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Objective: description of the finite factors of an infinite word u
— How many factors of length n?  — Complexity
— What are the gaps between them? — Recurrence

Very easy when the word is eventually periodic !

Sturmian words:
the “simplest” binary infinite words that are not eventually periodic

The recurrence function is widely studied for Sturmian words.
Classical study : for each fixed Sturmian word,
what are the extreme bounds for the recurrence function?

Here, in an appropriate model,
we perform a probabilistic study:
For a “random” sturmian word stemming from a reduced quadratic
irrational
— what is the mean value of the recurrence?
— what is the limit distribution of the recurrence?



Plan of the talk
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Complexity

Definition

Complexity function of an infinite word u € AN

Pu: N—= N, pu(n) = #{factors of length n in u} .

Simple facts:

pu(n) < A", pu(n) <pu(n+1).

Important property
u € AN is not eventually periodic
<= pu(n+1)>py(n) foralln e N
= pu(n)>n+1




Recurrence

Definition (Uniform recurrence)

A word u € AN is uniformly recurrent < each finite factor appears
infinitely often and with bounded gaps.




Recurrence

Definition (Uniform recurrence)

A word u € AN is uniformly recurrent < each finite factor appears
infinitely often and with bounded gaps.

y

Definition (Recurrence function)

Consider u uniformly recurrent. Its recurrence function is:

Ry (n) =inf {m € N : every factor of length m

contains all the factors of length n}.




Recurrence

Definition (Uniform recurrence)

A word u € AN is uniformly recurrent < each finite factor appears
infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider u uniformly recurrent. Its recurrence function is:

Ry (n) =inf {m € N : every factor of length m
contains all the factors of length n}.

» Cost we have to pay to discover the factors if we start from an
arbitrary point in w = ujus . ..




Recurrence

Definition (Uniform recurrence)

A word u € AN is uniformly recurrent < each finite factor appears
infinitely often and with bounded gaps.

v

Definition (Recurrence function)

Consider uw uniformly recurrent. Its recurrence function is:

R, (n) = inf {m € N : every factor of length m
contains all the factors of length n} .

» Cost we have to pay to discover the factors if we start from an
arbitrary point in u = ujus . ..

> Related to the complexity function

Ry(n) > n+ pu(n) — 1.



Recurrence

Definition (Uniform recurrence)

A word u € AY is uniformly recurrent < each finite factor appears
infinitely often and with bounded gaps.

Definition (Recurrence function)

Consider uw uniformly recurrent. Its recurrence function is:

Ry (n) =inf {m € N : every factor of length m

contains all the factors of length n}.

» Cost we have to pay to discover the factors if we start from an
arbitrary point in w = uqus. ..
» Related to the complexity function

Ry(n) > n + pu(n) —1

length of first factor  cont 11 for every other factor
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Sturmian words

These are the “simplest” words that are not eventually periodic.
Definition
u € {0,1} is Sturmian <= py(n) = n + 1 for each n > 0.

Explicit construction
Given «, 8 € [0,1) we define

_aﬁ(n) [(n+1)a+8]—|na+p8],
ap(n) =[(n+1)a+p] - [na+p],

forn > 0.

» u is Sturmian <= there are o, 8 € [0,1), « irrational, such that

ui =6,4(i), forall i>0, oru;=6,p4(i), forall i>0.
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Digital lines

0 0 1 0 0 1 0 1 0 0

Figure : In digital geometry & and & code discrete lines. In the picture
we see S(a, 0) written below, where « is the slope.
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Recurrence of Sturmian words

Properties
Let w be Sturmian of the form &(«, 3) or &(a, 3). Then
> w is uniformly recurrent
» Ry (n) only depends on a@ = we write R, (n).
» Further (R,(n)),,cn only depends on the continuants of a.

Reminder:  Consider the continued fraction expansion (CFE) of «

1
my + —

The continuant ¢, («) is the denominator of the truncated CFE
1
my +

My
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Recurrence of Sturmian words: Morse, Hedlund

Theorem (Morse, Hedlund, 1940)

The recurrence function is piecewise affine and satisfies

Ro(n)=n—14+q_1(a) + qx(a), forn € [qr—1(), qr(@)l.

Remark

» (a,n) determines a unique k with n € [g;—1 (), gx(a)].

Let us see what they look like...



Recurrence function for two Sturmian words

Ra(n) =n—1+ Qkfl(a) + QK<a) 3

R, (n)

for n € [gr—1(a), qx ()]
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Recurrence function for a = ¢, Recurrence function for o = 1/e.

with ¢ = (V5 —1)/2.



Recurrence function of Sturmian words: classical results.

Theorem (Morse, Hedlund, 1940)

For almost every irrational c;, one has

Ra(n)

lim sup —— = o0, lim
n—oo nlogn n=0n (logn)

Ra(n)

= =0 foranye>0.




Recurrence function of Sturmian words: classical results.

Theorem (Morse, Hedlund, 1940)

For almost every irrational c;, one has

R
lim sup M = 00, lim Ln)l_i_ =0 foranye > 0.
n—oo nlogn n=cop (logn) °
But from below R
lim inf o(n) <3,
n—oo n

consider n &~ 3 (gx—1(a) + qr(a)) .
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Our first model: uniform «

Usual studies of R, (n)
» give information about extreme cases.

> give results for almost all «.

In our probabilistic setting we
» fix an integer n (we want n — oo ...)
» pick an irrational « uniformly from [0, 1].

= we perform the probabilistic study
of the normalised recurrence quotient

S(o,m) = B L

as n — 0.



We consider the recurrence quotient

R, 1
Sp(a) = S(a,n) = (T;) + .
We perform a probabilistic study
» for expected values: E[Sy]
» for distributions : P (S, €J)

as n — 0.



We consider the recurrence quotient

R, 1
Sp(a) == S(a,n) = (T;H
We perform a probabilistic study
» for expected values: E[Sy]
» for distributions : P (S, €J)
as n — 0.

Worst case of S(a,n) is roughly logn (Morse-Hedlund).

— We wish to obtain this log n behaviour in our study of S(«,n).



Study of the recurrence quotient S

Theorem

The random variable S, («) := S(a,n) admits a limiting
distribution when n — oo, which is given by

lim Pla: Sp(a) < A) = / g9(y)dy,
n—o0 [27)\]

fort > 2 (and 0 otherwise), where the density g equals

g(A) = {

eA—1)  ifre[23
( +ﬁ) ifA € [3,00)

=y
K\Jl\')l\')

1
5-7 1o
1

1 log




Study of the recurrence quotient S

Theorem

The random variable S, («) := S(a,n) admits a limiting
distribution when n — oo, which is given by

lim Pla: Sp(a) < A) = /{; N g(y)dy,

n—0o0

fort > 2 (and 0 otherwise), where the density g equals

12 1 :
12 Litog (14 51;) ifAe3,00)
: . . ) 1
Figure : The limit density !

g(z) in red and a scaled r
experimental histogram for |
S(a,n) in blue, produced A
with N = 10. I




Principles of the proof

qr—1(a) ax (@)

For n € [gr—1(), qr()), let z(a,n) = *F=— y(a,n) = E=.
Then

Sp(a) = f(z,y) =1+ +y



Principles of the proof

For n € [gr—1(),qr()), let x(a,n) = %*Tl(a),y(a,n) — (@)
Then

n

Sp(a) = f(z,y) =1+ +y

Distribution P (S,, < \) is expressed as the coprime Riemann sum
of step % of

w(z,y) = @ty over Ay(A) :=={(z,y): 0 <z <1<y, fz,y) < A}.
A=313
2 L
Tolo 1 2




Principles of the proof

For n € [gr—1(),qr()), let x(a,n) = %*Tl(a),y(a,n) — (o)
Then

n

Sp(a) = f(z,y) =1+ +y

Distribution P (S,, < )) is expressed as the coprime Riemann sum
of step % of

w(z,y) = @ty over Ay(A) :=={(z,y): 0 <z <1<y, fz,y) < A}.
A :g"t_ These converge to the integral
1Af(’\ lim P (S, < \)
n—oo

6-0 . (z,y)dzd
T =5[], sty



Reduced quadratic irrationals

» Areal t € [0,1] is said to be a reduced quadratic irrational if
and only if its CFE my, mo, ... is purely periodic.



Reduced quadratic irrationals

» Areal t € [0,1] is said to be a reduced quadratic irrational if

and only if its CFE my, mo, ... is purely periodic.
» Given w = (wy,...,wp,) € Z%, consider the inverse branch
1
hw(l‘) = 1 ’
wy +
! 1
wp +

then w™ is the only real in [0, 1] satisfying h,,(w™>) = w™.



Reduced quadratic irrationals

» Areal t € [0,1] is said to be a reduced quadratic irrational if

and only if its CFE my, mo, ... is purely periodic.
» Given w = (wy,...,wp,) € Z%, consider the inverse branch
1
hw(l’) = 1 ’
wy +
e 1
wp +

then w™ is the only real in [0, 1] satisfying h,,(w™>) = w™.
» Consider w = (w1, ..., wp) € NP primitive, then this is the
smallest period of the continued fraction expansion of w™.



Reduced quadratic irrationals

Consider w = (w1, ..., wp) € NP, not necessarily primitive

» An appropriate notion of size for w is given by 1/a(w), where

aw) = [ ()] = (gp(w) + w™ gpoi(w)) ™

» By the chain rule

for m € Z>¢, where w™ = w-w - ... w concatenated m times.
» If T(z) = {1} is the shift of the Euclidean System

p—1
a(w) = [[T*Fw™).
k=0



The generating function
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Objective. Study the occurrence of
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over the r.q.i w™ with w primitive, and —log a(w) < z.
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The generating function
Fix n e Nand A € R.

Objective. Study the occurrence of

S(w™,n) <A

over the r.q.i w™ with w primitive, and —log a(w) < z.

Dirichlet series
To compute with such quantities — DGF

Pus) = Y (a()* [S@=,n) <],

"
WELL ¢ 5

w primitive

As explained by Eda, it is enough to study the non-primitive case

Gul(s) = Y (aw))* [S(w*,m) <A]

weZL

as () + D poo Pu(ks) = Gu(s).



Tauberian Theorem

Let (a;);er be a family of non-negative numbers indexed on a
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Tauberian Theorem

Let (a;);er be a family of non-negative numbers indexed on a
numerable set I, and let h: I — R+ be a function such that

D(s) = Zaih(i)fs
iel

converges absolutely for R(s) > 1.
Suppose D(s) can be extended analytically to R(s) = 1 except for
s = 1, where it satisfies

p H(s)
(s—1F  (s—1F 1

D(s) = R(s) > 1,

with H analytic at s = 1.
Then
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The first cycle: positioning n

Objective. Given n, we want to study the function

[[1 I %1(96)”-1— qr(z) < )\ﬂ

where k := k(x,n) is such that gx_1(z) < n < gx(x).

Write x = w*® for some w € Zio, and v = wy ... wy, the prefix of

w™ needed to compute (g;_1(w™), gr(w™))

® observe we may decompose v = wu, with u # €, u < w
a prefix of w, and ¢ € Z>.

® when ¢ =0, the word v is a prefix of w = great, we can
complete it to a period as we like.

® when / > 0, the word v has “interdependencies”

—> Here we will explain the case ¢ = 0.
equivalently k(w>,n) < |w| holds.
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The generating function 2.0

Adding the condition that we be on the first cycle

Fa(s) = > (a()® [S@,n) <A, k(w™,n) < |ul],

weZL,

which we rewrite as

Fu(s)= 32 3 (@) [$u,n) <A, k(™ n) = o],

wEZiOij

and reversing the order of summation

Fu(s)= Y [[S(UOO,n)gA, k:(voo,n):\mﬂ

+
vEZ>O
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® Fixed v # €, we want to analyse

Fuo(s):= > (a(w))®.

wWEZLL 3w
o We remark that for s — 2

1 12log2/ 11
Y(x)dr, Y(x)= Trz -
Jho(10,1]) (@) () = e
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® Then we extract
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Computing with prefix condition: plan
® Fixed v # €, we want to analyse

Fuo(s):= > (a(w))®.

wWEZLL 3w
o We remark that for s — 2

1 12log2/ 11
Y(x)dr, Y(x)= Trz -
Jho(10,1]) (@) () = e

Foo(s) ~ s—2 w2

® Then we extract

L2 5[50 < & k) = o]

veZl,
/ Y(z)de .
hU([O’H)

here we prove that the sum, even though the integrals depends on
Dk, qk—1 and qx simultaneously, can be computed as n — oo.

F,(s) ~

s—2 7



Reminder. We want the dominant pole and residue for

Foo(s)= Y (a(w)).

weZL*
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Reminder. We want the dominant pole and residue for

Foo(s)= Y (a(w)).

WELL v 3w

» To generate F), ,(s), consider the operator

H[m],s[g] (z) = ‘h';u(m)|s/29 (hw(z))

its eigenvalues being given by

|1, ()72, (1) R () |72, B (w™) /252,

» The operator H, s is trace-class® when acting on the space

A (V) presented by Eda. Then we get

a(w)?

TrH,) s =
ML (], 1— (fl)‘w‘a(ﬂ))2

3trace=sum of eigenvalues

=a(w)’+0 (a(w)s+2) .



Reminder. We want the dominant pole and residue for

Foo(s)= Y (a(w)).

WELL v 3w

» To generate F), ,(s), consider the operator

H[w],s[g] (z) = ‘h';u(l’)|s/29 (hw(z))

its eigenvalues being given by

|1, ()72, (1) R () |72, B (w™) /252,

» The operator H, s is trace-class® when acting on the space

A (V) presented by Eda. Then we get

a(w)?

TrH,) s =
ML (], 1— (fl)‘w‘a(ﬂ))2

Now we have to sum over all w such that v < w.

3trace=sum of eigenvalues

=a(w)’+0 (a(w)s+2) .
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Pole and residue

» Adding over all w: v < w we obtain

Tr <(I —H) o H[U],s> = F}, »(s) + less significat series,

where HS = ZwGZ;O H[w],s-
» Here the quasi-inverse has a pole at s = 2 where we have
1 12log?2
I—Hg) ™t~
( ) s—2 ’
where Pg]( fo x)dz, the projector onto (1 (z)).
» Thus we have, as s — 2, dominant eigenvector ~ 1) and
_ 1 12log2 [!
Te (1= 1) o ) ~ 2t [ Haluar

1 1210g2/
= Y(u)du .
s=2 7 Ju,q1) )




The real case strikes back
Finally we concentrate on
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+
w' €L,

> Rewrite the condition in the brackets, giving
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The real case strikes back
Finally we concentrate on

Z [[S(voo,n) <\, k(v n) = |U@] /U([O 1])1/)(x)dx.

+
w' €L,

> Rewrite the condition in the brackets, giving

D [{ L Gk 1(v) + qr(v) S)\,Qkfl('l))ﬁn<qk(v)]]

k UGZ'€ "
[ s
hy([0,1])

» This is exactly the probability P (¢ : Sy, () < A) when ¢ is
distributed according to the law

Pt<T)= Y(u)du.
[0,7]
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Theorem (Independence from the initial law)

Consider a probability measure . that is absolutely continuous with
respect to the Lebesgue measure m, in symbols i < m.
Then for each fixed A € R, the limit

lim P, (S, <)

n—oo

exists and is independent from the choice of u & m.

Remark

In particular the resulting limiting distribution is that of the real
model (ANALCO).

Convergence speed may vary though.
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Independent? How come?
® Suppose g(x) = d—”( z) € C1([0,1]), and write

P, (Su(0) < 2) =
S Y [rrnee) <o i) <n<at)] [ g,

. Zy
k vezk

where Z,, = h,([0, 1]) is the fundamental interval of v.

® From the continuity of ¢’ and z—: € 7, it follows that

A <>dm—\zu( >+0(|Iy)

1

Where, in fact |Iy‘ = @t an 1)

= we may omit the O term.

® If g =1, then what we have is the same as in ANALCO.
— Not the case, but gx_1/qx and py/q are

“asymptotically independent”.
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Independence of the inverses
We recall the classic

Pho1Gk — Prgr—1 = (=1)* = pi. = ((—1)k+1q,;11) mod gy, .

So qr_1 and pj behave almost like modular inverses, up to a sign
change depending on the parity of the depth k.
— Fractions have two developments, with different parities
— Enough to solve the case in which p, = q,:_ll(mod.qk).

Theorem (see e.g. Shparlinski)
Let g € Z~¢ and let [a1,b1], [az, b2] C [0, 1], then for any € > 0
1
— 1
v(9) 2 (

1<a<gq,
ged(a,q)=1

a71 mo
o, 4 mod 0 ay by]x[az,bo]

= (by — ay) (by — az) + O(qg~/?7¢) .

-1 . .
— ¢ and %modq behave as if they were independent!
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Concluding remarks

» The rationals
® Give rise to Christoffel words.
® Finite continued fraction expansion.
® Essentially we are always on the first cycle!
® Our study yields the same limit of the real case.
» The quadratic irrationals
® Study of the what happens on the other cycles underway.
® Behaviour of the distribution when the number of cycle
¢ — oo looks promising.

» Similar studies in other dimensions (?). Brun (?)



