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Continued fraction and rotations
dynamic viewpoint

I The usual continued fraction of α is related to the dynamics
of rotation Rα.

I It can be seen as induction of Rα on the smallest interval .

I (where Rα is an exchange of 2 intervals).

I Or as Euclid’s algorithm on 1 and α.
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Continued fraction and rotations
symbolic viewpoint

I It can also be seen as renormalisation of symbolic sequences.

I Note that we use a second direction (natural extension).
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Continued fraction and rotations
dual viewpoint

I there is a dual viewpoint (replace Z2 by a lattice).

I This is the geodesic flow on the modular surface
SL(2,Z)\SL(2,R).
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Induction of a dynamical system

I Dynamical system T : X → X .

I A ⊂ X .

I The induced map of T on A is

I T|A : A→ A.

I T|A(x) = T nx (x), where nx = inf{n > 0|T n(x) ∈ A}.
I Also called first-return map of T to A.
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Continued fraction

I Generalized unimodular continued fraction :

I A piecewise projective map T on a cone Λ ⊂ Rd

I It is associated with a map A : Λ→ GL(d ,Z).

I T (x) = A(x)−1x .

I In many cases, we can build a natural extension

I T̃ (x , y) = (A(x)−1x , tA(x)y).

Pierre Arnoux S-adic systems and continued fractions



Continued fraction

I Generalized unimodular continued fraction :

I A piecewise projective map T on a cone Λ ⊂ Rd

I It is associated with a map A : Λ→ GL(d ,Z).

I T (x) = A(x)−1x .

I In many cases, we can build a natural extension

I T̃ (x , y) = (A(x)−1x , tA(x)y).

Pierre Arnoux S-adic systems and continued fractions



Continued fraction

I Generalized unimodular continued fraction :

I A piecewise projective map T on a cone Λ ⊂ Rd

I It is associated with a map A : Λ→ GL(d ,Z).

I T (x) = A(x)−1x .

I In many cases, we can build a natural extension

I T̃ (x , y) = (A(x)−1x , tA(x)y).

Pierre Arnoux S-adic systems and continued fractions



Continued fraction

I Generalized unimodular continued fraction :

I A piecewise projective map T on a cone Λ ⊂ Rd

I It is associated with a map A : Λ→ GL(d ,Z).

I T (x) = A(x)−1x .

I In many cases, we can build a natural extension

I T̃ (x , y) = (A(x)−1x , tA(x)y).

Pierre Arnoux S-adic systems and continued fractions



Continued fraction

I Generalized unimodular continued fraction :

I A piecewise projective map T on a cone Λ ⊂ Rd

I It is associated with a map A : Λ→ GL(d ,Z).

I T (x) = A(x)−1x .

I In many cases, we can build a natural extension

I T̃ (x , y) = (A(x)−1x , tA(x)y).

Pierre Arnoux S-adic systems and continued fractions



Continued fraction

I Generalized unimodular continued fraction :

I A piecewise projective map T on a cone Λ ⊂ Rd

I It is associated with a map A : Λ→ GL(d ,Z).

I T (x) = A(x)−1x .

I In many cases, we can build a natural extension

I T̃ (x , y) = (A(x)−1x , tA(x)y).

Pierre Arnoux S-adic systems and continued fractions



A dynamic model for continued fractions

I We want to find a family of systems Rα.

I where α is in the domain of T .

I and a family of subsets Aα.

I such that Rα|Aα
is conjugate to RTα.

I this is difficult in dimension > 1.

I set Aα has special properties (bounded remainder set).

I It needs to have fractal boundaries.

I Just consider the periodic case.
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S-adic systems

I For each matrix A we choose a substitution σA in a countable
set S , acting on the alphabet A = {1, . . . , d} .

I We consider infinite sequences (σn) ∈ SN.

I σ[m,n) = σm . . . σn−1 .

I Basic property : the sequence is primitive is, for any m, there
is n such that the corresponding matrix is positive.

I Limit point of the sequence : sequence of words wn ∈ AZ such
that wn = σn(wn+1).

I For a primitive sequence of substitutions, there is at most d2

limit points and they all have the same language.

I We want to consider the limit point as a model set in
Zd ⊂ Rd , and find its window.

I This raises a number of problems.
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S-adic systems : problems

I Does the limit word have a well-defined frequency ?

I Is it contained in a bounded window ?

I Is the projection space totally irrational ?

I Is it a model set, or only a part of the model set ?

I Is it associated to a translation of a torus, or is it a factor ?

I This imposes conditions on the sequence of substitutions, and
on the continued fraction.

I There is a type of ”Pisot” condition.
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S-adic system : recurrence

I We first suppose that the sequence σn is recurrent.

I It the continued fraction admits a Gauss measure, this is true
almost everywhere.

I This implies that the limit words have a well-defined frequency.

I This a a generalisation of Perron Frobenius

I We have a projection direction for a model set.

I There are always nonrecurrent points (e.g., rational points) ;
they are irrelevant.
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S-adic systems : balance

I We want the projection to be bounded.

I This is equivalent to a balance property :

I for two finite words U,V in the limit word

I |U| = |V | implies |U|a − |V |a < C for a fixed C

I C -balance property

I What condition ensures this ?
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S-adic systems : irrationality

I We want the projection to be dense in some compact set.

I This is equivalent to the irrationality property :

I The frequency vector satisfies no rational relation.

I Total irrationality condition.

I What condition ensures this ?
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S-adic systems : Pisot condition

I We say that a sequence (An) of matrices in GL(d ,Z) satisfy
the Pisot condition if :

I For any m there exists N such that, for all n > N :

I A[m,n) is of the Pisot type :

I All eigenvalues except one have modulus < 1.

I This implies that the characteristic polynomial is irreducible.

I Note that no eigenvalue is 0.

I This implies strong convergence for the corresponding
continued fraction.

I This is known for some algorithms (Brun, proved by
Avila-Delecroix).
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Pisot condition and irrationality

I For a Pisot CF, almost any limit word has totally irrational
frequency.

I Let wn be a limit word with a rational relation.

I We can find an integer vector X such that, for any n,
< X ,A[0,n)ei > is bounded.

I This implies that < tA[0,n)X , ei > is bounded.

I This implies that tA[0,n)X takes infinitely often the same
value.

I Hence 1 is eigenvalue of tA[0,n) for infinitely many n.

I This contradicts the Pisot hypothesis.
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Pisot condition and boundedness

I Pisot condition implies balance.

I The proof is not trivial.

I The usual proof for Pisot substitution (geometric
convergence) does not work here :

I We do not have uniform bounds.

I But we can still prove that Pisot implies balance.
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Pisot condition and Rauzy fractals

I Consider a Pisot algorithm with a Gauss map and a natural
extension T̃ .

I For almost every point (u, v) is the domain of T̃ , there is an
associate sequence of substitutions (σn)n∈Z

I which is primitive, recurrent, Pisot

I u is totally irrational, and is the frequency vector of the limit
word of (σn).

I The limit word is balanced ; we can project it on v⊥ along u
and take the closure.

I We obtain a set R which is compact, the closure of its
interior, and cover the plane by translation along the
projection of the diagonal group (Rauzy fractal) .
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Coincidence condition

I We suppose that the set S satisfy the coincidence condition :
all limit words have a common letter, with prefixes of same
abelianization.

I This condition is not known to be true in general.

I But easy to prove for some algorithms.

I For exemple if they all have the same first letter.

I This implies that the Rauzy fractal splits in disjoint pieces.

I We can define an exchange of pieces.
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Pisot conjecture

I We suppose that the Rauzy fractal tiles the plane.

I This is equivalent to say that the limit word is a model set.

I This is a generalization of the Pisot conjecture for
substitutions.

I It is true for Brun algorithm.

I In that case, we can define a torus translation.
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Final word

I Under these conditions,

I realized by Brun’s algortithm,

I we can realize our goal :

I To almost any u we associate a rotation Ru on T d−1 seen as
an exchange of d pieces

I and we can induce this rotation according to the continued
fraction.
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A dual viewpoint

I take a basis (u1, . . . , ud−1) of v⊥, with u = ud .

I Consider Zd as a lattice in this base.

I We can associate to it a matrix B.

I We consider the group G which preserve ud and the measure
on v⊥.

I The natural extension can be seen as a section of a flow
acting on the homogeneous space

I SL(d ,Z)\SL(d ,R)/G
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A dual viewpoint

I A large number of information can be retrieved from this flow.

I In particular, periodic orbits

I correspond to toral automorphisms and their markov
partitions.
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