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Some combinatorial definitions

We are given an infinite word on {1,2, · · · ,d}N

Factor complexity
Frequencies
Discrepancy

We can associate with it a discrete line/path in Rd with vertices
in Zd : replace letters by canonical vectors

Number of local configurations
Frequencies of local configurations, slope of the line
Distance to the line
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A discrete segment associated with the word u

Let l : A∗ → Nd , w 7→ t(|w |1, . . . , |w |d ) stand for the Parikh
mapping
One associates with any word a discrete line with set of
vertices equal to {l(u0 · · · un−1) | n ∈ N}

u = 12132131321321313

1

2

3
(0,0,0)

(7,4,6)

x

y

z



First combinatorial definitions

Factor complexity number of factors of a given length

The frequency fi of a letter i ∈ A in u = (un)n∈N is defined as
the following limit, if it exists

fi = lim
n→∞

|u0 · · · un−1|i
n

 Frequency of a word



The Fibonacci word
Fibonacci word σ : a 7→ ab, b 7→ a σ is called a substitution

a
ab
aba
abaab
abaababa

σ∞(a) = abaababaabaababaababaabaababaabaababaabab . . .

There are n + 1 factors of length n

Frequencies exist

Frequencies exist for all the infinite words with factor complexity
n + 1

lim sup pn/n < 3 implies unique ergodicity [Boshernitzan]
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Symbolic dynamical system

Let u = (un) be an infinite word with values in the finite set A

Let S be the shift
S((un)n) = (un+1)n

The symbolic dynamical system generated by u is (Xu,S)

Xu := {Sn(u); n ∈ N} ⊂ AN

This is the set of infinite words whose language is included in
the language of u

set of factors = language



Word combinatorics vs. symbolic dynamics

Let u ∈ AN be an infinite word

Word combinatorics
Study of the number of factors of a given length (factor

complexity), frequencies, powers

Symbolic dynamics Let

Xu := {Snu | n ∈ N}

S((un)n) = (un+1)n

(Xu,S) is a symbolic dynamical system
Compacity, study of invariant measures, recurrence

properties, finding geometric representations



Discrepancy of a sequence

Let (un)n be a sequence with values in [0,1]

∆N = lim sup
I interval

|{Card {0 ≤ n ≤ N; un ∈ I} − Nµ(I)|



Symbolic discrepancy

Take a word (un)n with values in a finite alphabet A

The frequency fi of a letter i in u = (un)n∈N is defined as the
following limit, if it exists

fi = lim
n→∞

|u0 · · · uN−1|i
N

where |x |j stands for the number of occurrences of the letter j in
the factor x

Assume that each letter i has frequency fi in u

Symbolic discrepancy

∆N = max
i∈A
||u0u1 . . . uN−1|i − N · fi |
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Balancedness
An infinite word u ∈ AN is said to be finitely balanced if there
exists a constant C > 0 such that for any pair of factors of the
same length v ,w of u, and for any letter i ∈ A,

||v |i − |w |i | ≤ C

Fibonacci word σ : a 7→ ab, b 7→ a σ is called a substitution

a
ab
aba
abaab
abaababa

σ∞(a) = abaababaabaababaababaabaababaabaababaabab . . .

The factors of length 5 contain 3 or 4 a’s
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Symbolic discrepancies

Xu := {Sn(u); n ∈ N} ⊂ AN minimal

We assume Xu minimal : ∅ and Xu are the only closed
shift-invariant subsets of Xu

 Every infinite word v ∈ Xu has the same language as u

∆N = max
i∈A
||u0u1 . . . uN−1|i − N · fi |

∆̃N = maxi∈A, k ||uk · · · uk+N−1|i − N · fi |
= maxi∈A, w∈LN(u) ||w |i − N · fi |
= maxi∈A, v∈Xu ||v0u1 . . . vN−1|i − N · fi |

LN(u) is the set of factors of u of length N

We can also consider factors w and not only letters
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Remark [B. Adamczewski] There exists an infinite word
u ∈ {0,1}N such that

u has has a frequency vector
∆N = O(f (N)) with f (N) = o(N)

for every integer N, ∆̃N = O(N)

Take

u = 01 0[f (1)]1[f (1)] 0101 0[f (2)]1[f (2)] · · · (01)n 0[f (n)]1[f (n)]

||u0 · · · uN−1|i − N/2| ≤ 1/2f (N)
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Equidistribution vs. well-equidistribution

Let u be an infinite word with values in the finite alphabet A

∆̃N = lim sup
i∈A, k

||uk · · · uk+N−1|i − N · fi |

u is well-distributed with respect to letters if ∆̃N = o(N)
 uniformly in k

The frequency of a factor w in u is defined as the limit when n
tends towards infinity, if it exists, of the number of occurrences
of w in u0u1 · · · un−1 divided by n

The infinite word u has uniform factor frequencies if, for every
factor w of u, the number of occurrences of w in uk · · · uk+n−1
divided by n has a limit when n tends to infinity, uniformly in k
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Balance and equidistribution

An infinite word u ∈ AN is finitely balanced if and only if
it has uniform letter frequencies
there exists a constant B such that for any factor w of u,
we have ||w |i − fi |w || ≤ B for all letter i in A

where fi is the frequency of i

Proof
Let u be an infinite word with letter frequency vector f and such
that ||w |i − fi |w || ≤ B for every factor w and all letters i in A
For every pair of factors w1 and w2 with the same length n, we
have

||w1|i − |w2|i | ≤ ||w1|i − nfi |+ ||w2|i − nfi | ≤ 2B

Hence u is 2B-balanced
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Finite balancedness implies the existence of uniform letter
frequencies

Proof Assume that u is C-balanced and fix a letter i

Let Np be such that for every word of length p of u, the number
of occurrences of the letter i belongs to the set

{Np,Np + 1, · · · ,Np + C}

The sequence (Np/p)p∈N is a Cauchy sequence. Indeed
consider a factor w of length pq

pNq ≤ |w |i ≤ pNq + pC, qNp ≤ |w |i ≤ qNp + qC.

−C/p ≤ Np/p − Nq/q ≤ C/q

Let fi = lim Nq/q

−C ≤ Np − pfi ≤ 0 (q →∞)

Then, for any factor w∣∣∣∣ |w |i|w | − fi

∣∣∣∣ ≤ C
|w |

 uniform frequencies
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Frequencies and measures

Xu := {Sn(u); n ∈ N} ⊂ AN

Having frequencies is a property of the infinite word u while
having uniform frequencies is a property of the associated
language or shift Xu



Frequencies and measures

Xu := {Sn(u); n ∈ N} ⊂ AN

A probability measure µ on Xu is said invariant if
µ(S−1A) = µ(A) for all measurable subset A ⊂ X
An invariant probability measure on a shift X is said
ergodic if any shift-invariant measurable set has either
measure 0 or 1
The property of uniform frequency of factors for a shift X is
equivalent to unique ergodicity : there exists a unique
shift-invariant probability measure on X



Frequencies and measures

Xu := {Sn(u); n ∈ N} ⊂ AN

Having frequencies is a property of the infinite word u while
having uniform frequencies is a property of the associated
language or shift Xu

Balancedness is a property of the associated shift and may
be thought as a strong form of unique ergodicity



Birkhoff sums
Let µ is an ergodic measure on Xu. The Birkhoff Ergodic
theorem says that for µ-a.e. x and for f ∈ L1(Xu,R)

lim
n

1
n

n−1∑
j=0

f (T jx) =

∫
fdµ

The mean behaviour along an orbit=
the mean value of f with respect to µ

µ-almost every infinite word in Xu has frequency µ[w ]

[w ] = {u ∈ X ; u0 . . . un−1 = w}

but this frequency is not necessarily uniform

If Xu is uniquely ergodic, the unique invariant measure on Xu is
ergodic and the convergence is uniform for all words in Xu



Motivations
Discrete lines
Bounded remainder sets and symbolic codings of
Kronecker sequences
The chairman assignment problem



Discrete lines in discrete geometry
The discrepancy of the word u = (un) is defined as

max
i∈A, n

||u0 · · · un−1|i − fi · n|

We measure the distance to the vector directed by the
frequencies

 If the discrepancy is bounded, the word u can be considered
as a discretization of the vector line directed by the letter

frequency vector (f1, · · · , fd )

u = 12132131321321313

1

2

3
(0,0,0)

(7,4,6)

x

y

z
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2D Discrete Lines and Sturmian words

0 < −2 x + 5 y ≤ 7

−2 x + 5 y = 0
−2 x + 5 y = 7
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Sturmian words

∀n ∈ N, un = 0⇐⇒ Rn
α(x) = nα + x ∈ [0,1− α) (mod 1)

 Diophantine approximation

Sturmian words are known to be 1-balanced
They thus have a bounded discrepancy ∆N and ∆̃N

They even are exactly the 1-balanced infinite words that
are not eventually periodic

This gives a combinatorial characterization of natural codings
of Kronecker sequences (rotations on the unit circle)
[Morse-Hedlund’42]



Bounded remainder sets and Kronecker sequences
Let α = (α1, . . . , αd ) ∈ [0,1]d

with 1, α1, · · · , αd Q-linearly independent

We consider the Kronecker sequence

({nα1}, . . . , {nαd})n

associated with the translation over Td = (R/Z)d

Rα : Td 7→ Td , x 7→ x + α

Discrepancy

∆N = supB box |Card {0 ≤ n ≤ N; Rn
α(0) ∈ B} − N · µ(B)|

Bounded remainder set X for which there exists C > 0 s.t. for
all N

|Card{0 ≤ n ≤ N; Rn
α(0) ∈ X} − Nµ(X )| ≤ C
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Bounded remainder sets

Case d = 1

Theorem [Kesten’66] Intervals that are bounded remainder sets
are the intervals with length in Z + αZ

Sturmian words are finitely balanced

General dimension d

Theorem [Liardet’87] There are no nontrivial boxes that are
bounded remainder sets

Boxes are not bounded remainder sets

How well can one approximate a box by bounded remainder
sets ?
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A symbolic approach

We consider a partition {X1, · · · ,Xk} of Td

Td =
⋃

1≤i≤k

Xi , µ(Xi ∩ Xj) = 0, for all i 6= j

We code the trajectory of x under the action of Rα : x 7→ x + α
as follows

x  (un)n ∈ {1,2, . . . , k}N

un = i if and only if Rn
α(x) = x + nα ∈ Xi

Questions Which information on Rα can we get from the
combinatorial properties of the sequence (un) ? What is a good
coding ?
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Example

Fibonacci substitution σ : 1 7→ 12, 2 7→ 1

u = σ∞(1) = 121121211211212 · · ·

(Xu,S) is isomorphic to (R/Z,R 1+
√

5
2

) where

R 1+
√

5
2

: x 7→ x +
1 +
√

5
2

Natural coding of a two-interval exchange



From letters to words

One wants to find good partitions for toral translations which
provide natural codings that have bounded discrepancy for

every length of factor

A translation on T2 is a map Rα : R2/L→ R2/L, x 7→ x + α
(mod L), where α ∈ R2 and where L is a lattice in R2

A coding u of (Rα,T2) is a natural coding if there exists a
fundamental domain for a lattice L in R2 together with a finite
partition of this domain such that on each element of the
partition the map Rα is a translation by a vector

A symbolic measure-theoretical dynamical system (Ω,S) is a
natural symbolic coding of (X ,T ) if every element of Ω is a
coding of the orbit of some point of X , and if (Ω,S) and (X ,T )
are semi-topologically conjugate



The chairman assignment problem

The chairman assignment problem [R. Tijdeman] “Suppose k
states form a union and every year a union chairman has to be
selected in such a way that at any time the accumulated
number of chairmen from each state is proportional to its
weight.”

How to get in an effective way an assignment with small
discrepancy ?
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The chairman assignment problem
The chairman assignment problem [R. Tijdeman] “Suppose k
states form a union and every year a union chairman has to be
selected in such a way that at any time the accumulated
number of chairmen from each state is proportional to its
weight.”

How to get in an effective way an assignment with small
discrepancy ?

Theorem [Meijer-Tijdeman]

sup
f

inf
u

D(u) = 1− 1
2d − 2

Remark 1− 1/(2d − 2) = 3/4 for d = 3

R. Tijdeman has given an algorithmic way, given f, to construct
a sequence u with D(u) ≤ 1− 1

2d−2

See also [M.L. Balinski and H.P. Young]



A word formulation



Problem

Let (f1, · · · , fd ) ∈ [0,1]d such that
∑d

i=1 fi = 1

How to construct a word u over the alphabet {1,2, · · · ,d}
satisfying the following conditions

u has linear complexity function
u is uniformly balanced
the letter frequencies in u are given by (f1, · · · , fd )
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Let (f1, · · · , fd ) ∈ [0,1]d such that
∑d

i=1 fi = 1

How to construct a word u over the alphabet {1,2, · · · ,d}
satisfying the following conditions

u has linear complexity function
u is uniformly balanced on factors
the letter frequencies in u are given by (f1, · · · , fd )



On fabrique une trajectoire qui reste à distance bornée de la
droite

Mots de billard (dans le cube)
Mots de poursuite (Chevallier)

Equilibre sur les lettres mais sur les mots ?
Complexité quadratique



The algebraic case :
substitutive dynamics



The Dumont-Thomas numeration system
It is based on the greedy algorithm and acts on words

Let u = (un) such that σ(u) = u

We decompose prefixes of u0 · · · uN−1 into images by
powers of σ of a finite number of words base σ

Since σ(u) = u, there exists L such that

σ(u0 · · · uL−1) ≤ u0 · · · uN−1 < σ(u0 · · · uL)

and thus a proper prefix p of σ(uL) s.t.

u0 · · · uN−1 = σ(u0 · · · uL−1) p with σ(uL) = p uN s

Hence, for every N, one has

u0 · · · uN−1 = σK (pK )σK−1(pK−1) · · ·σ(p1)p0,

the pi belong to a finite set of words that only depends on
σ  digits

 a numeration system on words... but also for integers and
real numbers



The Dumont-Thomas numeration system
Every prefix w of the Tribonacci word u = σ∞(1)

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

can be uniquely expanded as

w = σn(pn)σn−1(pn−1) · · · p0,

where the words pi are equal to the empy word or to the letter
1, and 111 6 ∃.

Conversely every finite word that can be decomposed under
this form is a prefix of the Tribonacci word.

|w | =
n∑

i=0

εiTi .

Such a numeration exists for every primitive substitution



Slide by T. Hejda



A substitution on words : the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) = 12131211213121213 · · ·
The incidence matrix Mσ of σ is defined by

Mσ = (|σ(j)|i)(i,j)∈A2 ,

where |σ(j)|i counts the number of occurrences of the letter i in
σ(j)
The matrix Mσ has nonnegative entries Perron-Frobenius
theory

Its incidence matrix is Mσ =

 1 1 1
1 0 0
0 1 0


Its characteristic polynomial is X 3 − X 2 − X − 1. Its
Perron-Frobenius eigenvalue β > 1 is a Pisot number

It is primitive : there exists a power of Mσ which contains only
positive entries

Perron-Frobenius one expanding eigendirection
a contracting eigenplane



Pisot substitution

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Let σ be a substitution over the alphabet A

Pisot irreduciblesubstitution σ is primitive, its Perron–Frobenius
eigenvalue is a Pisot number and the characteristic polynomial
of its incidence matrix is irreducible



Pisot substitutions have bounded discrepancy

Let σ be a Pisot irreducible substitution and u = σ∞(1)

l : A∗ → Nd , w 7→ t(|w |1, . . . , |w |d )

Fact The vectors l(u0u1 . . . un) stay within bounded distance of
the expanding (=the direction given by the vector of
frequencies)

Proof We have

f (σk (1)) = Mk
σe1 = a1λ

k
1v1 +

∑
ajλ

k
j vj

The vectors f (σk (1)) converge exponentially fast to the
expanding line, and their projections on the contracting plane
converge to 0
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∑
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Pisot substitutions have bounded discrepancy
Let σ be a Pisot irreducible substitution and u = σ∞(1)
Fact The vectors l(u0u1 . . . un) stay within bounded distance of
the expanding (=the direction given by the vector of
frequencies)
Proof We have

f (σk (1)) = Mk
σe1 = a1λ

k
1v1 +

∑
ajλ

k
j vj

The vectors f (σk (1)) converge exponentially fast to the
expanding line, and their projections on the contracting plane
converge to 0

Dumont-Thomas numeration Any prefix w of u can be
expanded as

w = σk (pk )σk−1(pk−1) . . . p0,

where the pi belong to a finite set of words



Substitutive words [B. Adamczewski]

Let σ be a primitive substitution
According to the Perron-Frobenius Theorem, Mσ admits a
dominant eigenvalue θ1

Let α2 be the multiplicity of the second eigenvalue θ2



Substitutive words [B. Adamczewski]

Theorem
If θ2 < 1, then the discrepancy is bounded

If θ2 > 1, then DN = (O ∩ Ω)((log N)α2−1N(logθ1
|θ2]))

If |θ2| = 1, then DN = (O ∩ Ω)((log N)α2) or
DN = (O ∩ Ω)((log N)α2−1)

In particular there exist balanced fixed points of
substitutions for which |θ2| = 1. All eigenvalues of modulus
one of the incidence matrix have to be roots of unity



Tribonacci’s substitution [Rauzy ’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

12131211213121213 · · ·

Question Is it possible to give a geometric representation of
the associated substitutive dynamical system Xσ as a
translation on an abelian compact group ?

Yes ! (Xσ,S) is isomorphic to a translation on the
two-dimensional torus

Question How to produce explicitly a fundamental domain for
this translation ?

Rauzy fractal G. Rauzy introduced in the 80’s a compact set
with fractal boundary that tiles the plane which provides a
geometric representation of (Xσ,S)
 Thurston for beta-numeration



The Rauzy fractal as a geometric representation
Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · · π projection along the
expanding eigenline
onto the contracting
plane of the
incidence matrix of Mσ

π( ~e1)
π( ~e2)

π( ~e3)
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The Rauzy fractal as a geometric representation
Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
π( ~e1 + ~e2)

π projection along the
expanding eigenline
onto the contracting
plane of the
incidence matrix of Mσ

π( ~e1)
π( ~e2)

π( ~e3)



The Rauzy fractal as a geometric representation
Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
π( ~e1 + ~e2 + ~e1)

π projection along the
expanding eigenline
onto the contracting
plane of the
incidence matrix of Mσ

π( ~e1)
π( ~e2)

π( ~e3)
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The Rauzy fractal as a geometric representation
Consider the Tribonacci substitution
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S-adic expansions



S-adic expansions

Definition An infinite word ω is said S-adic if there exist
a finite set of substitutions S
an infinite sequence of substitutions (σn)n≥1 with values
in S

such that
ω = lim

n→+∞
σ1 ◦ σ2 ◦ · · · ◦ σn(0)



An S-adic representation defined by the directive sequence
(σn)n∈N, where σn : A∗n+1 → A∗n, is everywhere growing if for
any sequence of letters (an)n, one has

lim
n→+∞

|σ0 · · ·σn−1(an)| = +∞.



Unique ergodicity

Let X be an S-adic shift with directive sequence σ = (σn)n with
everywhere growing sequence (σn)n
Denote by (Mn)n the associated sequence of incidence
matrices
If the cone C(0) is one-dimensional

C(0) =
⋂

n→∞
M[0,n)Rd

+

then X has uniform letter frequencies

If
C(k) =

⋂
n→∞

M[k ,n)Rd
+

is one-dimensional, then the S-adic dynamical system (X ,S) is
uniquely ergodic
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Back to the initial problem

For a.e. vector f = (f1, · · · , fd ) ∈ [0,1]d , one can construct a
word u over the alphabet {1,2, · · · ,d} satisfying the following
conditions

u has linear complexity function
u is uniformly balanced
the letter frequencies in u are given by (f1, · · · , fd )

Linear complexity for S-adic Brun words [Labbé-Leroy]
Convergence issues : strong convergence
( < − second Lyapunov exponent negative)
Characterization of uniformly balanced sequences
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Our strategy

We apply a multidimensional continued fraction algorithm
to the line in R3 directed by a given vector u = (u1,u2,u3)

We then associate with the matrices produced by the
algorithm substitutions, with these substitutions having the
matrices produced by the continued fraction algorithm as
incidence matrices

u = u0 u1 u2 · · · uk

w = w0 w1 w2 · · · wk ∈ {1,2,3}

M1 M2 M3 Mk

σ1 σ2 σ3 σk

u = M1 · · ·Mkuk



Applying Brun algorithm on (7,4,6)

(7,4,6) (1,4,6) (1,4,2) (1,0,2) (1,0,0)

w0 w1 w2 w3 w4

 1 0 1
0 1 0
0 0 1

  1 0 0
0 1 0
0 1 1

  1 0 0
0 1 2
0 0 1

  1 0 0
0 1 0
2 0 1


1 7→ 1
2 7→ 2
3 7→ 13

1 7→ 1
2 7→ 23
3 7→ 3

1 7→ 1
2 7→ 2
3 7→ 223

1 7→ 133
2 7→ 2
3 7→ 3

w = w0 = 12132131321321313

1

2

3
(0,0,0)

(7,4,6)

x

y

z
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Applying Brun algorithm on (23,45,37)

(0,0,0)

(23,45,37)

x

y

z



Brun
En cours Linear complexity for S-adic Brun words
[Labbé-Leroy]

Theorem [ Delecroix, Hejda, Steiner]
For almost every f ∈ R+

3 the Brun word with frequency
vector f is finitely balanced
There exist (uncountably many) Brun words that are not
finitely balanced

Theorem [B.-Steiner-Thuswaldner]
For almost every (α, β) ∈ [0,1]2, the S-adic system
associated with the Brun multidimensional continued
fraction algorithm of (α, β) is measurably conjugate to the
translation by (α, β) on the torus T2

Proof Based on
“adic IFS”
and finiteness results. Finite products of Brun substitutions
have discrete spectrum [B.-Bourdon-Jolivet-Siegel]
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