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Study in combinatorics of words.
Objective: description of the finite factors of an infinite word u

– How many factors of length n? −→ Complexity
– What are the gaps between them? −→ Recurrence

Very easy when the word is eventually periodic !

Sturmian words:
the “simplest” binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words.
Classical study : for each fixed Sturmian word,

what are the extreme bounds for the recurrence function?

Here, in an appropriate model,
we perform a probabilistic study:

For a “random” sturmian word stemming from a reduced quadratic
irrational

– what is the mean value of the recurrence?
– what is the limit distribution of the recurrence?
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Complexity

Definition

Complexity function of an infinite word u ∈ AN

pu : N→ N , pu(n) = #{factors of length n in u} .

Simple facts:

pu(n) ≤ |A|n , pu(n) ≤ pu(n+ 1) .

Important property

u ∈ AN is not eventually periodic

⇐⇒ pu(n+ 1)>pu(n) for all n ∈ N
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Simple facts:
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Recurrence

Definition (Uniform recurrence)

A word u ∈ AN is uniformly recurrent ⇔ each finite factor appears
infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider u uniformly recurrent. Its recurrence function is:

Ru(n) = inf {m ∈ N : every factor of length m

contains all the factors of length n} .

I Cost we have to pay to discover the factors if we start from an
arbitrary point in u = u1u2 . . .

I Related to the complexity function
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Definition (Uniform recurrence)

A word u ∈ AN is uniformly recurrent ⇔ each finite factor appears
infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider u uniformly recurrent. Its recurrence function is:

Ru(n) = inf {m ∈ N : every factor of length m

contains all the factors of length n} .

I Cost we have to pay to discover the factors if we start from an
arbitrary point in u = u1u2 . . .

I Related to the complexity function

Ru(n) ≥ n︸︷︷︸
length of first factor

+ pu(n)− 1︸ ︷︷ ︸
count +1 for every other factor

.



Sturmian words

These are the “simplest” words that are not eventually periodic.

Definition

u ∈ {0, 1}N is Sturmian ⇐⇒ pu(n) = n+ 1 for each n ≥ 0.

Explicit construction

Given α, β ∈ [0, 1) we define

Sα,β(n) = b(n+ 1)α+ βc − bnα+ βc ,
Sα,β(n) = d(n+ 1)α+ βe − dnα+ βe ,

for n ≥ 0.

I u is Sturmian ⇐⇒ there are α, β ∈ [0, 1), α irrational, such that

ui = Sα,β(i) , for all i ≥ 0 , or ui = Sα,β(i) , for all i ≥ 0 .
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Digital lines

0 0 1 0 0 1 0 1 0 0

Figure : In digital geometry S and S code discrete lines. In the picture
we see S(α, 0) written below, where α is the slope.



Recurrence of Sturmian words

Properties

Let u be Sturmian of the form S(α, β) or S(α, β). Then

I u is uniformly recurrent

I Ru(n) only depends on α =⇒ we write Rα(n).

I Further (Rα(n))n∈N only depends on the continuants of α.

Reminder: Consider the continued fraction expansion (CFE) of α

α =
1

m1 +
1

. . . +
1

mk +
1

. . .

,

The continuant qn(α) is the denominator of the truncated CFE

1

m1 +
1

. . . +
1

mn

.
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Recurrence of Sturmian words: Morse, Hedlund

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

Rα(n) = n− 1 + qk−1(α) + qk(α) , for n ∈ [qk−1(α), qk(α)[.

Remark

I (α, n) determines a unique k with n ∈ [qk−1(α), qk(α)[.

Let us see what they look like...
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Recurrence function for two Sturmian words

Rα(n) = n− 1 + qk−1(α) + qk(α) , for n ∈ [qk−1(α), qk(α)[.

2 4 6 8 10 12
n0

5
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15

20

25

30

Rα (n)

q0 =1 q1 =2 q2 =3 q3 =5 q4 =8 q5 =13

Recurrence function for α = ϕ2,

with ϕ = (
√
5− 1)/2.
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q0 =1 q1 =2 q2 =3 q3 =8 q4 =11 q5 =19

Recurrence function for α = 1/e.



Recurrence function of Sturmian words: classical results.

Theorem (Morse, Hedlund, 1940)

For almost every irrational α, one has

lim sup
n→∞

Rα(n)

n log n
=∞, lim

n→∞

Rα(n)

n (log n)1+ε
= 0 for any ε > 0.

But from below

lim inf
n→∞

Rα(n)

n
≤ 3 ,

consider n ≈ 1
2 (qk−1(α) + qk(α)) .



Recurrence function of Sturmian words: classical results.

Theorem (Morse, Hedlund, 1940)

For almost every irrational α, one has

lim sup
n→∞

Rα(n)

n log n
=∞, lim

n→∞

Rα(n)

n (log n)1+ε
= 0 for any ε > 0.

But from below

lim inf
n→∞

Rα(n)

n
≤ 3 ,

consider n ≈ 1
2 (qk−1(α) + qk(α)) .



Our first model: uniform α

Usual studies of Rα(n)

I give information about extreme cases.

I give results for almost all α.

In our probabilistic setting we

I fix an integer n (we want n→∞ ...)

I pick an irrational α uniformly from [0, 1].

=⇒ we perform the probabilistic study
of the normalised recurrence quotient

S(α, n) =
Rα(n) + 1

n
,

as n→∞.



Our first model: uniform α

Usual studies of Rα(n)

I give information about extreme cases.

I give results for almost all α.

In our probabilistic setting we

I fix an integer n (we want n→∞ ...)

I pick an irrational α uniformly from [0, 1].

=⇒ we perform the probabilistic study
of the normalised recurrence quotient

S(α, n) =
Rα(n) + 1

n
,

as n→∞.



We consider the recurrence quotient

Sn(α) := S(α, n) =
Rα(n) + 1

n
.

We perform a probabilistic study

I for expected values: E[Sn]

I for distributions : P (Sn ∈ J)
as n→∞.

Worst case of S(α, n) is roughly log n (Morse-Hedlund).

=⇒ We wish to obtain this log n behaviour in our study of S(α, n).
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Study of the recurrence quotient S

Theorem

The random variable Sn(α) := S(α, n) admits a limiting
distribution when n→∞, which is given by

lim
n→∞

P(α : Sn(α) ≤ λ) =
∫
[2,λ]

g(y)dy ,

for t ≥ 2 (and 0 otherwise), where the density g equals

g(λ) =

{
12
π2

1
λ−1 log(λ− 1) if λ ∈ [2, 3]

12
π2

1
λ−1 log

(
1 + 1

λ−2

)
if λ ∈ [3,∞)

.

Figure : The limit density
g(x) in red and a scaled
experimental histogram for
S(α, n) in blue, produced
with N = 106.
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Principles of the proof

For n ∈ [qk−1(α), qk(α)), let x(α, n) =
qk−1(α)

n , y(α, n) = qk(α)
n .

Then
Sn(α) = f(x, y) := 1 + x+ y

Distribution P (Sn ≤ λ) is expressed as the coprime Riemann sum
of step 1

n of

ω(x, y) =
2

y(x+ y)
, over ∆f (λ) := {(x, y) : 0 < x ≤ 1 < y, f(x, y) ≤ λ} .

0.0 1 2
0.0

1

2

∆f (λ)

λ = 3.5 These converge to the integral

lim
n→∞

P (Sn ≤ λ)

=
6

π2

∫∫
∆f (λ)

ω(x, y)dxdy



Principles of the proof

For n ∈ [qk−1(α), qk(α)), let x(α, n) =
qk−1(α)

n , y(α, n) = qk(α)
n .

Then
Sn(α) = f(x, y) := 1 + x+ y

Distribution P (Sn ≤ λ) is expressed as the coprime Riemann sum
of step 1

n of

ω(x, y) =
2

y(x+ y)
, over ∆f (λ) := {(x, y) : 0 < x ≤ 1 < y, f(x, y) ≤ λ} .

0.0 1 2
0.0

1

2

∆f (λ)

λ = 3.5

These converge to the integral

lim
n→∞

P (Sn ≤ λ)

=
6

π2

∫∫
∆f (λ)

ω(x, y)dxdy



Principles of the proof

For n ∈ [qk−1(α), qk(α)), let x(α, n) =
qk−1(α)

n , y(α, n) = qk(α)
n .

Then
Sn(α) = f(x, y) := 1 + x+ y

Distribution P (Sn ≤ λ) is expressed as the coprime Riemann sum
of step 1

n of

ω(x, y) =
2

y(x+ y)
, over ∆f (λ) := {(x, y) : 0 < x ≤ 1 < y, f(x, y) ≤ λ} .

0.0 1 2
0.0

1

2

∆f (λ)

λ = 3.5 These converge to the integral

lim
n→∞

P (Sn ≤ λ)

=
6

π2

∫∫
∆f (λ)

ω(x, y)dxdy



Reduced quadratic irrationals

I A real t ∈ [0, 1] is said to be a reduced quadratic irrational if
and only if its CFE m1,m2, . . . is purely periodic.

I Given w = (w1, . . . , wp) ∈ Zp>0 consider the inverse branch

hw(x) =
1

w1 +
1

. . . +
1

wp + x

,

then w∞ is the only real in [0, 1] satisfying hw(w
∞) = w∞.

I Consider w = (w1, . . . , wp) ∈ Np primitive, then this is the
smallest period of the continued fraction expansion of w∞.
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Reduced quadratic irrationals

Consider w = (w1, . . . , wp) ∈ Np, not necessarily primitive

I An appropriate notion of size for w is given by 1/α(w), where

α(w) :=
∣∣h′w(w∞)

∣∣1/2 = (qp(w) + w∞ qp−1(w))
−1 .

I By the chain rule

α(wm) = (α(w))m

for m ∈ Z≥0, where wm = w ·w · . . . w concatenated m times.

I If T (x) =
{
1
x

}
is the shift of the Euclidean System

α(w) =

p−1∏
k=0

T k(w∞) .



The generating function
Fix n ∈ N and λ ∈ R.

Objective. Study the occurrence of

S(w∞, n) ≤ λ

over the r.q.i w∞ with w primitive, and − logα(w) ≤ x.

Dirichlet series

To compute with such quantities → DGF

Pn(s) =
∑

w∈Z∗>0 ,

w primitive

(α(w))s
[[
S(w∞, n) ≤ λ

]]
,

As explained by Eda, it is enough to study the non-primitive case

Gn(s) =
∑

w∈Z∗>0

(α(w))s
[[
S(w∞, n) ≤ λ

]]
,

as Pn(s) +
∑

k≥2 Pn(ks) = Gn(s) .



The generating function
Fix n ∈ N and λ ∈ R.

Objective. Study the occurrence of

S(w∞, n) ≤ λ

over the r.q.i w∞ with w primitive, and − logα(w) ≤ x.

Dirichlet series

To compute with such quantities → DGF

Pn(s) =
∑

w∈Z∗>0 ,

w primitive

(α(w))s
[[
S(w∞, n) ≤ λ

]]
,

As explained by Eda, it is enough to study the non-primitive case

Gn(s) =
∑

w∈Z∗>0

(α(w))s
[[
S(w∞, n) ≤ λ

]]
,

as Pn(s) +
∑

k≥2 Pn(ks) = Gn(s) .



The generating function
Fix n ∈ N and λ ∈ R.

Objective. Study the occurrence of

S(w∞, n) ≤ λ

over the r.q.i w∞ with w primitive, and − logα(w) ≤ x.

Dirichlet series

To compute with such quantities → DGF

Pn(s) =
∑

w∈Z∗>0 ,

w primitive

(α(w))s
[[
S(w∞, n) ≤ λ

]]
,

As explained by Eda, it is enough to study the non-primitive case

Gn(s) =
∑

w∈Z∗>0

(α(w))s
[[
S(w∞, n) ≤ λ

]]
,

as Pn(s) +
∑

k≥2 Pn(ks) = Gn(s) .



Tauberian Theorem

Let (ai)i∈I be a family of non-negative numbers indexed on a
numerable set I, and let h : I → R>0 be a function such that

D(s) =
∑
i∈I

aih(i)
−s

converges absolutely for <(s) > 1.

Suppose D(s) can be extended analytically to <(s) = 1 except for
s = 1, where it satisfies

D(s) =
ρ

(s− 1)k
+

H(s)

(s− 1)k−1
, <(s) > 1,

with H analytic at s = 1.
Then

1

N

∑
i∈I:h(i)≤N

ai ∼ ρ
logk−1N

(k − 1)!
.
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The first cycle: positioning n

Objective. Given n, we want to study the function[[
1 +

qk−1(x) + qk(x)

n
≤ λ

]]
where k := k(x, n) is such that qk−1(x) ≤ n < qk(x).

Write x = w∞ for some w ∈ Z+
>0, and v = w1 . . . wk, the prefix of

w∞ needed to compute (qk−1(w
∞), qk(w

∞))
~ observe we may decompose v = w`u , with u 6= ε, u � w

a prefix of w, and ` ∈ Z≥0.
~ when ` = 0, the word v is a prefix of w ⇒ great, we can

complete it to a period as we like.
~ when ` > 0, the word v has “interdependencies”

=⇒ Here we will explain the case ` = 0.
equivalently k(w∞, n) ≤ |w| holds.



The first cycle: positioning n

Objective. Given n, we want to study the function[[
1 +

qk−1(x) + qk(x)

n
≤ λ

]]
where k := k(x, n) is such that qk−1(x) ≤ n < qk(x).

Write x = w∞ for some w ∈ Z+
>0, and v = w1 . . . wk, the prefix of

w∞ needed to compute (qk−1(w
∞), qk(w

∞))
~ observe we may decompose v = w`u , with u 6= ε, u � w

a prefix of w, and ` ∈ Z≥0.

~ when ` = 0, the word v is a prefix of w ⇒ great, we can
complete it to a period as we like.

~ when ` > 0, the word v has “interdependencies”

=⇒ Here we will explain the case ` = 0.
equivalently k(w∞, n) ≤ |w| holds.



The first cycle: positioning n

Objective. Given n, we want to study the function[[
1 +

qk−1(x) + qk(x)

n
≤ λ

]]
where k := k(x, n) is such that qk−1(x) ≤ n < qk(x).

Write x = w∞ for some w ∈ Z+
>0, and v = w1 . . . wk, the prefix of

w∞ needed to compute (qk−1(w
∞), qk(w

∞))
~ observe we may decompose v = w`u , with u 6= ε, u � w

a prefix of w, and ` ∈ Z≥0.
~ when ` = 0, the word v is a prefix of w

⇒ great, we can
complete it to a period as we like.

~ when ` > 0, the word v has “interdependencies”

=⇒ Here we will explain the case ` = 0.
equivalently k(w∞, n) ≤ |w| holds.



The first cycle: positioning n

Objective. Given n, we want to study the function[[
1 +

qk−1(x) + qk(x)

n
≤ λ

]]
where k := k(x, n) is such that qk−1(x) ≤ n < qk(x).

Write x = w∞ for some w ∈ Z+
>0, and v = w1 . . . wk, the prefix of

w∞ needed to compute (qk−1(w
∞), qk(w

∞))
~ observe we may decompose v = w`u , with u 6= ε, u � w

a prefix of w, and ` ∈ Z≥0.
~ when ` = 0, the word v is a prefix of w ⇒ great, we can

complete it to a period as we like.

~ when ` > 0, the word v has “interdependencies”

=⇒ Here we will explain the case ` = 0.
equivalently k(w∞, n) ≤ |w| holds.



The first cycle: positioning n

Objective. Given n, we want to study the function[[
1 +

qk−1(x) + qk(x)

n
≤ λ

]]
where k := k(x, n) is such that qk−1(x) ≤ n < qk(x).

Write x = w∞ for some w ∈ Z+
>0, and v = w1 . . . wk, the prefix of

w∞ needed to compute (qk−1(w
∞), qk(w

∞))
~ observe we may decompose v = w`u , with u 6= ε, u � w

a prefix of w, and ` ∈ Z≥0.
~ when ` = 0, the word v is a prefix of w ⇒ great, we can

complete it to a period as we like.
~ when ` > 0, the word v has “interdependencies”

=⇒ Here we will explain the case ` = 0.
equivalently k(w∞, n) ≤ |w| holds.



The first cycle: positioning n

Objective. Given n, we want to study the function[[
1 +

qk−1(x) + qk(x)

n
≤ λ

]]
where k := k(x, n) is such that qk−1(x) ≤ n < qk(x).

Write x = w∞ for some w ∈ Z+
>0, and v = w1 . . . wk, the prefix of

w∞ needed to compute (qk−1(w
∞), qk(w

∞))
~ observe we may decompose v = w`u , with u 6= ε, u � w

a prefix of w, and ` ∈ Z≥0.
~ when ` = 0, the word v is a prefix of w ⇒ great, we can

complete it to a period as we like.
~ when ` > 0, the word v has “interdependencies”

=⇒ Here we will explain the case ` = 0.
equivalently k(w∞, n) ≤ |w| holds.



The generating function 2.0

Adding the condition that we be on the first cycle

Fn(s) =
∑

w∈Z∗>0

(α(w))s
[[
S(w∞, n) ≤ λ, k(w∞, n) ≤ |w|

]]
,

which we rewrite as

Fn(s) =
∑

w∈Z∗>0

∑
v�w

(α(w))s
[[
S(w∞, n) ≤ λ, k(w∞, n) = |v|

]]
,

and reversing the order of summation

Fn(s) =
∑
v∈Z+

>0

[[
S(v∞, n) ≤ λ, k(v∞, n) = |v|

]]
∑

w∈Z∗>0:v�w
(α(w))s .
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Computing with prefix condition: plan
~ Fixed v 6= ε, we want to analyse

Fn,v(s) :=
∑

w∈Z∗>0:v�w
(α(w))s .

� We remark that for s→ 2

Fn,v(s) ∼
1

s− 2

12 log 2

π2

∫
hv([0,1])

ψ(x)dx , ψ(x) = 1
log 2

1
1+x .

~ Then we extract

Fn(s) ∼
1

s− 2

12 log 2

π2

∑
v∈Z+

>0

[[
S(v∞, n) ≤ λ, k(v∞, n) = |v|

]]
∫
hv([0,1])

ψ(x)dx .

here we prove that the sum, even though the integrals depends on
pk, qk−1 and qk simultaneously, can be computed as n→∞.
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Reminder. We want the dominant pole and residue for

Fn,v(s) =
∑

w∈Z∗>0:v�w
(α(w))s .

I To generate Fn,v(s), consider the operator

H[w],s[g](x) = |h′w(x)|s/2g (hw(x)) ,

its eigenvalues being given by

|h′w(w∞)|s/2, (−1)|w||h′w(w∞)|s/2+1, |h′w(w∞)|s/2+2, . . .

I The operator H[w],s is trace-class3 when acting on the space
A∞ (V) presented by Eda. Then we get

TrH[w],s =
α(w)s

1− (−1)|w|α(w)2
= α(w)s +O

(
α(w)s+2

)
.

Now we have to sum over all w such that v � w.

3trace=sum of eigenvalues
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Pole and residue

I Adding over all w : v � w we obtain

Tr
(
(I −Hs)

−1 ◦H[v],s

)
= Fn,v(s) + less significat series ,

where Hs =
∑

w∈Z1
>0
H[w],s.

I Here the quasi-inverse has a pole at s = 2 where we have

(I −Hs)
−1 ∼ 1

s− 2

12 log 2

π2
P ,

where P[g](x) = ψ(x)
∫ 1
0 g(x)dx, the projector onto 〈ψ(x)〉.

I Thus we have, as s→ 2, dominant eigenvector ∼ ψ and

Tr
(
(I −Hs)

−1 ◦H[v],s

)
∼ 1

s− 2

12 log 2

π2

∫ 1

0
H[v],2[ψ](t)dt

=
1

s− 2

12 log 2

π2

∫
hv([0,1])

ψ(u)du .
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The real case strikes back
Finally we concentrate on∑

w′∈Z+
>0

[[
S(v∞, n) ≤ λ, k(v∞, n) = |v|

]] ∫
hv([0,1])

ψ(x)dx .

I Rewrite the condition in the brackets, giving∑
k

∑
v∈Zk

>0

[[
1 +

qk−1(v) + qk(v)

n
≤ λ, qk−1(v) ≤ n < qk(v)

]]
∫
hv([0,1])

ψ(x)dx

I This is exactly the probability P (t : Sn(t) ≤ λ) when t is
distributed according to the law

P(t ≤ T ) =
∫
[0,T ]

ψ(u)du .
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Declaration of independence

Theorem (Independence from the initial law)

Consider a probability measure µ that is absolutely continuous with
respect to the Lebesgue measure m, in symbols µ� m.
Then for each fixed λ ∈ R, the limit

lim
n→∞

Pµ (Sn ≤ λ)

exists and is independent from the choice of µ� m.

Remark

In particular the resulting limiting distribution is that of the real
model (ANALCO).

Convergence speed may vary though.
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Independent? How come?
~ Suppose g(x) = dµ

dm(x) ∈ C1([0, 1]), and write

Pµ (Sn(α) ≤ λ) =∑
k

∑
v∈Zk

>0

[[
1+ qk−1(v)+qk(v)

n ≤ λ, qk−1(v) ≤ n < qk(v)
]]∫
Iv
g(x)dx ,

where Iv = hv([0, 1]) is the fundamental interval of v.

~ From the continuity of g′ and pk
qk
∈ Iv it follows that∫

Iv
g(x)dx = |Iv|g

(
pk
qk

)
+O

(
|Iv|2

)
,

where, in fact |Iv| = 1
qk(qk+qk−1)

=⇒ we may omit the O term.

~ If g ≡ 1, then what we have is the same as in ANALCO.
– Not the case, but qk−1/qk and pk/qk are

“asymptotically independent”.
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where, in fact |Iv| = 1
qk(qk+qk−1)

=⇒ we may omit the O term.

~ If g ≡ 1, then what we have is the same as in ANALCO.

– Not the case, but qk−1/qk and pk/qk are

“asymptotically independent”.
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Independence of the inverses
We recall the classic

pk−1qk − pkqk−1 = (−1)k ⇒ pk =
(
(−1)k+1q−1k−1

)
mod qk .

So qk−1 and pk behave almost like modular inverses, up to a sign
change depending on the parity of the depth k.

→ Fractions have two developments, with different parities
=⇒ Enough to solve the case in which pk = q−1k−1(mod.qk).

Theorem (see e.g. Shparlinski)

Let q ∈ Z>0 and let [a1, b1], [a2, b2] ⊂ [0, 1], then for any ε > 0

1

ϕ(q)

∑
1≤a≤q ,

gcd(a,q)=1

1(a
q
,a
−1 mod q

q

)
∈[a1,b1]×[a2,b2]

= (b1 − a1) (b2 − a2) +O(q−1/2+ε) .

=⇒ a
q and a−1 mod q

q behave as if they were independent!
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Concluding remarks

I The rationals
~ Give rise to Christoffel words.
~ Finite continued fraction expansion.
~ Essentially we are always on the first cycle!
~ Our study yields the same limit of the real case.

I The quadratic irrationals
~ Study of the what happens on the other cycles underway.
~ Behaviour of the distribution when the number of cycle

`→∞ looks promising.

I Similar studies in other dimensions (?). Brun (?)
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