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Valérie Berthé, Eda Cesaratto, Brigitte Vallée, and Alfredo Viola

Universidad de la República, Uruguay
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Study in combinatorics of words.
Main aim: description of the finite factors of an infinite word u

– How many factors of length n? −→ Complexity
– What are the gaps between them? −→ Recurrence

Very easy when the word is eventually periodic !

Sturmian words:
the “simplest” binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words.
Classical study : for each fixed Sturmian word,

what are the extreme bounds for the recurrence function?

Here, in a convenient probabilistic model, we perform a
probabilistic study:
For a “random” sturmian word, and for a given “position”,

– what is the mean value of the recurrence?
– what is the limit distribution of the recurrence?
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Complexity

Note: Lu(n) denotes the set of factors of length n in u.

Complexity function of an infinite word u ∈ AN

pu : N→ N , pu(n) = |Lu(n)| .

Some simple facts

pu(n) ≤ |A|n , pu(n) ≤ pu(n+ 1) .

Property

u ∈ AN is not eventually periodic

⇐⇒ pu(n)<pu(n+ 1)

=⇒ n+ 1 ≤ pu(n) .



Recurrence

Definition (Uniformly recurrent)

A word u ∈ AN is uniformly recurrent iff each finite factor appears
infinitely often and with bounded gaps.

Definition (Recurrence function)

Let u ∈ AN

R〈u〉(n) = inf{m ∈ N : for each w ∈ Lu(m)

, every U ∈ Lu(n) is a factor of w} .

In words, given any window of length m = R〈u〉(n) in u, we can
find every factor U of length |U | = n within it.
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Sturmian words

=⇒ “simplest” words that are not eventually periodic.

Definition

A word u ∈ {0, 1}N is Sturmian iff pu(n) = n+ 1 for each n ≥ 0.

I All Sturmian words are uniformly recurrent.

Explicit construction

A word u is Sturmian iff there are α, β ∈ [0, 1[, with α irrational,
such that

un = bα (n+ 1) + βc − bαn+ βc for all n ≥ 0 ,

or
un = dα (n+ 1) + βe − dαn+ βe for all n ≥ 0 .

Denote by S(α, β) and S(α, β) respectively the words produced.
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The recurrence function of Sturmian words

Let u be S(α, β) or u = S(α, β), then

I R〈u〉(n) depends only on α. Thus we write Rα(n).

I (Rα(n))n∈N depends only on the continuants of α.

The continuant qk(α) is the denominator of the k-th convergent of
the continued fraction expansion of α. It is an increasing sequence.

Theorem (Morse, Hedlund, 1940)

We have
Rα(n) = n− 1 + qk−1(α) + qk(α) ,

when qk−1(α) ≤ n < qk(α).
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Figure: Recurrence function
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Classical results

Proposition

For all α

lim inf
Rα(n)

n
≤ 3 .

Proof.

Take the sequence nk =
⌊
qk+qk−1

2

⌋
.

Theorem (Morse, Hedlund, 1940)

For α-a.e.

lim sup
Rα(n)

n log n
=∞ , and lim sup

Rα(n)

n (log n)c
= 0 ,

whenever c > 1.
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Usual studies of Rα(n)

I consider all possible sequences of indices n.

I give information on extreme cases.

I give results for a.e. α.

Here we

I study particular sequences of indices n depending on α.
Fixed relative position on the intervals [qk−1(α), qk(α)[.

I perform a probabilistic study (random α !).



We work with particular families of indices n

Relative position sequence for α

Given µ ∈]0, 1] the sequence

n
〈µ〉
k (α) = qk−1(α) + bµ (qk(α)− qk−1(α))c

is called the subsequence of position µ of α.
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Figure: Sequence of indices n for µ = 1/3.



We study

I the behaviour of

Rα(n)

n
, n = n

〈µ〉
k = qk−1 + bµ (qk − qk−1)c

for a fixed relative position µ within [qk−1, qk[.

Note. n
〈µ〉
k is a variable depending on α ∈ I.

I what happens when α is drawn uniformly from I = [0, 1].

We perform an asymptotic study of the sequence

S
〈µ〉
k =

Rα(n)+1

n
, n = n

〈µ〉
k

I Limit of its expected value with µ ∈]0, 1] fixed.

I Limit of its distribution with µ ∈ [0, 1] fixed.
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Expectation

Theorem

For each µ ∈]0, 1], the sequence of random variables S
〈µ〉
k satisfies

E[S〈µ〉k ] = 1 +
1

log 2

|logµ|
1− µ

+O

(
ϕ2k

µ

)
+O

(
ϕk
|logµ|
1− µ

)
,

where ϕ =
√
5−1
2

.
= 0.6180339 . . . and the constants corresponding

to the O-terms are uniform in µ and k.
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Figure: Limit of the expected value as a function of µ.



Distribution

Theorem

For each µ ∈ [0, 1] with µ 6= 1
2 , the sequence S

〈µ〉
k has a limit

density

sµ(x) =
1

log 2 (x− 1) |2− µ− x (1− µ)|
1Iµ(x) ,

with Iµ being the interval with endpoints 3 and 1 + 1/µ.
For all b ≥ min{3, 1 + 1

µ}

Pr
(
S
〈µ〉
k ≤ b

)
=

∫ b

0
sµ(x)dx+

1

b
O
(
ϕk
)
,

where the constant of the O-term is uniform in b and k.
When |µ− 1

2 | ≥ ε for a fixed ε > 0, it is also uniform in µ.



Interval Asymptotic Pr Empirical Pr

[3.0, 3.0] 0.0 0.0
[3.0, 3.5] 0.4854 0.485237
[3.0, 4.0] 0.7369 0.737139
[3.0, 4.5] 0.8931 0.893511
[3.0, 5.0] 1.0 1.0
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Figure: For µ = 1
4 , the limiting distribution for S

〈µ〉
k compared to the

results of a simulation with N = 106 iterations and k = 25.



3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s0 (x) = 1
log(2)

1
(x−1) (x−2)

Figure: Scaled histogram for µ = 0 compared to s0(x). Here k = 25,
N = 106, and the bin width is δ = 1

10 .



General overview of the proof

The proof is divided into four steps

i) Drop the integer part in S
〈µ〉
k getting

S̃
〈µ〉
k = 1 +

qk + qk−1
qk−1 + µ (qk − qk−1)

,

which depends only on
qk−1

qk
. Indeed

S̃
〈µ〉
k = fµ

(
qk−1
qk

)
, fµ(x) = 1 +

1 + x

x+ µ (1− x)
.

ii) The expected value and the distribution of S̃
〈µ〉
k are expressed

in terms of the iterates of the Perron-Frobenius operator H.

iii) Using spectral properties of H, when acting on the space of
bounded variation =⇒ we obtain the asymptotics.

iv) Finally we return from S̃
〈µ〉
k to S

〈µ〉
k .



The Dynamic System

The Gauss map

T (x) =

{
1

x

}
=

1

x
−
⌊
1

x

⌋
.

The inverse branches of the Gauss map
are given by

H =

{
hm : x 7→ 1

m+ x
: m ≥ 1

}
. 0.2 0.4 0.6 0.8 1

x

0.2

0.4

0.6

0.8

1

T(x)

Finally, the inverse branches for the composition T k are

Hk = {hm1,m2,...mk = hm1 ◦ hm2 ◦ . . . ◦ hmk : m1, . . . ,mk ≥ 1} .
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The linear fractional transformation hm1,...,mk ∈ Hk can be written
as

hm1,...,mk(x) =
1

m1 +
1

. . . +
1

mk + x

=
pk−1 x+ pk
qk−1 x+ qk

,

and satisfies the mirror property

hmk,...,m1(x) =
1

mk +
1

. . . +
1

m1 + x

=
pk−1 x+ qk−1
pk x+ qk

.



The Perron-Frobenius operator H

Question: If g ∈ C0(I) were the density of α =⇒ density of T (α)?

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

dy

|dh1(y)||dh2(y)||dh3(y)|

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=
∞∑
m=1

1

(m+ x)2
g

(
1

m+ x

)
.

In general T k(α) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
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Evaluating at x = 0

Hk[g](0) =
∑

m1,...,mk≥1

1

q2k
g

(
pk
qk

)
.

Applying the mirror property of continued fractions implies, since
we sum over all k-tuples =⇒

Hk[g](0) =
∑

m1,...,mk≥1

1

q2k
g

(
qk−1
qk

)
.
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The expectation

I S̃
〈µ〉
k is a step function, constant on hm1,...,mk (I).

I The length of hm1,...,mk(I) is 1
qk (qk+qk−1)

.

I The value of S̃
〈µ〉
k on hm1,...,mk(I) is fµ

(
qk−1

qk

)
.

Since {h(I) : h ∈ Hk} is a partition of (0, 1)

E
[
S̃
〈µ〉
k

]
=

∑
m1,...,mk≥1

1

qk (qk + qk−1)
fµ

(
qk−1
qk

)

=
∑

m1,...,mk≥1

1

q2k

fµ(x)

1 + x

(
where x =

qk−1
qk

)

= Hk

[
fµ(x)

1 + x

]
(0) ,

and

Pr
(
S̃
〈µ〉
k ≤ b

)
= E

[
1≤b ◦ S̃

〈µ〉
k

]
= Hk

[
1≤b ◦ fµ(x)

1 + x

]
(0) .
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Analytic study of H

The operator H acts on the Banach space BV(I) of functions of
bounded variation, with norm

‖f‖BV = V 1
0 (f) + ‖f‖1 .

The following properties are classical

I Dominant eigenvalue: λ = 1, it is simple too.

I Dominant eigenfunction: ψ(x) = 1
log 2

1
1+x .

I Spectral gap: subdominant spectral radius ϕ2 for ϕ =
√
5−1
2 .
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For any g ∈ BV(I)

Hk[g](x) =
1

log 2

1

1 + x

∫ 1

0
g(x)dx+O

(
ϕ2k ‖g‖BV

)
.



Going back

E
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= Hk
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fµ(x)

1 + x

]
(0)

=
1

log 2

∫ 1

0

fµ(x)

1 + x
dx+O

(
ϕ2k

∥∥∥∥fµ(x)1 + x

∥∥∥∥
BV

)
= 1 +

1

log 2

|logµ|
1− µ

+O

(
ϕ2k

µ

)
,

the other error term in our theorem comes from
∣∣∣S̃〈µ〉k − S〈µ〉k

∣∣∣.

Pr
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∥∥∥∥
BV

)
= here consider the inverse of fµ in Iµ .
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Possible extensions

It is possible to extend the study to

I Make µk → 0 as k →∞ as well.

I Reals with bounded mk ≤M =⇒ Hausdorff measure.

I Quadratic irrationals =⇒ their CFE is eventually periodic.
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