of the underlying commitment scheme.

However, the best known construction of computational zero-knowledge proofs from one-way permutations
hasω(1) rounds [17, 7], and the minimal assumption from which we knowhow to construct constant-round
computational zero-knowledge proofs forNP is constant-round statisticallyhiding commitments [15], which
seem to be a stronger assumption than one-way permutations [39, 23]. There are no known constructions of
constant-round computational zero knowledge proofs from constant-round statisticallybinding commitments.
We note that the latter may be constructed from one-way permutations [7] and one-way functions [30, 26]. This
raises the following intriguing open problem:

Can we base constant-round zero-knowledge proofs forNP on the existence of one-
way permutations?

We briefly survey what’s known in this regard for constant-round black-box zero-knowledge protocols (that
is, those using a black-box simulation strategy). We clarify that while we do know of non-black-box zero-
knowledge protocols [2, 22], these protocols are all zero-knowledge arguments and not proofs.

Unconditional constructions. The only languages currently known to have constant-round zero-knowledge
proofs from assumptions weaker than statistically hiding commitment schemes are those that admit statistical
zero-knowledge proofs, which do not require any computational assumption at all. Even though this includes
languages believed to be outside ofBPP such as graph isomorphism and graph non-isomorphism [17, 6], all
languages with statistical zero knowledge proofs lie inAM ∩ coAM [1, 12] (and therefore do not include all
of NP unless the polynomial hierarchy collapses).

Lower bounds. Goldreich and Krawczyk [16] showed that3-round zero-knowledge protocols and public-
coin constant-round zero-knowledge protocols with black-box simulators exist only for languages inBPP.
Katz [28] showed that4-round zero-knowledge proofs only exist for languages inMA ∩ coMA. Haitner et
al. [23] ruled out fully black-box constructions of constant-round statistically hiding commitment schemes (in
fact, anyO(n/ log n)-round protocol) from one-way permutations, which means that we are unlikely to obtain
constant-round zero-knowledge proofs from one-way permutations via the approach in [15]. More recently,
Haitner et al. [25] established a partial converse to [15], namely that any constant-round zero-knowledge
proof for NP that remains zero-knowledge under parallel composition implies the existence of constant-
round statistically hiding commitments. Unlike the case for stand-alone zero-knowledge, we do not know
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if there exists aω(1)-round zero-knowledge proof system forNP that remains zero-knowledge under parallel
composition, assuming only the existence of one-way permutations. Indeed, zero-knowledge under parallel
composition appears to be a qualitively much stronger security guarantee than stand-alone zero-knowledge.

1.1 Our Result.

In this work, we establish new barriers towards constructing zero-knowledge proof systems from one-way
permutations for all ofNP:

Main Theorem (informal). Only languages inAM∩coAM admit a fully black-box construction
of zero-knowledge proofs starting from one-way permutations where the construction relies on a
black-box simulation strategy with constant adaptivity.

A fully black-box construction (c.f. [36, 27]) is one that not only relies on a black-box simulation strategy,
but where the protocol relies on black-box access to the underlying primitive. Adaptivity is a measure of how
much the black-box simulator relies on responses from previous queries to the cheating verifier in order to
generate new queries. We point out that all known constructions of black-box simulators achieve adaptivity that
is linear in the round complexity of the protocol and therefore constant adaptivity is a fairly natural restriction
for constant-round protocols. Apart from the restriction on adaptivity, this is essentially the best one could hope
for in lieu of various positive results mentioned earlier:

• Our result only applies to constant-round protocols – running theO(log n)-fold parallel repetition of
Blum’s Hamiltonicity protocol [7] sequentially yields aω(1)-round black-box zero-knowledge proof
system forNP.

• Our result applies only to proofs, but not arguments – there exists a fully black-box construction
of constant-round computational zero-knowledge arguments with constant adaptivity from one-way
functions for all ofNP. [11, 34].

• We have unconditional constructions of constant-round statistical black-box zero-knowledge proofs for
graph isomorphism and graph non-isomorphism, languages which are inAM∩coAM but are commonly
believed to lie outsideBPP.

Limitations of our impossibilty result. Our impossibilty result imposes three main restrictions onthe
construction: black-box simulation strategy, black-box access to the one-way permutation, and bounded
adaptivity of the black-box simulator, amongst which adaptivity appears to be the greatest limitation. Our
current ability to prove general lower bounds for zero-knowledge (without limitation to black-box simulation)
is relatively limited [18, 4]; moreover, non-black-box simulation strategies so far only yield arguments and not
proof systems. In the context of zero-knowledge protocols,there is no indication whether non-black-box access
to the underlying primitive has an advantage over black-boxaccess to the primitive.

Extensions: the formal statement of our result (Theorem 3.3) is slightlymore general as we can obtain non-
trivial consequences even when the simulator’s adaptivityis super-constant but sufficiently smaller than linear.
We defer discussion of these strengthenings to Section 3.4.
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1.2 Proof overview

Recall that we start out with a constant-round zero-knowledge proof system(P,V) with constant adaptivity
for a languageL and we want to show thatL lies in AM ∩ coAM. The high level strategy is to extend
the Goldreich-Krawczyk lower bound for constant-round public-coin protocols [16] to the private-coin setting.
Following [16] (also [32, 28, 25]), we consider a cheating verifier V∗GK that “resamples” new messages that
are distributed identically to the real verifier’s messages(conditioned upon the partial transcript) every time
it is rewound. We will need to address the fact that we do not know how to simulate such aV∗GK efficiently
for general private-coin protocols. The computational complexity of V∗GK comes up in two ways in [16]: first
to deduce that the zero-knowledge property holds against such aV∗GK, and second to derive an efficientAM

protocol for the underlying languageL and its complementL.

To address the first issue, we rely on a result of Haitner et al.[23], which, roughly speaking, demonstrates the
existence of a one-way permutationπ secure in the presence of aV∗GK oracle (as long as the zero-knowledge
protocol has bounded round complexity, which is the case here). We will then instantiate the zero-knowledge
protocol (P,V) with the permutationπ. This will remain zero-knowledge against the cheating verifier V∗GK
sinceπ is one-way againstV∗GK. Following [16, 28, 25], we may then deduce aBPP

π,V∗
GK algorithm forL.

(Such a statement was obtained independently by Pass and Venkitasubramaniam [33].1) Along the way, we will
exploit (as with [28, 25]) the fact that(P,V) is a proof system as we need soundness to hold against a cheating
prover that is able to simulateV∗GK.

Next, we will essentially show thatBPP
π,V∗

GK ⊆ AM ∩ coAM from which our main result follows. Since
L already has a constant-round proof system by assumption2, L ∈ AM. Thus, it suffices to show that
BPP

π,V∗
GK ⊆ coAM. We do this by constructing aAM protocol forL where the strategy is to have the

AM prover and verifier jointly simulateπ andV∗GK. In more detail, theAM verifier will pick the permutation
π at random from a space ofpoly(Tm) permutations, whereT is an upper bound on the running time of the
reduction in the zero-knowledge protocol andm is the round complexity of the protocol; this turns out to
suffice as a one-way permutation for the result in [23].3 Next, we will have theAM prover and verifier jointly
simulate each oracle computation ofV∗GK using a (constant-round public-coin) random sampling protocol from
[24]. Note that naively having theAM prover perform the computation ofV∗GK fails for two reasons: a cheating
AM prover may resample messages from a distribution differentfrom the uniform distribution, and may not
answer all of theV∗GK queries “independently”. Finally, we rely on the constant adaptivity requirement of
(P,V) to partially parallelize the executions of the random sampling protocol, so that the final protocol forL
has constant round complexity.

2 Preliminaries

2.1 Definitions

Definition 2.1. A permutationπ : {0, 1}n → {0, 1}n is T -hard if for any circuitC of size at mostT , and fory
chosen uniformly at random,Pr[C(y) = π−1(y)] ≤ 1

T , where the probability is taken over the choice ofy. If,
givenx, π(x) is also efficiently computable then we call such a permutation aone way permutation(OWP).

Definition 2.2. Let Πn be the set of all permutations from{0, 1}n → {0, 1}n. Then, using the notation of [13],
we defineΠk,n ⊆ Πn as{πk,n | πk,n(a, b) = (πk(a), b) for someπk ∈ Πk} In other words, a uniform element

1They obtained the result via a generic transformation from private-coin protocols intoSam-relativized public-coin protocols, upon
which the result then follows from the (relativized) lower bound for constant-round public-coin protocols in [16].

2We can instantiate the protocol(P ,V) for L with the identity permutation for this purpose.
3Having theAM verifier sample a random permutation “on the fly” does not workbecause the permutationπ needs to be defined

everywhere forV∗
GK to be well-defined.
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of Πk,n is a random permutation on the firstk bits, and fixes the lastn− k bits.

2.2 Zero-knowledge

In what follows we define a fully black-box construction of weak computational zero knowledge (CZK) from
one way permutations. For a more general definition of CZK we refer the reader to previous literature [14]. As
usual, we letnegl(n) be some function such thatnegl(n) < 1

p(n) for all polynomialsp(n).

Notation: we will use the following notation for interactive protocols. For any interactive protocol between
a proverP and a verifierV , we let2m denote the total number of rounds of communication, where a round
consists of one message, either fromP to V or from V to P . We letαi denote theith message sent fromP to
V , andβi the ith response fromV to P . Note thatαi is sent in round2i − 1 andβi is sent in round2i. Also,
havingP always send the first message is without loss of generality aswe can setα1 =⊥ to model a proof
whereV goes first. Fori ∈ {1 . . . ,m}, we letα[i] = (α1, . . . , αi). Let V = (V1, . . . Vm) be the decomposition
of V into its next-message functions. HereVi(x, α[i], ω) outputsβi, the ith message sent byV when using
input x, random coinsω, and receiving messagesα[i] from P . Let 〈P, V 〉(x) denote the verifier’s view of an
execution of the interactive protocol on an inputx. This view includes all messagesα[m] sent by the prover, the
verifier’s random coinsω, and (if V is allowed access to an oracle) the answers to any oracle queries V may
have made. We say that〈P, V 〉(x) accepts ifVm(x, α[m], ω) = 1.

We will reserve calligraphicP,V,S to denote the prover, verifier, and simulator in a zero-knowledge protocol,
and regularP, V to denote the prover and verifier in a (possibly non-zero-knowledge) interactive protocol.

Definition 2.3. A fully black-box construction of a (weak) computational zero-knowledge proof system from
one-way permutations for a languageL is a tuple of oracle procedures(P,V,S,M) such that there exists a
polynomialT (n) satisfying the following properties for every family of permutationsπ = {πn}n≥1:

Efficiency. The running times ofV,S,M are bounded byT = T (n).

Completeness.For allx ∈ L: Pr[〈Pπ,Vπ〉(x) accepts] ≥ 1− negl(n).

Soundness.For allx /∈ L and for all (possibly computationally unbounded)P∗,

Pr[〈P∗,Vπ〉(x) accepts] ≤ negl(n).

Black-Box Zero-Knowledge. For all (possibly computationally unbounded)V∗,D and for allx ∈ L: if
∣∣∣Pr[D(〈Pπ,V∗〉(x)) = 1]− Pr[D(Sπ,V∗

(x)) = 1]
∣∣∣ > 1/n

thenM can invertπ, namely:

Pr
y∈{0,1}n

[Mπ,V∗,D(y) = π−1(y)] > 1/T

We note that completeness and soundness hold even if the given permutations are not one-way. Also,V∗,D are
quantified afterπ is fixed and therefore may depend onπ.

Comparison with standard definitions of zero-knowledge: The property that makes the above definition
weakzero knowledge is that we only require the distinguishing advantage to be smaller than1/n, rather than
negligible (the choice of1/n was arbitrary; any non-negligible function will do). This enables us to consider
simulators that run instrict polynomial time; it is known that in the standard definition of zero knowledge where

4



the distinguishing advantage is negligible, no strict polynomial-time black-box simulators exist for constant-
round protocols [3], although there are examples of non-black-box simulators [2]. It is useful for us to consider
strict polynomial-time simulators because defining adaptivity is more straight-forward for such simulators than
for expected polynomial-time simulators. This is discussed in the next section.

Nevertheless, we note here that any zero knowledge proof satisfying the standard definition also satisfies the
weak definition above: if a simulatorS ′ satisfies the standard definition and runs in expected timeT ′, then a
simulatorS satisfies the weak definition by runningS ′ for at most2nT ′ steps, and halting with a failure symbol
if S ′ does not produce an output in that time. By ruling out black-box constructions of weak zero knowledge
proofs from one-way permutations, we also rule out proofs satisfying the standard definition. We note that the
same discussion applies to the runtime of the reduction algorithm M .

Simplifying assumptions: we assume for simplicity that on inputs of lengthn, V andS only queryπ on
inputs of lengthn. We assume that in an honest interaction of the protocol, thelast message is from the
verifier V to the proverP and contains the verifier’s random coins. Clearly this does not affect either zero
knowledge or soundness since it occurs after all “meaningful” messages are sent. This assumption allows us
to define a transcript to be accepting if the honest verifier would accept that transcript using the coins output
in the last message, and this definition remains meaningful even for transcripts generated by cheating verifiers.
We assume without loss of generality that the simulatorS never asks the same query twice and that it only asks
refinementqueries. Namely, fori > 1 and for every queryα[i] = (α[i−1], αi) that the simulator queries to its
cheating verifier black boxV∗, it must have previously queriedα[i−1] as well. We direct the reader to [15] for
a discussion of why this holds without loss of generality.

2.3 Adaptivity

Here we define theadaptivityof the simulator, namely how much it uses responses from previous queries to
the verifier black-box in order to generate new queries. All of the black-box simulators for constant-round
zero knowledge in the literature intuitively work the following way: repeatedly query the cheating verifier with
dummy queries enough times until it leaks some secret, then rewind and use this secret to output a simulated
transcript [15, 5, 9, 10]. The simulator may use the verifier’s answers to determine whether to continue with
dummy queries or to proceed to the next step of the simulation. If the simulator runs inexpected polynomial
time(rather than strict polynomial time), this procedure lastsindefinitely, making it hard to define the degree of
the simulator’s adaptivity. This is why we choose to work with weakzero knowledge, where the simulation is
strict polynomial time; the definition of adaptivity becomes much simpler and more intuitive in this setting. We
stress again that this only strengthens our result, as any zero-knowledge proof system satisfying the standard
definition also satisfies the weak definition.

Definition 2.4. A simulatorS running in timeT is said to bet-adaptive if it can be decomposed intot + 1
oracle machinesS = (S1, . . . ,St,St+1) with the following structure. Letx, ω (respectively) be the input and
random coins forS. For all permutationsπ and all cheating verifiersV∗, Sπ,V∗

operates as follows:

1. Sπ,V∗

1 (x;ω) generates at mostT queriesq(1)
1 , . . . , q

(1)
T usingx, ω. It sends these queries toV∗ and gets

back answers~a1 = (a
(1)
1 , . . . , a

(1)
T ).

2. For each phasej, 1 < j ≤ t, Sπ,V∗

j (x;ω,~aj−1) generates at mostT queriesq(j)
1 , . . . , q

(j)
T usingx, ω and

~aj−1 which is the concatenation of all oracle answers from phases1, . . . , j − 1. Sπ,V∗

j sets~aj to be the

oracle answersa(j)
1 , . . . , a

(j)
T for thej’th phase, concatenated with~aj−1.

3. After obtaining~at, Sπ
t+1(x;ω,~at) computes the final output (notice it does so without callingV∗).
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2.4 TheSampleWithSize protocol

In our proof, we will require a constant-round public-coin sampling protocol from [24]. The verifier desires to
sample a random element from an efficiently decidable setR using the help of an all-powerful prover, assuming
that the verifier knows (an approximation of)|R|. Such protocols have a long history in theoretical computer
science [38, 21, 12, 1], but for us the most relevant prior work is Goldreichet al. [19].

The SampleWithSize protocol of [24] also guarantees that if the verifier knowss that is a multiplicative
approximation of|R|, then the verifier can obtain a samplex distributed close to uniform inR. In addition,
given a partition ofR, the SampleWithSize provides asizesx that approximates the size of the set in the
partition thatx belongs to. We will use this protocol in Section 3.4 recursively: the size parametersx is used
with SampleWithSize to sample from the partition thatx belongs to, and so forth.

Theorem 2.5(Theorem 4.1 of [24]). There exists a constant-round public-coin protocolSampleWithSize =
(PSWS, VSWS) whose parties get as input:

1. A setR ⊂ {0, 1}n represented as a polynomial-size circuit deciding membership in R.

2. A positive integers ∈ N, satisfyings ∈ [(1± ( δ
100n )8)|R|]

3. A partitionΛ of R given by a labeling functionΛ : R→ {0, 1}∗ such that two elementsx, x′ ∈ R are in
the same partition set iffΛ(x) = Λ(x′), i.e. they share the same label.Λ is given as a polynomial-size
circuit.

4. A security parameterδ ≥ 1/poly(n) given in unary.

Let〈P ∗, VSWS〉(R, s,Λ, δ) denote the interaction of the verifier with any proverP ∗, resulting either in an output
(x, sx) or “abort”. The protocol achieves the following guarantee:

1. Completeness: an interaction with the honest prover〈PSWS, VSWS〉(R, s,Λ, δ) aborts with probability
at mostδ.

2. Correctness and soundness: when interacting with any (honest or deviating) proverP ∗, either
(conditioned on not aborting) the output(x, sx) = 〈P ∗, VSWS〉(R, s,Λ, δ) satisfies both the following:

(a) With probability at least1− δ, sx ∈ [(1± δ)|Λ−1(Λ(x))|].

(b) Conditioned onsx ∈ [(1± δ)|Λ−1(Λ(x))|], x is distributedδ-close to uniform overR.

or else〈P ∗, VSWS〉(R, s,Λ, δ) aborts with probability at least1− δ.

SampleWithSize is applied in [24] in a way that is similar to the setting of this paper,i.e. it is used to replace
oracle calls to a sampling oracle by invocations of this protocol.

3 Proof of main theorem

3.1 Overview

As discussed in the Introduction, our proof involves using aparticular cheating verifier,V∗GK defined in
Section 3.2, with the following properties:

• V∗GK cannot invert a random permutationπ. This implies that the view〈Pπ,V∗GK〉(x) can be simulated
by a simulatorSπ,V∗

GK(x) wheneverx ∈ L. (Section 3.3)
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• The simulatorSπ,V∗
GK(x) cannot produce an accepting transcript wheneverx /∈ L. Together with the

previous property, this gives a way of decidingL. (Section 3.3)

• One can efficiently generate a transcript according toSπ,V∗
GK(x) in a constant number of rounds with the

help of an all-powerful (but possibly cheating) prover. Since one can efficiently decide using the output
of Sπ,V∗

GK(x) whether or notx ∈ L, this impliesL ∈ AM ∩ coAM. (Section 3.4)

3.2 DefiningV∗GK

Informally, upon receiving a message, the cheating verifieruniformly chooses a new random tape consistent
with the transcript seen so far, and uses this to compute his next message. The formal definition follows, using
notation defined in Section 2.1.

Fix any black-box construction of weak zero knowledge from one-way permutations(P,V,S,M). Let ω ∈
{0, 1}T be a random tape for the honest verifierV which is divided into next-message functionsV1, . . . ,Vm,
then define

R
α[i]
ω = {ω′ ∈ {0, 1}T | ∀j < i, Vj(x, α[j];ω) = Vj(x, α[j];ω

′)} (3.1)

i.e. the set of random tapes that, given prover messagesα[i], produce the same verifier messages as the random
tapeω. For the special case wherei = 1, setRα1

ω = {0, 1}T for all α1 and allω. The cheating verifier
V∗GK = (V∗GK,1, . . .V

∗
GK,m) is defined below. To simplify notation, we omit the inputx (which is fixed), the

permutationπ (which is sampled once and then fixed), and the random coins ofV∗GK.

• V∗GK,1(α1): choose a random tapeω uniformly at random, store(α1, ω) and outputV1(α1, ω).

• V∗GK,i(α[i]) for i > 1: let α[i] = (α[i−1], αi). Look up the value(α[i−1], ω) stored during a previous

query. Chooseω′ ← R
α[i]
ω uniformly at random, store(α[i], ω

′) and outputVi(α[i], ω
′).

Recall that we assume the simulator never repeats queries and only makes refinement queries. Therefore,V∗GK
never tries to store inconsistent entries in the table, andV∗GK never queries its table for entries that do not exist.
Observe that the output of〈Pπ,V∗GK〉(x) is distributed identically to the honest〈Pπ,Vπ〉(x). However,V∗GK is
not necessarily efficient, since there may be no way to samplefrom R

α[i]
ω efficiently.

We want to construct a one-way permutation that remains one-way in the presence of aV∗GK-oracle. To
accomplish this, we refer to a result of Haitner et al. [23], which ruled out fully black-box constructions
of Ω(n/ log n)-round statistically hiding commitment schemes form one-way permutations (wheren is the
security parameter). More generally and somewhat informally, they (building on and generalizing the works of
[13, 37, 39]) demonstrated oraclesπ,Sam with the following properties:

• π is a random permutation onk bits and is one-way in the presence of aSam-oracle, and

• Sam can be used to instantiate a cheating sender that breaks the binding property of anym-round
statistically hiding commitment scheme, as long ask & m log T , whereT is the running time of the
security reduction.

Moreover, the afore-mentioned cheating sender uses a ”resampling” strategy exactly asV∗GK does, and therefore,
theSam oracle can be used to efficiently instantiate our cheating verifier strategy. Haitner et al. prove that a
sufficently large random permutationπ remains one-way in the presence ofSam. The following lemma follows
directly from their results.
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Lemma 3.1(implicit in [23]). SupposeT, k satisfyT 3m+2 < 2k/8. Then, for any oracle machineR running in
timeT , it holds that:

Pr
π∈Πk,n,y←RUn

[Rπ,V∗
GK(y) = π−1(y)] ≤ 1/T

Proof. This is essentially a special case of [23, Theorem 5.1], which established the above statement whereV∗GK
is replaced with a so-called sampling oracleSam (refer to Appendix A or to [23] for the formal specification
of Sam). It is straight-forward to verify thatV∗GK is a special instance of theSam oracle; whileSam resamples
preimages in arbitrary circuits,V∗GK only resamples preimages in the circuits computing the honest verifier’s
next message function.4 Furthermore, the restrictions thatSam imposes on its queries are imposed byV∗GK as
well. In particular, we assumeS only makes refinement queries, and since there are onlym prover messages
in a protocol, the longest sequence of refinement queries that S may ask is of lengthm. In the notation of [23],
then, we only allow queries ofdepth(n) = m.

3.3 DecidingL usingV∗GK

We prove thatSπ,V∗
GK(x) generates an accepting transcript with high probability ifand only ifx ∈ L.

Lemma 3.2. Given any fully black-box construction from one-way functions of a constant-round weak zero
knowledge proof(P,V,S,M) for a languageL, and anyn, k satisfyingT 3m+2 < 2k/16, where2m = O(1) is
the round complexity of the proof system andT = poly(n) is the strict polynomial bound on the running times
of V,S,M , the following hold:

1. If x ∈ L, thenPrπ←RΠk,n,S,V∗
GK

[Sπ,V∗
GK generates accepting transcript] ≥ 2/3.

2. If x /∈ L, thenPrπ←RΠk,n,S,V∗
GK

[Sπ,V∗
GK generates accepting transcript] ≤ 1/3.

Proof. We only prove the case of yes instances; no instances are treated exactly as in the argument of [16] and
we defer it to the appendix.

Yes instances: We use the zero-knowledge property of the proof system to prove that for allx ∈ L:

Pr[Sπ,V∗
GK(x) outputs an accepting transcript] ≥ 2/3 (3.2)

The proof proceeds by contradiction, showing that ifS fails to output an accepting transcript with sufficiently
high probability then, by the weak zero-knowledge propertyof (P,V,S,M), M can invert a random
permutationπ ∈ Πk,n.

As was noted before, the distributions〈Pπ,V∗GK〉(x) = 〈Pπ,Vπ〉(x). Therefore, by the completeness of
the proof system, forx ∈ L, the transcript〈Pπ,V∗GK〉(x) is accepted by the honest verifier with probability
1− negl(n). More formally,Pr[Vπ

m(x, 〈Pπ,V∗GK〉(x)) = 1] ≥ 1− negl(n).

For the sake of contradiction, assume thatSπ,V∗
GK(x) outputs an accepting transcript with probability less than

2/3. That is,Pr[Vπ
m(x,Sπ,V∗

GK(x)) = 1] < 2/3. Then we can use the honest verifierV to distinguish between
the prover and simulator output, since|Pr[Vπ

m(x, 〈Pπ ,V∗GK〉) = 1] − Pr[Vπ
m(x,Sπ,V∗

GK(x)) = 1]| > 1/3 −
negl(n). Therefore, by the weak black-box zero-knowledge propertyof (P,V,S,M), there exists an oracle
machineMπ,V∗

GK ,V running in timeT that can break the one-wayness ofπ with probability at least1/T . We

4More specifically, lettingVπ
x,α[i](ω) = V

π
i (x,αi, ω), where the first two inputs are hardwired into the circuit, a valid Sam query

is (roughly) of the form(Vπ
x,α[i],V

π
x,α[i−1], βi−1), where some prior query toSam, (Vπ

x,α[i−1],V
π
x,α[i−2], βi−2), resulted in output

(ω, βi−1) such thatVπ
x,α[i−1](ω) = βi−1. Furthermore, because we assume that all simulator queriesare refinement queries, the query

(Vπ
x,α[i],V

π
x,α′[i−1], βi−1) can only occur ifα[i] = (α′

[i−1], α
′
i), as required bySam.
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can remove oracle access toV by havingM simulateV by making at mostT oracle calls toπ for each call to
V. Thus, we get a machineMπ,V∗

GK running in timeT 2 such thatPrπ∈Πk,n,y←RUn [Mπ,V∗
GK(y) = π−1(y)] ≥

1/T > 1/T 2. This yields a contradiction to Lemma 3.1, and (3.2) follows.

3.4 Removingπ and V∗GK

Theorem 3.3.Suppose there is a black-box construction from a one-way permutation of a constant-round weak
zero knowledge proof(P,V,S,M) for a languageL, whereS is t-adaptive. ThenL ∈ AM ∩ coAM[t].

Proof. We construct aO(t)-round interactive proof(PS , VS) for the complement languageL, which proves that
L ∈ coAM[t]. The high-level idea is forVS to emulate the computation ofSπ,V∗

GK and to use the all-powerful
prover to answer any queries the simulator makes toV∗GK. If the prover were always honest it would answer
these queries asV∗GK would, allowingVS to emulateSπ,V∗

GK exactly, and enabling him to decideL. (Recall
from Lemma 3.2 that with high probabilitySπ,V∗

GK(x) produces an accepting transcript iffx ∈ L.)

Two problems arise here. The first is that the prover may deviate from the prescribed behavior. To handle
this, we replace each query toV∗GK with an execution of theSampleWithSize sampling protocol from
Theorem 2.5. Recall that this protocol catches a cheating prover with high probability. The second problem
is that Sπ,V∗

GK makesO(T ) queries toV∗GK; if we ran theseSampleWithSize protocols sequentially, we
would have aO(T )-round protocol forL. Instead, we will exploit thet-adaptivity ofS to parallelize the
executions ofSampleWithSize. Recall from Definition 2.4 thatSπ,V∗

GK can be decomposed intoSπ,V∗
GK =

(S
π,V∗

GK
1 , . . . ,Sπ

t+1), each of which makes only parallel queries toV∗GK. To attain anO(t)-round protocol forL,
for each adaptive stepj ∈ [t], we will execute in parallel all of theSampleWithSize executions corresponding
to the queries made bySj.

Samplingπ efficiently: our first observation is that sinceπ ←R Πk,n andk = 9(3m + 2) log T = O(log n),
such a permutation can be sampled efficiently byVS . Therefore, in the first step of the proof, our verifierVS
will sample such aπ and send it to the prover, and they then both use this fixedπ for the rest of the proof.

The AM protocol for L: The main tool we use is the protocolSampleWithSize from [24], which was given
in Theorem 2.5. We construct anAM proof system(PS , VS) for L that uses this protocol to emulate the
computation ofSπ,V∗

GK .

First we set up some notation. LetSπ,V∗
GK = (S

π,V∗
GK

1 , . . . ,S
π,V∗

GK
t ,Sπ

t+1) denote the decomposition of the
t-adaptive simulator as described in Definition 2.4. SinceS ’s running time is bounded byT , for all j ∈
[t], Sj makes at mostT oracle queries. Since for the rest of this proof we will be working with a fixedx
and a permutationπ chosen once and then fixed, we will letV denote the honest verifier with these fixed
choices ofx, π, and letV = (V1, . . . ,Vm) its decomposition into next-message functions. Assume without
loss of generality that the simulator’s adaptivityt is at leastm, which is half the number of rounds of the zero
knowledge proof and the number of messages sent byV.

Define the error loss functionloss(δ) = ( δ
100n )8, and letloss0(δ) = δ andlossi(δ) = lossi−1(loss(δ)). Then for

i ∈ [t], we define the error parameterδi = lossm−i(1/(ntT )). It is easy to check thatδi−1 = ( δi

100n )8 for all i

and furthermoreδ1 = (1/ntT )O(8m) = 1/poly(n) as long asm = O(1).

We will use the definition ofR
α[i]
ω given in Equation 3.1.

Protocol 3.4. The following protocol(PS , VS) takes inputx of lengthn, and the verifierVS either accepts or
rejects by performing the following:

9



1. VS samplesπ ←R Πk,n and sends a description ofπ to PS .

2. VS allocates a lookup tableTable that associatesS ’s queriesα[i] with entries(ω, s). The table is initially
empty.

3. VS samples random coins forSπ,V∗
GK and uses these random coins to emulateSπ,V∗

GK as follows.

Sequentially for each adaptive stepj = 1 throughj = t, VS emulates the computation ofS
π,V∗

GK
j to

compute queriesα(j)
[i1]

, . . . , α
(j)
[iT ]. VS engages in the following sub-protocol for all the queries instepj in

parallel. Letα[i] be one such query:

(a) If i = 1 thenVS setsω0 = 0n, s0 = 2T . If i > 1, thenVS looks upTable(α[i−1]) = (ωi−1, si−1).

(b) VS setsΛα[i]
to be the circuit taking inputω and outputtingVi(α[i];ω).

(c) VS engages in theSampleWithSize protocol with the prover on inputR
α[i]
ωi−1 , si−1,Λα[i]

, δi.

(d) If SampleWithSize aborts thenVS aborts, otherwiseVS attains an output(ωi, si), records
Table(α[i]) = (ωi, si) and returnsβ[i] = Vi(α[i];ωi).

4. After t adaptive steps,VS runsSπ
t+1 on the obtained query responses in order to output a verifier view τ .

5. Using the honest verifier algorithmV, VS checks whereτ is an accepting view. If it is rejecting thenVS
accepts (since we want to decide the complement ofL), otherwiseVS rejects.

VS ’s efficiency is clear. It is also clear that the protocol runsin O(t) rounds. Completeness and soundness
follow from the following claim:

Claim 3.5. If VS emulatesSπ,V∗
GK using SampleWithSize on input x as described above, then both of the

following hold:

1. Completeness: The probability〈PS , VS〉 aborts is at most1/n.

2. Correctness and Soundness: For any (honest or cheating) proverP ∗, let τ denote the distribution of
views generated byVS in Step 4 of Protocol 3.4 whenVS interacts withP ∗. Then, either (conditioned on
VS not aborting) the statistical distance satisfies

∆(τ,Sπ,V∗
GK(x)) ≤ 2/n

or else〈P ∗, VS〉(x) aborts with probability1− 1/n.

First we use Claim 3.5 to prove that Protocol 3.4 is a completeand soundAM protocol forL, then we turn to
proving the claim.

Completeness of Protocol 3.4: If x ∈ L, then by the first item of Claim 3.5 the honest prover causes
VS to abort with probability at most1/n, and by the second item, conditioned on not aborting,τ is 2/n-
statistically close toSπ,V∗

GK(x). Sincex ∈ L, Lemma 3.2 says thatSπ,V∗
GK(x) produces a rejecting transcript

with probability at least2/3. It follows thatτ is a rejecting transcript with probability at least2/3− 2/n. Since
VS accepts whenτ is a rejecting transcript,VS will accept with probability at least2/3− 3/n.

Soundness of Protocol 3.4: If x /∈ L, then by the second item of Claim 3.5, any prover either causes VS
to abort with probability1 − 1/n, or, conditioned on not aborting, it holds thatτ is 2/n-statistically close
to Sπ,V∗

GK(x). As in the completeness case, combining this with Lemma 3.2 implies thatVS accepts with
probability at most1/3 + 2/n. Regardless of the prover’s strategy, the verifier accepts with probability at most
1/3 + 2/n.
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3.4.1 Proof of Claim 3.5

Completeness The only timeVS might abort is in an invocation ofSampleWithSize. Recall that an execution
with an honest prover ends in abort with probability at mostδi ≤ δm. Since there are at mosttT invocations of
SampleWithSize, the probability that the honest prover causes any invocation to abort is at mostδmtT ≤ 1/n.

Soundness We will use the definition of the setR
α[i]
ω as given in Equation 3.1. Let us say that the good event

Good j occurs if for allj ∈ [t] the following is true for all invocations ofSampleWithSize in VS ’s emulation of

S
π,V∗

GK
1 , . . . ,S

π,V∗
GK

j :

• VS has not aborted.

• Let α[i] be any query that was made in adaptive stepj′, where1 ≤ j′ ≤ j. Then the response(ω, sω)

obtained by runningSampleWithSize with the prover satisfiessω ∈ [(1± δi)|R
α[i]
ω |].

• Conditioned on the first two items,ω is δi-close to uniformly distributed inR
α[i]
ω .

Let us defineGood 0 to hold always. Notice that ifGood j holds, thenGood j′ holds for allj′ < j.

Also defineAborts j to be the event thatVS aborts somewhere in the emulation ofS
π,V∗

GK
1 , . . . ,S

π,V∗
GK

j . Notice

thatAborts t is the event thatVS never aborts in the entire protocol.

Claim 3.6. Fix a prover strategyP ∗. Either for all j ∈ [t] it holds that

Pr[Good j | Good j−1 ∧ Abortsj] ≥ 1− 1/(nt) (3.3)

or elsePr[Aborts t] ≥ 1− 1/n.

Using Claim 3.6 to prove Claim 3.5: SupposePr[Aborts t] = Pr[VS aborts] < 1− 1/n (since otherwise we
are done). Then, sinceGood 0 always holds, Claim 3.6 followed by a union bound over all steps implies that

Pr[Good t | Aborts t] ≥ 1− 1/n (3.4)

Sinceδi ≤ δm, it holds for all j ≤ t that conditioned on eventGood j, the outputs of the invocations of
SampleWithSize areδm-statistically close to the outputs ofV∗GK. Since there are at mosttT queries, by the
triangle inequality their joint distribution is at mosttT δm = 1/n statistically far from the output ofV∗GK. The
input x, the simulator’s random coins, and the answers to the queries completely determine the output of the
simulator. Therefore

∆((τ | Good t),S
π,V∗

GK(x)) ≤ 1/n (3.5)

Combining Inequality 3.4 and Inequality 3.5, we obtain Claim 3.5.

Proving Claim 3.6: Let P ∗ be an arbitrary, possibly cheating prover strategy. Noticethat this prover strategy
may use dependencies between all the parallel instances ofSampleWithSize that are invoked in stepj. However,
the soundness ofSampleWithSize holds against all (possibly unbounded) prover strategies,so soundness still
holds in each of the parallel instances ofSampleWithSize. Therefore we can analyze each instance separately.

We prove Claim 3.6 by induction on the stepsj. Inequality 3.3 holds forGood0, since we definedGood 0 to
always be true, therefore the base case is trivial. For the inductive case, Suppose Inequality 3.3 holds for all

j′ ≤ j − 1. In thej’th step forj ≥ 1, VS invokes theSampleWithSize protocol for all ofS
π,V∗

GK
j ’s queries,
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conditioned onGood j−1. This conditioning implies that for all previous invocations α[i] that were answered

with (ω, sω), it holds thatsω ∈ [(1± δi)|R
α[i]
ω |]. Let us say that such an output isδi-accurate.

The overall prover strategyP ∗ induces prover strategies for each of theT parallel invocations ofSampleWithSize

generated byS
π,V∗

GK
j . Since we invokedSampleWithSize with error parameterδi, if at least one such invocation

aborts with probability≥ 1− δi > 1− 1/n, then the overall protocol aborts with at least this probability.

Suppose thatVS does not abort with such high probability. Letα[i] be any query in thej’th adaptive step.
Let α[i−1] be the prefix ofα[i], then becauseS only asks refinement queries we know thatVS already queried
α[i−1] and furthermore becauseGood j−1 holds it has recorded aδi−1-accurate answer(ω, sω) for α[i−1] in its

table. By definition,δi−1 = ( δi

100n )8, therefore using the fact that(ω, sω) is δi−1-accurate forα[i−1], VS invokes

SampleWithSize with sω that is a good enough approximation ofR
α[i]
ω . Therefore Theorem 2.5 implies the

following two cases:

Case 1: there exists some queryα[i] made in thej’th adaptive step, such thatSampleWithSize causesVS to
abort with probability≥ 1 − δi. By the inductive hypothesis (Inequality 3.3 holds for all1, . . . , j − 1) and a
union bound over all1, . . . , j − 1, it holds that

Pr[Good j−1 | Abortsj−1] ≥ 1− (j − 1)/(nt)

Therefore we can deduce that

Pr[VS aborts] ≥ (1− Pr[Abortsj−1]) Pr
[
Abortsj | Abortsj−1

]
+ Pr[Aborts j−1]

≥ Pr
[
Abortsj ∧Good j−1 | Abortsj−1

]

≥ Pr
[
Good j−1 | Abortsj−1

]
Pr[Aborts j | Good j−1,Aborts j−1]

≥ (1− j−1
nt )(1− δi)

≥ 1− 1/n

Case 2: for every queryα[i] in adaptive stepj, the invocation ofSampleWithSize on α[i] causesVS to abort
with probability < 1 − δi. In this case, by a union bound and the fact thatδi ≤ δj for all queries in thej’th
adaptive step,VS aborts with probability< 1−δjT . Furthermore, the correctness condition ofSampleWithSize

implies that conditioned on not aborting both the followinghold for every queryα[i] made in roundj,

1. With probability> 1− δi > 1− δj , the output(ω, sω) of SampleWithSize is δi-accurate.

2. Conditioned on(ω, sω) beingδi-accurate, it holds thatω is distributedδi-close to uniform inR
α[i]
ω

Therefore by a union bound over allT queries in roundj, it holds that

Pr[Good j | Good j−1 ∧ Abortsj] ≥ 1− δjT > 1− 1/(nt)

Interpretation: Combining Theorem 3.3 with [8] it says that constant-round weak zero knowledge proofs
for NP based on one-way permutations with a constant-adaptive simulator are unlikely to exist unless the
polynomial hierarchy collapses; combining it with [35] it says that such proofs forNP with a polylog(n)-
adaptive simulator are unlikely to exist unless theexponentialhierarchy collapses; and in general it says any
such proof forNP with a o(n)-adaptive simulator would imply a new interactive protocolfor coNP whose
round complexity beats linear, which is the best known [29].
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A The Sam Oracle [23]

For completeness, we provide a description of theSam oracle as defined in [23].Sam is given access to a
family of random permutationsπ = {πn}

∞
n=1 whereπn ∈ Πn. Sam takes as input a circuitCπ

prev (possibly
containingπ-gates), and some outputz of this circuit. It returns a uniform pre-image ofz underCπ

prev. The
challenge is to constructSam such thatSam access enables uniform sampling of pre-images without enabling
the user to invertπ. To achieve this, several important restrictions on the queries are described below. A more
formal description can be found in [23].

Description of Sam: Sam takes as input a queryq = (Cπ
next, C

π
prev, z) and outputs(ω′, z′), such that:

• ω′ is chosen uniformly at random from the set{ω | Cπ
prev(ω) = z}.

• z′ = Cπ
next(ω

′).

The restrictions are as follows:

1. The input(Cπ
prev, ·, ·) was previously queried and resulted in output(ω, z). Note that this restriction

imposes a forest structure on the queries.

2. Cπ
next is a refinementof Cπ

prev. Formally: Cπ
next(ω) = (Cπ

prev(ω), C̃π(ω)) for some circuitC̃π and for
everyω.

3. The root query in every tree must include a security parameter 1n such that for some functiondepth :
N → N, depth(n) specifies the maximum depth of that particular tree. Queriesin that tree can (only)
have circuits containingπj-gates forj ≤ n, and queries beyond depthdepth(n) receive output⊥.

Technically, the above restrictions are enforced in [23] bygiving Sam access to a signature protocol, and having
him sign the output to every query, as well as the depth of the query, before returning a response. New queries
are required to include a signature on a prior query, demonstrating that the first and third requirements have been
met. (The refinement property can be verified bySam independently.) Any query not meeting these restrictions
receives output⊥. We direct the reader to [23] for the complete details, and leave them implicit below.

We commented above that the first restriction imposes a forest structure on the queries. More specifically, aroot
query is of the form(1n, Cπ

next,⊥,⊥), and is answered bySam with (ω′, z′), whereω′ chosen at uniformly at
random from the domain ofCπ

next, andz′ = Cπ
next(ω

′). For all future legal queries of the form(Cπ
next, C

π
prev, z),

the parent query is defined in the natural way: it is (the first)query of the form(Cπ
prev, ·, ·) that resulted in output

z. We say (informally) that a circuit queriesSam up to depthd if the maximum depth of any query tree is at
mostd.
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B Proof of No instances

Here, we use statistical soundness (following [25, 28, 16])to argue that for allx /∈ L:

Pr[Sπ,V∗
GK(x) outputs an accepting transcript] ≤ 1/3 (2.1)

The proof proceeds by contradiction, showing that ifS outputs an accepting transcript with high probability,
then there exists a cheating proverP∗GK that breaks the statistical soundness of the proof system. Let T , the
running time ofS, be the bound on the total number ofV∗GK queries made byS, and letm be the round
complexity of the zero knowledge proof system. Starting from V∗GK, we define a new (inefficient) prover
strategyP∗GK which interacts with an external verifierV as follows:

1. Choose queries to forward toV: On input x, P∗GK picks a random subset of query indicesU =
{j1, j2, . . . , jm} ⊂ [T ] of sizem. The setU represents the queries thatP∗GK will forward to the verifier
V.

2. SimulateSπ,V∗
GK(x): Internally simulateSπ,V∗

GK(x) step by step. We handle thej’th oracle query,qj, that
S makes toV∗GK as follows. Letqj = α[i] for somei ≤ m.

• If j /∈ U : SimulateV∗GK internally to answerqj. More formally, look up the value(α[i−1], ω)
stored during a previousV∗GK query. (Note that sinceS only makes refinement queries,S must
have made such a query.) Chooseω′ ← R

α[i]
ω uniformly at random (P∗GK can do this since he is

computationally unbounded), store(α[i], ω
′) and outputVi(x, α[i], ω

′).

• If j ∈ U : If qj = α[i] and i > 1, forwardαi to the externalV. Upon receivingβi in response,

look up the stored value(α[i−1], ω) and uniformly sample a random stringω′′ ← {ω′ ∈ R
α[i]
ω ∧

Vi(x, α[i], ω
′) = βi}. Store(α[i], ω

′′) and outputβi.

Note that as long asS outputs an accepting transcript with noticeable probability when interacting withV∗GK
onx /∈ L then this cheating proverP∗GK has a noticeable probability of outputting an accepting transcript when
interacting with the honest verifierV. This happens ifP∗GK choosesU to include exactly the messages that
are used byS in his output.P∗GK succeeds in choosing the correct queries with probability at least1/TO(m).
Thus, ifS outputs an accepting transcript with probability> 1/3 thenP∗GK outputs an accepting transcript with
probability at least1/3 · 1/TO(m) which is non-negligible whenm = O(1). This is a contradiction of the fact
that the proof has negligible soundness error, thus (2.1) follows.
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