Recurrence function of Sturmian sequences: A probabilistic study over *quadratic irrationals*

Pablo Rotondo¹, Brigitte Vallée²

DYNA3s, **Caen**, 7 June, 2017.

 $^{^1}$ IRIF, Paris 7 Diderot. Universidad de la República, Uruguay. GREYC, associate 2 CNRS, GREYC Univ. de Caen

Objective: description of the finite factors of an infinite word $m{u}$

- How many factors of length $n? \longrightarrow Complexity$

– What are the gaps between them? $\longrightarrow \mathsf{Recurrence}$

Very easy when the word is eventually periodic !

Objective: description of the finite factors of an infinite word $m{u}$

- How many factors of length $n? \longrightarrow Complexity$
- What are the gaps between them? $\longrightarrow \mathsf{Recurrence}$

Very easy when the word is eventually periodic !

Sturmian words:

the "simplest" binary infinite words that are not eventually periodic

Objective: description of the finite factors of an infinite word $m{u}$

- How many factors of length $n? \longrightarrow Complexity$
- What are the gaps between them? $\longrightarrow \mathsf{Recurrence}$

Very easy when the word is eventually periodic !

Sturmian words:

the "simplest" binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words. Classical study : for each fixed Sturmian word,

what are the extreme bounds for the recurrence function?

Objective: description of the finite factors of an infinite word $oldsymbol{u}$

- How many factors of length $n? \longrightarrow Complexity$
- What are the gaps between them? $\longrightarrow \mathsf{Recurrence}$

Very easy when the word is eventually periodic !

Sturmian words:

the "simplest" binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words. Classical study : for each fixed Sturmian word,

what are the extreme bounds for the recurrence function?

Here, in an appropriate model,

we perform a probabilistic study:

For a "random" sturmian word stemming from a reduced quadratic irrational

- what is the mean value of the recurrence?
- what is the limit distribution of the recurrence?

Plan of the talk

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N}\,, \qquad p_{\boldsymbol{u}}(n) = \#\{\text{factors of length } n \text{ in } \boldsymbol{u}\}\,.$

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N}, \qquad p_{\boldsymbol{u}}(n) = \#\{\text{factors of length } n \text{ in } \boldsymbol{u}\}.$

Simple facts:

$$p_{\boldsymbol{u}}(n) \leq |\mathcal{A}|^n \,, \quad p_{\boldsymbol{u}}(n) \leq p_{\boldsymbol{u}}(n+1) \,.$$

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N}\,, \qquad p_{\boldsymbol{u}}(n) = \#\{\text{factors of length } n \text{ in } \boldsymbol{u}\}\,.$

Simple facts:

$$p_{\boldsymbol{u}}(n) \leq |\mathcal{A}|^n$$
, $p_{\boldsymbol{u}}(n) \leq p_{\boldsymbol{u}}(n+1)$.

Important property

$$\begin{split} \boldsymbol{u} &\in \mathcal{A}^{\mathbb{N}} \text{ is not eventually periodic} \\ & \Longleftrightarrow p_{\boldsymbol{u}}(n+1) > p_{\boldsymbol{u}}(n) \text{ for all } n \in \mathbb{N} \end{split}$$

Definition

Complexity function of an infinite word $oldsymbol{u} \in \mathcal{A}^{\mathbb{N}}$

 $p_{\boldsymbol{u}} \colon \mathbb{N} \to \mathbb{N}\,, \qquad p_{\boldsymbol{u}}(n) = \#\{\text{factors of length } n \text{ in } \boldsymbol{u}\}\,.$

Simple facts:

$$p_{\boldsymbol{u}}(n) \leq |\mathcal{A}|^n$$
, $p_{\boldsymbol{u}}(n) \leq p_{\boldsymbol{u}}(n+1)$.

Important property

 $u \in \mathcal{A}^{\mathbb{N}}$ is not eventually periodic $\iff p_u(n+1) > p_u(n)$ for all $n \in \mathbb{N}$ $\implies p_u(n) \ge n+1$

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent \Leftrightarrow each finite factor appears infinitely often and with bounded gaps.

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent \Leftrightarrow each finite factor appears infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider u uniformly recurrent. Its recurrence function is:

 $R_{\boldsymbol{u}}(n) = \inf \ \{m \in \mathbb{N} : \text{every factor of length } m \$

contains all the factors of length n.

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent \Leftrightarrow each finite factor appears infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider u uniformly recurrent. Its recurrence function is:

$$R_{\boldsymbol{u}}(n) = \inf \{ m \in \mathbb{N} : \text{ every factor of length } m \\ \text{ contains all the factors of length } n \}.$$

► Cost we have to pay to discover the factors if we start from an arbitrary point in u = u₁u₂...

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent \Leftrightarrow each finite factor appears infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider \boldsymbol{u} uniformly recurrent. Its recurrence function is:

 $R_{\boldsymbol{u}}(n) = \inf \ \{m \in \mathbb{N} : \text{every factor of length } m \$

contains all the factors of length n.

- Cost we have to pay to discover the factors if we start from an arbitrary point in $u = u_1 u_2 \dots$
- Related to the complexity function

 $R_{\boldsymbol{u}}(n) \ge n + p_{\boldsymbol{u}}(n) - 1.$

Definition (Uniform recurrence)

A word $u \in \mathcal{A}^{\mathbb{N}}$ is uniformly recurrent \Leftrightarrow each finite factor appears infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider u uniformly recurrent. Its recurrence function is:

 $R_{\boldsymbol{u}}(n) = \inf \{ m \in \mathbb{N} : \text{ every factor of length } m \\ \text{ contains all the factors of length } n \}.$

- Cost we have to pay to discover the factors if we start from an arbitrary point in $u = u_1 u_2 \dots$
- Related to the complexity function

$$R_{u}(n) \geq \underbrace{n}_{\text{length of first factor}} + \underbrace{p_{u}(n) - 1}_{\text{count }+1 \text{ for every other factor}}$$

These are the "simplest" words that are not eventually periodic.

These are the "simplest" words that are not eventually periodic. Definition

 $\boldsymbol{u} \in \{0,1\}^{\mathbb{N}}$ is Sturmian $\iff p_{\boldsymbol{u}}(n) = n+1$ for each $n \ge 0$.

These are the "simplest" words that are not eventually periodic.

Definition

 $\boldsymbol{u} \in \{0,1\}^{\mathbb{N}}$ is Sturmian $\iff p_{\boldsymbol{u}}(n) = n+1$ for each $n \ge 0$.

Explicit construction

Given $\alpha, \beta \in [0, 1)$ we define

$$\underline{\mathfrak{S}}_{\alpha,\beta}(n) = \lfloor (n+1) \,\alpha + \beta \rfloor - \lfloor n \,\alpha + \beta \rfloor , \\ \overline{\mathfrak{S}}_{\alpha,\beta}(n) = \lceil (n+1) \,\alpha + \beta \rceil - \lceil n \,\alpha + \beta \rceil ,$$

for $n \ge 0$.

These are the "simplest" words that are not eventually periodic.

Definition

 $\boldsymbol{u} \in \{0,1\}^{\mathbb{N}}$ is Sturmian $\iff p_{\boldsymbol{u}}(n) = n+1$ for each $n \ge 0$.

Explicit construction

Given $\alpha, \beta \in [0, 1)$ we define

$$\underline{\mathfrak{S}}_{\alpha,\beta}(n) = \lfloor (n+1)\alpha + \beta \rfloor - \lfloor n\alpha + \beta \rfloor , \overline{\mathfrak{S}}_{\alpha,\beta}(n) = \lceil (n+1)\alpha + \beta \rceil - \lceil n\alpha + \beta \rceil ,$$

for $n \ge 0$.

▶ u is Sturmian \iff there are $\alpha, \beta \in [0, 1)$, α irrational, such that

$$u_i = \underline{\mathfrak{S}}_{\alpha,\beta}(i)\,,\quad \text{for all} \quad i\geq 0\,, \text{ or } u_i = \overline{\mathfrak{S}}_{\alpha,\beta}(i)\,,\quad \text{for all} \quad i\geq 0\,.$$

Digital lines

Figure : In digital geometry $\underline{\mathfrak{S}}$ and $\overline{\mathfrak{S}}$ code discrete lines. In the picture we see $\underline{\mathfrak{S}}(\alpha, 0)$ written below, where α is the slope.

Properties

Let u be Sturmian of the form $\underline{\mathfrak{S}}(\alpha,\beta)$ or $\overline{\mathfrak{S}}(\alpha,\beta)$. Then

u is uniformly recurrent

Properties

Let u be Sturmian of the form $\underline{\mathfrak{S}}(\alpha,\beta)$ or $\overline{\mathfrak{S}}(\alpha,\beta)$. Then

- *u* is uniformly recurrent
- $R_{\boldsymbol{u}}(n)$ only depends on $\alpha \Longrightarrow$ we write $R_{\boldsymbol{\alpha}}(n)$.

Properties

Let u be Sturmian of the form $\underline{\mathfrak{S}}(\alpha,\beta)$ or $\overline{\mathfrak{S}}(\alpha,\beta)$. Then

- *u* is uniformly recurrent
- $R_{\boldsymbol{u}}(n)$ only depends on $\alpha \Longrightarrow$ we write $R_{\boldsymbol{\alpha}}(n)$.
- Further $(R_{\alpha}(n))_{n \in \mathbb{N}}$ only depends on the **continuants** of α .

Properties

Let u be Sturmian of the form $\underline{\mathfrak{S}}(\alpha,\beta)$ or $\overline{\mathfrak{S}}(\alpha,\beta)$. Then

- *u* is uniformly recurrent
- $R_{\boldsymbol{u}}(n)$ only depends on $\alpha \Longrightarrow$ we write $R_{\boldsymbol{\alpha}}(n)$.
- Further $(R_{\alpha}(n))_{n \in \mathbb{N}}$ only depends on the **continuants** of α .

Reminder: Consider the continued fraction expansion (CFE) of α

$$\alpha = \frac{1}{m_1 + \frac{1}{\cdots + \frac{1}{m_k + \frac{1}{\cdots}}}},$$

The continuant $q_n(\alpha)$ is the denominator of the truncated CFE

$$\frac{1}{m_1 + \frac{1}{\ddots + \frac{1}{m_n}}}.$$

Recurrence of Sturmian words: Morse, Hedlund

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

 $R_{\alpha}(n) = n - 1 + q_{k-1}(\alpha) + q_k(\alpha), \qquad \text{for } n \in [q_{k-1}(\alpha), q_k(\alpha)].$

Recurrence of Sturmian words: Morse, Hedlund

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

 $R_{\alpha}(n) = n - 1 + q_{k-1}(\alpha) + q_k(\alpha), \qquad \text{for } n \in [q_{k-1}(\alpha), q_k(\alpha)].$

Remark

• (α, n) determines a unique k with $n \in [q_{k-1}(\alpha), q_k(\alpha)]$.

Recurrence of Sturmian words: Morse, Hedlund

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

 $R_{\alpha}(n) = n - 1 + q_{k-1}(\alpha) + q_k(\alpha), \qquad \text{for } n \in [q_{k-1}(\alpha), q_k(\alpha)].$

Remark

• (α, n) determines a unique k with $n \in [q_{k-1}(\alpha), q_k(\alpha)]$.

Let us see what they look like ...

Recurrence function for two Sturmian words

$$R_{lpha}(n)=n-1+q_{k-1}(lpha)+q_k(lpha)\,,\qquad ext{for }n\in [q_{k-1}(lpha),q_k(lpha)[.$$

Recurrence function of Sturmian words: classical results.

Theorem (Morse, Hedlund, 1940) For almost every irrational α , one has $\limsup_{n \to \infty} \frac{R_{\alpha}(n)}{n \log n} = \infty, \qquad \lim_{n \to \infty} \frac{R_{\alpha}(n)}{n (\log n)^{1+\varepsilon}} = 0 \text{ for any } \varepsilon > 0.$ Recurrence function of Sturmian words: classical results.

Theorem (Morse, Hedlund, 1940) For almost every irrational α , one has $\limsup_{n \to \infty} \frac{R_{\alpha}(n)}{n \log n} = \infty, \qquad \lim_{n \to \infty} \frac{R_{\alpha}(n)}{n (\log n)^{1+\varepsilon}} = 0 \text{ for any } \varepsilon > 0.$

But from below

$$\liminf_{n \to \infty} \frac{R_{\alpha}(n)}{n} \le 3 \,,$$

consider $n \approx \frac{1}{2} \left(q_{k-1}(\alpha) + q_k(\alpha) \right)$.

Our first model: uniform α

Usual studies of $R_{\alpha}(n)$

- give information about extreme cases.
- give results for almost all α .

Our first model: uniform α

Usual studies of $R_{\alpha}(n)$

- give information about extreme cases.
- give results for almost all α .

In our probabilistic setting we

- fix an integer n (we want $n \to \infty$...)
- pick an irrational α uniformly from [0,1].
- \implies we perform the probabilistic study of the normalised recurrence quotient

$$S(\alpha, n) = \frac{R_{\alpha}(n) + 1}{n},$$

as $n \to \infty$.

We consider the recurrence quotient

$$S_n(lpha) := S(lpha, n) = rac{R_lpha(n) + 1}{n}$$
.

We perform a probabilistic study

- for expected values: $\mathbb{E}[S_n]$
- for distributions : $\mathbb{P}(S_n \in J)$

 $\text{ as }n\to\infty.$

We consider the recurrence quotient

$$S_n(\alpha) := S(\alpha, n) = \frac{R_\alpha(n) + 1}{n}.$$

We perform a probabilistic study

- for expected values: $\mathbb{E}[S_n]$
- for distributions : $\mathbb{P}(S_n \in J)$

as $n \to \infty$.

Worst case of $S(\alpha, n)$ is roughly $\log n$ (Morse-Hedlund).

 \implies We wish to obtain this $\log n$ behaviour in our study of $S(\alpha, n)$.

Study of the recurrence quotient \boldsymbol{S}

Theorem

The random variable $S_n(\alpha) := S(\alpha, n)$ admits a limiting distribution when $n \to \infty$, which is given by

$$\lim_{n \to \infty} \mathbb{P}(\alpha : S_n(\alpha) \le \lambda) = \int_{[2,\lambda]} g(y) dy \,,$$

for $t \geq 2$ (and 0 otherwise), where the density g equals

$$g(\lambda) = \begin{cases} \frac{12}{\pi^2} \frac{1}{\lambda - 1} \log(\lambda - 1) & \text{if } \lambda \in [2, 3] \\ \frac{12}{\pi^2} \frac{1}{\lambda - 1} \log\left(1 + \frac{1}{\lambda - 2}\right) & \text{if } \lambda \in [3, \infty) \end{cases}$$

Study of the recurrence quotient S

Theorem

The random variable $S_n(\alpha) := S(\alpha, n)$ admits a limiting distribution when $n \to \infty$, which is given by

$$\lim_{n \to \infty} \mathbb{P}(\alpha : S_n(\alpha) \le \lambda) = \int_{[2,\lambda]} g(y) dy \,,$$

for $t \geq 2$ (and 0 otherwise), where the density g equals

$$g(\lambda) = \begin{cases} \frac{12}{\pi^2} \frac{1}{\lambda - 1} \log(\lambda - 1) & \text{if } \lambda \in [2, 3] \\ \frac{12}{\pi^2} \frac{1}{\lambda - 1} \log\left(1 + \frac{1}{\lambda - 2}\right) & \text{if } \lambda \in [3, \infty) \end{cases}$$

Figure : The limit density g(x) in red and a scaled experimental histogram for $S(\alpha, n)$ in blue, produced with $N = 10^6$.

Principles of the proof

For $n \in [q_{k-1}(\alpha), q_k(\alpha))$, let $x(\alpha, n) = \frac{q_{k-1}(\alpha)}{n}, y(\alpha, n) = \frac{q_k(\alpha)}{n}$. Then

$$S_n(\alpha) = f(x, y) := 1 + x + y$$

Principles of the proof

For $n \in [q_{k-1}(\alpha), q_k(\alpha))$, let $x(\alpha, n) = \frac{q_{k-1}(\alpha)}{n}, y(\alpha, n) = \frac{q_k(\alpha)}{n}$. Then

$$S_n(\alpha) = f(x, y) := 1 + x + y$$

Distribution $\mathbb{P}\left(S_n\leq\lambda\right)$ is expressed as the coprime Riemann sum of step $\frac{1}{n}$ of

$$\omega(x,y) = \frac{2}{y(x+y)}, \text{ over } \Delta_f(\lambda) := \{(x,y) : 0 < x \le 1 < y, \ f(x,y) \le \lambda\}.$$

Principles of the proof

For $n \in [q_{k-1}(\alpha), q_k(\alpha))$, let $x(\alpha, n) = \frac{q_{k-1}(\alpha)}{n}, y(\alpha, n) = \frac{q_k(\alpha)}{n}$. Then

$$S_n(\alpha) = f(x, y) := 1 + x + y$$

Distribution $\mathbb{P}\left(S_n\leq\lambda\right)$ is expressed as the coprime Riemann sum of step $\frac{1}{n}$ of

$$\omega(x,y) = \frac{2}{y(x+y)}, \text{ over } \Delta_f(\lambda) := \{(x,y) : 0 < x \le 1 < y, \ f(x,y) \le \lambda\}.$$

These converge to the integral

$$\lim_{n \to \infty} \mathbb{P}\left(S_n \le \lambda\right)$$
$$= \frac{6}{\pi^2} \iint_{\Delta_f(\lambda)} \omega(x, y) dx dy$$

A real t ∈ [0,1] is said to be a reduced quadratic irrational if and only if its CFE m₁, m₂,... is purely periodic.

- A real t ∈ [0,1] is said to be a reduced quadratic irrational if and only if its CFE m₁, m₂,... is purely periodic.
- Given $w = (w_1, \ldots, w_p) \in \mathbb{Z}_{>0}^p$ consider the inverse branch

then w^{∞} is the only real in [0,1] satisfying $h_w(w^{\infty}) = w^{\infty}$.

- A real t ∈ [0,1] is said to be a reduced quadratic irrational if and only if its CFE m₁, m₂,... is purely periodic.
- Given $w = (w_1, \ldots, w_p) \in \mathbb{Z}_{>0}^p$ consider the inverse branch

then w^{∞} is the only real in [0,1] satisfying $h_w(w^{\infty}) = w^{\infty}$.

Consider w = (w₁,..., w_p) ∈ N^p primitive, then this is the smallest period of the continued fraction expansion of w[∞].

Consider $w = (w_1, \ldots, w_p) \in \mathbb{N}^p$, not necessarily primitive

- An appropriate notion of size for w is given by $1/\alpha(w)$, where

$$\alpha(w) := \left| h'_w(w^{\infty}) \right|^{1/2} = (q_p(w) + w^{\infty} q_{p-1}(w))^{-1}$$

By the chain rule

$$\alpha(w^m) = (\alpha(w))^m$$

for $m \in \mathbb{Z}_{\geq 0}$, where $w^m = w \cdot w \cdot \ldots w$ concatenated m times. If $T(x) = \left\{\frac{1}{x}\right\}$ is the shift of the Euclidean System

$$\alpha(w) = \prod_{k=0}^{p-1} T^k(w^{\infty}) \,.$$

The generating function Fix $n \in \mathbb{N}$ and $\lambda \in \mathbb{R}$. Objective. Study the occurrence of

 $S(w^{\infty}, n) \leq \lambda$

over the r.q.i w^{∞} with w primitive, and $-\log \alpha(w) \leq x$.

The generating function Fix $n \in \mathbb{N}$ and $\lambda \in \mathbb{R}$.

Objective. Study the occurrence of

 $S(w^{\infty}, n) \le \lambda$

over the r.q.i w^{∞} with w primitive, and $-\log \alpha(w) \leq x$.

Dirichlet series

To compute with such quantities \rightarrow DGF

$$P_n(s) = \sum_{\substack{w \in \mathbb{Z}^*_{>0}, \\ w \text{ primitive}}} (\alpha(w))^s \left[\!\!\left[S(w^\infty, n) \le \lambda\right]\!\!\right],$$

The generating function Fix $n \in \mathbb{N}$ and $\lambda \in \mathbb{R}$.

Objective. Study the occurrence of

 $S(w^{\infty}, n) \le \lambda$

over the r.q.i w^{∞} with w primitive, and $-\log \alpha(w) \leq x$.

Dirichlet series

To compute with such quantities \rightarrow DGF

$$P_n(s) = \sum_{\substack{w \in \mathbb{Z}^*_{\geq 0}, \\ w \text{ primitive}}} (\alpha(w))^s \left[\!\!\left[S(w^\infty, n) \leq \lambda\right]\!\!\right],$$

As explained by Eda, it is enough to study the non-primitive case

$$G_n(s) = \sum_{w \in \mathbb{Z}^*_{>0}} (\alpha(w))^s \left[S(w^{\infty}, n) \le \lambda \right]$$

as $P_n(s) + \sum_{k \ge 2} P_n(ks) = G_n(s)$.

Tauberian Theorem

Let $(a_i)_{i \in I}$ be a family of non-negative numbers indexed on a numerable set I, and let $h: I \to \mathbb{R}_{>0}$ be a function such that

$$D(s) = \sum_{i \in I} a_i h(i)^{-s}$$

converges absolutely for $\Re(s) > 1$.

Tauberian Theorem

Let $(a_i)_{i \in I}$ be a family of non-negative numbers indexed on a numerable set I, and let $h: I \to \mathbb{R}_{>0}$ be a function such that

$$D(s) = \sum_{i \in I} a_i h(i)^{-s}$$

converges absolutely for $\Re(s) > 1$. Suppose D(s) can be extended analytically to $\Re(s) = 1$ except for s = 1, where it satisfies

$$D(s) = \frac{\rho}{(s-1)^k} + \frac{H(s)}{(s-1)^{k-1}}, \qquad \Re(s) > 1,$$

with H analytic at s = 1.

Tauberian Theorem

Let $(a_i)_{i \in I}$ be a family of non-negative numbers indexed on a numerable set I, and let $h: I \to \mathbb{R}_{>0}$ be a function such that

$$D(s) = \sum_{i \in I} a_i h(i)^{-s}$$

converges absolutely for $\Re(s) > 1$. Suppose D(s) can be extended analytically to $\Re(s) = 1$ except for s = 1, where it satisfies

$$D(s) = \frac{\rho}{(s-1)^k} + \frac{H(s)}{(s-1)^{k-1}}, \qquad \Re(s) > 1,$$

with H analytic at s = 1. Then

$$\frac{1}{N} \sum_{i \in I: h(i) \le N} a_i \sim \rho \frac{\log^{k-1} N}{(k-1)!}.$$

Objective. Given n, we want to study the function

$$\left[\left[1 + \frac{q_{k-1}(x) + q_k(x)}{n} \le \lambda \right] \right]$$

where k := k(x, n) is such that $q_{k-1}(x) \le n < q_k(x)$.

Objective. Given n, we want to study the function

$$\left[1 + \frac{q_{k-1}(x) + q_k(x)}{n} \le \lambda\right]$$

where k := k(x, n) is such that $q_{k-1}(x) \le n < q_k(x)$.

Write $x = w^{\infty}$ for some $w \in \mathbb{Z}_{>0}^+$, and $v = w_1 \dots w_k$, the prefix of w^{∞} needed to compute $(q_{k-1}(w^{\infty}), q_k(w^{\infty}))$

 \circledast observe we may decompose $v=w^\ell u\,,$ with $u\neq\epsilon,\,u\preceq w$ a prefix of w, and $\ell\in\mathbb{Z}_{\geq0}.$

Objective. Given n, we want to study the function

$$\left[1 + \frac{q_{k-1}(x) + q_k(x)}{n} \le \lambda\right]$$

where k := k(x, n) is such that $q_{k-1}(x) \le n < q_k(x)$.

Write $x = w^{\infty}$ for some $w \in \mathbb{Z}_{>0}^+$, and $v = w_1 \dots w_k$, the prefix of w^{∞} needed to compute $(q_{k-1}(w^{\infty}), q_k(w^{\infty}))$

 \circledast observe we may decompose $v=w^\ell u\,,$ with $u\neq\epsilon,\,u\preceq w$ a prefix of w, and $\ell\in\mathbb{Z}_{\geq0}.$

 \circledast when $\ell = 0$, the word v is a prefix of w

Objective. Given n, we want to study the function

$$\left[1 + \frac{q_{k-1}(x) + q_k(x)}{n} \le \lambda\right]$$

where k := k(x, n) is such that $q_{k-1}(x) \le n < q_k(x)$.

Write $x = w^{\infty}$ for some $w \in \mathbb{Z}_{>0}^+$, and $v = w_1 \dots w_k$, the prefix of w^{∞} needed to compute $(q_{k-1}(w^{\infty}), q_k(w^{\infty}))$

 \circledast observe we may decompose $v=w^\ell u\,,$ with $u\neq\epsilon,\,u\preceq w$ a prefix of w, and $\ell\in\mathbb{Z}_{\geq0}.$

 \circledast when $\ell = 0$, the word v is a prefix of $w \Rightarrow$ great, we can complete it to a period as we like.

Objective. Given n, we want to study the function

$$\left[1 + \frac{q_{k-1}(x) + q_k(x)}{n} \le \lambda\right]$$

where k := k(x, n) is such that $q_{k-1}(x) \le n < q_k(x)$.

Write $x = w^{\infty}$ for some $w \in \mathbb{Z}_{>0}^+$, and $v = w_1 \dots w_k$, the prefix of w^{∞} needed to compute $(q_{k-1}(w^{\infty}), q_k(w^{\infty}))$

 \circledast observe we may decompose $v=w^\ell u\,,$ with $u\neq\epsilon,\,u\preceq w$ a prefix of w, and $\ell\in\mathbb{Z}_{\geq0}.$

 \circledast when $\ell = 0$, the word v is a prefix of $w \Rightarrow$ great, we can complete it to a period as we like.

 \circledast when $\ell > 0$, the word v has "interdependencies"

Objective. Given n, we want to study the function

$$\left[1 + \frac{q_{k-1}(x) + q_k(x)}{n} \le \lambda\right]$$

where k := k(x, n) is such that $q_{k-1}(x) \le n < q_k(x)$.

Write $x = w^{\infty}$ for some $w \in \mathbb{Z}_{>0}^+$, and $v = w_1 \dots w_k$, the prefix of w^{∞} needed to compute $(q_{k-1}(w^{\infty}), q_k(w^{\infty}))$

 \circledast observe we may decompose $v=w^\ell u\,,$ with $u\neq\epsilon,\,u\preceq w$ a prefix of w, and $\ell\in\mathbb{Z}_{\geq0}.$

 \circledast when $\ell = 0$, the word v is a prefix of $w \Rightarrow$ great, we can complete it to a period as we like.

 \circledast when $\ell > 0$, the word v has "interdependencies"

 $\implies \text{Here we will explain the case } \ell = 0.$ equivalently $k(w^\infty,n) \leq |w| \text{ holds.}$

The generating function 2.0

Adding the condition that we be on the first cycle

$$F_n(s) = \sum_{w \in \mathbb{Z}^*_{>0}} (\alpha(w))^s \left[S(w^{\infty}, n) \le \lambda, \, k(w^{\infty}, n) \le |w| \right],$$

The generating function 2.0

Adding the condition that we be on the first cycle

$$F_n(s) = \sum_{w \in \mathbb{Z}^*_{>0}} (\alpha(w))^s \left[S(w^{\infty}, n) \le \lambda, \, k(w^{\infty}, n) \le |w| \right],$$

which we rewrite as

$$F_n(s) = \sum_{w \in \mathbb{Z}^*_{>0}} \sum_{v \preceq w} (\alpha(w))^s \left[S(\boldsymbol{w}^{\infty}, n) \leq \lambda, \, k(\boldsymbol{w}^{\infty}, n) = |v| \right],$$

The generating function 2.0

Adding the condition that we be on the first cycle

$$F_n(s) = \sum_{w \in \mathbb{Z}^*_{>0}} (\alpha(w))^s \left[S(w^{\infty}, n) \le \lambda, \, k(w^{\infty}, n) \le |w| \right],$$

which we rewrite as

$$F_n(s) = \sum_{w \in \mathbb{Z}^*_{>0}} \sum_{v \preceq w} (\alpha(w))^s \left[S(w^{\infty}, n) \le \lambda, \ k(w^{\infty}, n) = |v| \right],$$

and reversing the order of summation

$$F_n(s) = \sum_{v \in \mathbb{Z}^+_{>0}} \left[S(v^{\infty}, n) \le \lambda, \, k(v^{\infty}, n) = |v| \right]$$
$$\sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (\alpha(w))^s.$$

 \circledast Fixed $v\neq\epsilon,$ we want to analyse

$$F_{n,v}(s) := \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (\alpha(w))^s.$$

 \circledast Fixed $v \neq \epsilon$, we want to analyse

$$F_{n,v}(s) := \sum_{w \in \mathbb{Z}^*_{>0} : v \preceq w} (\alpha(w))^s \,.$$

 \diamond We remark that for $s \to 2$ $F_{n,v}(s) \sim rac{1}{s-2} rac{12\log 2}{\pi^2} \int_{h_v([0,1])} \psi(x) dx \,, \quad \psi(x) = rac{1}{\log 2} rac{1}{1+x} \,.$

 \circledast Fixed $v \neq \epsilon$, we want to analyse

$$F_{n,v}(s) := \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (lpha(w))^s$$
 .

$$\diamond$$
 We remark that for $s \to 2$
 $F_{n,v}(s) \sim rac{1}{s-2} rac{12\log 2}{\pi^2} \int_{h_v([0,1])} \psi(x) dx \,, \quad \psi(x) = rac{1}{\log 2} rac{1}{1+x} \,.$

 \circledast Then we extract

$$F_n(s) \sim \frac{1}{s-2} \frac{12\log 2}{\pi^2} \sum_{v \in \mathbb{Z}_{>0}^+} \left[\left[S(\boldsymbol{v}^{\infty}, n) \leq \lambda, \, k(\boldsymbol{v}^{\infty}, n) = |v| \right] \right]$$
$$\int_{h_v([0,1])} \psi(x) dx \, .$$

 \circledast Fixed $v \neq \epsilon$, we want to analyse

$$F_{n,v}(s) := \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (lpha(w))^s$$
 .

$$\diamond$$
 We remark that for $s \to 2$
 $F_{n,v}(s) \sim rac{1}{s-2} rac{12\log 2}{\pi^2} \int_{h_v([0,1])} \psi(x) dx \,, \quad \psi(x) = rac{1}{\log 2} rac{1}{1+x} \,.$

 \circledast Then we extract

$$F_n(s) \sim \frac{1}{s-2} \frac{12\log 2}{\pi^2} \sum_{v \in \mathbb{Z}_{>0}^+} \left[\left[S(v^{\infty}, n) \le \lambda, \, k(v^{\infty}, n) = |v| \right] \right]$$
$$\int_{h_v([0,1])} \psi(x) dx \,.$$

here we prove that the sum, even though the integrals depends on p_k, q_{k-1} and q_k simultaneously, can be computed as $n \to \infty$.

$$F_{n,v}(s) = \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (\alpha(w))^s \,.$$

³trace=sum of eigenvalues

$$F_{n,v}(s) = \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (\alpha(w))^s \,.$$

• To generate $F_{n,v}(s)$, consider the operator

 $H_{[w],s}[g](x) = |h'_w(x)|^{s/2}g(h_w(x))$,

³trace=sum of eigenvalues

$$F_{n,v}(s) = \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (\alpha(w))^s \,.$$

• To generate $F_{n,v}(s)$, consider the operator

$$H_{[w],s}[g](x) = |h'_w(x)|^{s/2}g(h_w(x)) ,$$

its eigenvalues being given by

 $|h'_w(w^{\infty})|^{s/2}, (-1)^{|w|}|h'_w(w^{\infty})|^{s/2+1}, |h'_w(w^{\infty})|^{s/2+2}, \dots$

³trace=sum of eigenvalues

$$F_{n,v}(s) = \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (\alpha(w))^s \,.$$

• To generate $F_{n,v}(s)$, consider the operator

$$H_{[w],s}[g](x) = |h'_w(x)|^{s/2}g(h_w(x)) ,$$

its eigenvalues being given by

 $|h'_w(w^{\infty})|^{s/2}, (-1)^{|w|}|h'_w(w^{\infty})|^{s/2+1}, |h'_w(w^{\infty})|^{s/2+2}, \dots$

► The operator H_{[w],s} is trace-class³ when acting on the space A_∞ (V) presented by Eda.

³trace=sum of eigenvalues

$$F_{n,v}(s) = \sum_{w \in \mathbb{Z}^*_{>0}: v \preceq w} (\alpha(w))^s \,.$$

• To generate $F_{n,v}(s)$, consider the operator

$$H_{[w],s}[g](x) = |h'_w(x)|^{s/2}g(h_w(x)) ,$$

its eigenvalues being given by

$$|h'_w(w^{\infty})|^{s/2}, (-1)^{|w|}|h'_w(w^{\infty})|^{s/2+1}, |h'_w(w^{\infty})|^{s/2+2}, \dots$$

► The operator H_{[w],s} is trace-class³ when acting on the space A_∞ (V) presented by Eda. Then we get

$$\mathrm{Tr} H_{[w],s} = \frac{\alpha(w)^s}{1 - (-1)^{|w|} \alpha(w)^2} = \alpha(w)^s + O\left(\alpha(w)^{s+2}\right) \,.$$

³trace=sum of eigenvalues

$$F_{n,v}(s) = \sum_{w \in \mathbb{Z}^*_{>0} : v \preceq w} (\alpha(w))^s \,.$$

• To generate $F_{n,v}(s)$, consider the operator

$$H_{[w],s}[g](x) = |h'_w(x)|^{s/2}g(h_w(x)) ,$$

its eigenvalues being given by

$$|h'_w(w^{\infty})|^{s/2}, (-1)^{|w|}|h'_w(w^{\infty})|^{s/2+1}, |h'_w(w^{\infty})|^{s/2+2}, \dots$$

► The operator H_{[w],s} is trace-class³ when acting on the space A_∞ (V) presented by Eda. Then we get

$$\mathrm{Tr} H_{[w],s} = \frac{\alpha(w)^s}{1 - (-1)^{|w|} \alpha(w)^2} = \alpha(w)^s + O\left(\alpha(w)^{s+2}\right) \,.$$

Now we have to sum over all w such that $v \leq w$.

³trace=sum of eigenvalues

Pole and residue

• Adding over all $w: v \leq w$ we obtain

$$\operatorname{Tr}\left(\left(I-H_{s}\right)^{-1}\circ H_{[v],s}\right)=F_{n,v}(s)+\operatorname{less}$$
 significat series,

where $H_s = \sum_{w \in \mathbb{Z}^1_{>0}} H_{[w],s}$.

Pole and residue

• Adding over all $w: v \leq w$ we obtain

$$\operatorname{Tr}\left(\left(I-H_s\right)^{-1}\circ H_{[v],s}\right)=F_{n,v}(s)+\operatorname{less significat series},$$

where $H_s = \sum_{w \in \mathbb{Z}_{>0}^1} H_{[w],s}.$

• Here the quasi-inverse has a pole at s = 2 where we have

$$(I - H_s)^{-1} \sim \frac{1}{s - 2} \frac{12 \log 2}{\pi^2} \mathbf{P},$$

where $\mathbf{P}[g](x) = \psi(x) \int_0^1 g(x) dx$, the projector onto $\langle \psi(x) \rangle$.

Pole and residue

• Adding over all $w: v \leq w$ we obtain

$$\operatorname{Tr}\left((I-H_s)^{-1}\circ H_{[v],s}\right) = F_{n,v}(s) + \text{less significat series},$$

where $H_s = \sum_{w \in \mathbb{Z}_{>0}^1} H_{[w],s}.$

• Here the quasi-inverse has a pole at s = 2 where we have

$$(I - H_s)^{-1} \sim \frac{1}{s - 2} \frac{12 \log 2}{\pi^2} \mathbf{P}$$

where $\mathbf{P}[g](x) = \psi(x) \int_0^1 g(x) dx$, the projector onto $\langle \psi(x) \rangle$. Thus we have, as $s \to 2$, dominant eigenvector $\sim \psi$ and

$$\begin{aligned} \mathsf{Tr}\left((I-H_s)^{-1}\circ H_{[v],s}\right) &\sim \frac{1}{s-2}\frac{12\log 2}{\pi^2}\int_0^1 H_{[v],2}[\psi](t)dt\\ &= \frac{1}{s-2}\frac{12\log 2}{\pi^2}\int_{h_v([0,1])}\psi(u)du\,. \end{aligned}$$

The real case strikes back

Finally we concentrate on

$$\sum_{w'\in\mathbb{Z}_{>0}^+} \left[\left[S(v^\infty, n) \le \lambda, \, k(v^\infty, n) = |v| \right] \right] \int_{h_v([0,1])} \psi(x) dx \, .$$
The real case strikes back

Finally we concentrate on

$$\sum_{w' \in \mathbb{Z}_{>0}^+} \left[\left[S(v^{\infty}, n) \le \lambda, \, k(v^{\infty}, n) = |v| \right] \right] \int_{h_v([0,1])} \psi(x) dx \, .$$

Rewrite the condition in the brackets, giving

$$\sum_{k} \sum_{v \in \mathbb{Z}_{>0}^{k}} \left[1 + \frac{q_{k-1}(v) + q_{k}(v)}{n} \le \lambda, q_{k-1}(v) \le n < q_{k}(v) \right]$$
$$\int_{h_{v}([0,1])} \psi(x) dx$$

The real case strikes back

Finally we concentrate on

$$\sum_{w'\in\mathbb{Z}_{>0}^+} \left[\left[S(v^{\infty}, n) \le \lambda, \, k(v^{\infty}, n) = |v| \right] \right] \int_{h_v([0,1])} \psi(x) dx \, .$$

Rewrite the condition in the brackets, giving

$$\sum_{k} \sum_{v \in \mathbb{Z}_{>0}^{k}} \left[1 + \frac{q_{k-1}(v) + q_{k}(v)}{n} \le \lambda, q_{k-1}(v) \le n < q_{k}(v) \right]$$
$$\int_{h_{v}([0,1])} \psi(x) dx$$

▶ This is exactly the probability $\mathbb{P}(t: S_n(t) \leq \lambda)$ when t is distributed according to the law

$$\mathbb{P}(t \le T) = \int_{[0,T]} \psi(u) du \,.$$

Declaration of independence

Theorem (Independence from the initial law)

Consider a probability measure μ that is absolutely continuous with respect to the Lebesgue measure m, in symbols $\mu \ll m$. Then for each fixed $\lambda \in \mathbb{R}$, the limit

$$\lim_{n \to \infty} \mathbb{P}_{\mu} \left(S_n \le \lambda \right)$$

exists and is independent from the choice of $\mu \ll m$.

Declaration of independence

Theorem (Independence from the initial law)

Consider a probability measure μ that is absolutely continuous with respect to the Lebesgue measure m, in symbols $\mu \ll m$. Then for each fixed $\lambda \in \mathbb{R}$, the limit

 $\lim_{n \to \infty} \mathbb{P}_{\mu} \left(S_n \le \lambda \right)$

exists and is independent from the choice of $\mu \ll m$.

Remark

In particular the resulting limiting distribution is that of the real model (ANALCO).

Convergence speed may vary though.

Independent? How come? (*) Suppose $g(x) = \frac{d\mu}{dm}(x) \in C^1([0,1])$, and write $\mathbb{P}_{\mu}(S_n(\alpha) \le \lambda) =$ $\sum_k \sum_{v \in \mathbb{Z}_{>0}^k} \left[1 + \frac{q_{k-1}(v) + q_k(v)}{n} \le \lambda, q_{k-1}(v) \le n < q_k(v) \right] \int_{\mathcal{I}_v} g(x) dx,$

where $\mathcal{I}_v = h_v([0,1])$ is the fundamental interval of v.

Independent? How come? (*) Suppose $g(x) = \frac{d\mu}{dm}(x) \in C^1([0,1])$, and write $\mathbb{P}_{\mu}(S_n(\alpha) \le \lambda) =$ $\sum_k \sum_{v \in \mathbb{Z}_{>0}^k} \left[1 + \frac{q_{k-1}(v) + q_k(v)}{n} \le \lambda, q_{k-1}(v) \le n < q_k(v) \right] \int_{\mathcal{I}_v} g(x) dx,$

where $\mathcal{I}_v = h_v([0,1])$ is the fundamental interval of v.

 \circledast From the continuity of g' and $\frac{p_k}{q_k} \in \mathcal{I}_v$ it follows that

$$\int_{\mathcal{I}_v} g(x) dx = |\mathcal{I}_v| g\left(\frac{p_k}{q_k}\right) + O\left(|\mathcal{I}_v|^2\right) \,,$$

where $\mathcal{I}_v = h_v([0,1])$ is the fundamental interval of v.

 \circledast From the continuity of g' and $\frac{p_k}{q_k} \in \mathcal{I}_v$ it follows that

$$\int_{\mathcal{I}_v} g(x) dx = |\mathcal{I}_v| g\left(\frac{p_k}{q_k}\right) + O\left(|\mathcal{I}_v|^2\right) \,,$$

where, in fact $|\mathcal{I}_v| = \frac{1}{q_k(q_k+q_{k-1})} \Longrightarrow$ we may omit the O term.

where $\mathcal{I}_v = h_v([0,1])$ is the fundamental interval of v.

 \circledast From the continuity of g' and $\frac{p_k}{q_k} \in \mathcal{I}_v$ it follows that

$$\int_{\mathcal{I}_v} g(x) dx = |\mathcal{I}_v| g\left(\frac{p_k}{q_k}\right) + O\left(|\mathcal{I}_v|^2\right) \,,$$

where, in fact $|\mathcal{I}_v| = \frac{1}{q_k(q_k+q_{k-1})} \implies$ we may omit the O term. \circledast If $g \equiv 1$, then what we have is the same as in ANALCO.

Independent? How come? * Suppose $g(x) = \frac{d\mu}{dm}(x) \in C^1([0,1])$, and write $\mathbb{P}_{\mu}(S_n(\alpha) \le \lambda) =$ $\sum_k \sum_{v \in \mathbb{Z}_{>0}^k} \left[1 + \frac{q_{k-1}(v) + q_k(v)}{n} \le \lambda, q_{k-1}(v) \le n < q_k(v) \right] \int_{\mathcal{I}_v} g(x) dx,$

where $\mathcal{I}_v = h_v([0,1])$ is the fundamental interval of v.

 \circledast From the continuity of g' and $\frac{p_k}{q_k} \in \mathcal{I}_v$ it follows that

$$\int_{\mathcal{I}_v} g(x) dx = |\mathcal{I}_v| g\left(\frac{p_k}{q_k}\right) + O\left(|\mathcal{I}_v|^2\right) \,,$$

where, in fact $|\mathcal{I}_v| = \frac{1}{q_k(q_k+q_{k-1})} \implies$ we may omit the O term. \circledast If $g \equiv 1$, then what we have is the same as in ANALCO. - Not the case, but q_{k-1}/q_k and p_k/q_k are

"asymptotically independent".

We recall the classic

$$p_{k-1}q_k - p_kq_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1}q_{k-1}^{-1}\right) \mod q_k$$

We recall the classic

$$p_{k-1}q_k - p_k q_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1} q_{k-1}^{-1} \right) \mod q_k$$

So q_{k-1} and p_k behave almost like modular inverses, up to a sign change depending on the parity of the depth k.

 \rightarrow Fractions have two developments, with different parities

 \implies Enough to solve the case in which $p_k = q_{k-1}^{-1} (\text{mod.} q_k)$.

We recall the classic

$$p_{k-1}q_k - p_k q_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1}q_{k-1}^{-1}\right) \mod q_k$$

So q_{k-1} and p_k behave almost like modular inverses, up to a sign change depending on the parity of the depth k.

 \rightarrow Fractions have two developments, with different parities \implies Enough to solve the case in which $p_k = q_{k-1}^{-1} \pmod{q_k}$.

Theorem (see e.g. Shparlinski) Let $q \in \mathbb{Z}_{>0}$ and let $[a_1, b_1], [a_2, b_2] \subset [0, 1]$, then for any $\epsilon > 0$

$$\frac{1}{\varphi(q)} \sum_{\substack{1 \le a \le q, \\ \gcd(a,q)=1}} \mathbf{1}_{\left(\frac{a}{q}, \frac{a^{-1} \mod q}{q}\right) \in [a_1, b_1] \times [a_2, b_2]} = (b_1 - a_1) (b_2 - a_2) + O(q^{-1/2 + \epsilon}).$$

We recall the classic

$$p_{k-1}q_k - p_k q_{k-1} = (-1)^k \Rightarrow p_k = \left((-1)^{k+1} q_{k-1}^{-1} \right) \mod q_k$$

So q_{k-1} and p_k behave almost like modular inverses, up to a sign change depending on the parity of the depth k.

 \rightarrow Fractions have two developments, with different parities \implies Enough to solve the case in which $p_k = q_{k-1}^{-1} \pmod{q_k}$.

Theorem (see e.g. Shparlinski)

Let $q \in \mathbb{Z}_{>0}$ and let $[a_1,b_1], [a_2,b_2] \subset [0,1]$, then for any $\epsilon > 0$

$$\frac{1}{\varphi(q)} \sum_{\substack{1 \le a \le q, \\ \gcd(a,q)=1}} \mathbf{1}_{\left(\frac{a}{q}, \frac{a^{-1} \mod q}{q}\right) \in [a_1, b_1] \times [a_2, b_2]} = (b_1 - a_1) (b_2 - a_2) + O(q^{-1/2 + \epsilon}).$$

 $\implies rac{a}{q}$ and $rac{a^{-1} \mod q}{q}$ behave as if they were independent!

The rationals

❀ Give rise to Christoffel words.

- ❀ Give rise to Christoffel words.
- * Finite continued fraction expansion.

- ❀ Give rise to Christoffel words.
- * Finite continued fraction expansion.
- \circledast Essentially we are always on the first cycle!

- ❀ Give rise to Christoffel words.
- ❀ Finite continued fraction expansion.
- \circledast Essentially we are always on the first cycle!
- \circledast Our study yields the same limit of the real case.

- ❀ Give rise to Christoffel words.
- ❀ Finite continued fraction expansion.
- \circledast Essentially we are always on the first cycle!
- \circledast Our study yields the same limit of the real case.
- The quadratic irrationals

- ❀ Give rise to Christoffel words.
- * Finite continued fraction expansion.
- \circledast Essentially we are always on the first cycle!
- ⊛ Our study yields the same limit of the real case.
- The quadratic irrationals
 - \circledast Study of the what happens on the other cycles underway.

- ❀ Give rise to Christoffel words.
- * Finite continued fraction expansion.
- \circledast Essentially we are always on the first cycle!
- \circledast Our study yields the same limit of the real case.
- The quadratic irrationals
 - \circledast Study of the what happens on the other cycles underway.
 - \circledast Behaviour of the distribution when the number of cycle
 - $\ell \to \infty$ looks promising.

- ❀ Give rise to Christoffel words.
- * Finite continued fraction expansion.
- \circledast Essentially we are always on the first cycle!
- \circledast Our study yields the same limit of the real case.
- The quadratic irrationals
 - \circledast Study of the what happens on the other cycles underway.
 - \circledast Behaviour of the distribution when the number of cycle
 - $\ell \to \infty$ looks promising.
- Similar studies in other dimensions (?). Brun (?)