La mesure invariante pour le gasket de Rauzy

Alexandra Skripchenko

École des Hautes Études en Science Économiques, Moscou

Paris, 24 Mars, 2015

Échanges d'intervalles: la définition

Definition

Soit $I \subset \mathbb{R}$ un intervalle ouvert borné et soit $\{A_i : i = 1 \cdots k\}$ une partition finie de I. Un échange d'intervalles est une application biunivoque $\phi : I \to I$ telle que la restriction de ϕ à chaque A_i est une translation et $\{B_i, i = 1 \cdots k\}$ est la partition de I aussi, où la restriction de I à chaque I0 est I1 et I2 est la partition de I3 aussi, où la restriction de I3 chaque I4 est I5 est la partition de I6 aussi, où la

Échanges d'intervalles: principaux résultats

Deux points $x, y \in I$ sont dans la même *orbite* d'El s'il existe un mot composé par les ϕ_i et ϕ_i^{-1} que envoie $x \to y$.

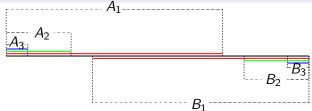
Definition

On dit que El est minimal si l'orbite de tout point est dense dans 1.

Definition

On dit que El est uniquement ergodique s'il existe une unique mesure de probabilité invariante (automatiquement ergodique).

Principaux Résultats:


- El sans connexions est minimal (M. Keane, 1975);
- Presque tout El est uniquement ergodique (H. Masur et W. Veech, 1982).

Systèmes d'isométries

Systèmes d'isométries ont été introduits par D. Gaboriau, G. Levitt et F. Paulin en 1994.

Definition

Un système d'isométries $S=(D,\{\phi_j\}_{j=1,\cdots,k})$ est une réunion finie D d'intervalles compactes de $\mathbb R$ munie d'une famille finie $\phi_j:A_j\to B_j$ d'isométries entre sous-intervalles fermés de D.

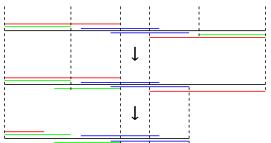
Systèmes d'isométries exotiques

Definition

Un système d'isométries S est *équilibré* si les conditions suivantes sont vérifiées:

- toutes les bouts de D sont couverts par les bouts de A_i et B_i ;
- $\sum_{i=1}^{n} |A_i| = |D|$, où |A| est la longueur de l'intervalle A;

Definition


Un système d'isométries équilibré est *exotique* si toutes les orbites sont denses. L'existence a été mise en évidence par Levitt (1993).

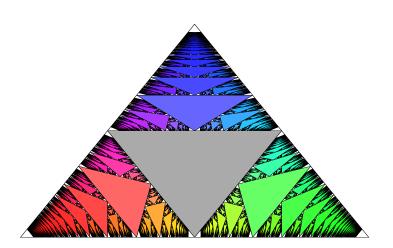
La conjecture prinicipale:

(S.P. Novikov - A. Maltsev, 2003; I. Dynnikov, 2008)
La mesure des systèmes d'isométries exotiques dans l'espace des

L'induction de Rauzy: translation + réduction

On dit que un système d'isométries a un *trou* s'il ya des points de l'intervalle de support qui ne sont pas couverts par les intervalles de *S*. Induction de Rauzy s'arête quand nous obtenons le trou.

Exemple de jouet: Gasket de Rauzy


Nous allons commencer de la situation facile de dimension 2: D = [0, 1], toutes les A_i commencent à 0, toutes les B_i finissent à 1.

- L'espace de parametres est un triangle;
- Matrice d'induction de Rauzy est trés similaire avec "fully

subtractive algorithm":
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- La Partition de Markov;
- La Contraction et la Distortion Bornée;

Gasket de Rauzy: la Photo

Gasket de Rauzy: l'Origine et la Famille

- Date de naissance: 2011 (2008, 1993)
- Créateurs: P. Arnoux et S. Starosta
- La Motivation: les mots épisturmiens , l'algorithme fractionnel multidimensionel
- La version d'origine alternative:
 - I. Dynnikov et R. De Leo (topologie en petite dimension: un problème de Novikov);
 - G. Levitt (théorie geométrique de groupes: pseudogroupes de rotations);
- P. Arnoux and S. Starosta ont montré que:
 - RG est homémorphe au gasket de Sierpiński
 - RG est homéomorphe au gasket d'Apollonium
 - RG est homothétique à l'espace invariant de "fully subtractive algorithm"

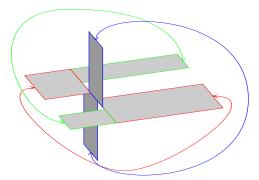
Gasket de Rauzy: caractéristiques métriques

Theorem

(G. Levitt et J.-C. Yoccoz, I. Dynnikov et R. De Leo,

P. Arnoux et S. Starosta):

La mesure Lebesgue de Gasket de Rauzy est zero.


La question ouverte (P. Arnoux): Qu'est-que nous pouvons dire pour la dimension Hausdorff? L'évaluation numerique (I. Dynnikov et R. De Leo, 2008): entre 1.7 and 1.8.

Theorem

(Artur Avila, Pascal Hubert and SS, 2013): La dimension Hausdorff de gasket de Rauzy est strictement inférieure à 2

La Suspension

Il existe une suspension pour le systèm d'isométries qui nous donne le 2-complex (X,ω) avec le feuilletage vertical. Nous avons la correspondence des orbites du système avec les feuilles de feuilletage.

Le Cocycle et "Roof Function"

L'acceleration de matrice A:

$$\begin{pmatrix} n & 1 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

Matrice du cocycle B:

$$\begin{pmatrix}
1 & 0 & 0 \\
n & 1 & 0 \\
n & 0 & 1
\end{pmatrix}$$

■ the roof function: le temps de 1er retour dans le simplex.

Theorem

La fonction de toit r a la queue exponentielle: il existe $\sigma_0 > 0$ laquelle $\int_{\Lambda} e^{\sigma r} dLeb < \infty$.

La mesure invariante

Theorem

(A. A., P. H. and S.S., 2014): Il existe une mesure d'entropie maximale pour le flot de suspension, et cette mesure est unique.

Les ingrédients pour la preuve:

- la combinatoire: BIP propriété du graphe de Rauzy;
- la fonction de toit: est bornée loin de zero, est Hölder et a des variations sommables;

Donc on peut utiliser le formalisme thermodynamique pour notre shift de Markov (O. Sarig) avec la famille des potentiels $\psi = -r\beta$.

Merci beaucoup!