## Gaussian behavior of quadratics irrationals

Eda Cesaratto

Universidad Nacional de Gral. Sarmiento, Infinis and Conicet (Argentina)

Alea EnAmSud and Dyna3s, June 2017

Joint work with Brigitte Vallée

Every real number  $x \in [0, 1[$  can be written as a continued fraction (CFE)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Every real number  $x \in [0, 1[$  can be written as a continued fraction (CFE)

A real number is quadratic iff its CFE is ultimately periodic.



Every real number  $x \in [0, 1[$  can be written as a continued fraction (CFE)

۰.

A real number is quadratic iff its CFE is ultimately periodic.

A reduced quadratic irrational is a number with purely periodic CFE, i.e.

$$x = [m_1, m_2, \ldots, m_p + x]$$

Every real number  $x \in [0, 1[$  can be written as a continued fraction (CFE)

A real number is quadratic iff its CFE is ultimately periodic.

A reduced quadratic irrational is a number with purely periodic CFE, i.e.  $x = [m_1, m_2, \dots, m_p + x]$ 

We write  $x = [\overline{m_1, m_2, \dots, m_p}]$  and denote by p(x) the smallest period of x.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

<

Every real number  $x \in [0, 1[$  can be written as a continued fraction (CFE)

۰.

A real number is quadratic iff its CFE is ultimately periodic.

A reduced quadratic irrational is a number with purely periodic CFE, i.e.  $x = [m_1, m_2, \dots, m_p + x]$ 

We write  $x = [\overline{m_1, m_2, \dots, m_p}]$  and denote by p(x) the smallest period of x.

We are interested in combinatorial properties of the set

$$\mathcal{P} = \{ x \in \mathcal{I} \mid x \text{ is a rqi number } \}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

## Definition

A digit-cost is a nonnegative and nonzero map on the naturals numbers:

 $c:\mathbb{Z}_{>0}\mapsto\mathbb{R}_{\geq 0}$ 

A digit-cost defines a total additive cost C on  $\mathcal{P}$ .

For a rqi  $x = [\overline{m_1, m_2, \ldots, m_p}]$ ,

$$C: \mathcal{P} \mapsto \mathbb{R}_{\geq 0}, \quad C(x) = c(m_1) + \cdots + c(m_p).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Here p is the smallest period of x.

### Definition

A digit-cost is a nonnegative and nonzero map on the naturals numbers:

 $c:\mathbb{Z}_{>0}\mapsto\mathbb{R}_{\geq 0}$ 

A digit-cost defines a total additive cost C on  $\mathcal{P}$ .

For a rqi  $x = [\overline{m_1, m_2, \ldots, m_p}]$ ,

$$C: \mathcal{P} \mapsto \mathbb{R}_{\geq 0}, \quad C(x) = c(m_1) + \cdots + c(m_p).$$

Here p is the smallest period of x.

## Examples

• Digit-cost  $\chi_n$ : the characteristic of the digit *n*;

total cost C(x): number of occurrences of *n*'s in the period.

#### Definition

A digit-cost is a nonnegative and nonzero map on the naturals numbers:

 $c:\mathbb{Z}_{>0}\mapsto\mathbb{R}_{\geq 0}$ 

A digit-cost defines a total additive cost C on  $\mathcal{P}$ .

For a rqi  $x = [\overline{m_1, m_2, \ldots, m_p}]$ ,

$$C: \mathcal{P} \mapsto \mathbb{R}_{\geq 0}, \quad C(x) = c(m_1) + \cdots + c(m_p).$$

Here p is the smallest period of x.

#### Examples

• Digit-cost  $\chi_n$ : the characteristic of the digit *n*;

total cost C(x): number of occurrences of *n*'s in the period.

• Digit-cost  $c \equiv 1$  for any m;

total cost C(x): the length of the smallest period (p(x)).

### Definition

A digit-cost is a nonnegative and nonzero map on the naturals numbers:

 $c:\mathbb{Z}_{>0}\mapsto\mathbb{R}_{\geq 0}$ 

A digit-cost defines a total additive cost C on  $\mathcal{P}$ .

For a rqi  $x = [\overline{m_1, m_2, \ldots, m_p}]$ ,

$$C: \mathcal{P} \mapsto \mathbb{R}_{\geq 0}, \quad C(x) = c(m_1) + \cdots + c(m_p).$$

Here p is the smallest period of x.

## Examples

• Digit-cost  $\chi_n$ : the characteristic of the digit *n*;

total cost C(x): number of occurrences of *n*'s in the period.

• Digit-cost  $c \equiv 1$  for any m;

total cost C(x): the length of the smallest period (p(x)).

▶  $\ell(m) = \lfloor \log_2 m \rfloor + 1;$ 

total cost C(x): number of bits to store the CFE of x.

Let x be a quadratic irrational:

It belongs to Q(√∆), where ∆ is the discriminant of the minimal polynomial of x,

(ロ)、(型)、(E)、(E)、 E、のQの

Let x be a quadratic irrational:

- it belongs to  $\mathbb{Q}(\sqrt{\Delta})$ , where  $\Delta$  is the discriminant of the minimal polynomial of x,
- ► The set of units of Q(√∆) is a cyclic group with a fundamental unit greater than 1.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ ○ ○

Let x be a quadratic irrational:

- it belongs to  $\mathbb{Q}(\sqrt{\Delta})$ , where  $\Delta$  is the discriminant of the minimal polynomial of x,
- ► The set of units of Q(√∆) is a cyclic group with a fundamental unit greater than 1.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ ○ ○

Let x be a quadratic irrational:

- it belongs to  $\mathbb{Q}(\sqrt{\Delta})$ , where  $\Delta$  is the discriminant of the minimal polynomial of *x*,
- ► The set of units of Q(√∆) is a cyclic group with a fundamental unit greater than 1.

Definition

The size of *x* is the fundamental unit of  $\mathbb{Q}(\sqrt{\Delta})$  greater than 1.

We denote it by  $\epsilon(x)$ .

Let x be a quadratic irrational:

- it belongs to  $\mathbb{Q}(\sqrt{\Delta})$ , where  $\Delta$  is the discriminant of the minimal polynomial of *x*,
- ► The set of units of Q(√∆) is a cyclic group with a fundamental unit greater than 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Definition

The size of x is the fundamental unit of  $\mathbb{Q}(\sqrt{\Delta})$  greater than 1. We denote it by  $\epsilon(x)$ .

## Example

If  $x = 1/2 - \sqrt{3}/2$ ,  $\epsilon(x) = 2 + \sqrt{3}$ .

Let x be a quadratic irrational:

- it belongs to  $\mathbb{Q}(\sqrt{\Delta})$ , where  $\Delta$  is the discriminant of the minimal polynomial of *x*,
- ► The set of units of Q(√∆) is a cyclic group with a fundamental unit greater than 1.

(日) (日) (日) (日) (日) (日) (日) (日)

#### Definition

The size of x is the fundamental unit of  $\mathbb{Q}(\sqrt{\Delta})$  greater than 1. We denote it by  $\epsilon(x)$ .

## Example

If  $x = 1/2 - \sqrt{3}/2$ ,  $\epsilon(x) = 2 + \sqrt{3}$ .

## Remark

 $\epsilon$  is not additive and it is not multiplicative.

The set  $\mathcal{P}$  of rqi's is endowed with

- An additive cost C
- A notion of size ε.

The set of rqi with size at most N:

$$\mathcal{P}_N = \{x \in \mathcal{P} \mid \epsilon(x) \leq N\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is finite and thus, endowed with the uniform probability  $\mathbb{P}_N$ .

The set  $\mathcal{P}$  of rqi's is endowed with

- An additive cost C
- A notion of size ε.

The set of rqi with size at most N:

$$\mathcal{P}_N = \{x \in \mathcal{P} \mid \epsilon(x) \leq N\}$$

is finite and thus, endowed with the uniform probability  $\mathbb{P}_N$ .

We wish estimates, when  $N \rightarrow \infty$ , of

The set  $\mathcal{P}$  of rqi's is endowed with

- An additive cost C
- A notion of size ε.

The set of rqi with size at most N:

$$\mathcal{P}_N = \{x \in \mathcal{P} \mid \epsilon(x) \leq N\}$$

is finite and thus, endowed with the uniform probability  $\mathbb{P}_N$ .

We wish estimates, when  $N \rightarrow \infty$ , of

• Expectation: 
$$\mathbb{E}_N[C] = \frac{1}{|\mathcal{P}_N|} \sum_{x \in \mathcal{P}_N} C(x)$$

The set  $\mathcal{P}$  of rqi's is endowed with

- An additive cost C
- A notion of size ε.

The set of rqi with size at most N:

$$\mathcal{P}_N = \{x \in \mathcal{P} \mid \epsilon(x) \leq N\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is finite and thus, endowed with the uniform probability  $\mathbb{P}_N$ .

We wish estimates, when  $N \rightarrow \infty$ , of

- Expectation:  $\mathbb{E}_N[C] = \frac{1}{|\mathcal{P}_N|} \sum_{x \in \mathcal{P}_N} C(x)$
- Asymptotic estimates of the law of  $\mathbb{P}_N$ .

► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

• the set  $\mathcal{P}_N$  of rqi's of size less than N,

► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- the set  $\mathcal{P}_N$  of rqi's of size less than N,
- the uniform probability  $\mathbb{P}_N$  on  $\mathcal{P}_N$ .

- ► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,
- the set  $\mathcal{P}_N$  of rqi's of size less than N,
- the uniform probability  $\mathbb{P}_N$  on  $\mathcal{P}_N$ .
- ► Denote by  $\mathbb{E}_N[C]$  the expectation of *C* and by  $\mathbb{V}_N[C]$  be the variance of *C*.

- ► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,
- the set  $\mathcal{P}_N$  of rqi's of size less than N,
- the uniform probability  $\mathbb{P}_N$  on  $\mathcal{P}_N$ .
- ► Denote by  $\mathbb{E}_N[C]$  the expectation of *C* and by  $\mathbb{V}_N[C]$  be the variance of *C*.

- ► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,
- the set  $\mathcal{P}_N$  of rqi's of size less than N,
- the uniform probability  $\mathbb{P}_N$  on  $\mathcal{P}_N$ .
- ▶ Denote by E<sub>N</sub>[C] the expectation of C and by V<sub>N</sub>[C] be the variance of C.

#### Theorem

Under the assumption that the digit-cost c is of moderate growth:

 $c(m) = O(\log m),$ 

- ► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,
- the set  $\mathcal{P}_N$  of rqi's of size less than N,
- the uniform probability  $\mathbb{P}_N$  on  $\mathcal{P}_N$ .
- ▶ Denote by E<sub>N</sub>[C] the expectation of C and by V<sub>N</sub>[C] be the variance of C.

## Theorem

Under the assumption that the digit-cost c is of moderate growth:

$$c(m) = O(\log m),$$

the following holds:

```
\mathbb{E}_{N}[C] = \mu(c) \log N + O(1), \quad \mathbb{V}_{N}[C] = \nu(c) \log N + O(1).
```

with  $\mu(c)$  and  $\nu(c)$  positive.

- ► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,
- the set  $\mathcal{P}_N$  of rqi's of size less than N,
- the uniform probability  $\mathbb{P}_N$  on  $\mathcal{P}_N$ .
- ▶ Denote by E<sub>N</sub>[C] the expectation of C and by V<sub>N</sub>[C] be the variance of C.

### Theorem

Under the assumption that the digit-cost c is of moderate growth:

$$c(m) = O(\log m),$$

the following holds:

```
\mathbb{E}_{N}[C] = \mu(c) \log N + O(1), \quad \mathbb{V}_{N}[C] = \nu(c) \log N + O(1).
```

with  $\mu(c)$  and  $\nu(c)$  positive. Moreover, the distribution of C is asymptotically Gaussian,

- ► the "combinatorial" class: (P, ǫ, C) with C the total cost induced by a digit cost c,
- the set  $\mathcal{P}_N$  of rqi's of size less than N,
- the uniform probability  $\mathbb{P}_N$  on  $\mathcal{P}_N$ .
- ▶ Denote by E<sub>N</sub>[C] the expectation of C and by V<sub>N</sub>[C] be the variance of C.

#### Theorem

Under the assumption that the digit-cost c is of moderate growth:

$$c(m) = O(\log m),$$

the following holds:

$$\mathbb{E}_N[C] = \mu(c) \log N + O(1), \quad \mathbb{V}_N[C] = \nu(c) \log N + O(1) \ .$$

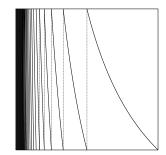
with  $\mu(c)$  and  $\nu(c)$  positive. Moreover, the distribution of C is asymptotically Gaussian,

$$\mathbb{P}_{N}\left[x \mid \frac{C(x) - \mu(c) \log N}{\sqrt{\nu(c) \log N}} \le t\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^{2}/2} du + O\left(\frac{1}{\sqrt{\log N}}\right)$$

The constants  $\mu(c)$  and  $\nu(c)$  are computable.

The Gauss map:

$$T: [0,1] \mapsto [0,1]$$
  $T(x) = \left\{\frac{1}{x}\right\}$  if  $x \neq 0$  and  $T(0) = 0$ 

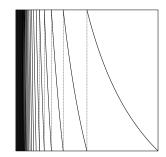


・ロト・日本・日本・日本・日本・日本

The Gauss map:

$$T: [0,1] \mapsto [0,1]$$
  $T(x) = \left\{\frac{1}{x}\right\}$  if  $x \neq 0$  and  $T(0) = 0$ 

Fundamental intervals:  $I_m = \frac{1}{(m+1), 1/m}$ 

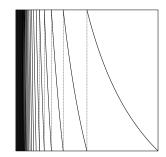


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

The Gauss map:

$$T: [0,1] \mapsto [0,1]$$
  $T(x) = \left\{\frac{1}{x}\right\}$  if  $x \neq 0$  and  $T(0) = 0$ 

Fundamental intervals:  $I_m = \frac{1}{(m+1), 1/m}$ 

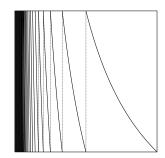


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

The Gauss map:

$$T: [0,1] \mapsto [0,1]$$
  $T(x) = \left\{\frac{1}{x}\right\}$  if  $x \neq 0$  and  $T(0) = 0$ 

Fundamental intervals:  $\mathcal{I}_m = [1/(m+1), 1/m]$ Inverse branches:  $T_m^{-1} = h_m(x) = 1/(m+x).$ 



The Gauss map:

$$T: [0,1] \mapsto [0,1]$$
  $T(x) = \left\{\frac{1}{x}\right\}$  if  $x \neq 0$  and  $T(0) = 0$ 

Fundamental intervals:

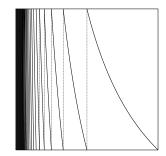
 $I_m = ]1/(m+1), 1/m]$ 

Inverse branches:

 $T_m^{-1} = h_m(x) = 1/(m+x).$ 

Density transformer:

$$f \mapsto \mathbf{H}[f](x) = \sum_{m \ge 1} \frac{1}{(m+x)^2} f\left(\frac{1}{m+x}\right)$$



The Gauss map:

$$T: [0,1] \mapsto [0,1]$$
  $T(x) = \left\{\frac{1}{x}\right\}$  if  $x \neq 0$  and  $T(0) = 0$ 

Fundamental intervals:

 $I_m = ]1/(m+1), 1/m]$ 

Inverse branches:

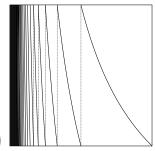
$$T_m^{-1} = h_m(x) = 1/(m+x).$$

Density transformer:

$$f \mapsto \mathbf{H}[f](x) = \sum_{m \ge 1} \frac{1}{(m+x)^2} f\left(\frac{1}{m+x}\right)$$

Weighted transfer operator:

$$f \mapsto \mathbf{H}_{\mathbf{s},t}[f](x) = \sum_{m \ge 1} \frac{e^{t c(m)}}{(m+x)^{2s}} f\left(\frac{1}{m+x}\right)$$



The Gauss map:

$$T: [0,1] \mapsto [0,1]$$
  $T(x) = \left\{\frac{1}{x}\right\}$  if  $x \neq 0$  and  $T(0) = 0$ 

Fundamental intervals:

 $I_m = ]1/(m+1), 1/m]$ 

Inverse branches:

$$T_m^{-1} = h_m(x) = 1/(m+x).$$

Density transformer:

$$f \mapsto \mathbf{H}[f](x) = \sum_{m \ge 1} \frac{1}{(m+x)^2} f\left(\frac{1}{m+x}\right)$$

Weighted transfer operator:

$$f \mapsto \mathbf{H}_{\mathbf{s},t}[f](x) = \sum_{m \ge 1} \frac{e^{t c(m)}}{(m+x)^{2s}} f\left(\frac{1}{m+x}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Remark:  $\mathbf{H} = \mathbf{H}_{1,0}$ 

► For (s, t) ~ (1,0),

 $\mathbf{H}_{s,t}$  has an unique eigenvalue of maximal modulus  $\lambda(s,t)$  which is simple.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► For (s, t) ~ (1,0),

 $\mathbf{H}_{s,t}$  has an unique eigenvalue of maximal modulus  $\lambda(s,t)$  which is simple.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For (s, t) ~ (1,0),
H<sub>s,t</sub> has an unique eigenvalue of maximal modulus λ(s, t) which is simple.

• At (1,0), the maximal eigenvalue of  $\mathbf{H}_{1,0}$  is  $\lambda(1,0) = 1$ ,

- For (s, t) ~ (1,0), H<sub>s,t</sub> has an unique eigenvalue of maximal modulus λ(s, t) which is simple.
- At (1,0), the maximal eigenvalue of  $\mathbf{H}_{1,0}$  is  $\lambda(1,0) = 1$ ,
- ▶ At (1,0), the invariant eigenfunction, known as the Gauss density, is

$$\psi(x) = \frac{1}{\log 2(1+x)}$$

- For (s, t) ~ (1,0), H<sub>s,t</sub> has an unique eigenvalue of maximal modulus λ(s, t) which is simple.
- At (1,0), the maximal eigenvalue of  $\mathbf{H}_{1,0}$  is  $\lambda(1,0) = 1$ ,
- ▶ At (1,0), the invariant eigenfunction, known as the Gauss density, is

$$\psi(x) = \frac{1}{\log 2(1+x)}$$

•  $\lambda'_{s}(1,0)$  equals the opposite of the entropy of the Gauss map  $\mathcal{E}$ :

$$\lambda_s'(1,0) = -\frac{\pi^2}{6\log 2}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

</

It can be computed as  $\lambda'_s(1,0) = -\int_0^1 \log |T'(x)| \psi(x) dx$ .

- For (s, t) ~ (1,0), H<sub>s,t</sub> has an unique eigenvalue of maximal modulus λ(s, t) which is simple.
- At (1,0), the maximal eigenvalue of  $\mathbf{H}_{1,0}$  is  $\lambda(1,0) = 1$ ,
- ► At (1,0), the invariant eigenfunction, known as the Gauss density, is

$$\psi(x) = \frac{1}{\log 2(1+x)}$$

•  $\lambda'_{s}(1,0)$  equals the opposite of the entropy of the Gauss map  $\mathcal{E}$ :

$$\lambda_s'(1,0) = -\frac{\pi^2}{6\log 2}.$$

It can be computed as  $\lambda'_s(1,0) = -\int_0^1 \log |T'(x)| \psi(x) dx$ .

►  $\lambda'_w(1,0)$  equals the weighted average  $\mathbb{E}[c]$  of the digit-cost *c* with respect to the Gauss density, i.e.

$$\lambda'_{w}(1,0) = \sum_{m=1}^{\infty} c(m) \int_{1/(m+1)}^{1/m} \psi(x) dx.$$

Constants  $\mu(c)$  and  $\nu(c)$ 

Theorem Under the assumption that the digit-cost c is of moderate growth:

 $c(m) = O(\log m),$ 

Constants  $\mu(c)$  and  $\nu(c)$ 

Theorem

Under the assumption that the digit-cost c is of moderate growth:

 $c(m) = O(\log m),$ 

the following holds:

 $\mathbb{E}_{N}[C] = \mu(c) \log N + O(1), \quad \mathbb{V}_{N}[C] = \nu(c) \log N + O(1) \;.$ 

with  $\mu(c)$  and  $\nu(c)$  positive.

#### Theorem

Let  $\mathcal{E}$  be the entropy of the Gauss map and let  $\mathbb{E}[c]$  be the weighted average:

$$\mu(c) = rac{2\lambda'_w(1,0)}{|\lambda'_s(1,0)|} = rac{2}{\mathcal{E}}\mathbb{E}[c]$$
 and

$$\mathbb{E}[c] = 1, \quad \mathbb{E}[\chi_n] = \frac{1}{\log 2} \log \left[ \frac{(n+1)^2}{n(n+2)} \right], \quad \mathbb{E}[\ell] = \frac{1}{\log 2} \prod_{i=1}^{\infty} \log \left( 1 + \frac{1}{2^k} \right).$$

Rqi framework: Pollicott, Faivre, Vallée

Previous works: rationals trajectories

Let  $\Omega = \{(u, v) \in \mathbb{Z}^2 : 1 \le u \le v, \text{ gcd}(u, v) = 1\}$ and  $\Omega_N = \{(u, v) \in \Omega : v \le N\}$ 

Rqi framework: Pollicott, Faivre, Vallée

## Previous works: rationals trajectories

Let  $\Omega = \{(u, v) \in \mathbb{Z}^2 : 1 \le u \le v, \text{gcd}(u, v) = 1\}$ and  $\Omega_N = \{(u, v) \in \Omega : v \le N\}$ 

# Theorem (Baladi and Vallée, 2005)

Under the assumption that the digit-cost c is of moderate growth:  $c(m) = O(\log m)$ ,

Rqi framework: Pollicott, Faivre, Vallée

## Previous works: rationals trajectories

Let  $\Omega = \{(u, v) \in \mathbb{Z}^2 : 1 \le u \le v, \text{ gcd}(u, v) = 1\}$ and  $\Omega_N = \{(u, v) \in \Omega : v \le N\}$ 

# Theorem (Baladi and Vallée, 2005)

Under the assumption that the digit-cost c is of moderate growth:  $c(m) = O(\log m)$ , the following holds:

 $\mathbb{E}_N[C] = \mu(c) \log N + O(1), \quad \mathbb{V}_N[C] = \nu(c) \log N + O(1) \ .$ 

with  $\mu(c)$  and  $\nu(c)$  positive.

Rqi framework: Pollicott, Faivre, Vallée

## Previous works: rationals trajectories

Let  $\Omega = \{(u, v) \in \mathbb{Z}^2 : 1 \le u \le v, \text{ gcd}(u, v) = 1\}$ and  $\Omega_N = \{(u, v) \in \Omega : v \le N\}$ 

# Theorem (Baladi and Vallée, 2005)

Under the assumption that the digit-cost c is of moderate growth:  $c(m) = O(\log m)$ , the following holds:

 $\mathbb{E}_N[C] = \mu(c) \log N + O(1), \quad \mathbb{V}_N[C] = \nu(c) \log N + O(1) \ .$ 

with  $\mu(c)$  and  $\nu(c)$  positive. Moreover, the distribution of C is asymptotically Gaussian in the same sense as for rqi.

Rqi framework: Pollicott, Faivre, Vallée

# Previous works: rationals trajectories

Let  $\Omega = \{(u, v) \in \mathbb{Z}^2 : 1 \le u \le v, \text{ gcd}(u, v) = 1\}$ and  $\Omega_N = \{(u, v) \in \Omega : v \le N\}$ 

# Theorem (Baladi and Vallée, 2005)

Under the assumption that the digit-cost c is of moderate growth:  $c(m) = O(\log m)$ , the following holds:

 $\mathbb{E}_N[C] = \mu(c) \log N + O(1), \quad \mathbb{V}_N[C] = \nu(c) \log N + O(1) \ .$ 

with  $\mu(c)$  and  $\nu(c)$  positive. Moreover, the distribution of C is asymptotically Gaussian in the same sense as for rqi.

# Remarks

- The constants  $\mu(c)$  and  $\nu(c)$  in the rational case are the same as for the rqi case.
- The constants hidden in the O(1) are expressed in terms of the transfer operator in both cases.

### They do not coincide !

► Our methods are inspired in those of Baladi and Vallée 2005

## **Real trajectories**

A classical result:

Theorem

The mean of a digit-cost c satisfies:

$$\frac{1}{N}\sum_{1\leq k\leq N}c(m_k)\to \mathbb{E}[c] \qquad N\to\infty$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

with the exception of a set of zero measure.

Remark Rationals and rqi's are set of zero measure.

## **Real trajectories**

A classical result:

Theorem

The mean of a digit-cost c satisfies:

$$\frac{1}{N}\sum_{1\leq k\leq N}c(m_k)\to \mathbb{E}[c] \qquad N\to\infty$$

with the exception of a set of zero measure.

Remark

Rationals and rqi's are set of zero measure.

A "combinatorial" version

$$\frac{1}{\rho(x)}\sum_{1\leq k\leq \rho(x)}c(m_k(x))\to \mathbb{E}[c] \qquad N\to\infty.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Here p(x) is the length of the smallest period of x.

## **Real trajectories**

A classical result:

Theorem

The mean of a digit-cost c satisfies:

$$\frac{1}{N}\sum_{1\leq k\leq N}c(m_k)\to \mathbb{E}[c] \qquad N\to\infty$$

with the exception of a set of zero measure.

#### Remark

Rationals and rqi's are set of zero measure.

## A "combinatorial" version

$$\frac{\mathbb{E}_N[\mathcal{C}]}{\mathbb{E}_N[\rho]} = \sum_{x \in \mathcal{P}_N} \frac{1}{\sum_{x \in \mathcal{P}_N} p(x)} \sum_{1 \le k \le p(x)} c(m_k(x)) \to \mathbb{E}[\mathcal{C}] \qquad N \to \infty.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Here p(x) is the length of the smallest period of x.

# A comment about "moderate growth"

#### Remark

Our results hold under the assumption that the digit-cost *c* is of moderate growth:  $c(m) = O(\log m)$ .

### Explanation

The weighted transfer operator depends of two complex parameters (s, t):

$$f \mapsto \mathbf{H}_{\mathbf{s},t}[f](x) = \sum_{m \ge 1} \frac{e^{t c(m)}}{(m+x)^{2s}} f\left(\frac{1}{m+x}\right)$$

For  $c(m) = \Theta(\log^{a}(m))$  with a > 1,  $\mathbf{H}_{1,t}$  is not convergent for  $\Re t > 0$ . Spectral properties of the transfer operator are well-known around (1,0). Our methods rely on the fact that  $\mathbf{H}_{1,t}$  is convergent for *t* in a complex neighborhood of t = 0.

# Methods: The role of Dirichlet series

## "Combinatorial class"

The set  $\ensuremath{\mathcal{P}}$  of rqi's is endowed with

- ▶ an additive cost C,
- ▶ a notion of size *ϵ*.

Our main object of analysis: the bivariate Dirichlet series P(s, t)

$$P(s,t) = \sum_{x \in \mathcal{P}} e^{tC(x)} \epsilon(x)^{-s}$$

where *s* and *t* are complex parameters.

#### Extraction theorems

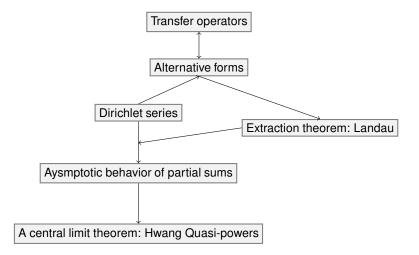
Extraction theorems gives information about the partial sums of coefficients

$$S_N^{[c]}(t) = \sum_{\epsilon(x) \le N} e^{tC(x)}$$

if we have information about the analytic behavior of  $s \mapsto P(s, t)$ .

・ロト・「聞下・「思下・「思下・」 しゃ

## Interaction between the main elements of the proof



#### Homographies

Recall the set of inverse branches of the Gauss map T:

$$\mathcal{H}:=\{h_m; \quad h: x\mapsto \frac{1}{m+x}, \quad m\geq 1\}$$

Composition of inverse branches give rise to the two sets:

$$\mathcal{H}^{k} = \{h = h_{m_{1}} \circ h_{m_{2}} \circ \cdots \circ h_{m_{k}}\} \qquad \mathcal{H}^{+} = \bigcup_{k > 1} \mathcal{H}^{k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

### Homographies

Recall the set of inverse branches of the Gauss map T:

$$\mathcal{H}:=\{h_m; \quad h: x\mapsto \frac{1}{m+x}, \quad m\geq 1\}$$

Composition of inverse branches give rise to the two sets:

$$\mathcal{H}^{k} = \{h = h_{m_{1}} \circ h_{m_{2}} \circ \cdots \circ h_{m_{k}}\} \qquad \mathcal{H}^{+} = \bigcup_{k \geq 1} \mathcal{H}^{k}$$

#### Remarks

The number x is a rqi iff there exists h ∈ H<sup>+</sup> so that x is its fixed point: h(x) = x.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

### Homographies

Recall the set of inverse branches of the Gauss map T:

$$\mathcal{H}:=\{h_m; \quad h: x\mapsto \frac{1}{m+x}, \quad m\geq 1\}$$

Composition of inverse branches give rise to the two sets:

$$\mathcal{H}^{k} = \{h = h_{m_{1}} \circ h_{m_{2}} \circ \cdots \circ h_{m_{k}}\} \qquad \mathcal{H}^{+} = \bigcup_{k \geq 1} \mathcal{H}^{k}$$

### Remarks

► The number x is a rqi iff there exists  $h \in H^+$  so that x is its fixed point: h(x) = x.

• The homography *h* is not unique. For instance  $h \circ h(x) = x$ .

## Homographies

Recall the set of inverse branches of the Gauss map T:

$$\mathcal{H}:=\{h_m; \quad h: x\mapsto \frac{1}{m+x}, \quad m\geq 1\}$$

Composition of inverse branches give rise to the two sets:

$$\mathcal{H}^{k} = \{h = h_{m_{1}} \circ h_{m_{2}} \circ \cdots \circ h_{m_{k}}\} \qquad \mathcal{H}^{+} = \bigcup_{k \geq 1} \mathcal{H}^{k}$$

## Remarks

- ► The number x is a rqi iff there exists  $h \in H^+$  so that x is its fixed point: h(x) = x.
- The homography *h* is not unique. For instance  $h \circ h(x) = x$ .

## Definition

An homography is primitive iff there is not a  $g \in \mathcal{H}^+$  so that  $h = g \circ g \cdots \circ g$ .

## Homographies

Recall the set of inverse branches of the Gauss map T:

$$\mathcal{H}:=\{h_m; \quad h: x\mapsto \frac{1}{m+x}, \quad m\geq 1\}$$

Composition of inverse branches give rise to the two sets:

$$\mathcal{H}^{k} = \{h = h_{m_{1}} \circ h_{m_{2}} \circ \cdots \circ h_{m_{k}}\} \qquad \mathcal{H}^{+} = \bigcup_{k \geq 1} \mathcal{H}^{k}$$

## Remarks

- ► The number x is a rqi iff there exists  $h \in H^+$  so that x is its fixed point: h(x) = x.
- The homography *h* is not unique. For instance  $h \circ h(x) = x$ .

## Definition

An homography is primitive iff there is not a  $g \in \mathcal{H}^+$  so that  $h = g \circ g \cdots \circ g$ .

## Important relation

Each rqi x is the fixed point of only one primitive  $h \in \mathcal{H}^+$ .

Size: replace rqi's by homographies

Recall:  $x \longrightarrow \mathbb{Q}(\sqrt{\Delta}) \longrightarrow \epsilon(x) =$  fundamental unit of  $\mathbb{Q}(\sqrt{\Delta})$ 

#### Definition

Let x be a rqi number and define

$$\alpha(\mathbf{x}) = \prod_{i=0}^{p(\mathbf{x})-1} T^i(\mathbf{x}).$$

Here T is the Gauss map and p(x) is the smallest period length of x.

#### Theorem

• The size  $\epsilon(x)$  and  $\alpha(x)$  are related by

$$\epsilon(x) = \alpha(x)^{-r(x)}, \quad r(x) = 1 \text{ for even } p(x), \quad r(x) = 2 \text{ for odd } p(x).$$

Size: replace rqi's by homographies

Recall:  $x \longrightarrow \mathbb{Q}(\sqrt{\Delta}) \longrightarrow \epsilon(x) =$  fundamental unit of  $\mathbb{Q}(\sqrt{\Delta})$ 

#### Definition

Let x be a rqi number and define

$$\alpha(\mathbf{x}) = \prod_{i=0}^{p(\mathbf{x})-1} T^i(\mathbf{x}).$$

Here T is the Gauss map and p(x) is the smallest period length of x.

#### Theorem

• The size  $\epsilon(x)$  and  $\alpha(x)$  are related by

 $\epsilon(x) = \alpha(x)^{-r(x)}, \quad r(x) = 1 \text{ for even } p(x), \quad r(x) = 2 \text{ for odd } p(x).$ 

If x is the fixed point of the primitive homography h, then

 $\alpha(x) = |h'(x)|^{1/2}$ 

# Ready to extend cost and size to $\mathcal{H}^k$ . A new Dirichlet series

## Definition

For  $h \in \mathcal{H}^k$  (primitive or not) with a fixed point  $x_h$ , let

$$\alpha(h) := |h'(x_h)|^{1/2}$$
.

The size of the homography is defined by

$$\epsilon(h) = \alpha(h)^{-r(h)}, \quad r(h) = 1 \text{ for even } k, \quad r(h) = 2 \text{ for odd } k.$$

### Definition

The total cost *C* is naturally extended to  $\mathcal{H}^+$ . If  $h = h_{m_1} \circ h_{m_2} \circ \ldots h_{m_k}$ ,  $C(h) = c(m_1) + c(m_2) + \cdots + c(m_k)$ .

### Definition

A new Dirichlet series: Replace the set  $\mathcal{P}$  of rqi's by  $\mathcal{H}^+$  and  $\epsilon$  by  $\alpha$  in the defition of P(s, t):

$$Y(s,t) = \sum_{h \in \mathcal{H}^+} e^{tC(h)} \alpha(h)^{2s}$$

(日) (日) (日) (日) (日) (日) (日) (日)

with  $\alpha(h) = |h'(x_h)|^{1/2}$ .

Alternative form for Y(s, t) and transfer operators

Dirichlet series  $Y(s, t) = \sum_{h \in \mathcal{H}^+} e^{tC(h)} |h'(x_h)|^s$ 

Transfer operator  $\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1}[f](x) = \sum_{h \in \mathcal{H}^+} e^{tc(h)} |h'(x)|^s f(h(x))$ 

Relation  $Y(s, t) \approx \mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1}$ 

Remark the difference between the evaluation points

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Theorem  $Y(s, t) = \text{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 



Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

*Sketch of the proof:* Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

*Sketch of the proof:* Consider the composition operator  $f \mapsto f \circ h$ .

- $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.
- ► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Theorem

 $Y(s, t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

*Sketch of the proof:* Consider the composition operator  $f \mapsto f \circ h$ .

- $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.
- ► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .

#### Theorem

 $Y(s, t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .

► If 
$$f(x_h) = 0$$
, differentiation of the equality  $f \circ h(x) = \lambda f(x)$ 

#### Theorem

 $Y(s, t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .

► If 
$$f(x_h) = 0$$
, differentiation of the equality  $f \circ h(x) = \lambda f(x)$ 

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

• If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .

► If 
$$f(x_h) = 0$$
, differentiation of the equality  
 $f \circ h(x) = \lambda f(x)$ 

yields

$$f'(x_h)h'(x_h)=\lambda f'(x_h).$$

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

- If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .
- ► If  $f(x_h) = 0$ , differentiation of the equality  $f \circ h(x) = \lambda f(x)$

yields

$$f'(x_h)h'(x_h)=\lambda f'(x_h).$$

Again two cases according to  $f'(x_h)$  is zero or not.

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

- If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .
- ► If  $f(x_h) = 0$ , differentiation of the equality  $f \circ h(x) = \lambda f(x)$

yields

$$f'(x_h)h'(x_h)=\lambda f'(x_h).$$

Again two cases according to  $f'(x_h)$  is zero or not.

• If  $f'(x_h) \neq 0$ , then  $\lambda = h'(x_h)$ .

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

*Sketch of the proof:* Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

• If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

- If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .
- ► If  $f(x_h) = 0$ , differentiation of the equality  $f \circ h(x) = \lambda f(x)$

yields

$$f'(x_h)h'(x_h)=\lambda f'(x_h).$$

Again two cases according to  $f'(x_h)$  is zero or not.

• If 
$$f'(x_h) \neq 0$$
, then  $\lambda = h'(x_h)$ .

• If  $f'(x_h) = 0 ...$ 

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

• If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

- If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .
- ► If  $f(x_h) = 0$ , differentiation of the equality  $f \circ h(x) = \lambda f(x)$

yields

$$f'(x_h)h'(x_h)=\lambda f'(x_h).$$

Again two cases according to  $f'(x_h)$  is zero or not.

• If 
$$f'(x_h) \neq 0$$
, then  $\lambda = h'(x_h)$ .  
• If  $f'(x_h) = 0$  ...

• The trace is the sum of all the eigenvalues:  $h'(x_h)^n$ 

$$Tr(f \mapsto |h'(x_h)| f \circ h) = \frac{\alpha(h)^2}{1 - (-1)^{|h|} \alpha(h)^2} \quad \text{with } \alpha(h) = |h'(x_h)|^{1/2}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

#### Theorem

 $Y(s,t) = \operatorname{Trace}(\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

• If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

- If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .
- ► If  $f(x_h) = 0$ , differentiation of the equality  $f \circ h(x) = \lambda f(x)$

yields

$$f'(x_h)h'(x_h)=\lambda f'(x_h).$$

Again two cases according to  $f'(x_h)$  is zero or not.

• If 
$$f'(x_h) \neq 0$$
, then  $\lambda = h'(x_h)$ .  
• If  $f'(x_h) = 0$  ...

• The trace is the sum of all the eigenvalues:  $h'(x_h)^n$ 

$$Tr(f \mapsto |h'(x_h)| f \circ h) = \frac{\alpha(h)^2}{1 - (-1)^{|h|} \alpha(h)^2} \quad \text{with } \alpha(h) = |h'(x_h)|^{1/2}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

### Theorem

 $Y(\boldsymbol{s},t) = \operatorname{Trace}(\mathbf{H}_{\boldsymbol{s},t}(I - \mathbf{H}_{\boldsymbol{s},t})^{-1})$ 

Sketch of the proof: Consider the composition operator  $f \mapsto f \circ h$ .

•  $\lambda$  is an eigenvalue iff  $f \circ h(x) = \lambda f(x)$  for any x.

► If  $x = x_h$ , the previous equality becomes  $f(x_h) = \lambda f(x_h)$ . Two cases:  $f(x_h) \neq 0$  or  $f(x_h) = 0$ .

• If  $f(x_h) \neq 0$ , then  $\lambda = 1$ .

If 
$$f(x_h) = 0$$
, differentiation of the equality  $f \circ h(x) = \lambda f(x)$ 

yields

$$f'(x_h)h'(x_h)=\lambda f'(x_h).$$

Again two cases according to  $f'(x_h)$  is zero or not.

• If 
$$f'(x_h) \neq 0$$
, then  $\lambda = h'(x_h)$ .  
• If  $f'(x_h) = 0$  ...

• The trace is the sum of all the eigenvalues:  $h'(x_h)^n$ 

$$Tr(f \mapsto |h'(x_h)| f \circ h) = \frac{\alpha(h)^2}{1 - (-1)^{|h|} \alpha(h)^2} \quad \text{with } \alpha(h) = |h'(x_h)|^{1/2}.$$

The statement is obtaining adding over all  $h \in \mathcal{H}^+$ .

For s near the real axis, the transfer decomposes

$$\mathbf{H}_{s,t} = \lambda(s,t)\mathbf{P}_{s,t} + \mathbf{N}_{s,t}$$

where

- $\lambda(s, t)$  is the dominant eigenvalue,
- ▶ **P**<sub>s,t</sub> is the projector,
- $\mathbf{N}_{s,t}$  has spectral radius less than  $\mathbf{H}_{s,t}$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For s near the real axis, the transfer decomposes

$$\mathbf{H}_{s,t} = \lambda(s,t)\mathbf{P}_{s,t} + \mathbf{N}_{s,t}$$

where

- $\lambda(s, t)$  is the dominant eigenvalue,
- ▶ **P**<sub>s,t</sub> is the projector,
- ▶ **N**<sub>s,t</sub> has spectral radius less than **H**<sub>s,t</sub>.

The powers of the transfer operator satisfy  $\mathbf{H}_{s,t}^n = \lambda(s,t)^n \mathbf{P}_{s,t} + \mathbf{N}_{s,t}^n$ , for any  $n \ge 1$ .

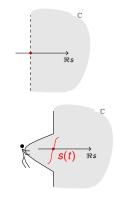
For s near the real axis, the transfer decomposes

$$\mathbf{H}_{s,t} = \lambda(s,t)\mathbf{P}_{s,t} + \mathbf{N}_{s,t}$$

where

- $\lambda(s, t)$  is the dominant eigenvalue,
- **P**<sub>s,t</sub> is the projector,
- ▶ **N**<sub>s,t</sub> has spectral radius less than **H**<sub>s,t</sub>.

The powers of the transfer operator satisfy  $\mathbf{H}_{s,t}^n = \lambda(s,t)^n \mathbf{P}_{s,t} + \mathbf{N}_{s,t}^n$ , for any  $n \ge 1$ .



#### Theorem

 $s \mapsto Y(s, t)$  extends meromorphically to a complex neighborhood of s = 1 (uniformly for  $t \sim 0$ ):

$$Y(s,t) = \operatorname{Trace}((\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})) = \frac{\lambda(s,t)}{1 - \lambda(s,t)} + \operatorname{Trace}(\mathbf{N}_{s,t}(I - \mathbf{N}_{s,t})^{-1})$$

(日)

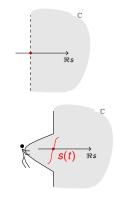
For s near the real axis, the transfer decomposes

$$\mathbf{H}_{s,t} = \lambda(s,t)\mathbf{P}_{s,t} + \mathbf{N}_{s,t}$$

where

- $\lambda(s, t)$  is the dominant eigenvalue,
- **P**<sub>s,t</sub> is the projector,
- ▶ **N**<sub>s,t</sub> has spectral radius less than **H**<sub>s,t</sub>.

The powers of the transfer operator satisfy  $\mathbf{H}_{s,t}^n = \lambda(s,t)^n \mathbf{P}_{s,t} + \mathbf{N}_{s,t}^n$ , for any  $n \ge 1$ .



#### Theorem

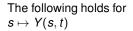
 $s \mapsto Y(s, t)$  extends meromorphically to a complex neighborhood of s = 1 (uniformly for  $t \sim 0$ ):

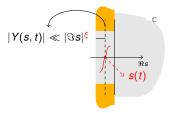
$$Y(s,t) = \operatorname{Trace}((\mathbf{H}_{s,t}(I - \mathbf{H}_{s,t})^{-1})) = \frac{\lambda(s,t)}{1 - \lambda(s,t)} + \operatorname{Trace}(\mathbf{N}_{s,t}(I - \mathbf{N}_{s,t})^{-1})$$

The solutions s(t) of  $1 - \lambda(s, t) = 0$  are the only singularities of  $s \mapsto Y(s, t)$ .

Extensions of Dolgopyat-Baladi-Vallée results

Dolgopyat, Baladi and Vallée for the "true quasi-inverse (*I* – H<sub>s,t</sub>)<sup>-1</sup>"





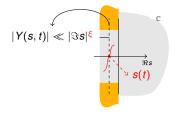
#### Remark

The original series P(s, t) and the series Y(s, t) has the same analytic behavior.

## Extensions of Dolgopyat-Baladi-Vallée results

- Dolgopyat, Baladi and Vallée for the "true quasi-inverse (*I* – H<sub>s,t</sub>)<sup>-1</sup>"
- Pollicott and Sharp: periodic points of dynamical systems with finite number of branches.

The following holds for  $s \mapsto Y(s, t)$ 



### Remark

The original series P(s, t) and the series Y(s, t) has the same analytic behavior.

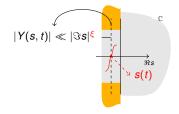
## Extensions of Dolgopyat-Baladi-Vallée results

- Dolgopyat, Baladi and Vallée for the "true quasi-inverse (*I* – H<sub>s,t</sub>)<sup>-1</sup>"
- Pollicott and Sharp: periodic points of dynamical systems with finite number of branches.
- This work: periodic points of the Gauss map (infinite number of branches).

#### Remark

The original series P(s, t) and the series Y(s, t) has the same analytic behavior.

The following holds for  $s \mapsto Y(s, t)$ 

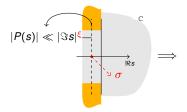


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

### Dirichlet series and Landau Theorem

Dirichlet series:  $P(s) = \sum_{x \in \mathcal{P}} \epsilon(x)^{-s}$ 

lf

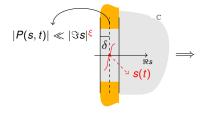


$$S_N = |\mathcal{P}_N| = \sum_{\epsilon(x) \le N} 1$$
  
 $S_N = KN^{\sigma} \left( 1 + O(N^{-\beta}) \right)$ 

$$\beta = \beta(\xi, \delta) > 0$$

Here  $\delta$  is the distance between s(t) and the left straight line.

Bivariate Dirichlet series:  $P(s, t) = \sum_{x \in \mathcal{P}} e^{tC(x)} \epsilon(x)^{-s}$ If



$$\begin{split} S_N^{[c]}(t) &= \sum_{\epsilon(x) \le N} e^{tC(x)} \\ S_N^{[c]}(t) &= v(t) N^{s(t)} \left( 1 + O(N^{-\beta}) \right) \\ \beta &= \beta(\xi, \delta) > 0 \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

### Definition

The moment generating function  $\mathbb{E}_{N}[e^{tC}]$  satisfies

$$\mathbb{E}_{N}[e^{tC}] = rac{S_{N}^{[c]}(t)}{|\mathcal{P}_{N}|} = rac{S_{N}^{[c]}(t)}{S_{N}^{[c]}(0)}$$

(ロ)、(型)、(E)、(E)、 E、のQの

### Definition

The moment generating function  $\mathbb{E}_{N}[e^{tC}]$  satisfies

$$\mathbb{E}_{N}[e^{tC}] = \frac{S_{N}^{[c]}(t)}{|\mathcal{P}_{N}|} = \frac{S_{N}^{[c]}(t)}{S_{N}^{[c]}(0)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Our partial sums satisfy  $S_N^{[c]}(t) = v(t)N^{s(t)} \left(1 + O(N^{-\beta})\right)$ .

### Definition

The moment generating function  $\mathbb{E}_{N}[e^{tC}]$  satisfies

$$\mathbb{E}_{N}[e^{tC}] = \frac{S_{N}^{[c]}(t)}{|\mathcal{P}_{N}|} = \frac{S_{N}^{[c]}(t)}{S_{N}^{[c]}(0)}$$

Our partial sums satisfy  $S_N^{[c]}(t) = v(t)N^{s(t)}(1 + O(N^{-\beta}))$ . Application of Hwang Quasi-powers theorem is the last step of the proof:

## Definition

The moment generating function  $\mathbb{E}_{N}[e^{tC}]$  satisfies

$$\mathbb{E}_{N}[e^{tC}] = \frac{S_{N}^{[c]}(t)}{|\mathcal{P}_{N}|} = \frac{S_{N}^{[c]}(t)}{S_{N}^{[c]}(0)}.$$

Our partial sums satisfy  $S_N^{[c]}(t) = v(t)N^{s(t)} (1 + O(N^{-\beta}))$ . Application of Hwang Quasi-powers theorem is the last step of the proof:

### Theorem

Our moment generating function admits the form

$$\mathbb{E}_{N}[e^{tC}] = \frac{v(t)}{v(0)} N^{s(t)-s(0)} \left(1 + O(N^{-\beta})\right),$$

and then,  $\mathbb{E}_{N}[C] = s'(0) \log N + O(1)$  and  $\mathbb{V}_{N}[C] = s''(0) \log N + O(1)$ .

### Definition

The moment generating function  $\mathbb{E}_{N}[e^{tC}]$  satisfies

$$\mathbb{E}_{N}[e^{tC}] = rac{S_{N}^{[c]}(t)}{|\mathcal{P}_{N}|} = rac{S_{N}^{[c]}(t)}{S_{N}^{[c]}(0)}$$

Our partial sums satisfy  $S_N^{[c]}(t) = v(t)N^{s(t)} (1 + O(N^{-\beta}))$ . Application of Hwang Quasi-powers theorem is the last step of the proof:

#### Theorem

Our moment generating function admits the form

$$\mathbb{E}_{N}[e^{tC}] = \frac{v(t)}{v(0)} N^{s(t)-s(0)} \left(1 + O(N^{-\beta})\right),$$

and then,  $\mathbb{E}_N[C] = s'(0) \log N + O(1)$  and  $\mathbb{V}_N[C] = s''(0) \log N + O(1)$ . In addition,  $s''(0) \neq 0$ , then the cost *C* is asymptotically Gaussian when  $N \to \infty$ .

## Definition

The moment generating function  $\mathbb{E}_{N}[e^{tC}]$  satisfies

$$\mathbb{E}_{N}[e^{tC}] = \frac{S_{N}^{[c]}(t)}{|\mathcal{P}_{N}|} = \frac{S_{N}^{[c]}(t)}{S_{N}^{[c]}(0)}$$

Our partial sums satisfy  $S_N^{[c]}(t) = v(t)N^{s(t)} (1 + O(N^{-\beta}))$ . Application of Hwang Quasi-powers theorem is the last step of the proof:

#### Theorem

Our moment generating function admits the form

$$\mathbb{E}_{N}[e^{tC}] = \frac{v(t)}{v(0)} N^{s(t)-s(0)} \left(1 + O(N^{-\beta})\right),$$

and then,  $\mathbb{E}_N[C] = s'(0) \log N + O(1)$  and  $\mathbb{V}_N[C] = s''(0) \log N + O(1)$ . In addition,  $s''(0) \neq 0$ , then the cost *C* is asymptotically Gaussian when  $N \to \infty$ .

Constants are computed from s(t) using the relation  $\lambda(s, t) = 1$ .

### Extensions and conclusions

▶  $x \mapsto \log \epsilon(x)$  is close to the Lévy constant. It is not an additive cost.

- $\mathbb{E}_N[\log \epsilon] = 2\log N + O(1).$
- The variance is of constant order.
- ► The set of P[M] = {rqi with partial quotients bounded by M}
  - Similar Gaussian laws for additive parameters and M large enough.
  - Based on properties of the constrained transfer operator

$$\mathbf{H}_{M,s}[f](x) = \sum_{m \leq M} \frac{1}{(m+x)^{2s}} f\left(\frac{1}{m+x}\right) \, .$$

For small M, Dolgopyat like results are not proved to hold.