Asymptotic behaviour of the Brun Dynamical System in high dimensions.

Brigitte VALLÉE, Laboratoire GREYC, CNRS and University of Caen, France

Based on a joint work with Valérie Berthé and Loïck Lhote.

Journées DynA3S, November 2016

The Brun dynamical system in d dimensions BrunSD(d).

It is defined on the simplex $\mathcal{J}_{(d)} \subset \mathbb{R}^d$

 $\mathcal{J}_{(d)} := \{ \boldsymbol{x} = (x_1, \dots, x_d) \mid 1 \ge x_1 \ge \dots \ge x_d \ge 0 \}.$

with the transformation $T_{(d)}$

$$T_{(d)}(\boldsymbol{0^d}) = \boldsymbol{0^d}, \qquad T_{(d)}(\boldsymbol{x}) = \mathrm{Ins}\left(\left\{\frac{1}{x_1}\right\}, \frac{1}{x_1}\mathrm{End}\,\boldsymbol{x}\right) \quad \text{for } \boldsymbol{x} \neq \boldsymbol{0^d}\,,$$

The map $Ins(y_0, y)$ is the insertion "in front of", with two cases:

- (G) if y_0 is not present in the list y, this is an usual insertion;
- (P) if y_0 is already present in the list y, we insert y_0 in front of the block of components equal to y_0 .

Branches and inverse branches (I).

For any $x \in \mathcal{J}_{(d)}$, the map $T_{(d)}$ uses a digit $(m, j) \in \mathcal{A}_{(d)} := \mathbb{N}^* \times [1..d]$ with a quotient $m(x) \ge 1$ and an insertion index $j(x) \in [1..d]$.

Associate with (m, j) $\mathcal{K}_{(d,m,j)} := \{ \boldsymbol{x} \in \mathcal{J}_{(d)} \mid m(\boldsymbol{x}) = m, \quad j(\boldsymbol{x}) = j \}.$

When (m,j) varies in $\mathcal{A}_{(d)}$,

- the subsets $\mathcal{K}_{(d,m,j)}$ form a topological partition of $\mathcal{J}_{(d)}$
- the restriction $T_{(d,m,j)}$ of $T_{(d)}$ to $\mathcal{K}_{(d,m,j)}$ is a bijection $\mathcal{K}_{(d,m,j)} \to \mathcal{J}_{(d)}$,

$$T_{(d,m,j)}(x_1, x_2, \dots, x_d) = \left(\frac{x_2}{x_1}, \dots, \frac{x_{j-1}}{x_1}, \frac{1}{x_1} - m, \frac{x_{j+1}}{x_1}, \dots, \frac{x_d}{x_1}\right).$$

Its inverse is a bijection from $\mathcal{J}_{(d)}$ onto $\mathcal{K}_{(d,m,j)}$

$$h_{(d,m,j)}(y_1,\ldots,y_d) = \left(\frac{1}{m+y_j}, \frac{y_1}{m+y_j}, \ldots, \frac{y_{j-1}}{m+y_j}, \frac{y_{j+1}}{m+y_j}, \ldots, \frac{y_d}{m+y_j}\right)$$

The set of the inverse branches of the map $T_{(d)}$ is

$$\mathcal{H}_{(d)} := \left\{ h_{(d,m,j)} \mid (m,j) \in \mathcal{A}_{(d)} \right\} \,.$$

Branches and inverse branches (II).

The set of the inverse branches of the map $T_{(d)}^k$ is $\mathcal{H}_{(d)}^k$. The total set of inverse branches is $\bigoplus_{k>0} \mathcal{H}_{(d)}^k$.

An important property: the inverse branches are LFT's

Any
$$h \in \mathcal{H}^{\star}_{(d)}$$
 is written as $h = rac{1}{D[h]} \Big(N_1[h], N_2[h], \ldots, N_d[h] \Big)$,

The denominator D[h] and the numerators $N_i[h]$ are co-prime affine functions. The Jacobian J[h] and the denominator D[h] are related,

$$J[h] = \left|\frac{1}{D[h]}\right|^{d+1}$$

Density transformer of BrunSD(d).

The density transformer $\mathbf{H}_{(d)}$ is defined as

$$\mathbf{H}_{(d)}[f](oldsymbol{x}) = \sum_{h \in \mathcal{H}_{(d)}} \left| J[h](oldsymbol{x})
ight| f \circ h(oldsymbol{x})$$

A convenient functional space is $C^1(\mathcal{J}_{(d)})$ endowed with the norm $||\cdot||_1$,

$$||f||_1 = \sup_{oldsymbol{x}\in\mathcal{J}_{(d)}} |f(oldsymbol{x})| + \sup_{oldsymbol{x}\in\mathcal{J}_{(d)}} ||oldsymbol{D}f(oldsymbol{x})||_{(d)} \,.$$

Here Df(x)= the differential of f at x and $|| \cdot ||_{(d)}$ = a norm on \mathbb{R}^d $\mathbf{H}_{(d)}$ acts on $(C^1(\mathcal{J}_{(d)}), \| \cdot \|_1)$ and is quasi-compact.

The quasi-compacity is due to two properties:

(a) A contraction ratio $au_d := \limsup_{n \to \infty} \sup_{h \in \mathcal{H}^n_{(d)}} \sup_{\boldsymbol{x} \in \mathcal{J}_{(d)}} ||\boldsymbol{D}h(\boldsymbol{x})||_{(d)}^{1/n}, < 1$

[an algebraic number, the smallest real root of $z^{d+1} + z - 1 = 0$]. (b) A distortion constant :

 $\exists L > 0, \quad ||\boldsymbol{D}J[h](\boldsymbol{x})||_{(d)} \leq L \, |J[h](\boldsymbol{x})|, \qquad \forall h \in \mathcal{H}^{\star}_{(d)}, \, \forall \boldsymbol{x} \in \mathcal{J}_{(d)} \,.$

Spectral properties of $\mathbf{H}_{(d)}$ acting on $C^1(\mathcal{J}_{(d)})$.

(a) As $\mathbf{H}_{(d)}$ is a density transformer, quasi-compact, with an ergodic DS, $\implies \lambda = 1$ is the unique simple dominant eigenvalue of maximum modulus, isolated from the remainder of the spectrum by a spectral gap.

(b) The dominant eigenfunction is explicit,

$$\psi_d(\boldsymbol{x}) = \sum_{\sigma \in \mathfrak{S}_d} \prod_{i=1}^k \frac{1}{1 + x_{\sigma(1)} + x_{\sigma(2)} + \ldots + x_{\sigma(i)}}$$

(c) Except for small d, there is no explicit expression known for the integral

$$\kappa_d := \int_{\mathcal{J}_{(d)}} \psi_d(oldsymbol{x}) \, doldsymbol{x}$$

The invariant density Ψ_d and the invariant measure ν_d are not explicit.

Distribution of quotients wrt to the invariant measure. Role of $\mu_d(y) := \nu_d[y\mathcal{J}_{(d)}].$

The variable $m : \mathcal{J}_{(d)} \to \mathbb{N}$ associates with $x \in \mathcal{J}_{(d)}$ the quotient m(x). For $x = (x_1, x_2, \dots, x_d)$, the quotient m(x) is equal to $\lfloor 1/x_1 \rfloor$, and

$$[m(\boldsymbol{x}) \ge m] = \left\{ \boldsymbol{x} \in \mathcal{J}_{(d)} \mid x_1 \le rac{1}{m}
ight\} = \left(rac{1}{m}\right) \, \mathcal{J}_{(d)} \, .$$

The distribution of digits is defined via the function μ_d $\mu_d: y \in [0,1] \mapsto \nu_d[y\mathcal{J}_{(d)}].$

one has:
$$\mu_d(y) = \frac{\kappa_d(y)}{\kappa_d(1)}$$
 with $\kappa_d(y) := \int_{y\mathcal{J}_{(d)}} \psi_d(x) dx$,
and $\psi_d(x) = \sum_{\sigma \in \mathfrak{S}_d} \prod_{i=1}^k \frac{1}{1 + x_{\sigma(1)} + x_{\sigma(2)} + \ldots + x_{\sigma(i)}}$.

The study of $\kappa_d: y \mapsto \kappa_d(y)$ is the main step in the study of μ_d .

Expression of $\kappa_d(y)$ and entropy \mathcal{E}_d as one-dimensional integrals.

The following holds

$$\kappa_d(y) = \frac{1}{d!} \int_0^\infty e^{-u} \beta(uy)^d du, \qquad \mathcal{E}_d = (d+1) \int_0^1 \frac{1}{y} \frac{\kappa_d(y)}{\kappa_d} dy.$$

and involves the function β

$$\beta(u) := \int_0^u \alpha(v) dv \quad \text{with} \quad \alpha(u) := \int_0^1 e^{-tu} dt = \frac{1 - e^{-u}}{u} dt$$

Main tool for $\kappa_d(y)$: with the Laplace transform, $\frac{1}{1+x} = \int_0^\infty e^{-t} e^{-tx} dt$

Main tool for the entropy: The Rohlin formula.

Asymptotic estimates for $\kappa_d(y)$ (for $d \to \infty$).

Easy bounds for $\kappa_d(y)$, but not of great use when $d \to \infty$.

$$\frac{1}{d!}y^d \le \kappa_d(y) \le y^d \,,$$

We perform a finer asymptotic study for $\kappa_d(y)$, mainly based on Laplace estimates. We deduce for $\mu_d(y)$:

The following estimates hold for the function $y \mapsto \mu_d(y)$, when $d \to \infty$, and exhibit two different regimes:

$$\begin{cases} \mu_d(y) \in \left[\left(\frac{\log dy}{\log d} \right)^{d(1+\epsilon(d))-1/2}, \left(\frac{\log dy}{\log d} \right)^{d(1-\epsilon(d))-1/2} \right] & y \in [y(d), 1], \\ \\ \mu_d(y) \le (\log d)^{1/2} \left(\frac{dy}{\log d} \right)^d & y \in [0, y(d)]. \end{cases}$$

defined with the two functions $y(d) := (\log d)/d, \ \epsilon(d) = (\log \log d)^{-1}.$

Remark. When $y = \Theta(1)$, one has $\mu_d(y) = y^{\Theta(1)d/\log d}$

Laplace estimates for an integral $I_d = \int_0^\infty \exp\left[F_d(v)\right] dv$

Consider a function $F_d \in L^1[0,\infty]$ of class \mathcal{C}^∞ which satisfies the following

- (a) it admits a unique maximum on $[0,\infty[$, attained at $v=v_d\in]0,+\infty[$,
- (b) its second derivative F_d'' is not zero at v_d
- $(c) \,$ the quotient $\gamma_d:=\left|F_d^{\prime\prime\prime}(v_d)/(F_d^{\prime\prime}(v_d))^{3/2}\right|$ tends to zero

Then, the following estimate holds for $d \to \infty$

$$I_d \sim \sqrt{2\pi} \cdot \left[\left| F_d''(v_d) \right|^{-1/2} \cdot \exp\left[F_d(v_d) \right] \right] \left(1 + O(\gamma_d) \right).$$

Here, simple application to $\kappa_d(y)$ (when y not too small) with $F_{d,y}(v) := d \log \beta(vy) - v$

Estimate for the entropy,

Distribution for the quotients in the BrunSD(d) for $d \to \infty$.

Consider the main characteristics of the dynamical system BrunSD(d): \mathcal{E}_d = the entropy of the system.

 $\rho_d = \nu_d[m = 1] = \text{probability that } m(x) \text{ be equal to } 1.$ $\sigma_d := \mathbb{E}_d[m] = \text{the expectation of the variable } m$

They admit asymptotic estimates for $d \to \infty$

$$\log d \le \mathcal{E}_d \le \log d + (\log d)^{1/2},$$
$$\rho_d \sim 1 - (1/2)^{(d-1/2)/\log d},$$
$$\frac{d}{\log d} \le \sigma_d \le \frac{d}{\log d} \left[2 + (\log d)^{-1/2} \right]$$