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Random Variable Simulation

Objective: given a perfect source of independent fair bits
X=X, Xo,...

simulate a random variable Y with a prescribed distribution.

— Generating random bits — costly.
— What if X; were not random bits? — other distributions.

Classical algorithm in probability courses
— given uniform U € [0, 1] and a continuous distribution func-
tion I’ consider the so called inverse method

Y :=FYU).
— in our context we may consider

U := (O.XlXQ . .)2 .



Interval algorithm: intro

Discrete random variable Y € Z~.¢ with distribution vector p1, ps, . ..

The inverse method gives intervals

Li(p) := [ZmZm) ,

Jj<i J<i
and defines
Y =i<UcIp).

Question
How many fair bits X1, Xs,... do we need to determine Y?
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What is
Elkp(U)] 7



Lower bound: the entropy

Theorem

The expected number of bits is bounded from below by the
entropy of p
Elkp(U)] =2 H(Y),

where H(Y') := ), pilogy(1/p;).




Lower bound: the entropy

Theorem

The expected number of bits is bounded from below by the
entropy of p
Elkp(U)] =2 H(Y),

where H(Y') := ), pilogy(1/p;).

Proof.
The code

C ::{xl...mk € {0,1}":
Ji s.t. (O.xl e T, 0.y T 2_k) C Li(p),
Aj (0.$1 e 1,01 .. 1 + 2_(k_1)) C Ij}

is prefix free and determines Y.




The distribution py := (1/N,1/N ..., 1/N)

Mk
i

Theorem
The redundancy Elkp,, (U)] — H(Y') equals

ov(N) _ 1

R(:I:):2“3_x+1_ﬁ2x_10g2<1+ﬁ)7

where x = {logy(N — 1)}, {-} denotes the fractional part and
v(N) is the greatest ¢ such that 2! divides V.




Example: fair 3-sided dice
First ps = (1/3,1/3,1/3) divides the interval [0, 1] as follows

0 1/3 2/3 1

while the subdivision procedure, a binary search for U, gives
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where we remark that the number of bits can be deduced from the
denominators.
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where we remark that the number of bits can be deduced from the
denominators.

In this case we have

Elkip, (U)] = 3 = log,(3) + 1.41503 ... .



Generic Distribution
For an arbitrary probability vector p = (p1,po,...)

Theorem
The redundancy E[kp(U)] — H(Y') is at most 2, i.e.

H(Y) < E[kp(U)] < HY) +2.

Furthermore, the +2 is tight by our example py.




Generic Distribution
For an arbitrary probability vector p = (p1,po,...)

Theorem
The redundancy E[kp(U)] — H(Y') is at most 2, i.e.

H(Y) < E[kp(U)] < HY) +2.

Furthermore, the +2 is tight by our example py.

Knuth-Yao proved that the optimal algorithm satisfies these bounds.

» Algorithm seen as binary tree.
» Optimal algorithm obtained by decomposing each

— 0 p ),

in binary and assigning a leaf of probability pgi) for each (i, 7).



Example: continued fractions

Procedures gives way to, given the binary representation of U, decide
to which interval among the partition

[0,p1), [p1,p1 + p2), [P1 + P2, 1 + P2 +p3), ...

it belongs to. This can be applied to
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Example: continued fractions

Procedures gives way to, given the binary representation of U, decide
to which interval among the partition

[0,p1), [p1,p1 + p2), [P1 + P2, p1 + P2 +p3), - ..
it belongs to. This can be applied to
For example, if we consider the (qr)x of U, the set
Ii(a,b) :={U € [0,1] : (-1 (U), q&(V)) = (a,b)}

is an interval of length 5oy When ged(a,b) =1 and a <b.

a+b)
A possible (negligible intersection) is given by fixing k

Ik‘ = {Ik(a7b) : ng(a,b) == 17 1 S a S b}a

which determines the value of (qx_1(U), qx(U)).



Example: continued fractions
A different partition, relating to our ANALCO paper is:
> Fix n € Z~q, and consider

L, := {(a,b) € Zso X Z>o : ged(a,b) =1, a <n < b} .
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Example: continued fractions
A different partition, relating to our ANALCO paper is:
> Fix n € Z~q, and consider

L, := {(a,b) € Zso X Z>o : ged(a,b) =1, a <n < b} .

» Consider k := k(U,n) such that gx—1(U) <n < q(U) and
define
ab - {U e O 1] (Qk(U,n)thk(U,n)) = (a7b)}’

where (a,b) € 1,,, again an interval, forming a partition.
» Then the number of to determine

(Qk(U,n)—lv Qk(U,n)) )
is roughly

H (qr(u.n)—15 Gh(un)) = 2logan +1

12 1

B 2// ogz(y(m+y))dmy+o(1)
™ O<z<1<y y(r +y)

= 2logon — 2.4263 ...+ o(1)



Interval Algorithm

» Generalization of the previous procedure for fair bits
X = (X1, Xo,...).

» Each X, takes values on [M] with vector (q1,q2, ..., qnm).



Interval Algorithm

» Generalization of the previous procedure for fair bits
X = (X1, Xo,...).
» Each X, takes values on [M] with vector (q1,q2, ..., qnm).

Now the procedure goes as follows:

® Let K (q) = [Ag, By) be our after pro-
cessing Xq,..., Xg.

® Partition K}, (q) into intervals

Kij(q) == [Ap + Qj—1(Br — Ap), Ax + Qj(Br — Ag))

according to Q; (a) = >_;<; G-
® Suppose Xy+1(q) = j, then set K1 (q) := Ky (q).



Interval K} (q) corresponds to what before was
0.21...25,0.21...25 + Q_k) )
We continue until
kqp = inf {k; >0:3ist Ki(q) C Ii(p)} ,

in which case we return Y =i if Kj (q) C I;(p)



Interval K} (q) corresponds to what before was
0.21...25,0.21...25 + 2_k) )

We continue until

kqp = inf {k: >0:3ist Ky (q) C Ii(p)} ,
in which case we return Y =i if Kj (q) C I;(p)

Theorem (Lower bound)

The cost of simulating the random variable Y having prob. vector
p by using the Interval Algorithm with an M-valued “coin flips”
according to the prob. vector q is bounded from below by

HP) kg

H(q)




Interval Algorithm: efficiency

Theorem (Han,Hoshi 95)

For any probability vectors p = (p1,...,pn) and q = (q1,---,qm),

the expected number of coin tosses in the interval algorithm is
upper-bounded

H(p) 10g2(M — 1) h(Qmax)
EBlbarl < Gy V" H@ T 0= gua H(@)

Proof.
Whiteboard (or blackboard).




Generalization to random processes
We want to simulate a random process

y: (Y'l?Y27Y37"')7

rather than a single Y with a prescribed distribution.

The question now is

what is the asymptotic cost of producing ), = (Y1,Y>,...
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Generalization to random processes
We want to simulate a random process

y: (}/17Y27Y37"')7

rather than a single Y with a prescribed distribution.

The question now is

what is the asymptotic cost of producing Y, = (Y1,Y2,...,Y,) ?

Remark

If the “target” source Y1,Yo,... is stationary, p™ denotes the
vector of (Yji1,...,Yj4p) for 7 >0 and &y, := kqpn :

Efk,] _ H)

i
nooo n | H(X)

Proof.
By independence H(X) = H(q), while H(Y,,)/n — H(Y).

O

v




Generalization

> We may imagine now that the variables Xi, X», ... are not
necessarily independent or identically distributed
— natural if produced by a dynamical system (eg. Eucid).
» The question can be framed more purely in terms of
sequences of interval partitions.
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Generalization

> We may imagine now that the variables Xi, X», ... are not
necessarily independent or identically distributed
— natural if produced by a dynamical system (eg. Eucid).
» The question can be framed more purely in terms of
sequences of interval partitions.

Definition (Interval partition)

An interval partition is a finite or countable partition of [0, 1] into
intervals. If P is an interval partition and x € [0, 1], we let P(x)
denote the interval I € P such that x € I.

Now our problem is rephrased in terms of

kop(n,z) =inf {k > 0: Qx(z) C Po(z)};

compare it with kg pn :
» P, corresponds to the partition according to (Y7,...,Y},).
» O} corresponds to the partition according to (X7i,..., X).



Entropy of an interval partition
Definition (Entropy)

Let P := (Py),-, be a sequence of interval partitions. We say
that P has entropy ¢ > 0 with respect to a measure X if

1
lim ——log A(Pn(z)) =¢c, X— a.e.

n—oo n
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Let P := (Py),-, be a sequence of interval partitions. We say
that P has entropy ¢ > 0 with respect to a measure X if

1
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Let A be the Lebesgue measure:

» For Q= { [, 4) :i=0,...,28F — 1} we get

—%log)\(Qk(x)) =log2,Vk>1.



Entropy of an interval partition

Definition (Entropy)

Let P := (Py),-, be a sequence of interval partitions. We say
that P has entropy ¢ > 0 with respect to a measure X if

1
lim ——log A(Pp(z)) =¢c, A— ae.

n—oo n

Let A\ be the Lebesgue measure:

» For Qk:{[#,%):izo,...ﬂk—l} we get

1
—%log)\(Qk(x)) =log2,Vk > 1.

» For P, = {I,(a,b) : ged(a,b) = 1,1 < a < b}, where
In(a,b) = {z € [0,1] : (gn-1(2), g (2)) = (a, D)},

we get (blackboard explanation)

7'('2

1
lim ——log A(P, =—
not00 n 0g A(Pn(z)) 6log 2



Asymptotic Cost

Theorem (Dajani, Fieldsteel, 2001)

Let P :={Pp}>2, and Q := {Q,}32, be sequences of interval
partitions, and let A\ be a Borel probability measure on [0,1).

Assume P and Q have entropies H(P) and H(Q) respectively
with respect to A, then

. 1
A Sk (n, ) = H(Q)

for A-a.e. .




Asymptotic Cost

Theorem (Dajani, Fieldsteel, 2001)
Let P :={Pp}>2, and Q := {Q,}32, be sequences of interval
partitions, and let A\ be a Borel probability measure on [0,1).

Assume P and Q have entropies H(P) and H(Q) respectively
with respect to A, then

.1
nh_g)lo ;kQ,P(n,ﬂf) = @

for A-a.e. .

v

Example: the number of digits required to determine (g,—1(x), gn(z))
from the base 10 expansion of x behaves like mn ae. z,a
result previously proved by Lochs.



Good partition sequences
Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (£2,8, 1) and let P be a finite or countable
generating partition for T' for which H,,(P) < co. Then for ji-a.e.

$V

i 08 4 (Pu(@))

n—o00 n
Here H, (P) denotes the entropy of the partition P, h,(T') the
entropy of T' and P, (z) denotes the element of the partition
\/?:_01 T—'P containing x.

= h(T).




Good partition sequences

Theorem (Shannon,McMillan,Breiman)

Let T be an ergodic measure preserving transformation on a
probability space (£2,8, 1) and let P be a finite or countable
generating partition for T' for which H,,(P) < co. Then for ji-a.e.

$V

i 08 4 (Pu(@))

n—o00 n
Here H, (P) denotes the entropy of the partition P, h,(T') the
entropy of T' and P, (z) denotes the element of the partition
\/?:_01 T—'P containing x.

= h(T).

We recall that
hu(T) = sup{h, (T, A) : A countable partition of X},

and

h (T, A) = lim lH(A(U),A(TU),...,A(T’HU)) :

n—o00 N,

where U is distributed according to p.



Concluding remarks

There are other interesting results/ideas not mentioned in this talk,

» The optimal algorithm for discrete uniform generation from
coin flips has a fairly simple implementation, see the note by
Jérémie Lumbroso arXiv:1304.1916v1.
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One considers appropriate maps 1" and S called
“number-theoretic fibered maps” associated with digits and
get a limiting result with the quotient of h(T") and h(S).
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Concluding remarks

There are other interesting results/ideas not mentioned in this talk,

» The optimal algorithm for discrete uniform generation from
coin flips has a fairly simple implementation, see the note by
Jérémie Lumbroso arXiv:1304.1916v1.

» The generalisation of Bosma-Dajani-Kraaikamp of the cost of
passing from base 10 to the Continued Fraction Expansion.
One considers appropriate maps 1" and S called
“number-theoretic fibered maps” associated with digits and
get a limiting result with the quotient of h(T") and h(S).

» What about non-discrete random variables? See the original
paper by von Neumann, Knuth-Yao and Philippe Duchon.


https://arxiv.org/pdf/1304.1916.pdf
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