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Every real number x ∈ [0, 1[ can be written as a continued fraction (CFE)

x =
1

m1 +
1

. . . +
1

mk + 1

.. .
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A real number is quadratic iff its CFE is ultimately periodic.

A reduced quadratic irrational is a number with purely periodic CFE, i.e.

x = [m1,m2, . . . ,mp + x]

We write x = [m1,m2, . . . ,mp] and denote by p(x) the smallest period of x .

We are interested in combinatorial properties of the set

P = {x ∈ I | x is a rqi number } .
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Additive costs

Definition
A digit-cost is a nonnegative and nonzero map on the naturals numbers:

c : Z>0 7→ R≥0

A digit-cost defines a total additive cost C on P .

For a rqi x = [m1,m2, . . . ,mp],

C : P 7→ R≥0, C(x) = c(m1) + · · ·+ c(mp) .

Here p is the smallest period of x .

Examples

◮ Digit-cost χn: the characteristic of the digit n;

total cost C(x): number of occurrences of n’s in the period.

◮ Digit-cost c ≡ 1 for any m;

total cost C(x): the length of the smallest period (p(x)).

◮ ℓ(m) = ⌊log2 m⌋ + 1;

total cost C(x): number of bits to store the CFE of x .
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∆) is a cyclic group with a fundamental unit

greater than 1.

Definition
The size of x is the fundamental unit of Q(

√
∆) greater than 1.

We denote it by ǫ(x).

Example

If x = 1/2 −
√

3/2, ǫ(x) = 2 +
√

3.

Remark
ǫ is not additive and it is not multiplicative.
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◮ Asymptotic estimates of the law of PN .
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◮ the “combinatorial” class: (P , ǫ,C) with C the total cost induced by a

digit cost c,
◮ the set PN of rqi’s of size less than N,
◮ the uniform probability PN on PN .
◮ Denote by EN [C] the expectation of C and by VN [C] be the variance of

C.

Theorem
Under the assumption that the digit-cost c is of moderate growth:

c(m) = O(log m),

the following holds:

EN [C] = µ(c) log N + O(1), VN [C] = ν(c) log N + O(1) .

with µ(c) and ν(c) positive. Moreover, the distribution of C is asymptotically

Gaussian,

PN

[

x | C(x)− µ(c) log N
√

ν(c) log N
≤ t

]

=
1√
2π

∫ t

−∞

e
−u2/2

du + O

(

1
√

log N

)

.

The constants µ(c) and ν(c) are computable.
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The Gauss map:

T : [0, 1] 7→ [0, 1] T (x) =

{

1

x

}

if x 6= 0 and T (0) = 0

Fundamental intervals:

Im =]1/(m + 1),1/m]

Inverse branches:

T−1
m = hm(x) = 1/(m + x).

Density transformer:
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Remark: H = H1,0
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Hs,t has an unique eigenvalue of maximal modulus λ(s, t) which is

simple.

◮ At (1, 0), the maximal eigenvalue of H1,0 is λ(1,0) = 1,

◮ At (1, 0), the invariant eigenfunction, known as the Gauss density, is

ψ(x) =
1

log 2(1 + x)
.

◮ λ′
s(1, 0) equals the opposite of the entropy of the Gauss map E :

λ′
s(1,0) = −

π2

6 log 2
.

It can be computed as λ′
s(1, 0) = −

∫ 1

0
log |T ′(x)|ψ(x) dx .

◮ λ′
w (1,0) equals the weighted average E[c] of the digit-cost c with respect

to the Gauss density, i.e.

λ′
w (1, 0) =

∞
∑

m=1

c(m)

∫ 1/m

1/(m+1)

ψ(x)dx .
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Theorem
Under the assumption that the digit-cost c is of moderate growth:

c(m) = O(log m),

the following holds:

EN [C] = µ(c) log N + O(1), VN [C] = ν(c) log N + O(1) .

with µ(c) and ν(c) positive.

Theorem
Let E be the entropy of the Gauss map and let E[c] be the weighted average:

µ(c) =
2λ′

w (1,0)

|λ′
s(1,0)|

=
2

E E[c] and

E[c] = 1, E[χn] =
1

log 2
log

[

(n + 1)2

n(n + 2)

]

, E[ℓ] =
1

log 2

∞
∏

i=1

log

(

1 +
1

2k

)

.
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Previous results
Rqi framework: Pollicott, Faivre, Vallée

Previous works: rationals trajectories

Let Ω = {(u, v) ∈ Z2 : 1 ≤ u ≤ v , gcd(u, v) = 1}
and

ΩN = {(u, v) ∈ Ω : v ≤ N}

Theorem (Baladi and Vallée, 2005)

Under the assumption that the digit-cost c is of moderate growth:

c(m) = O(log m), the following holds:

EN [C] = µ(c) log N + O(1), VN [C] = ν(c) log N + O(1) .

with µ(c) and ν(c) positive. Moreover, the distribution of C is asymptotically

Gaussian in the same sense as for rqi.

Remarks

◮ The constants µ(c) and ν(c) in the rational case are the same as for the

rqi case.

◮ The constants hidden in the O(1) are expressed in terms of the transfer

operator in both cases.

They do not coincide !

◮ Our methods are inspired in those of Baladi and Vallée, 2005.
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A “combinatorial” version

EN [C]

EN [p]
=
∑

x∈PN

1
∑
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p(x)

∑
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c(mk (x)) → E[c] N → ∞.
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A comment about “moderate growth”

Remark
Our results hold under the assumption that the digit-cost c is of moderate

growth: c(m) = O(log m).

Explanation

The weighted transfer operator depends of two complex parameters (s, t):

f 7→ Hs,t [f ](x) =
∑

m≥1

et c(m)

(m + x)2s
f

(

1

m + x

)

For c(m) = Θ(loga(m)) with a > 1, H1,t is not convergent for ℜt > 0.

Spectral properties of the transfer operator are well-known around (1,0).

Our methods rely on the fact that H1,t is convergent for t in a complex

neighborhood of t = 0.



Methods: The role of Dirichlet series

“Combinatorial class”
The set P of rqi’s is endowed with

◮ an additive cost C,

◮ a notion of size ǫ.

Our main object of analysis: the bivariate Dirichlet series P(s, t)

P(s, t) =
∑

x∈P

e
tC(x)ǫ(x)−s

where s and t are complex parameters.

Extraction theorems
Extraction theorems gives information about the partial sums of coefficients

S
[c]
N (t) =

∑

ǫ(x)≤N

e
tC(x)

if we have information about the analytic behavior of s 7→ P(s, t).



Interaction between the main elements of the proof

Dirichlet series

Aysmptotic behavior of partial sums

Extraction theorem: Landau

A central limit theorem: Hwang Quasi-powers

Alternative forms

Transfer operators
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Homographies

Recall the set of inverse branches of the Gauss map T :

H := {hm; h : x 7→ 1

m + x
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Composition of inverse branches give rise to the two sets:

Hk = {h = hm1
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◦ · · · ◦ hmk
} H+ =

⋃

k≥1

Hk

Remarks

◮ The number x is a rqi iff there exists h ∈ H+ so that x is its fixed point:

h(x) = x .

◮ The homography h is not unique. For instance h ◦ h(x) = x .

Definition
An homography is primitive iff there is not a g ∈ H+ so that h = g ◦ g · · · ◦ g.

Important relation

Each rqi x is the fixed point of only one primitive h ∈ H+.



Size: replace rqi’s by homographies

Recall: x −→ Q(
√
∆) −→ ǫ(x) = fundamental unit of Q(

√
∆)

Definition
Let x be a rqi number and define

α(x) =

p(x)−1
∏

i=0

T
i(x).

Here T is the Gauss map and p(x) is the smallest period length of x .

Theorem

◮ The size ǫ(x) and α(x) are related by

ǫ(x) = α(x)−r (x), r(x) = 1 for even p(x), r(x) = 2 for odd p(x).



Size: replace rqi’s by homographies

Recall: x −→ Q(
√
∆) −→ ǫ(x) = fundamental unit of Q(

√
∆)

Definition
Let x be a rqi number and define

α(x) =

p(x)−1
∏

i=0

T
i(x).

Here T is the Gauss map and p(x) is the smallest period length of x .

Theorem

◮ The size ǫ(x) and α(x) are related by

ǫ(x) = α(x)−r (x), r(x) = 1 for even p(x), r(x) = 2 for odd p(x).

◮ If x is the fixed point of the primitive homography h, then

α(x) = |h′(x)|1/2



Ready to extend cost and size to Hk . A new Dirichlet series

Definition
For h ∈ Hk (primitive or not) with a fixed point xh, let

α(h) := |h′(xh)|1/2 .

The size of the homography is defined by

ǫ(h) = α(h)−r (h), r(h) = 1 for even k , r(h) = 2 for odd k .

Definition
The total cost C is naturally extended to H+.

If h = hm1
◦ hm2

◦ . . . hmk
, C(h) = c(m1) + c(m2) + · · ·+ c(mk ).

Definition
A new Dirichlet series: Replace the set P of rqi’s by H+ and ǫ by α in the

defition of P(s, t):

Y (s, t) =
∑

h∈H+

e
tC(h)α(h)2s

with α(h) = |h′(xh)|1/2.



Alternative form for Y (s, t) and transfer operators

Dirichlet series

Y (s, t) =
∑

h∈H+ etC(h)|h′(xh)|s

Transfer operator

Hs,t (I − Hs,t )
−1[f ](x) =

∑

h∈H+ etc(h)|h′(x)|sf (h(x))

Relation

Y (s, t) ≈ Hs,t(I − Hs,t)
−1

Remark the difference between the evaluation points



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)

yields
f ′(xh)h

′(xh) = λf ′(xh).



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)

yields
f ′(xh)h

′(xh) = λf ′(xh).

Again two cases according to f ′(xh) is zero or not.



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)

yields
f ′(xh)h

′(xh) = λf ′(xh).

Again two cases according to f ′(xh) is zero or not.

◮ If f ′(xh) 6= 0, then λ = h′(xh).



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)

yields
f ′(xh)h

′(xh) = λf ′(xh).

Again two cases according to f ′(xh) is zero or not.

◮ If f ′(xh) 6= 0, then λ = h′(xh).
◮ If f ′(xh) = 0 ...



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)

yields
f ′(xh)h

′(xh) = λf ′(xh).

Again two cases according to f ′(xh) is zero or not.

◮ If f ′(xh) 6= 0, then λ = h′(xh).
◮ If f ′(xh) = 0 ...

◮ The trace is the sum of all the eigenvalues: h′(xh)
n

Tr(f 7→ |h′(xh)|f ◦ h) =
α(h)2

1−(−1)|h|α(h)2
with α(h) = |h′(xh)|

1/2.



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)

yields
f ′(xh)h

′(xh) = λf ′(xh).

Again two cases according to f ′(xh) is zero or not.

◮ If f ′(xh) 6= 0, then λ = h′(xh).
◮ If f ′(xh) = 0 ...

◮ The trace is the sum of all the eigenvalues: h′(xh)
n

Tr(f 7→ |h′(xh)|f ◦ h) =
α(h)2

1−(−1)|h|α(h)2
with α(h) = |h′(xh)|

1/2.



Relating fixed points and traces of transfer operators

Theorem
Y (s, t) = Trace(Hs,t (I − Hs,t )

−1)

Sketch of the proof: Consider the composition operator f 7→ f ◦ h .

◮ λ is an eigenvalue iff f ◦ h(x) = λf (x) for any x .

◮ If x = xh, the previous equality becomes f (xh) = λf (xh).

Two cases: f (xh) 6= 0 or f (xh) = 0.

◮ If f (xh) 6= 0, then λ = 1.

◮ If f (xh) = 0, differentiation of the equality
f ◦ h(x) = λf (x)

yields
f ′(xh)h

′(xh) = λf ′(xh).

Again two cases according to f ′(xh) is zero or not.

◮ If f ′(xh) 6= 0, then λ = h′(xh).
◮ If f ′(xh) = 0 ...

◮ The trace is the sum of all the eigenvalues: h′(xh)
n

Tr(f 7→ |h′(xh)|f ◦ h) =
α(h)2

1−(−1)|h|α(h)2
with α(h) = |h′(xh)|

1/2.

The statement is obtaining adding over all h ∈ H+.



Analytic properties of Y (s, t)
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◮ Ps,t is the projector,

◮ Ns,t has spectral radius less than Hs,t .



Analytic properties of Y (s, t)

For s near the real axis, the transfer decomposes

Hs,t = λ(s, t)Ps,t + Ns,t

where

◮ λ(s, t) is the dominant eigenvalue,

◮ Ps,t is the projector,

◮ Ns,t has spectral radius less than Hs,t .

The powers of the transfer operator satisfy

H
n
s,t = λ(s, t)n

Ps,t + N
n
s,t , for any n ≥ 1 .



Analytic properties of Y (s, t)

For s near the real axis, the transfer decomposes

Hs,t = λ(s, t)Ps,t + Ns,t

where

◮ λ(s, t) is the dominant eigenvalue,

◮ Ps,t is the projector,

◮ Ns,t has spectral radius less than Hs,t .

The powers of the transfer operator satisfy

H
n
s,t = λ(s, t)n

Ps,t + N
n
s,t , for any n ≥ 1 .

C

ℜs

C

s(t) ℜs

Theorem
s 7→ Y (s, t) extends meromorphically to a complex neighborhood of s = 1

(uniformly for t ∼ 0):

Y (s, t) = Trace((Hs,t(I − Hs,t)
−1)) =

λ(s, t)

1 − λ(s, t)
+ Trace(Ns,t (I − Ns,t )

−1) .



Analytic properties of Y (s, t)

For s near the real axis, the transfer decomposes

Hs,t = λ(s, t)Ps,t + Ns,t

where

◮ λ(s, t) is the dominant eigenvalue,

◮ Ps,t is the projector,

◮ Ns,t has spectral radius less than Hs,t .

The powers of the transfer operator satisfy

H
n
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Ps,t + N
n
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C
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Theorem
s 7→ Y (s, t) extends meromorphically to a complex neighborhood of s = 1

(uniformly for t ∼ 0):

Y (s, t) = Trace((Hs,t(I − Hs,t)
−1)) =

λ(s, t)

1 − λ(s, t)
+ Trace(Ns,t (I − Ns,t )

−1) .

The solutions s(t) of 1 − λ(s, t) = 0 are the only singularities of s 7→ Y (s, t).



Extensions of Dolgopyat-Baladi-Vallée results

◮ Dolgopyat, Baladi and Vallée for the

“true quasi-inverse (I − Hs,t )
−1”

The following holds for

s 7→ Y (s, t)

C
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Extensions of Dolgopyat-Baladi-Vallée results

◮ Dolgopyat, Baladi and Vallée for the

“true quasi-inverse (I − Hs,t )
−1”

◮ Pollicott and Sharp: periodic points of

dynamical systems with finite number

of branches.

◮ This work: periodic points of the

Gauss map (infinite number of

branches).

The following holds for

s 7→ Y (s, t)

C

ℜs

s(t)

|Y (s, t)| << |ℑs|ξ

Remark
The original series P(s, t) and the series Y (s, t) has the same analytic
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Dirichlet series and Landau Theorem

Dirichlet series: P(s) =
∑

x∈P ǫ(x)−s

If

C

ℜs

σ

=⇒
|P(s)| << |ℑs|ξ

SN = |PN | =
∑

ǫ(x)≤N

1

SN = KN
σ
(

1 + O(N−β)
)

β = β(ξ, δ) > 0

Here δ is the distance between s(t)
and the left straight line.

Bivariate Dirichlet series: P(s, t) =
∑

x∈P etC(x)
ǫ(x)−s

If

C

δ

ℜs

s(t)

=⇒
|P(s, t)| << |ℑs|ξ

S
[c]
N (t) =

∑

ǫ(x)≤N

e
tC(x)

S
[c]
N (t) = v(t)Ns(t)

(

1 + O(N−β)
)

β = β(ξ, δ) > 0
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Application of Hwang Quasi-powers theorem is the last step of the proof:

Theorem
Our moment generating function admits the form

EN [e
tC ] =

v(t)

v(0)
N

s(t)−s(0)
(

1 + O(N−β)
)

,

and then, EN [C] = s′(0) log N + O(1) and VN [C] = s′′(0) log N + O(1).
In addition, s′′(0) 6= 0, then the cost C is asymptotically Gaussian when

N → ∞.

Constants are computed from s(t) using the relation λ(s, t) = 1.



Extensions and conclusions

◮ x 7→ log ǫ(x) is close to the Lévy constant. It is not an additive cost.

◮ EN [log ǫ] = 2 log N + O(1).

◮ The variance is of constant order.

◮ The set of P[M] = {rqi with partial quotients bounded by M}
◮ Similar Gaussian laws for additive parameters and M large enough.

◮ Based on properties of the constrained transfer operator

HM,s[f ](x) =
∑

m≤M

1

(m + x)2s
f

(

1

m + x

)

.

◮ For small M, Dolgopyat like results are not proved to hold.


