
Modélisations de l’algorithme LLL et de ses entrées

Sur la base des travaux de:
B. Vallée, J. Clément, A. Vera, M. Georgieva, M. Madritsch, A. Akhavi,. . .

et bien d’autres encore!

Löıck Lhote
GREYC, UMR CNRS 6072,

ENSICAEN & Université de Caen Basse-Normandie

Projet ANR Dyna3S
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Generalizations of the Euclid algorithm

Lattice reduction

Algorithms : LLL, HKZ,
BKZ, . . .

Models for the algorithms
(sandpile, CFG, . . . )

Models for the inputs
(cryptography, factorization,
. . . )

This afternoon. . .

GCD
Simultaneous Rational Approximation

Problem : Consider −→y ∈ Rn, find q ∈ Z
with q ≤ M and −→p ∈ Zn such that
||q · −→y −−→p || is small.

Continued Fraction Expansion

u

v
=

1

m1 +
1

m2 +
1

. . .

mp−1 +
1

mp + 0

This morning . . .

0        1       2       3       4       5        6       7        8       9       10     11      12    13      14     15      16     17−7     −6     −5      −4     −3     −2      −1

0        1       2       3       4       5        6       7        8       9       10     11      12    13      14     15      16     17−7     −6     −5      −4     −3     −2      −1
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The LLL algorithm

Input : A lattice L given by a basis (b1, . . . ,bm)
t > 1

Output : A basis (b1, . . . ,bm) of L such that the Gram-Schmidt
Orthogonalization (GSO) satisfies ,

1 for all 1 ≤ j < i ≤ m, |µi,j | ≤ 1
2 (size reduced)

2 for all 1 ≤ i < m, ||b?i+1||2 + µ2
i+1,i ||b?i ||2 ≥ 1

t2 ||b?i ||2 (Lovász conditions)

b1 = b?1

b2

b3

b?2

b?3

x

y

z

There exist a matrix M such that
B = MB? and

M =



1 0 · · · · · · 0

µ2,1 1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
µm,1 · · · · · · µm,m−1 1


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The LLL algorithm

LLL performs translations and exchanges.

An exchange between two consecutive vectors is performed as soon as a Lovász
condition is not satisfied.

The exchanges improve the orthogonality and globally the ratios b?i /b?i+1 decrease.

Translations are performed for shortening the vectors (size-reduction)
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The LLL algorithm in dimension 2 (Gauss algorithm)
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The LLL algorithm in dimension 2 (Gauss algorithm)
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The LLL algorithm in dimension 2 (Gauss algorithm)
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The LLL algorithm in dimension 2 (Gauss algorithm)
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The LLL algorithm in dimension 2 (Gauss algorithm)
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Translations and exchanges

Role of the translations (size-reduction):
The length of the vectors decreases with the translations.

Role of the exchanges:
Each exchange between b?i and b?i+1 increases the length of b?i+1 and decreases the
length of b?i .

The vectors are then more “orthogonal” and the ratio ||b?i ||/||b?i+1|| decreases.
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The LLL algorithm

Input : A lattice L = L(b1, . . . ,bm)
t ≥ 1

Output : A t-LLL reduced basis of L

Algorithm

0 : Compute the GSO
1 : size-reduce the basis using only translations (|µi,j | < 1

2 )
2 : while the basis is not t-LLL reduced do
3 : choose i such that ||b?i+1||2 + µ2

i+1,i ||b?i ||2 < 1
t2 ||b?i ||2

according to a strategy
4 : exchange bi−1 and bi

5 : size-reduce the basis using only translations
6 : end while
7 : return (b1, . . . ,bm)

Remark : The LLL algorithm only uses the orthogonal basis to make decision
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Quality of the output

The norms ||b?i || do not decrease too quickly since ||b?i || ≥ s i−1||b?1 || with

1

t2
=

1

4
+

1

s2
.

b1 is a “short enough” vector of the lattice since

||b1|| ≤ 2(m−1)/2λ(L)

[λ(L) is the length of a shortest non zero vector of L.]
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Complexity

Theorem

LLL performs O(n3m logB) arithmetic operations with integers of size O(n logB)
where B = maxi=1..n ||bi ||.

The real D

D =
n∏

i=1

||b?i ||n−i ≤ Bn2

, with B = max
i=1..n

||bi ||,

decreases by a factor δ = ( 1
4 + s2)1/2 at each exchange. Then LLL performs

O(n2 logB) exchanges.

Between two exchanges, there are at most O(n2) arithmetic operations.

The size of the integer increases quickly and the computations need multiprecision
even for low dimensions (≈ 20).
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The LLL algorithm : a new point of vue

Input : the real vector (`1, . . . , `m) with `i = ||b?i ||
the subdiagonal coefficients (µ1, . . . , µm−1) with |µi | = |µi+1,i | ≤ 1

2
t ≥ 1

Output : (ˆ̀
1, . . . , ˆ̀

m) and (µ̂1, . . . , µ̂m−1) with for all i = 1 . . .m − 1,
ˆ̀2
i+1 ≥ ( 1

t2 − µ̂2
i )ˆ̀2

i

Algorithm

0 : Compute the GSO
1 : size-reduce the basis using only translations (|µi,j | < 1

2 )
2 : while the basis is not t-LLL reduced do
3 : choose i such that ||b?i+1||2 + µ2

i+1,i ||b?i ||2 < 1
t2 ||b?i ||2

according to a strategy
4 : exchange bi−1 and bi

5 : size-reduce the basis using only translations
6 : end while
7 : return (b1, . . . ,bm)
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Simplified versions of the LLL algorithm

Updates in the LLL algorithm:
During an exchange, the norms of the vectors in the orthogonal basis become

||b?i || ← ρ||b?i || and ||b?i+1|| ←
1

ρ
||b?i+1|| with ρ2 =

||b?i+1||2

||b?i ||2
+ µ2

i+1,i

LLL Model 3 Model 2 Model 1
Conditions
on ρ

- µi+1,i fol-
lows a uniform
law on [− 1

2 ,
1
2 ]

- the µi+1,i

are supposed
to be constant

ρ is supposed
to be constant

- ρ depends
on the ratio
||b?

i+1||
2

||b?
i ||2

and
µi+1,i

- ρ only de-
pends on the

ratio
||b?

i+1||
2

||b?
i ||2

Remarks Too compli-
cated

Open problem Work in
progress

True Chip Fir-
ing Game
[Madritsch,
Vallée]
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The LLL algorithm : additive point of vue

Input : the real vector (`1, . . . , `m) with `i = ||b?i ||
the subdiagonal coefficients (µ1, . . . , µm−1) with |µi | = |µi+1,i | ≤ 1

2
t ≥ 1

Output : (ˆ̀
1, . . . , ˆ̀

m) and (µ̂1, . . . , µ̂m−1) with for all i = 1 . . .m − 1,
ˆ̀2
i+1 ≥ ( 1

t2 − µ̂2
i )ˆ̀2

i

Algorithm

0 :
1 :

2 : while there exists i such that `2
i+1 < ( 1

t2 − µ2
i )`2

i do

3 : choose i such that ||b?i+1||2 + µ2
i+1,i ||b?i ||2 < 1

t2 ||b?i ||2
according to a strategy

4 : `i ← ρ`i and `i+1 ← (1/ρ)`i+1 with ρ2 =
`2
i+1

`2
i

+ µ2
i

5 : call an oracle that recomputes µi and µi+1

6 : end while
7 : return (`1, . . . , `m) and (µ1, . . . , µm−1)
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The LLL algorithm : additive point of vue

Input : the real vector (q1, . . . , qm) with qi = log `2
i

the subdiagonal coefficients (µ1, . . . , µm−1) with |µi | = |µi+1,i | ≤ 1
2

t ≥ 1
Output : (q̂1, . . . , q̂m) and (µ̂1, . . . , µ̂m−1) with for all i = 1 . . .m − 1,

q̂i+1 ≥ log( 1
t2 − µ̂2

i ) + q̂i

Algorithm

0 :
1 :

2 : while there exists i such that `2
i+1 < ( 1

t2 − µ2
i )`2

i do

3 : choose i such that ||b?i+1||2 + µ2
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t2 ||b?i ||2
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`2
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`2
i

+ µ2
i
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i ) do

3 : choose i such that ||b?i+1||2 + µ2
i+1,i ||b?i ||2 < 1

t2 ||b?i ||2
according to a strategy

4 : `i ← ρ`i and `i+1 ← (1/ρ)`i+1 with ρ2 =
`2
i+1

`2
i

+ µ2
i
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Hypotheses

Model 1
H and h are supposed to be constant.
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General sandpiles and chip firing games with parameters
(H , h).

In our context, qi = log ||b?i ||2 ri = qi − qi+1 = log
||b?i ||2

||b?i+1||2

The equation

If qi > qi+1 + H, then [q̌i = qi − h, ˇqi+1 = qi+1 + h].

defines the sandpile model of parameters (H, h).

The equation

If ri > H, then [ři = ri − 2h, ˇri+1 = ri+1 + h, ˇri−1 = ri−1 + h, ].

defines the chip firing game of parameters (H, h).

Classical instances studied : basic and decreasing.

– Basic instances : Initial integer qi ’s and parameters H, h equal to 1.
– Basic (strictly) decreasing instances :

The sequence i 7→ qi is (strictly) decreasing.

Here, we study general instances of sandpile models.
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If ri > H, then [ři = ri − 2h, ˇri+1 = ri+1 + h, ˇri−1 = ri−1 + h, ].

defines the chip firing game of parameters (H, h).

Classical instances studied : basic and decreasing.

– Basic instances : Initial integer qi ’s and parameters H, h equal to 1.
– Basic (strictly) decreasing instances :

The sequence i 7→ qi is (strictly) decreasing.

Here, we study general instances of sandpile models.
Löıck Lhote (GREYC, Caen) ANR Dyna3S 19 / 53



General sandpiles and chip firing games with parameters
(H , h).

In our context, qi = log ||b?i ||2 ri = qi − qi+1 = log
||b?i ||2

||b?i+1||2

The equation

If qi > qi+1 + H, then [q̌i = qi − h, ˇqi+1 = qi+1 + h].

defines the sandpile model of parameters (H, h).

The equation
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Evolution of a CFG and its sandpile

The evolution of a basic chip firing game (above),
and its associated sandpile (below).

above : qi = log ||b?i ||2

below : ri = qi − qi+1 = log
||b?

i ||
2

||b?
i+1||2
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Evolutions of a basic sandpile

Possible evolutions of a basic sandpile.
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For any sandpile of parameters (h,H)...

(i) There is a unique final q̂. The length of any path q→ q̂ is

T (q) =
1

2h

n−1∑
i=1

i(n − i) (ri − r̂i )

(ii) If the sandpile is decreasing, H − 2h < r̂i ≤ H,

0 ≤ T (q)− 1

2h

n−1∑
i=1

i(n − i) (ri − H) ≤ 2A(n) with A(n) := n
n2 − 1

12

(iii) If the sandpile is strictly decreasing,

∃!j ∀i 6= j , H − h < r̂i ≤ H, and H − 2h < r̂j ≤ H − h,

0 ≤ T (q)−

[
A(n) +

1

2h

n−1∑
i=1

i(n − i) (ri − H)

]
≤ 1

8
n2

(iv) For a general sandpile,

H − 2h < r̂i ≤ H if ri > H − h, r̂i ≥ ri if ri ≤ H − h

1

2h

n−1∑
i=1

i(n − i)(ri − H + h) ≤ T (q) ≤ 1

2h

n−1∑
i=1

i(n − i) max(ri − H + h, 0)
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For any sandpile of parameters (h,H)...

(v) A sufficient condition for two adjacent strictly decreasing basic sandpiles

q− := (q1, q2, . . . , qp), q+ := (qp+1, qp+2, . . . , qn+p)

to be independent is

1

p

(
p∑

i=1

qi

)
− 1

n

(
n∑

i=1

qp+i

)
≤
(
n + p

2

)
− 2.

In this case, the number of steps for the total sandpile q is (in parallel)

T (q) = max [T (q−),T (q+)]
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Simplified versions of the LLL algorithm

Updates in the LLL algorithm:
During an exchange, the norms of the vectors in the orthogonal basis become

||b?i || ← ρ||b?i || and ||b?i+1|| ←
1

ρ
||b?i+1|| with ρ2 =

||b?i+1||2

||b?i ||2
+ µ2

i+1,i

LLL Model 3 Model 2 Model 1
Conditions
on ρ

- µi+1,i fol-
lows a uniform
law on [− 1

2 ,
1
2 ]

- the µi+1,i

are supposed
to be constant

ρ is supposed
to be constant

- ρ depends
on the ratio
||b?

i+1||
2

||b?
i ||2

and
µi+1,i

- ρ only de-
pends on the

ratio
||b?

i+1||
2

||b?
i ||2

Remarks Too compli-
cated

Open problem Work in
progress

True Chip Fir-
ing Game
[Madritsch,
Vallée]
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Model M2(t, µ)

xi =
||b?i+1||2

||b?i ||2
, ρ2 = xi + µ, Ot,µ =

[
1

t2
− µ,+∞

[

Entrées: Le vecteur x = (x1, . . . , xd−1) ∈ Rd−1
+

Résultat: Le vecteur final x̂ = (x̂1, . . . , x̂d−1) ∈ Od−1
µ,t

tant que x 6∈ Od−1
µ,t faire

Choisir i tel que xi 6∈ Oµ,t ;
Calculer x := Ti,µ(x) vérifiant

xi−1 := xi−1(xi + µ), xi+1 := xi+1(xi + µ), xi =
xi

(xi + µ)2
;

fintq

This is a general dynamical system in Rd with

a hole Od−1
t,µ

and an attractive fixed point in (1− µ, . . . , 1− µ)
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Strategies

1
t2 − µ

1
t2 − µ

T1

T1 T2

1
t2 − µ

1
t2 − µ

T1

T2

T1

T2

1
t2 − µ

1
t2 − µ

T1

T2T2orT1

LLL strategy Greedy strategy Random strategy
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First result when t > 1

Potential

P(x) :=
d−1∏
i=1

x
i(d−i)
i

With the greedy strategy, we have

P(T (x)) =
P(x)

min
i=1...d−1

(xi + µ)2 > P(x)

and if the basis is far from being reduced,

min
i=1...d−1

(xi + µ)2 ∼ µ2, P(x) ∼ µP(T (x)), P(x) ∼ µkP(T k(x))

But if the basis is close to be reduced,

min
i=1...d−1

(xi + µ)2 ≈ 1

t2
< 1 if t > 1
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First result when t > 1

Number of iterations when t > 1

Consider the dynamical system M2(µ, t) with t > 1, µ ∈ [0, 1
4 ] and x 6∈ Od−1

t,µ . The
number of iterations of M2(µ, t) on x, denoted by Kt,µ(x) satisfies

Kt,µ(x) =
1

2
logµ P(x) + O(d3).

Remark :

the known results on the complexity of LLL involve logtP(x),

nothing is known when t = 1.
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Model M2(t, µ) with t = 1

We did not succeed in generalizing the result except for d = 2 (Gauss) and d = 3
(LLL in dimension 3).

Number of iterations when t = 1 and d = 2, 3

Consider the dynamical system M2(µ, 1), µ ∈ [0, 1
4 ], x 6∈ Od−1

t,µ and d = 2, 3. The
number of iterations of M2(µ, 1) on x, denoted by K1,µ(x) satisfies

K1,µ(x) =
1

2
logµ P(x) + O(1).

Conjecture

K1,µ(x) =
1

2
logµ P(x) + O(d3).
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Löıck Lhote (GREYC, Caen) ANR Dyna3S 31 / 53



Simplified versions of the LLL algorithm

Updates in the LLL algorithm:
During an exchange, the norms of the vectors in the orthogonal basis become

||b?i || ← ρ||b?i || and ||b?i+1|| ←
1

ρ
||b?i+1|| with ρ2 =

||b?i+1||2

||b?i ||2
+ µ2

i+1,i

LLL Model 3 Model 2 Model 1
Conditions
on ρ

- µi+1,i fol-
lows a uniform
law on [− 1

2 ,
1
2 ]

- the µi+1,i

are supposed
to be constant

ρ is supposed
to be constant

- ρ depends
on the ratio
||b?

i+1||
2

||b?
i ||2

and
µi+1,i

- ρ only de-
pends on the

ratio
||b?

i+1||
2

||b?
i ||2

Remarks Too compli-
cated

Open problem Work in
progress

True Chip Fir-
ing Game
[Madritsch,
Vallée]
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Model M3(t, µ)

Entrées: Le vecteur x = (x1, . . . , xd−1) ∈ Rd−1
+

Le vecteur µ = (µ1, . . . , µd−1) ∈ [0, 1
4 ]d−1

Résultat: Les vecteurs x̂ = (x̂1, . . . , x̂d−1) et µ̂ = (µ̂1, . . . , µ̂d−1) tels que
x̂i ≥ 1

t2 − µ̂i

tant que il existe i tel que xi <
1
t2 − µi faire

Choisir i tel que xi <
1
t2 − µi

Calculer x := Ti,µi (x) vérifiant

xi−1 := xi−1(xi + µi ), xi+1 := xi+1(xi + µi ), xi =
xi

(xi + µi )2
;

Générer aléatoirement un nouveau µi

fintq

This is a probabilistic dynamical system
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Results

NONE !

Löıck Lhote (GREYC, Caen) ANR Dyna3S 34 / 53



Some ideas

K (x) denotes the number of iterations on the input x

Consider P0 the potential such that P(x) ≥ P0 ⇒ x is “reduced”

Consider a sequence of i.i.d. random variables (µi )i that follow the same uniform
law over [0, 1

4 ].

Consider the stopping time T (x) defined as the minimum k such that

P0

k∏
i=1

µi < P(x).

my feeling : K (x) = T (x) + O(d3).
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Löıck Lhote (GREYC, Caen) ANR Dyna3S 35 / 53



Plan

1 Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm
Model 1 : sandpile and cfg
Model 2 : dynamical system with hole
Model 3 : Probabilistic dynamical system

4 Modelling the input bases
Classical models
Input bases coming from applications
General model of inputs

5 Conclusion
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Various notions of a random basis of a lattice.

(a)“Useful” lattice bases arise in applications : variations around knapsack bases
and their transposes with bordered identity matrices.

(
A Ip

) (
y 0
x qIp

) (
Ip Hp

0p qIp

) (
q 0
x Ip−1

)

(b) Ajtai “bad” bases Bp := (bi,p) associated to a sequence ai,p

bi,p ∈ Zp, bi,p = ai,p ei +
i−1∑
j=1

ai,j,p ej (⇒ ||b?i,p|| = ai,p)

with αi,j,p =
a

(p)
i,j

a
(p)
j

= rand

(
−1

2
,

1

2

)
[size-reduced]

and
||b?i+1,p||
||b?i,p||

=
a

(p)
i+1

a
(p)
i

→ 0 when p →∞ [bad ratios - non reduced]
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Experimental mean values .... versus proven upper bounds
[Nguyen and Stehlé]

Main parameters. ||b?
i+1,p||/||b?

i,p|| approx. factor Nb. steps

Worst-case 1/s sp−1 Θ(Mp2)
(Proven upper bounds)

“Bad” lattice bases
Random Ajtai bases 1/β βp−1 Θ(Mp2)

(Experimental mean values)

“Useful ” lattice bases
Random knapsack–shape bases 1/β βp−1 Θ(Mp)

(Experimental mean values)

The execution parameters depend on the type of the lattice basis.

The output configuration does not depend strongly neither on index i nor on the type of
bases.

“experimental” value : β ≈ 1.04

the
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Other notions of a random basis of a lattice – reference
models.

(c) Spherical model.
Choose independently each one of the p vectors in the ambient space Rn,
under a common distribution that is invariant by rotation.
Classical instances :

uniform distribution in the ball, on the sphere

gaussian distribution on coordinates

(d) Random lattices.
The space of (full-rank) lattices in Rn (modulo scale) is Xn = SLn(R)/SLn(Z).
It possesses a unique probability measure

which is invariant under the action of SLn(R).
This gives rise to a natural notion of random lattices.
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Probabilistic analyses of lattice reduction

Akhavi, Marckert, Rouault (2005) [spherical model]

All the local bases are reduced except the last few ones
For the last few local bases, the length of the b?

i follows an explicit distribution

Daudé and Vallée (1994) [random ball model]

The mean number of steps K satisfies

En[K ] ≤ n2

(
1

log t

)[
1

2
log n + 2

]
The mean size of the smallest nonzero vector of the lattice satisfies

En[λ] ≥ 1

4
√
n
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Some instances of cfg related to natural inputs

Ajtai type input

Knapsack type input
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Some instances of cfg related to natural inputs

uniform distribution in the unit ball

Coppersmith’s method
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General model of Ajtai inputs

This is a general model of random cfg. Once a cfg is given, it is easy to compute a
random lattice associated to the cfg.

The general model is based on 3 parameters

Υ : the total mass of the cfg

d : the dimension of the cfg

g : density function over [0, 1]

The cfg (c1, . . . , cd−1) satisfies

for all i , ci follows an exponential law

E[ci ] =
1

d − 1
Υg

(
i

d

)
the total mass : E[M] =

∑d−1
i=1 E[ci ] ∼

d→∞
Υ

the energy (potential) :

E[E ] =
∑d−1

i=1 i(d − i)E[ci ] ∼
d→∞

d2Υ

∫ 1

0

x(1− x)g(x)dxΥ
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model A(Υ, d , g)

The cfg (c1, . . . , cd−1) satisfies

for all i , ci follows an exponential law

E[ci ] =
1

d − 1
Υg

(
i

d

)
the total mass : E[M] =

∑d−1
i=1 E[ci ] ∼

d→∞
Υ

the energy (potential) :

E[E ] =
∑d−1

i=1 i(d − i)E[ci ] ∼
d→∞

d2Υ

∫ 1

0

x(1− x)g(x)dxΥ

In Ajtai work,

g(x) =
a + 1

2a+1 − 1
(2− x)a.
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“Uni-tas” general model : U(Υ, d , β)

The general model is based on 3 parameters

Υ : the total mass of the cfg

d : the dimension of the cfg

β ∈ [0, 1] related to the position of the unique “pile”

i = 1 + bβ(d − 2)c

The cfg (c1, . . . , cd−1) satisfies

E[ci ] = Υ, E[cj ] = 0 for j 6= i

the total mass : E[M] = Υ

the energy (potential) :

E[E ] ∼
{

d2β(1− β) Υ si β ∈]0, 1[
d Υ si β ∈ {0, 1} .
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“Uni-tas” general model : U(Υ, d , β)

Applications

Knapsack problem : β = 0 (model K(Υ, d))

Schnorr factorization : β = 0

protocol NTRU : β = 1/2 (model N (Υ, d))

. . .
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Coppersmith general model

A Coppersmith cfg can also be represented as the concatenation of several cfg
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Results with the models M1/M2

Modèles K pire des cas K pour M1(α) K pour M2(µ) K expérimental

A(Υ, d)
1

12 log t
d(d + 1)Υ̃

1

12α
d(d + 1)Υ̃

1

6| logµ|
d(d + 1)Υ̃ Θ(d2Υ̃)

N (Υ, d)
1

8 log t
d2Υ̃

1

8α
d2Υ̃

1

4| logµ|
d2Υ̃ Θ(d2Υ̃)

K(Υ, d)
1

2 log t
dΥ̃

1

2α
dΥ̃

1

| logµ|
dΥ̃ Θ(dΥ̃)

Υ̃ = α ·Υ with α a known constant
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Löıck Lhote (GREYC, Caen) ANR Dyna3S 52 / 53



Conclusion

– Simplified models,
very useful for explaining, making experiments, finding conjectures......

– Only qualitative similarities with the actual LLL algorithm.

– Possible (easy) proofs.

– Some results in dimension d ≥ 3 that do not exist for the LLL algorithm

– New challenges : model M3 which is a probabilistic dynamical system with a hole
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