
Random Number Generation
and Fitting Interval Partitions

Pablo Rotondo1

0 0.2 0.4 0.6 0.8 1

1.5

1.6

1.7

1.8

1.9

2

AleaEnAmSud,
Caen, 6 June, 2017.

1
IRIF, Paris 7 Diderot. Universidad de la República, Uruguay. GREYC, associate

Random Variable Simulation

Objective: given a perfect source of independent fair bits

X = X1, X2, . . .

simulate a random variable Y with a prescribed distribution.

– Generating random bits −→ costly.
– What if Xi were not random bits? −→ other distributions.

Classical algorithm in probability courses
– given uniform U ∈ [0, 1] and a continuous distribution func-

tion F consider the so called inverse method

Y := F−1(U) .

– in our context we may consider

U := (0.X1X2 . . .)2 .

Interval algorithm: intro
Discrete random variable Y ∈ Z>0 with distribution vector p1, p2, . . .

The inverse method gives intervals

Ii(p) :=

[∑
j<i

pj ,
∑
j≤i

pj

)
,

and defines
Y = i⇐⇒ U ∈ Ii(p) .

Question

How many fair bits X1, X2, . . . do we need to determine Y ?

More precisely, given u ∈ [0, 1] in binary u = (0.x1x2 . . .)2 we define

kp(u) := inf
{
k ≥ 0 : ∃i s.t.

(
0.x1 . . . xk, 0.x1 . . . xk+2−k

)
⊂ Ii(p)

}
What is

E[kp(U)] ?

Interval algorithm: intro
Discrete random variable Y ∈ Z>0 with distribution vector p1, p2, . . .

The inverse method gives intervals

Ii(p) :=

[∑
j<i

pj ,
∑
j≤i

pj

)
,

and defines
Y = i⇐⇒ U ∈ Ii(p) .

Question

How many fair bits X1, X2, . . . do we need to determine Y ?

More precisely, given u ∈ [0, 1] in binary u = (0.x1x2 . . .)2 we define

kp(u) := inf
{
k ≥ 0 : ∃i s.t.

(
0.x1 . . . xk, 0.x1 . . . xk+2−k

)
⊂ Ii(p)

}

What is
E[kp(U)] ?

Interval algorithm: intro
Discrete random variable Y ∈ Z>0 with distribution vector p1, p2, . . .

The inverse method gives intervals

Ii(p) :=

[∑
j<i

pj ,
∑
j≤i

pj

)
,

and defines
Y = i⇐⇒ U ∈ Ii(p) .

Question

How many fair bits X1, X2, . . . do we need to determine Y ?

More precisely, given u ∈ [0, 1] in binary u = (0.x1x2 . . .)2 we define

kp(u) := inf
{
k ≥ 0 : ∃i s.t.

(
0.x1 . . . xk, 0.x1 . . . xk+2−k

)
⊂ Ii(p)

}
What is

E[kp(U)] ?

Lower bound: the entropy

Theorem

The expected number of bits is bounded from below by the
entropy of p

E[kp(U)] ≥ H(Y) ,

where H(Y) :=
∑

i pi log2(1/pi).

Proof.

The code

C :=
{
x1 . . . xk ∈ {0, 1}+ :

∃i s.t.
(
0.x1 . . . xk, 0.x1 . . . xk + 2−k

)
⊂ Ii(p) ,

6 ∃j
(
0.x1 . . . xk−1, 0.x1 . . . xk−1 + 2−(k−1)

)
⊂ Ij

}
is prefix free and determines Y .

Lower bound: the entropy

Theorem

The expected number of bits is bounded from below by the
entropy of p

E[kp(U)] ≥ H(Y) ,

where H(Y) :=
∑

i pi log2(1/pi).

Proof.

The code

C :=
{
x1 . . . xk ∈ {0, 1}+ :

∃i s.t.
(
0.x1 . . . xk, 0.x1 . . . xk + 2−k

)
⊂ Ii(p) ,

6 ∃j
(
0.x1 . . . xk−1, 0.x1 . . . xk−1 + 2−(k−1)

)
⊂ Ij

}
is prefix free and determines Y .

The distribution pN := (1/N, 1/N . . . , 1/N)

0 0.2 0.4 0.6 0.8 1

1.5

1.6

1.7

1.8

1.9

2

Theorem

The redundancy E[kpN (U)]−H(Y) equals

R(x) = 2x − x+ 1− 2ν(N) − 1

N − 1
2x − log2

(
1 + 1

N−1

)
,

where x = {log2(N − 1)}, {·} denotes the fractional part and
ν(N) is the greatest t such that 2t divides N .

Example: fair 3-sided dice

First p3 = (1/3, 1/3, 1/3) divides the interval [0, 1] as follows

0

1

1/3

2

2/3

3

1

while the subdivision procedure, a binary search for U , gives

0
1

1
4
1
4

5
16

11
32

3
8
3
8

1
2
1
2

5
8
5
8

21
32

11
16

3
4
3
4

1
1

where we remark that the number of bits can be deduced from the
denominators.

In this case we have

E[kp3(U)] = 3
.
= log2(3) + 1.41503

Example: fair 3-sided dice

First p3 = (1/3, 1/3, 1/3) divides the interval [0, 1] as follows

0

1

1/3

2

2/3

3

1

while the subdivision procedure, a binary search for U , gives

0
1

1
4
1
4

5
16

11
32

3
8
3
8

1
2
1
2

5
8
5
8

21
32

11
16

3
4
3
4

1
1

where we remark that the number of bits can be deduced from the
denominators.
In this case we have

E[kp3(U)] = 3
.
= log2(3) + 1.41503

Generic Distribution

For an arbitrary probability vector p = (p1, p2, . . .)

Theorem

The redundancy E[kp(U)]−H(Y) is at most 2, i.e.

H(Y) ≤ E[kp(U)] ≤ H(Y) + 2 .

Furthermore, the +2 is tight by our example pN .

Knuth-Yao proved that the optimal algorithm satisfies these bounds.

I Algorithm seen as binary tree.

I Optimal algorithm obtained by decomposing each

pi = (0.p
(i)
1 p

(i)
2 . . .)2

in binary and assigning a leaf of probability p
(i)
j for each (i, j).

Generic Distribution

For an arbitrary probability vector p = (p1, p2, . . .)

Theorem

The redundancy E[kp(U)]−H(Y) is at most 2, i.e.

H(Y) ≤ E[kp(U)] ≤ H(Y) + 2 .

Furthermore, the +2 is tight by our example pN .

Knuth-Yao proved that the optimal algorithm satisfies these bounds.

I Algorithm seen as binary tree.

I Optimal algorithm obtained by decomposing each

pi = (0.p
(i)
1 p

(i)
2 . . .)2

in binary and assigning a leaf of probability p
(i)
j for each (i, j).

Example: continued fractions

Procedures gives way to, given the binary representation of U , decide
to which interval among the partition

[0, p1), [p1, p1 + p2), [p1 + p2, p1 + p2 + p3), . . .

it belongs to. This can be applied to other partitions.

For example, if we consider the convergents (qk)k of U , the set

Ik(a, b) := {U ∈ [0, 1] : (qk−1(U), qk(U)) = (a, b)}

is an interval of length 1
b(a+b) when gcd(a, b) = 1 and a ≤ b.

A possible partition (negligible intersection) is given by fixing k

Ik := {Ik(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b} ,

which determines the value of (qk−1(U), qk(U)).

Example: continued fractions

Procedures gives way to, given the binary representation of U , decide
to which interval among the partition

[0, p1), [p1, p1 + p2), [p1 + p2, p1 + p2 + p3), . . .

it belongs to. This can be applied to other partitions.

For example, if we consider the convergents (qk)k of U , the set

Ik(a, b) := {U ∈ [0, 1] : (qk−1(U), qk(U)) = (a, b)}

is an interval of length 1
b(a+b) when gcd(a, b) = 1 and a ≤ b.

A possible partition (negligible intersection) is given by fixing k

Ik := {Ik(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b} ,

which determines the value of (qk−1(U), qk(U)).

Example: continued fractions

Procedures gives way to, given the binary representation of U , decide
to which interval among the partition

[0, p1), [p1, p1 + p2), [p1 + p2, p1 + p2 + p3), . . .

it belongs to. This can be applied to other partitions.

For example, if we consider the convergents (qk)k of U , the set

Ik(a, b) := {U ∈ [0, 1] : (qk−1(U), qk(U)) = (a, b)}

is an interval of length 1
b(a+b) when gcd(a, b) = 1 and a ≤ b.

A possible partition (negligible intersection) is given by fixing k

Ik := {Ik(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b} ,

which determines the value of (qk−1(U), qk(U)).

Example: continued fractions
A different partition, relating to our ANALCO paper is:

I Fix n ∈ Z>0, and consider

In :=
{
(a, b) ∈ Z>0 × Z>0 : gcd(a, b) = 1, a ≤ n < b

}
.

I Consider k := k(U, n) such that qk−1(U) ≤ n < qk(U) and
define

Ia,b :=
{
U ∈ [0, 1] :

(
qk(U,n)−1, qk(U,n)

)
= (a, b)

}
,

where (a, b) ∈ In, again an interval, forming a partition.
I Then the number of bits needed to determine(

qk(U,n)−1, qk(U,n)
)
,

is roughly

H
(
qk(U,n)−1, qk(U,n)

)
= 2 log2 n+ 1

− 12

π2

∫∫
0<x<1≤y

log2(y(x+ y))

y(x+ y)
dxdy + o(1)

= 2 log2 n− 2.4263 . . .+ o(1)

Example: continued fractions
A different partition, relating to our ANALCO paper is:

I Fix n ∈ Z>0, and consider

In :=
{
(a, b) ∈ Z>0 × Z>0 : gcd(a, b) = 1, a ≤ n < b

}
.

I Consider k := k(U, n) such that qk−1(U) ≤ n < qk(U) and
define

Ia,b :=
{
U ∈ [0, 1] :

(
qk(U,n)−1, qk(U,n)

)
= (a, b)

}
,

where (a, b) ∈ In, again an interval, forming a partition.

I Then the number of bits needed to determine(
qk(U,n)−1, qk(U,n)

)
,

is roughly

H
(
qk(U,n)−1, qk(U,n)

)
= 2 log2 n+ 1

− 12

π2

∫∫
0<x<1≤y

log2(y(x+ y))

y(x+ y)
dxdy + o(1)

= 2 log2 n− 2.4263 . . .+ o(1)

Example: continued fractions
A different partition, relating to our ANALCO paper is:

I Fix n ∈ Z>0, and consider

In :=
{
(a, b) ∈ Z>0 × Z>0 : gcd(a, b) = 1, a ≤ n < b

}
.

I Consider k := k(U, n) such that qk−1(U) ≤ n < qk(U) and
define

Ia,b :=
{
U ∈ [0, 1] :

(
qk(U,n)−1, qk(U,n)

)
= (a, b)

}
,

where (a, b) ∈ In, again an interval, forming a partition.
I Then the number of bits needed to determine(

qk(U,n)−1, qk(U,n)
)
,

is roughly

H
(
qk(U,n)−1, qk(U,n)

)
= 2 log2 n+ 1

− 12

π2

∫∫
0<x<1≤y

log2(y(x+ y))

y(x+ y)
dxdy + o(1)

= 2 log2 n− 2.4263 . . .+ o(1)

Interval Algorithm

I Generalization of the previous procedure for fair bits

X = (X1, X2, . . .) .

I Each Xi takes values on [M] with vector (q1, q2, . . . , qM).

Now the procedure goes as follows:

~ Let Kk (q) = [Ak, Bk) be our working interval after pro-
cessing X1, . . . , Xk.

~ Partition Kk (q) into intervals

Kk,j (q) := [Ak +Qj−1(Bk −Ak), Ak +Qj(Bk −Ak)) ,

according to Qj (q) :=
∑

i≤j qi.
~ Suppose Xk+1 (q) = j, then set Kk+1 (q) := Kk,j (q).

Interval Algorithm

I Generalization of the previous procedure for fair bits

X = (X1, X2, . . .) .

I Each Xi takes values on [M] with vector (q1, q2, . . . , qM).

Now the procedure goes as follows:

~ Let Kk (q) = [Ak, Bk) be our working interval after pro-
cessing X1, . . . , Xk.

~ Partition Kk (q) into intervals

Kk,j (q) := [Ak +Qj−1(Bk −Ak), Ak +Qj(Bk −Ak)) ,

according to Qj (q) :=
∑

i≤j qi.
~ Suppose Xk+1 (q) = j, then set Kk+1 (q) := Kk,j (q).

Interval Kk (q) corresponds to what before was

[0.x1 . . . xk, 0.x1 . . . xk + 2−k) .

We continue until

kq,p := inf
{
k ≥ 0 : ∃i s.t. Kk (q) ⊂ Ii(p)

}
,

in which case we return Y = i if Kk (q) ⊂ Ii(p)

Theorem (Lower bound)

The cost of simulating the random variable Y having prob. vector
p by using the Interval Algorithm with an M -valued “coin flips”
according to the prob. vector q is bounded from below by

H(p)

H(q)
≤ E[kq,p] .

Interval Kk (q) corresponds to what before was

[0.x1 . . . xk, 0.x1 . . . xk + 2−k) .

We continue until

kq,p := inf
{
k ≥ 0 : ∃i s.t. Kk (q) ⊂ Ii(p)

}
,

in which case we return Y = i if Kk (q) ⊂ Ii(p)

Theorem (Lower bound)

The cost of simulating the random variable Y having prob. vector
p by using the Interval Algorithm with an M -valued “coin flips”
according to the prob. vector q is bounded from below by

H(p)

H(q)
≤ E[kq,p] .

Interval Algorithm: efficiency

Theorem (Han,Hoshi 95)

For any probability vectors p = (p1, . . . , pn) and q = (q1, . . . , qm),
the expected number of coin tosses in the interval algorithm is
upper-bounded

E[kq,p] ≤
H(p)

H(q)
+

log 2(M − 1)

H(q)
+

h(qmax)

(1− qmax)H(q)
.

Proof.

Whiteboard (or blackboard).

Generalization to random processes
We want to simulate a random process

Y = (Y1, Y2, Y3, . . .) ,

rather than a single Y with a prescribed distribution.

The question now is

what is the asymptotic cost of producing Yn = (Y1, Y2, . . . , Yn) ?

Remark

If the “target” source Y1, Y2, . . . is stationary, pn denotes the
vector of (Yj+1, . . . , Yj+n) for j ≥ 0 and kn := kq,pn :

lim
n→∞

E[kn]
n

=
H(Y)
H(X)

Proof.

By independence H(X) = H(q), while H(Yn)/n→ H(Y).

Generalization to random processes
We want to simulate a random process

Y = (Y1, Y2, Y3, . . .) ,

rather than a single Y with a prescribed distribution.

The question now is

what is the asymptotic cost of producing Yn = (Y1, Y2, . . . , Yn) ?

Remark

If the “target” source Y1, Y2, . . . is stationary, pn denotes the
vector of (Yj+1, . . . , Yj+n) for j ≥ 0 and kn := kq,pn :

lim
n→∞

E[kn]
n

=
H(Y)
H(X)

Proof.

By independence H(X) = H(q), while H(Yn)/n→ H(Y).

Generalization to random processes
We want to simulate a random process

Y = (Y1, Y2, Y3, . . .) ,

rather than a single Y with a prescribed distribution.

The question now is

what is the asymptotic cost of producing Yn = (Y1, Y2, . . . , Yn) ?

Remark

If the “target” source Y1, Y2, . . . is stationary, pn denotes the
vector of (Yj+1, . . . , Yj+n) for j ≥ 0 and kn := kq,pn :

lim
n→∞

E[kn]
n

=
H(Y)
H(X)

Proof.

By independence H(X) = H(q), while H(Yn)/n→ H(Y).

Generalization

I We may imagine now that the variables X1, X2, . . . are not
necessarily independent or identically distributed

→ natural if produced by a dynamical system (e.g. Euclid).

I The question can be framed more purely in terms of
sequences of interval partitions.

Definition (Interval partition)

An interval partition is a finite or countable partition of [0, 1] into
intervals. If P is an interval partition and x ∈ [0, 1], we let P(x)
denote the interval I ∈ P such that x ∈ I.

Now our problem is rephrased in terms of

kQ,P(n, x) = inf
{
k ≥ 0 : Qk(x) ⊂ Pn(x)

}
;

compare it with kq,pn :

I Pn corresponds to the partition according to (Y1, . . . , Yn).

I Qk corresponds to the partition according to (X1, . . . , Xk).

Generalization

I We may imagine now that the variables X1, X2, . . . are not
necessarily independent or identically distributed

→ natural if produced by a dynamical system (e.g. Euclid).

I The question can be framed more purely in terms of
sequences of interval partitions.

Definition (Interval partition)

An interval partition is a finite or countable partition of [0, 1] into
intervals. If P is an interval partition and x ∈ [0, 1], we let P(x)
denote the interval I ∈ P such that x ∈ I.

Now our problem is rephrased in terms of

kQ,P(n, x) = inf
{
k ≥ 0 : Qk(x) ⊂ Pn(x)

}
;

compare it with kq,pn :

I Pn corresponds to the partition according to (Y1, . . . , Yn).

I Qk corresponds to the partition according to (X1, . . . , Xk).

Generalization

I We may imagine now that the variables X1, X2, . . . are not
necessarily independent or identically distributed

→ natural if produced by a dynamical system (e.g. Euclid).

I The question can be framed more purely in terms of
sequences of interval partitions.

Definition (Interval partition)

An interval partition is a finite or countable partition of [0, 1] into
intervals. If P is an interval partition and x ∈ [0, 1], we let P(x)
denote the interval I ∈ P such that x ∈ I.

Now our problem is rephrased in terms of

kQ,P(n, x) = inf
{
k ≥ 0 : Qk(x) ⊂ Pn(x)

}
;

compare it with kq,pn :

I Pn corresponds to the partition according to (Y1, . . . , Yn).

I Qk corresponds to the partition according to (X1, . . . , Xk).

Generalization

I We may imagine now that the variables X1, X2, . . . are not
necessarily independent or identically distributed

→ natural if produced by a dynamical system (e.g. Euclid).

I The question can be framed more purely in terms of
sequences of interval partitions.

Definition (Interval partition)

An interval partition is a finite or countable partition of [0, 1] into
intervals. If P is an interval partition and x ∈ [0, 1], we let P(x)
denote the interval I ∈ P such that x ∈ I.

Now our problem is rephrased in terms of

kQ,P(n, x) = inf
{
k ≥ 0 : Qk(x) ⊂ Pn(x)

}
;

compare it with kq,pn :

I Pn corresponds to the partition according to (Y1, . . . , Yn).

I Qk corresponds to the partition according to (X1, . . . , Xk).

Entropy of an interval partition

Definition (Entropy)

Let P := (Pn)∞n=1 be a sequence of interval partitions. We say
that P has entropy c ≥ 0 with respect to a measure λ if

lim
n→∞

− 1

n
log λ(Pn(x)) = c , λ− a.e.

Let λ be the Lebesgue measure:

I For Qk =
{ [

i
2k
, i+1

2k

)
: i = 0, . . . , 2k − 1

}
we get

−1

k
log λ(Qk(x)) = log 2 ,∀k ≥ 1 .

I For Pn =
{
In(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b}, where

In(a, b) = {x ∈ [0, 1] : (qn−1(x), qn(x)) = (a, b)} ,
we get (blackboard explanation)

lim
n→∞

− 1

n
log λ(Pn(x)) =

π2

6 log 2
, λ− a.e.

Entropy of an interval partition

Definition (Entropy)

Let P := (Pn)∞n=1 be a sequence of interval partitions. We say
that P has entropy c ≥ 0 with respect to a measure λ if

lim
n→∞

− 1

n
log λ(Pn(x)) = c , λ− a.e.

Let λ be the Lebesgue measure:

I For Qk =
{ [

i
2k
, i+1

2k

)
: i = 0, . . . , 2k − 1

}
we get

−1

k
log λ(Qk(x)) = log 2 , ∀k ≥ 1 .

I For Pn =
{
In(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b}, where

In(a, b) = {x ∈ [0, 1] : (qn−1(x), qn(x)) = (a, b)} ,
we get (blackboard explanation)

lim
n→∞

− 1

n
log λ(Pn(x)) =

π2

6 log 2
, λ− a.e.

Entropy of an interval partition

Definition (Entropy)

Let P := (Pn)∞n=1 be a sequence of interval partitions. We say
that P has entropy c ≥ 0 with respect to a measure λ if

lim
n→∞

− 1

n
log λ(Pn(x)) = c , λ− a.e.

Let λ be the Lebesgue measure:

I For Qk =
{ [

i
2k
, i+1

2k

)
: i = 0, . . . , 2k − 1

}
we get

−1

k
log λ(Qk(x)) = log 2 , ∀k ≥ 1 .

I For Pn =
{
In(a, b) : gcd(a, b) = 1, 1 ≤ a ≤ b}, where

In(a, b) = {x ∈ [0, 1] : (qn−1(x), qn(x)) = (a, b)} ,
we get (blackboard explanation)

lim
n→∞

− 1

n
log λ(Pn(x)) =

π2

6 log 2
, λ− a.e.

Asymptotic Cost

Theorem (Dajani, Fieldsteel, 2001)

Let P := {Pn}∞n=1 and Q := {Qn}∞n=1 be sequences of interval
partitions, and let λ be a Borel probability measure on [0, 1).

Assume P and Q have entropies H(P) and H(Q) respectively
with respect to λ, then

lim
n→∞

1

n
kQ,P(n, x) =

H(P)
H(Q)

for λ-a.e. x.

Example: the number of digits required to determine (qn−1(x), qn(x))

from the base 10 expansion of x behaves like π2

6 log 2 log 10n a.e. x, a
result previously proved by Lochs.

Asymptotic Cost

Theorem (Dajani, Fieldsteel, 2001)

Let P := {Pn}∞n=1 and Q := {Qn}∞n=1 be sequences of interval
partitions, and let λ be a Borel probability measure on [0, 1).

Assume P and Q have entropies H(P) and H(Q) respectively
with respect to λ, then

lim
n→∞

1

n
kQ,P(n, x) =

H(P)
H(Q)

for λ-a.e. x.

Example: the number of digits required to determine (qn−1(x), qn(x))

from the base 10 expansion of x behaves like π2

6 log 2 log 10n a.e. x, a
result previously proved by Lochs.

Good partition sequences

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (Ω,B, µ) and let P be a finite or countable
generating partition for T for which Hµ(P) <∞. Then for µ-a.e.
x,

lim
n→∞

− logµ (Pn(x))

n
= hµ(T) .

Here Hµ(P) denotes the entropy of the partition P , hµ(T) the
entropy of T and Pn(x) denotes the element of the partition∨n−1
i=0 T

−iP containing x.

We recall that

hµ(T) = sup{hµ(T,A) : A countable partition of X} ,

and

hµ(T,A) = lim
n→∞

1

n
H
(
A(U),A(TU), . . . ,A

(
Tn−1U

))
,

where U is distributed according to µ.

Good partition sequences

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (Ω,B, µ) and let P be a finite or countable
generating partition for T for which Hµ(P) <∞. Then for µ-a.e.
x,

lim
n→∞

− logµ (Pn(x))

n
= hµ(T) .

Here Hµ(P) denotes the entropy of the partition P , hµ(T) the
entropy of T and Pn(x) denotes the element of the partition∨n−1
i=0 T

−iP containing x.

We recall that

hµ(T) = sup{hµ(T,A) : A countable partition of X} ,

and

hµ(T,A) = lim
n→∞

1

n
H
(
A(U),A(TU), . . . ,A

(
Tn−1U

))
,

where U is distributed according to µ.

Concluding remarks

There are other interesting results/ideas not mentioned in this talk,

I The optimal algorithm for discrete uniform generation from
coin flips has a fairly simple implementation, see the note by
Jérémie Lumbroso arXiv:1304.1916v1.

I The generalisation of Bosma-Dajani-Kraaikamp of the cost of
passing from base 10 to the Continued Fraction Expansion.
One considers appropriate maps T and S called
“number-theoretic fibered maps” associated with digits and
get a limiting result with the quotient of h(T) and h(S).

I What about non-discrete random variables? See the original
paper by von Neumann, Knuth-Yao and Philippe Duchon.

https://arxiv.org/pdf/1304.1916.pdf

Concluding remarks

There are other interesting results/ideas not mentioned in this talk,

I The optimal algorithm for discrete uniform generation from
coin flips has a fairly simple implementation, see the note by
Jérémie Lumbroso arXiv:1304.1916v1.

I The generalisation of Bosma-Dajani-Kraaikamp of the cost of
passing from base 10 to the Continued Fraction Expansion.
One considers appropriate maps T and S called
“number-theoretic fibered maps” associated with digits and
get a limiting result with the quotient of h(T) and h(S).

I What about non-discrete random variables? See the original
paper by von Neumann, Knuth-Yao and Philippe Duchon.

https://arxiv.org/pdf/1304.1916.pdf

Concluding remarks

There are other interesting results/ideas not mentioned in this talk,

I The optimal algorithm for discrete uniform generation from
coin flips has a fairly simple implementation, see the note by
Jérémie Lumbroso arXiv:1304.1916v1.

I The generalisation of Bosma-Dajani-Kraaikamp of the cost of
passing from base 10 to the Continued Fraction Expansion.
One considers appropriate maps T and S called
“number-theoretic fibered maps” associated with digits and
get a limiting result with the quotient of h(T) and h(S).

I What about non-discrete random variables? See the original
paper by von Neumann, Knuth-Yao and Philippe Duchon.

https://arxiv.org/pdf/1304.1916.pdf

References

L. Devroye,
Non-Uniform Random Variate Generation,
Springer-Verlag, New York 1986.

T. Cover, J. Thomas
Elements of Information Theory,
Wiley Series in Telecommunications and Signal Processing, Second
Edition, 2006 .

D. Knuth and A. Yao,
The complexity of nonuniform random number generation,
Algorithms and Complexity, New Directions and Recent Results, pp.
357–428, 1976.

T. S. Han, and M. Hoshi,
Interval Algorithm for Random Number Generation,
IEEE Transactions on Information Theory, 32 (2), pp. 599-611,
March 1997.

K. Dajani, and A. Fieldsteel,
Equipartition of Interval Partitions and an Application to Number
Theory,
Proceedings of the American Mathematical Society, vol 129, n. 12,
pp. 3453–3460, 2001.

	Random Variable Generation
	From fair bits
	Interval Algorithm

	Asymptotic behaviour
	Interval Partitions
	Dynamical Systems

