
Random Number Generation
and Fitting Interval Partitions

Pablo Rotondo1

0 0.2 0.4 0.6 0.8 1

1.5

1.6

1.7

1.8

1.9

2

AleaEnAmSud,
Caen, 6 June, 2017.

1
IRIF, Paris 7 Diderot. Universidad de la República, Uruguay. GREYC, associate



Random Variable Simulation

Objective: given a perfect source of independent fair bits

X = X1, X2, . . .

simulate a random variable Y with a prescribed distribution.

– Generating random bits −→ costly.
– What if Xi were not random bits? −→ other distributions.

Classical algorithm in probability courses
– given uniform U ∈ [0, 1] and a continuous distribution func-

tion F consider the so called inverse method

Y := F−1(U) .

– in our context we may consider

U := (0.X1X2 . . .)2 .



Interval algorithm: intro
Discrete random variable Y ∈ Z>0 with distribution vector p1, p2, . . .

The inverse method gives intervals

Ii(p) :=

[∑
j<i

pj ,
∑
j≤i

pj

)
,

and defines
Y = i⇐⇒ U ∈ Ii(p) .

Question

How many fair bits X1, X2, . . . do we need to determine Y ?

More precisely, given u ∈ [0, 1] in binary u = (0.x1x2 . . .)2 we define

kp(u) := inf
{
k ≥ 0 : ∃i s.t.

(
0.x1 . . . xk, 0.x1 . . . xk+2−k

)
⊂ Ii(p)

}
What is

E[kp(U)] ?
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Lower bound: the entropy

Theorem

The expected number of bits is bounded from below by the
entropy of p

E[kp(U)] ≥ H(Y ) ,

where H(Y ) :=
∑

i pi log2(1/pi).

Proof.

The code

C :=
{
x1 . . . xk ∈ {0, 1}+ :

∃i s.t.
(
0.x1 . . . xk, 0.x1 . . . xk + 2−k

)
⊂ Ii(p) ,

6 ∃j
(
0.x1 . . . xk−1, 0.x1 . . . xk−1 + 2−(k−1)

)
⊂ Ij

}
is prefix free and determines Y .
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The distribution pN := (1/N, 1/N . . . , 1/N)
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Theorem

The redundancy E[kpN (U)]−H(Y ) equals

R(x) = 2x − x+ 1− 2ν(N) − 1

N − 1
2x − log2

(
1 + 1

N−1

)
,

where x = {log2(N − 1)}, {·} denotes the fractional part and
ν(N) is the greatest t such that 2t divides N .



Example: fair 3-sided dice

First p3 = (1/3, 1/3, 1/3) divides the interval [0, 1] as follows

0

1

1/3

2

2/3

3

1

while the subdivision procedure, a binary search for U , gives

0
1

1
4
1
4

5
16

11
32

3
8
3
8

1
2
1
2

5
8
5
8

21
32

11
16

3
4
3
4

1
1

where we remark that the number of bits can be deduced from the
denominators.

In this case we have

E[kp3(U)] = 3
.
= log2(3) + 1.41503 . . . .
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Generic Distribution

For an arbitrary probability vector p = (p1, p2, . . .)

Theorem

The redundancy E[kp(U)]−H(Y ) is at most 2, i.e.

H(Y ) ≤ E[kp(U)] ≤ H(Y ) + 2 .

Furthermore, the +2 is tight by our example pN .

Knuth-Yao proved that the optimal algorithm satisfies these bounds.

I Algorithm seen as binary tree.

I Optimal algorithm obtained by decomposing each

pi = (0.p
(i)
1 p

(i)
2 . . .)2

in binary and assigning a leaf of probability p
(i)
j for each (i, j).
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Example: continued fractions

Procedures gives way to, given the binary representation of U , decide
to which interval among the partition

[0, p1), [p1, p1 + p2), [p1 + p2, p1 + p2 + p3), . . .

it belongs to. This can be applied to other partitions.

For example, if we consider the convergents (qk)k of U , the set

Ik(a, b) := {U ∈ [0, 1] : (qk−1(U), qk(U)) = (a, b)}

is an interval of length 1
b(a+b) when gcd(a, b) = 1 and a ≤ b.

A possible partition (negligible intersection) is given by fixing k

Ik := {Ik(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b} ,

which determines the value of (qk−1(U), qk(U)).
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Example: continued fractions
A different partition, relating to our ANALCO paper is:

I Fix n ∈ Z>0, and consider

In :=
{
(a, b) ∈ Z>0 × Z>0 : gcd(a, b) = 1, a ≤ n < b

}
.

I Consider k := k(U, n) such that qk−1(U) ≤ n < qk(U) and
define

Ia,b :=
{
U ∈ [0, 1] :

(
qk(U,n)−1, qk(U,n)

)
= (a, b)

}
,

where (a, b) ∈ In, again an interval, forming a partition.
I Then the number of bits needed to determine(

qk(U,n)−1, qk(U,n)
)
,

is roughly

H
(
qk(U,n)−1, qk(U,n)

)
= 2 log2 n+ 1

− 12

π2

∫∫
0<x<1≤y

log2(y(x+ y))

y(x+ y)
dxdy + o(1)

= 2 log2 n− 2.4263 . . .+ o(1)
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Interval Algorithm

I Generalization of the previous procedure for fair bits

X = (X1, X2, . . .) .

I Each Xi takes values on [M ] with vector (q1, q2, . . . , qM ).

Now the procedure goes as follows:

~ Let Kk (q) = [Ak, Bk) be our working interval after pro-
cessing X1, . . . , Xk.

~ Partition Kk (q) into intervals

Kk,j (q) := [Ak +Qj−1(Bk −Ak), Ak +Qj(Bk −Ak)) ,

according to Qj (q) :=
∑

i≤j qi.
~ Suppose Xk+1 (q) = j, then set Kk+1 (q) := Kk,j (q).
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Interval Kk (q) corresponds to what before was

[0.x1 . . . xk, 0.x1 . . . xk + 2−k) .

We continue until

kq,p := inf
{
k ≥ 0 : ∃i s.t. Kk (q) ⊂ Ii(p)

}
,

in which case we return Y = i if Kk (q) ⊂ Ii(p)

Theorem (Lower bound)

The cost of simulating the random variable Y having prob. vector
p by using the Interval Algorithm with an M -valued “coin flips”
according to the prob. vector q is bounded from below by

H(p)

H(q)
≤ E[kq,p] .
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Interval Algorithm: efficiency

Theorem (Han,Hoshi 95)

For any probability vectors p = (p1, . . . , pn) and q = (q1, . . . , qm),
the expected number of coin tosses in the interval algorithm is
upper-bounded

E[kq,p] ≤
H(p)

H(q)
+

log 2(M − 1)

H(q)
+

h(qmax)

(1− qmax)H(q)
.

Proof.

Whiteboard (or blackboard).



Generalization to random processes
We want to simulate a random process

Y = (Y1, Y2, Y3, . . .) ,

rather than a single Y with a prescribed distribution.

The question now is

what is the asymptotic cost of producing Yn = (Y1, Y2, . . . , Yn) ?

Remark

If the “target” source Y1, Y2, . . . is stationary, pn denotes the
vector of (Yj+1, . . . , Yj+n) for j ≥ 0 and kn := kq,pn :

lim
n→∞

E[kn]
n

=
H(Y)
H(X )

Proof.

By independence H(X ) = H(q), while H(Yn)/n→ H(Y).
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Generalization

I We may imagine now that the variables X1, X2, . . . are not
necessarily independent or identically distributed

→ natural if produced by a dynamical system (e.g. Euclid).

I The question can be framed more purely in terms of
sequences of interval partitions.

Definition (Interval partition)

An interval partition is a finite or countable partition of [0, 1] into
intervals. If P is an interval partition and x ∈ [0, 1], we let P(x)
denote the interval I ∈ P such that x ∈ I.

Now our problem is rephrased in terms of

kQ,P(n, x) = inf
{
k ≥ 0 : Qk(x) ⊂ Pn(x)

}
;

compare it with kq,pn :

I Pn corresponds to the partition according to (Y1, . . . , Yn).

I Qk corresponds to the partition according to (X1, . . . , Xk).
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Entropy of an interval partition

Definition (Entropy)

Let P := (Pn)∞n=1 be a sequence of interval partitions. We say
that P has entropy c ≥ 0 with respect to a measure λ if

lim
n→∞

− 1

n
log λ(Pn(x)) = c , λ− a.e.

Let λ be the Lebesgue measure:

I For Qk =
{ [

i
2k
, i+1

2k

)
: i = 0, . . . , 2k − 1

}
we get

−1

k
log λ(Qk(x)) = log 2 ,∀k ≥ 1 .

I For Pn =
{
In(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b}, where

In(a, b) = {x ∈ [0, 1] : (qn−1(x), qn(x)) = (a, b)} ,
we get (blackboard explanation)

lim
n→∞

− 1

n
log λ(Pn(x)) =

π2

6 log 2
, λ− a.e.
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Asymptotic Cost

Theorem (Dajani, Fieldsteel, 2001)

Let P := {Pn}∞n=1 and Q := {Qn}∞n=1 be sequences of interval
partitions, and let λ be a Borel probability measure on [0, 1).

Assume P and Q have entropies H(P) and H(Q) respectively
with respect to λ, then

lim
n→∞

1

n
kQ,P(n, x) =

H(P)
H(Q)

for λ-a.e. x.

Example: the number of digits required to determine (qn−1(x), qn(x))

from the base 10 expansion of x behaves like π2

6 log 2 log 10n a.e. x, a
result previously proved by Lochs.
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Good partition sequences

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (Ω,B, µ) and let P be a finite or countable
generating partition for T for which Hµ(P ) <∞. Then for µ-a.e.
x,

lim
n→∞

− logµ (Pn(x))

n
= hµ(T ) .

Here Hµ(P ) denotes the entropy of the partition P , hµ(T ) the
entropy of T and Pn(x) denotes the element of the partition∨n−1
i=0 T

−iP containing x.

We recall that

hµ(T ) = sup{hµ(T,A) : A countable partition of X} ,

and

hµ(T,A) = lim
n→∞

1

n
H
(
A(U),A(TU), . . . ,A

(
Tn−1U

))
,

where U is distributed according to µ.
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x,

lim
n→∞

− logµ (Pn(x))

n
= hµ(T ) .

Here Hµ(P ) denotes the entropy of the partition P , hµ(T ) the
entropy of T and Pn(x) denotes the element of the partition∨n−1
i=0 T

−iP containing x.

We recall that

hµ(T ) = sup{hµ(T,A) : A countable partition of X} ,

and

hµ(T,A) = lim
n→∞

1

n
H
(
A(U),A(TU), . . . ,A

(
Tn−1U

))
,

where U is distributed according to µ.



Concluding remarks

There are other interesting results/ideas not mentioned in this talk,

I The optimal algorithm for discrete uniform generation from
coin flips has a fairly simple implementation, see the note by
Jérémie Lumbroso arXiv:1304.1916v1.

I The generalisation of Bosma-Dajani-Kraaikamp of the cost of
passing from base 10 to the Continued Fraction Expansion.
One considers appropriate maps T and S called
“number-theoretic fibered maps” associated with digits and
get a limiting result with the quotient of h(T ) and h(S).

I What about non-discrete random variables? See the original
paper by von Neumann, Knuth-Yao and Philippe Duchon.

https://arxiv.org/pdf/1304.1916.pdf
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