Modélisations de l'algorithme LLL et de ses entrées

Sur la base des travaux de:

B. Vallée, J. Clément, A. Vera, M. Georgieva, M. Madritsch, A. Akhavi,... et bien d'autres encore!

> Loïck Lhote GREYC, UMR CNRS 6072, ENSICAEN & Université de Caen Basse-Normandie

Projet ANR Dyna3S

Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

Conclusion

Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

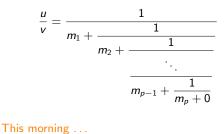
- Classical models
- Input bases coming from applications
- General model of inputs

Conclusion

Generalizations of the Euclid algorithm

 $\begin{array}{|c|c|c|} & & \text{GCD} \\ \hline & \text{Simultaneous Rational Approximation} \\ \hline & \text{Problem} : \text{Consider } \overrightarrow{y} \in \mathbb{R}^n, \text{ find } q \in \mathbb{Z} \\ & \text{with } q \leq M \text{ and } \overrightarrow{p} \in \mathbb{Z}^n \text{ such that} \\ & ||q \cdot \overrightarrow{y} - \overrightarrow{p}|| \text{ is small.} \\ \end{array}$

Continued Fraction Expansion



Generalizations of the Euclid algorithm

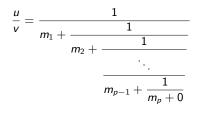
Lattice reduction

- Algorithms : LLL, HKZ, BKZ, ...
- Models for the algorithms (sandpile, CFG, ...)
- Models for the inputs (cryptography, factorization, ...)

This afternoon...

 $\begin{array}{|c|c|} & \text{GCD} \\ \hline \textbf{Simultaneous Rational Approximation} \\ \hline \textbf{Problem : Consider } \overrightarrow{y} \in \mathbb{R}^n, \text{ find } q \in \mathbb{Z} \\ \text{with } q \leq M \text{ and } \overrightarrow{p} \in \mathbb{Z}^n \text{ such that} \\ ||q \cdot \overrightarrow{y} - \overrightarrow{p}|| \quad \text{is small.} \end{array}$

Continued Fraction Expansion



This morning ...

Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

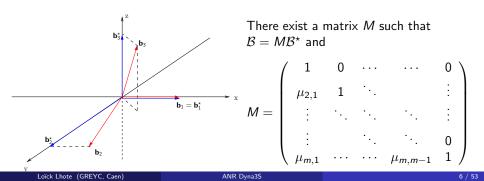
4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

Conclusion

The LLL algorithm

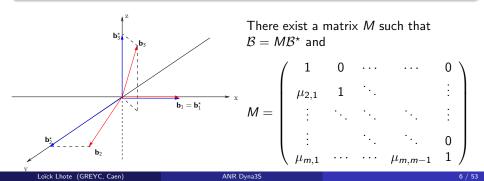
- $\begin{array}{cc} \underline{\mathsf{Input}:} & \mathsf{A} \; \mathsf{lattice} \; \mathcal{L} \; \mathsf{given} \; \mathsf{by} \; \mathsf{a} \; \mathsf{basis} \; \left(\mathbf{b}_1, \ldots, \mathbf{b}_m \right) \\ & t > 1 \end{array}$



The LLL algorithm

- $\begin{array}{cc} \underline{\mathsf{Input}:} & \mathsf{A} \; \mathsf{lattice} \; \mathcal{L} \; \mathsf{given} \; \mathsf{by} \; \mathsf{a} \; \mathsf{basis} \; (\mathbf{b}_1, \dots, \mathbf{b}_m) \\ & t > 1 \end{array}$

• for all $1 \le j < i \le m$, $|\mu_{i,j}| \le \frac{1}{2}$ (size reduced) • for all $1 \le i < m$, $||\mathbf{b}_{i+1}^{\star}||^2 + \mu_{i+1,i}^2 ||\mathbf{b}_i^{\star}||^2 \ge \frac{1}{t^2} ||\mathbf{b}_i^{\star}||^2$ (Lovász conditions)

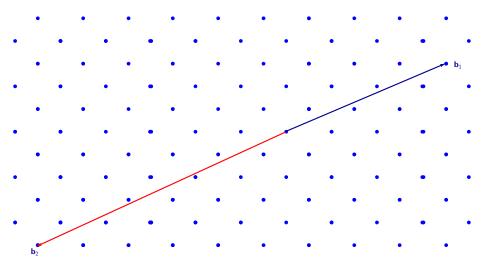


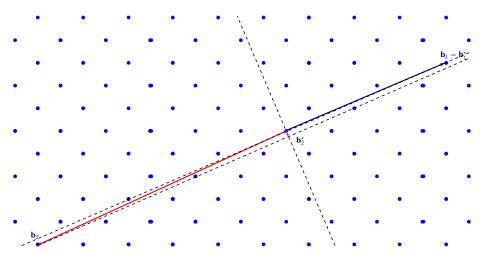
LLL performs translations and exchanges.

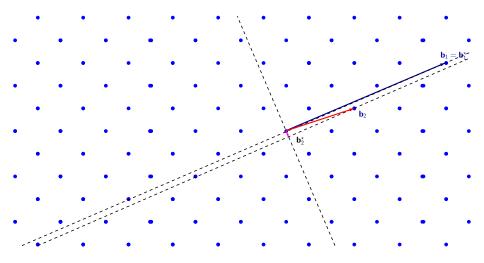
An exchange between two consecutive vectors is performed as soon as a Lovász condition is not satisfied.

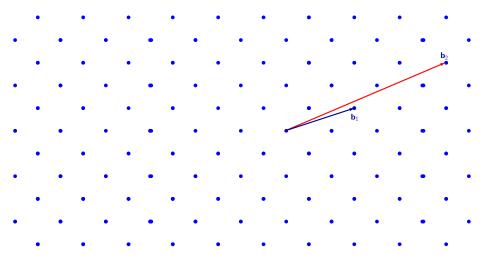
The exchanges improve the orthogonality and globally the ratios $\mathbf{b}_i^{\star}/\mathbf{b}_{i+1}^{\star}$ decrease.

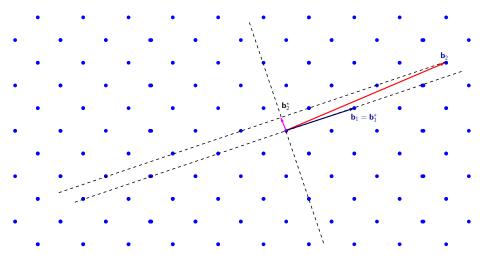
Translations are performed for shortening the vectors (size-reduction)

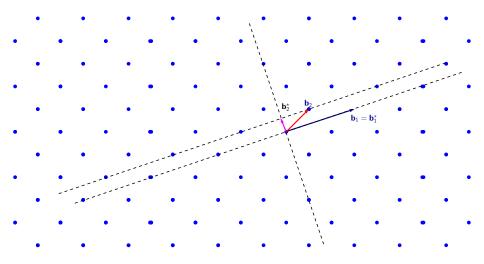


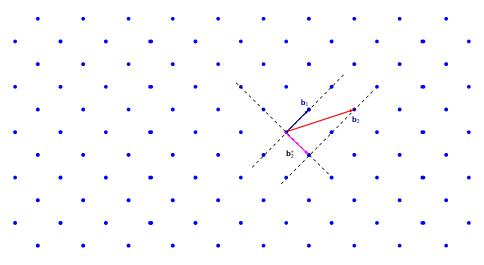


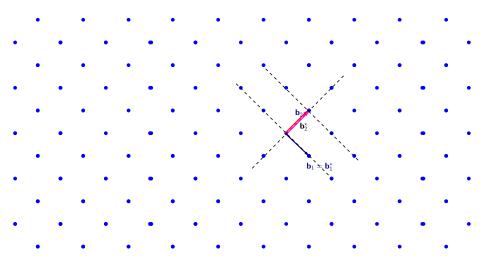












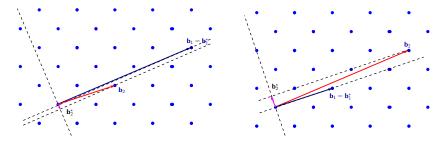
Role of the translations (size-reduction):

The length of the vectors decreases with the translations.

Role of the exchanges:

Each exchange between \mathbf{b}_i^* and \mathbf{b}_{i+1}^* increases the length of \mathbf{b}_{i+1}^* and decreases the length of \mathbf{b}_i^* .

The vectors are then more "orthogonal" and the ratio $||\mathbf{b}_{i}^{\star}||/||\mathbf{b}_{i+1}^{\star}||$ decreases.



The LLL algorithm

Input :	A lattice $\mathcal{L} = \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_m)$		
	$t \geq 1$		
Output :	A <i>t</i> -LLL reduced basis of \mathcal{L}		

Algorithm

- 0: Compute the GSO
- 1 : size-reduce the basis using only translations $(|\mu_{i,j}| < \frac{1}{2})$
- 2 : while the basis is not *t*-LLL reduced **do**
- 3: choose *i* such that $||\mathbf{b}_{i+1}^{\star}||^2 + \mu_{i+1,i}^2 ||\mathbf{b}_i^{\star}||^2 < \frac{1}{t^2} ||\mathbf{b}_i^{\star}||^2$

according to a strategy

- **4** : exchange \mathbf{b}_{i-1} and \mathbf{b}_i
- 5 : size-reduce the basis using only translations
- 6: end while
- 7 : return $(\mathbf{b}_1, \ldots, \mathbf{b}_m)$

Remark : The LLL algorithm only uses the orthogonal basis to make decision

• The norms $||\mathbf{b}_i^*||$ do not decrease too quickly since $||\mathbf{b}_i^*|| \ge s^{i-1} ||\mathbf{b}_1^*||$ with

$$rac{1}{t^2} = rac{1}{4} + rac{1}{s^2}.$$

• b_1 is a "short enough" vector of the lattice since

$$||b_1|| \leq 2^{(m-1)/2}\lambda(\mathcal{L})$$

 $[\lambda(\mathcal{L})$ is the length of a shortest non zero vector of \mathcal{L} .]

Theorem

LLL performs $O(n^3 m \log B)$ arithmetic operations with integers of size $O(n \log B)$ where $B = \max_{i=1..n} ||\mathbf{b}_i||$.

The real D

$$D = \prod_{i=1}^{n} ||\mathbf{b}_{i}^{\star}||^{n-i} \leq B^{n^{2}}, \quad \text{with} \quad B = \max_{i=1..n} ||\mathbf{b}_{i}||,$$

decreases by a factor $\delta = (\frac{1}{4} + s^2)^{1/2}$ at each exchange. Then LLL performs $O(n^2 \log B)$ exchanges.

Between two exchanges, there are at most $O(n^2)$ arithmetic operations.

The size of the integer increases quickly and the computations need multiprecision even for low dimensions (\approx 20).

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^{\star}|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

Algorithm

- 0 : Compute the GSO
- 1 : size-reduce the basis using only translations $(|\mu_{i,j}| < \frac{1}{2})$
- 2 : while the basis is not t-LLL reduced do
- 3: choose *i* such that $||\mathbf{b}_{i+1}^{\star}||^2 + \mu_{i+1,i}^2 ||\mathbf{b}_i^{\star}||^2 < \frac{1}{t^2} ||\mathbf{b}_i^{\star}||^2$

according to a strategy

- 4 : exchange \mathbf{b}_{i-1} and \mathbf{b}_i
- 5 : size-reduce the basis using only translations
- 6: end while
- 7 : return $(\mathbf{b}_1, \ldots, \mathbf{b}_m)$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^{\star}|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

Algorithm

- 0:
- 1:
- 2 : while the basis is not *t*-LLL reduced **do**
- 3: choose *i* such that $||\mathbf{b}_{i+1}^{\star}||^2 + \mu_{i+1,i}^2 ||\mathbf{b}_i^{\star}||^2 < \frac{1}{t^2} ||\mathbf{b}_i^{\star}||^2$

according to a strategy

- 4 : exchange \mathbf{b}_{i-1} and \mathbf{b}_i
- 5 : size-reduce the basis using only translations
- 6: end while
- 7: return $(\mathbf{b}_1, \ldots, \mathbf{b}_m)$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^\star|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

- 0:
- 1:
- 2: while there exists *i* such that $\left| \ell_{i+1}^2 < (\frac{1}{t^2} \mu_i^2) \ell_i^2 \right|$ do 3: choose *i* such that $||\mathbf{b}_{i+1}^{\star}||^2 + \mu_{i+1,i}^2 ||\mathbf{b}_i^{\star}||^2 < \frac{1}{t^2} ||\mathbf{b}_i^{\star}||^2$ according to a strategy
- 4 : exchange \mathbf{b}_{i-1} and \mathbf{b}_i
- 5 : size-reduce the basis using only translations
- 6: end while
- 7 : return $(\mathbf{b}_1, \dots, \mathbf{b}_m)$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^\star|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

- 0:
- 1:
- 2: while there exists *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} \mu_i^2)\ell_i^2$ do 3: choose *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} - \mu_i^2)\ell_i^2$ according to a strategy
- 4 : exchange \mathbf{b}_{i-1} and \mathbf{b}_i
- 5 : size-reduce the basis using only translations
- 6: end while
- 7 : return $(\mathbf{b}_1, \ldots, \mathbf{b}_m)$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^{\star}|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

- 0:
- 1:
- 2: while there exists *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} \mu_i^2)\ell_i^2$ do 3: choose *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} - \mu_i^2)\ell_i^2$ according to a strategy

4:
$$\ell_i \leftarrow \rho \ell_i \text{ and } \ell_{i+1} \leftarrow (1/\rho)\ell_{i+1} \text{ with } \left| \rho^2 = \frac{\ell_{i+1}^2}{\ell_i^2} + \mu_i^2 \right|$$

- 5 : size-reduce the basis using only translations
- 6: end while
- 7 : return $(\mathbf{b}_1, \dots, \mathbf{b}_m)$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^{\star}|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

- 0:
- 1:
- 2: while there exists *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} \mu_i^2)\ell_i^2$ do 3: choose *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} - \mu_i^2)\ell_i^2$ according to a strategy 4: $\ell_i \leftarrow \rho \ell_i$ and $\ell_{i+1} \leftarrow (1/\rho)\ell_{i+1}$ with $\rho^2 = \frac{\ell_{i+1}^2}{\ell_i^2} + \mu_i^2$ 5: call an oracle that recomputes μ_i and μ_{i+1}
- 6: end while
- 7 : return $(\mathbf{b}_1, \dots, \mathbf{b}_m)$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^{\star}|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

- 0:
- 1 :
- 2: while there exists *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} \mu_i^2)\ell_i^2$ do 3: choose *i* such that $\ell_{i+1}^2 < (\frac{1}{t^2} - \mu_i^2)\ell_i^2$ according to a strategy 4: $\ell_i \leftarrow \rho \ell_i$ and $\ell_{i+1} \leftarrow (1/\rho)\ell_{i+1}$ with $\rho^2 = \frac{\ell_{i+1}^2}{\ell_i^2} + \mu_i^2$ 5: call an oracle that recomputes μ_i and μ_{i+1} 6: end while

7: return
$$(\ell_1,\ldots,\ell_m)$$
 and (μ_1,\ldots,μ_{m-1})

Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

Conclusion

Simplified versions of the LLL algorithm

Updates in the LLL algorithm:

During an exchange, the norms of the vectors in the orthogonal basis become

$$||\mathbf{b}_{i}^{\star}|| \leftarrow \rho ||\mathbf{b}_{i}^{\star}|| \quad \text{and} \quad ||\mathbf{b}_{i+1}^{\star}|| \leftarrow \frac{1}{\rho} ||\mathbf{b}_{i+1}^{\star}|| \quad \text{with} \quad \rho^{2} = \frac{||\mathbf{b}_{i+1}^{\star}||^{2}}{||\mathbf{b}_{i}^{\star}||^{2}} + \mu_{i+1,i}^{2}$$

Simplified versions of the LLL algorithm

Updates in the LLL algorithm:

During an exchange, the norms of the vectors in the orthogonal basis become

$$||\mathbf{b}_{i}^{\star}|| \leftarrow \rho ||\mathbf{b}_{i}^{\star}|| \quad \text{and} \quad ||\mathbf{b}_{i+1}^{\star}|| \leftarrow \frac{1}{\rho} ||\mathbf{b}_{i+1}^{\star}|| \quad \text{with} \quad \rho^{2} = \frac{||\mathbf{b}_{i+1}^{\star}||^{2}}{||\mathbf{b}_{i}^{\star}||^{2}} + \mu_{i+1,i}^{2}$$

	LLL	Model 3	Model 2	Model 1
Conditions		- $\mu_{i+1,i}$ fol-	- the $\mu_{i+1,i}$	ho is supposed
on ρ		lows a uniform	are supposed	to be constant
		law on $\left[-\frac{1}{2},\frac{1}{2}\right]$	to be constant	
		- $ ho$ depends	- $ ho$ only de-	
		on the ratio	pends on the	
		$\frac{ \mathbf{b}_{i+1}^{\star} ^2}{ \mathbf{b}_{i}^{\star} ^2} \text{and} $	ratio $\frac{ \mathbf{b}_{i+1}^{\star} ^2}{ \mathbf{b}_{i}^{\star} ^2}$	
		$\mu_{i+1,i}$		
Remarks	Too compli-	Open problem	Work in	True Chip Fir-
	cated		progress	ing Game
				[Madritsch,
				Vallée]

Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm

• Model 1 : sandpile and cfg

- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

Conclusion

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (\ell_1, \dots, \ell_m) \text{ with } \ell_i = ||\mathbf{b}_i^{\star}|| \\ & \text{the subdiagonal coefficients } (\mu_1, \dots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{\ell}_1, \dots, \hat{\ell}_m) \text{ and } (\hat{\mu}_1, \dots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \dots m-1, \\ & \hat{\ell}_{i+1}^2 \geq (\frac{1}{t^2} - \hat{\mu}_i^2) \hat{\ell}_i^2 \end{array}$

Algorithm

- 0:
- 1:
- 2: while there exists *i* such that $|l_{i+1}^2 < (\frac{1}{t^2} \mu_i^2)l_i^2|$ do 3: choose *i* such that $||\mathbf{b}_{i+1}^{\star}||^2 + \mu_{i+1,i}^2||\mathbf{b}_i^{\star}||^2 < \frac{1}{t^2}||\mathbf{b}_i^{\star}||^2$ according to a strategy

4:
$$\ell_i \leftarrow \rho \ell_i \text{ and } \ell_{i+1} \leftarrow (1/\rho)\ell_{i+1} \text{ with } \rho^2 = \frac{\ell_{i+1}^2}{\ell_i^2} + \mu_i^2$$

5 : call an oracle that recomputes μ_i and μ_{i+1}

6: end while

7 : return
$$(\ell_1,\ldots,\ell_m)$$
 and (μ_1,\ldots,μ_{m-1})

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (q_1,\ldots,q_m) \text{ with } q_i = \log \ell_i^2 \\ & \text{the subdiagonal coefficients } (\mu_1,\ldots,\mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{q}_1,\ldots,\hat{q}_m) \text{ and } (\hat{\mu}_1,\ldots,\hat{\mu}_{m-1}) \text{ with for all } i = 1\ldots m-1, \\ & \hat{q}_{i+1} \geq \log(\frac{1}{t^2} - \hat{\mu}_i^2) + \hat{q}_i \end{array}$

- 0:
- 1:
- 2: while there exists *i* such that $\left| \ell_{i+1}^2 < (\frac{1}{t^2} \mu_i^2) \ell_i^2 \right|$ do
- 3 : choose *i* such that $||\mathbf{b}_{i+1}^{\star}||^2 + \frac{\mu_{i+1,i}^2}{\mu_{i+1,i}^2}||\mathbf{b}_i^{\star}||^2 < \frac{1}{t^2}||\mathbf{b}_i^{\star}||^2$ according to a strategy

4:
$$\ell_i \leftarrow \rho \ell_i \text{ and } \ell_{i+1} \leftarrow (1/\rho)\ell_{i+1} \text{ with } \rho^2 = \frac{\ell_{i+1}^2}{\ell_i^2} + \mu_i^2$$

- 5 : call an oracle that recomputes μ_i and μ_{i+1}
- 6: end while

7 : return
$$(\ell_1, \ldots, \ell_m)$$
 and $(\mu_1, \ldots, \mu_{m-1})$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (q_1, \ldots, q_m) \text{ with } q_i = \log \ell_i^2 \\ & \text{the subdiagonal coefficients } (\mu_1, \ldots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{q}_1, \ldots, \hat{q}_m) \text{ and } (\hat{\mu}_1, \ldots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \ldots m - 1, \\ & \hat{q}_{i+1} \geq \log(\frac{1}{t^2} - \hat{\mu}_i^2) + \hat{q}_i \end{array}$

Algorithm

- 0:
- 1:
- 2: while there exists *i* such that $|\mathbf{q}_{i+1} < \mathbf{H} + \mathbf{q}_i|$ with $\mathbf{H} = \log(\frac{1}{t^2} \mu_i^2)$ do 3: choose *i* such that $||\mathbf{b}_{i+1}^{\star}||^2 + \mu_{i+1,i}^2||\mathbf{b}_i^{\star}||^2 < \frac{1}{t^2}||\mathbf{b}_i^{\star}||^2$

according to a strategy

4:
$$\ell_i \leftarrow \rho \ell_i \text{ and } \ell_{i+1} \leftarrow (1/\rho)\ell_{i+1} \text{ with } \rho^2 = \frac{\ell_{i+1}^2}{\ell_i^2} + \mu_i^2$$

- 5 : call an oracle that recomputes μ_i and μ_{i+1}
- 6: end while

7 : return
$$(\ell_1, \ldots, \ell_m)$$
 and $(\mu_1, \ldots, \mu_{m-1})$

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (q_1, \ldots, q_m) \text{ with } q_i = \log \ell_i^2 \\ & \text{the subdiagonal coefficients } (\mu_1, \ldots, \mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{q}_1, \ldots, \hat{q}_m) \text{ and } (\hat{\mu}_1, \ldots, \hat{\mu}_{m-1}) \text{ with for all } i = 1 \ldots m - 1, \\ & \hat{q}_{i+1} \geq \log(\frac{1}{t^2} - \hat{\mu}_i^2) + \hat{q}_i \end{array}$

- 0:
- 1:
- 2 : while there exists *i* such that $q_{i+1} < H + q_i$ with $H = \log(\frac{1}{t^2} \mu_i^2)$ do
- 3 : choose *i* such that $q_{i+1} < H + q_i$ with $H = \log(\frac{1}{t^2} \mu_i^2)$ according to a strategy

4:
$$\ell_i \leftarrow \rho \ell_i \text{ and } \ell_{i+1} \leftarrow (1/\rho)\ell_{i+1} \text{ with } \rho^2 = \frac{\ell_{i+1}^2}{\ell_i^2} + \mu_i^2$$

- 5 : call an oracle that recomputes μ_i and μ_{i+1}
- 6: end while

7 : return
$$(\ell_1, \ldots, \ell_m)$$
 and $(\mu_1, \ldots, \mu_{m-1})$

The LLL algorithm : additive point of vue

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (q_1,\ldots,q_m) \text{ with } q_i = \log \ell_i^2 \\ & \text{the subdiagonal coefficients } (\mu_1,\ldots,\mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ \underline{\text{Output}:} & (\hat{q}_1,\ldots,\hat{q}_m) \text{ and } (\hat{\mu}_1,\ldots,\hat{\mu}_{m-1}) \text{ with for all } i = 1\ldots m-1, \\ & \hat{q}_{i+1} \geq \log(\frac{1}{t^2} - \hat{\mu}_i^2) + \hat{q}_i \end{array}$

Algorithm

1 :

2: while there exists *i* such that $q_{i+1} < H + q_i$ with $H = \log(\frac{1}{t^2} - \mu_i^2)$ do 3: choose *i* such that $q_{i+1} < H + q_i$ with $H = \log(\frac{1}{t^2} - \mu_i^2)$ according to a strategy 4: $q_i \leftarrow q_i - h$ and $q_{i+1} \leftarrow q_{i+1} + h$ with

$$h=-\log\rho^2=-\log e^{q_{i+1}-q_i}+\mu_i^2$$

- 5 : call an oracle that recomputes μ_i and μ_{i+1}
- 6: end while

7: return
$$(\ell_1,\ldots,\ell_m)$$
 and (μ_1,\ldots,μ_{m-1})

The LLL algorithm : additive point of vue

 $\begin{array}{ll} \underline{\text{Input}:} & \text{the real vector } (q_1,\ldots,q_m) \text{ with } q_i = \log \ell_i^2 \\ & \text{the subdiagonal coefficients } (\mu_1,\ldots,\mu_{m-1}) \text{ with } |\mu_i| = |\mu_{i+1,i}| \leq \frac{1}{2} \\ & t \geq 1 \\ \underline{\text{Output}:} & (\hat{q}_1,\ldots,\hat{q}_m) \text{ and } (\hat{\mu}_1,\ldots,\hat{\mu}_{m-1}) \text{ with for all } i = 1\ldots m-1, \\ & \hat{q}_{i+1} \geq \log(\frac{1}{t^2} - \hat{\mu}_i^2) + \hat{q}_i \end{array}$

Algorithm

1 :

2: while there exists *i* such that $q_{i+1} < H + q_i$ with $H = \log(\frac{1}{t^2} - \mu_i^2)$ do 3: choose *i* such that $q_{i+1} < H + q_i$ with $H = \log(\frac{1}{t^2} - \mu_i^2)$ according to a strategy

4:
$$q_i \leftarrow q_i - h \text{ and } q_{i+1} \leftarrow q_{i+1} + h \text{ with}$$

$$h = -\log \rho^2 = -\log e^{q_{i+1} - q_i} + \mu_i^2$$

- 5 : call an oracle that recomputes μ_i and μ_{i+1}
- 6: end while

7: return
$$(q_1,\ldots,q_m)$$
 and (μ_1,\ldots,μ_{m-1})

Model 1

H and h are supposed to be constant.

In our context,
$$q_i = \log ||\mathbf{b}_i^{\star}||^2$$
 $r_i = q_i - q_{i+1} = \log \frac{||\mathbf{b}_i^{\star}||^2}{||\mathbf{b}_{i+1}^{\star}||^2}$

The equation

If $q_i > q_{i+1} + H$, then $[\check{q}_i = q_i - h, q_{i+1} = q_{i+1} + h]$. defines the sandpile model of parameters (H, h).

The equation

If $r_i > H$, then $[\check{r}_i = r_i - 2h, r_{i+1} = r_{i+1} + h, r_{i-1} = r_{i-1} + h]$. defines the chip firing game of parameters (H, h).

Classical instances studied : basic and decreasing.

– Basic instances : Initial integer q_i 's and parameters H, h equal to 1.

Basic (strictly) decreasing instances :

The sequence $i \mapsto q_i$ is (strictly) decreasing.

Here, we study general instances of sandpile models

In our context,
$$q_i = \log ||\mathbf{b}_i^*||^2$$
 $r_i = q_i - q_{i+1} = \log \frac{||\mathbf{b}_i^*||^2}{||\mathbf{b}_{i+1}^*||^2}$

The equation

If $q_i > q_{i+1} + H$, then $[\check{q}_i = q_i - h, q_{i+1} = q_{i+1} + h]$. defines the sandpile model of parameters (H, h).

The equation

If $r_i > H$, then $[\check{r}_i = r_i - 2h, \quad \check{r}_{i+1} = r_{i+1} + h, \quad \check{r}_{i-1} = r_{i-1} + h,]$. defines the chip firing game of parameters (H, h).

Classical instances studied : basic and decreasing.

– Basic instances : Initial integer q_i 's and parameters H, h equal to 1.

Basic (strictly) decreasing instances :

The sequence $i \mapsto q_i$ is (strictly) decreasing.

Here, we study general instances of sandpile models

In our context,
$$q_i = \log ||\mathbf{b}_i^*||^2$$
 $r_i = q_i - q_{i+1} = \log \frac{||\mathbf{b}_i^*||^2}{||\mathbf{b}_{i+1}^*||^2}$

The equation

If $q_i > q_{i+1} + H$, then $[\check{q}_i = q_i - h, q_{i+1} = q_{i+1} + h]$. defines the sandpile model of parameters (H, h).

The equation

If $r_i > H$, then $[\check{r}_i = r_i - 2h, \quad \check{r}_{i+1} = r_{i+1} + h, \quad \check{r}_{i-1} = r_{i-1} + h,]$. defines the chip firing game of parameters (H, h).

Classical instances studied : basic and decreasing.

– Basic instances : Initial integer q_i 's and parameters H, h equal to 1.

- Basic (strictly) decreasing instances :

The sequence $i \mapsto q_i$ is (strictly) decreasing.

Here, we study general instances of sandpile models.

In our context,
$$q_i = \log ||\mathbf{b}_i^*||^2$$
 $r_i = q_i - q_{i+1} = \log \frac{||\mathbf{b}_i^*||^2}{||\mathbf{b}_{i+1}^*||^2}$

The equation

If $q_i > q_{i+1} + H$, then $[\check{q}_i = q_i - h, \quad \check{q}_{i+1} = q_{i+1} + h]$. defines the sandpile model of parameters (H, h).

The equation

If $r_i > H$, then $[\check{r}_i = r_i - 2h, r_{i+1} = r_{i+1} + h, r_{i-1} = r_{i-1} + h]$. defines the chip firing game of parameters (H, h).

Classical instances studied : basic and decreasing.

– Basic instances : Initial integer q_i 's and parameters H, h equal to 1.

Basic (strictly) decreasing instances :

The sequence $i \mapsto q_i$ is (strictly) decreasing.

Here, we study general instances of sandpile models.

Loïck Lhote (GREYC, Caen)

In our context,
$$q_i = \log ||\mathbf{b}_i^*||^2$$
 $r_i = q_i - q_{i+1} = \log \frac{||\mathbf{b}_i^*||^2}{||\mathbf{b}_{i+1}^*||^2}$

The equation

If $q_i > q_{i+1} + H$, then $[\check{q}_i = q_i - h, \quad \check{q}_{i+1} = q_{i+1} + h]$. defines the sandpile model of parameters (H, h).

The equation

If $r_i > H$, then $[\check{r}_i = r_i - 2h, r_{i+1} = r_{i+1} + h, r_{i-1} = r_{i-1} + h]$. defines the chip firing game of parameters (H, h).

Classical instances studied : basic and decreasing.

- Basic instances : Initial integer q_i 's and parameters H, h equal to 1.
- Basic (strictly) decreasing instances : The sequence $i \mapsto q_i$ is (strictly) decreasing.

Here, we study general instances of sandpile models.

Loïck Lhote (GREYC, Caen)

In our context,
$$q_i = \log ||\mathbf{b}_i^*||^2$$
 $r_i = q_i - q_{i+1} = \log \frac{||\mathbf{b}_i^*||^2}{||\mathbf{b}_{i+1}^*||^2}$

The equation

If $q_i > q_{i+1} + H$, then $[\check{q}_i = q_i - h, \quad \check{q}_{i+1} = q_{i+1} + h]$. defines the sandpile model of parameters (H, h).

The equation

If $r_i > H$, then $[\check{r}_i = r_i - 2h, \quad r_{i+1} = r_{i+1} + h, \quad r_{i-1} = r_{i-1} + h,]$. defines the chip firing game of parameters (H, h).

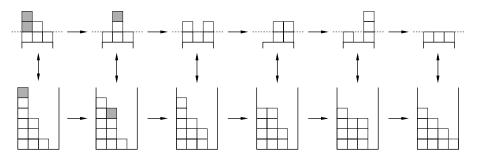
Classical instances studied : basic and decreasing.

- Basic instances : Initial integer q_i 's and parameters H, h equal to 1.
- Basic (strictly) decreasing instances :

The sequence $i \mapsto q_i$ is (strictly) decreasing.

Here, we study general instances of sandpile models.

Evolution of a CFG and its sandpile

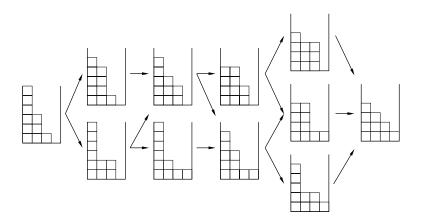


The evolution of a basic chip firing game (above), and its associated sandpile (below).

above :
$$q_i = \log ||\mathbf{b}_i^*||^2$$

below : $r_i = q_i - q_{i+1} = \log \frac{||\mathbf{b}_i^*||^2}{||\mathbf{b}_{i+1}^*||^2}$

Evolutions of a basic sandpile



Possible evolutions of a basic sandpile.

(*i*) There is a unique final $\hat{\mathbf{q}}$. The length of any path $\mathbf{q} \rightarrow \hat{\mathbf{q}}$ is $T(\mathbf{q}) = \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) (r_i - \hat{r}_i)$

(ii) If the sandpile is decreasing, $H - 2h < \hat{r}_i \le H$, $0 \le T(\mathbf{q}) - \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H) \le 2A(n)$ with $A(n) := n \frac{n^2 - 1}{12}$

(iii) If the sandpile is strictly decreasing,

∃lj $\forall i \neq j, \ H - h < \hat{r}_i \le H,$ and $H - 2h < \hat{r}_j \le H - h,$ $0 \le T(\mathbf{q}) - \left[A(n) + \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H)\right] \le \frac{1}{8}n^2$

(*iv*) For a general sandpile,

 $H - 2h < \hat{r}_i \le H \text{ if } r_i > H - h, \qquad \hat{r}_i \ge r_i \text{ if } r_i \le H - h$ $\frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H + h) \le T(\mathbf{q}) \le \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) \max(r_i - H + h, 0)$

(*i*) There is a unique final $\hat{\mathbf{q}}$. The length of any path $\mathbf{q} \rightarrow \hat{\mathbf{q}}$ is $T(\mathbf{q}) = \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) (r_i - \hat{r}_i)$

(ii) If the sandpile is decreasing, $H - 2h < \hat{r}_i \le H$, $0 \le T(\mathbf{q}) - \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H) \le 2A(n)$ with $A(n) := n \frac{n^2 - 1}{12}$

(iii) If the sandpile is strictly decreasing,

∃lj $\forall i \neq j, \ H - h < \hat{r}_i \le H,$ and $H - 2h < \hat{r}_j \le H - h,$ $0 \le T(\mathbf{q}) - \left[A(n) + \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H)\right] \le \frac{1}{8}n^2$

(*iv*) For a general sandpile,

 $H - 2h < \hat{r}_i \le H \quad \text{if} \quad r_i > H - h, \qquad \hat{r}_i \ge r_i \quad \text{if} \quad r_i \le H - h$ $\frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H + h) \le T(\mathbf{q}) \le \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) \max(r_i - H + h, 0)$

(*i*) There is a unique final $\hat{\mathbf{q}}$. The length of any path $\mathbf{q} \to \hat{\mathbf{q}}$ is $T(\mathbf{q}) = \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) (r_i - \hat{r}_i)$

(ii) If the sandpile is decreasing, $H - 2h < \hat{r}_i \leq H$, $0 \leq T(\mathbf{q}) - \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H) \leq 2A(n)$ with $A(n) := n \frac{n^2 - 1}{12}$

(iii) If the sandpile is strictly decreasing,

 $\exists ! j \quad \forall i \neq j, \ H-h < \hat{r}_i \leq H, \qquad \text{and} \quad H-2h < \hat{r}_j \leq H-h,$ $0 \leq T(\mathbf{q}) - \left[A(n) + \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) (r_i - H)\right] \leq \frac{1}{8}n^2$

(*iv*) For a general sandpile,

 $H - 2h < \hat{r}_i \le H \text{ if } r_i > H - h, \qquad \hat{r}_i \ge r_i \text{ if } r_i \le H - h$ $\frac{1}{h} \sum_{i=1}^{n-1} i(n-i)(r_i - H + h) \le T(\mathbf{q}) \le \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) \max(r_i - H + h, h)$

(*i*) There is a unique final $\hat{\mathbf{q}}$. The length of any path $\mathbf{q} \to \hat{\mathbf{q}}$ is $T(\mathbf{q}) = \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) (r_i - \hat{r}_i)$

(ii) If the sandpile is decreasing, $H - 2h < \hat{r}_i \le H$, $0 \le T(\mathbf{q}) - \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i)(r_i - H) \le 2A(n)$ with A(n)

$$n):=n\frac{n^2-1}{12}$$

(iii) If the sandpile is strictly decreasing,

 $\exists ! j \quad \forall i \neq j, \ H-h < \hat{r}_i \leq H, \qquad \text{and} \quad H-2h < \hat{r}_j \leq H-h,$ $0 \leq T(\mathbf{q}) - \left[A(n) + \frac{1}{2h} \sum_{i=1}^{n-1} i(n-i) (r_i - H)\right] \leq \frac{1}{8}n^2$

(*iv*) For a general sandpile,

$$H-2h < \hat{r}_i \le H$$
 if $r_i > H-h$, $\hat{r}_i \ge r_i$ if $r_i \le H-h$

$$\frac{1}{2h}\sum_{i=1}^{n-1}i(n-i)(r_i-H+h) \le T(\mathbf{q}) \le \frac{1}{2h}\sum_{i=1}^{n-1}i(n-i)\max(r_i-H+h,0)$$

Loïck Lhote (GREYC, Caen)

(v) A sufficient condition for two adjacent strictly decreasing basic sandpiles $\mathbf{q}_{-} := (q_1, q_2, \dots, q_p), \quad \mathbf{q}_{+} := (q_{p+1}, q_{p+2}, \dots, q_{n+p})$

to be independent is

$$\frac{1}{p}\left(\sum_{i=1}^{p}q_{i}\right)-\frac{1}{n}\left(\sum_{i=1}^{n}q_{p+i}\right)\leq\left(\frac{n+p}{2}\right)-2.$$

In this case, the number of steps for the total sandpile **q** is (in parallel)

 $T(\mathbf{q}) = \max\left[T(\mathbf{q}_{-}), T(\mathbf{q}_{+})
ight]$

(v) A sufficient condition for two adjacent strictly decreasing basic sandpiles $\mathbf{q}_{-} := (q_1, q_2, \dots, q_p), \quad \mathbf{q}_{+} := (q_{p+1}, q_{p+2}, \dots, q_{n+p})$

to be independent is

$$\frac{1}{p}\left(\sum_{i=1}^{p} q_i\right) - \frac{1}{n}\left(\sum_{i=1}^{n} q_{p+i}\right) \le \left(\frac{n+p}{2}\right) - 2.$$

In this case, the number of steps for the total sandpile **q** is (in parallel)

 $T(\mathbf{q}) = \max[T(\mathbf{q}_{-}), T(\mathbf{q}_{+})]$

Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm

• Model 1 : sandpile and cfg

• Model 2 : dynamical system with hole

Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

Conclusion

Simplified versions of the LLL algorithm

Updates in the LLL algorithm:

During an exchange, the norms of the vectors in the orthogonal basis become

$$||\mathbf{b}_{i}^{\star}|| \leftarrow \rho ||\mathbf{b}_{i}^{\star}|| \quad \text{and} \quad ||\mathbf{b}_{i+1}^{\star}|| \leftarrow \frac{1}{\rho} ||\mathbf{b}_{i+1}^{\star}|| \quad \text{with} \quad \rho^{2} = \frac{||\mathbf{b}_{i+1}^{\star}||^{2}}{||\mathbf{b}_{i}^{\star}||^{2}} + \mu_{i+1,i}^{2}$$

	LLL	Model 3	Model 2	Model 1
Conditions		- $\mu_{i+1,i}$ fol-	- the $\mu_{i+1,i}$	ho is supposed
on ρ		lows a uniform	are supposed	to be constant
		law on $\left[-\frac{1}{2},\frac{1}{2}\right]$	to be constant	
		- $ ho$ depends	- $ ho$ only de-	
		on the ratio	pends on the	
		$\frac{ \mathbf{b}_{i+1}^{\star} ^2}{ \mathbf{b}_{i}^{\star} ^2} \text{and} $	ratio $\frac{ \mathbf{b}_{i+1}^{\star} ^2}{ \mathbf{b}_{i}^{\star} ^2}$	
		$\mu_{i+1,i}$		
Remarks	Too compli-	Open problem	Work in	True Chip Fir-
	cated		progress	ing Game
				[Madritsch,
				Vallée]

Model M2(t, μ)

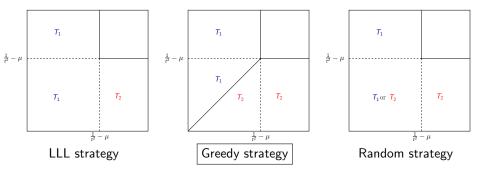
$$x_{i} = \frac{||\mathbf{b}_{i+1}^{\star}||^{2}}{||\mathbf{b}_{i}^{\star}||^{2}}, \qquad \rho^{2} = x_{i} + \mu, \qquad \mathcal{O}_{t,\mu} = \left[\frac{1}{t^{2}} - \mu, +\infty\right[$$

Entrées: Le vecteur
$$\mathbf{x} = (x_1, \dots, x_{d-1}) \in \mathbb{R}^{d-1}_+$$

Résultat: Le vecteur final $\hat{\mathbf{x}} = (\hat{x}_1, \dots, \hat{x}_{d-1}) \in \mathcal{O}^{d-1}_{\mu,t}$
tant que $\mathbf{x} \notin \mathcal{O}^{d-1}_{\mu,t}$ faire
Choisir *i* tel que $x_i \notin \mathcal{O}_{\mu,t}$;
Calculer $\mathbf{x} := T_{i,\mu}(\mathbf{x})$ vérifiant
 $x_{i-1} := x_{i-1}(x_i + \mu), \qquad x_{i+1} := x_{i+1}(x_i + \mu), \qquad x_i = \frac{x_i}{(x_i + \mu)^2};$
fintq

This is a general dynamical system in \mathbb{R}^d with

- a hole $\mathcal{O}_{t,\mu}^{d-1}$
- ullet and an attractive fixed point in $(1-\mu,\ldots,1-\mu)$



Potential

$$P(\mathbf{x}) := \prod_{i=1}^{d-1} x_i^{i(d-i)}$$

With the greedy strategy, we have

$$P(T(\mathbf{x})) = \frac{P(\mathbf{x})}{\min_{i=1\dots d-1} (x_i + \mu)^2} > P(\mathbf{x})$$

and if the basis is far from being reduced,

$$\min_{i=1...d-1}(x_i+\mu)^2 \sim \mu^2, \qquad P(\mathbf{x}) \sim \mu P(T(\mathbf{x})), \qquad P(\mathbf{x}) \sim \mu^k P(T^k(\mathbf{x}))$$

$$\min_{i=1...d-1} (x_i + \mu)^2 \approx \frac{1}{t^2} < 1 \quad \text{if } t > 1$$

Potential

$$P(\mathbf{x}) := \prod_{i=1}^{d-1} x_i^{i(d-i)}$$

With the greedy strategy, we have

$$P(T(\mathbf{x})) = \frac{P(\mathbf{x})}{\min_{i=1...d-1} (x_i + \mu)^2} > P(\mathbf{x})$$

and if the basis is far from being reduced,

 $\min_{i=1...d-1}(x_i+\mu)^2 \sim \mu^2, \qquad P(\mathbf{x}) \sim \mu P(T(\mathbf{x})), \qquad P(\mathbf{x}) \sim \mu^k P(T^k(\mathbf{x}))$

$$\min_{i=1...d-1} (x_i + \mu)^2 pprox rac{1}{t^2} < 1 \quad ext{if } t > 1$$

Potential

$$P(\mathbf{x}) := \prod_{i=1}^{d-1} x_i^{i(d-i)}$$

With the greedy strategy, we have

$$P(T(\mathbf{x})) = \frac{P(\mathbf{x})}{\min_{i=1...d-1} (x_i + \mu)^2} > P(\mathbf{x})$$

and if the basis is far from being reduced,

$$\min_{i=1...d-1}(x_i+\mu)^2 \sim \mu^2, \qquad P(\mathbf{x}) \sim \mu P(T(\mathbf{x})), \qquad P(\mathbf{x}) \sim \mu^k P(T^k(\mathbf{x}))$$

$$\min_{i=1...d-1} (x_i + \mu)^2 pprox rac{1}{t^2} < 1 \quad ext{if } t > 1$$

Potential

$$P(\mathbf{x}) := \prod_{i=1}^{d-1} x_i^{i(d-i)}$$

With the greedy strategy, we have

$$P(T(\mathbf{x})) = \frac{P(\mathbf{x})}{\min_{i=1...d-1} (x_i + \mu)^2} > P(\mathbf{x})$$

and if the basis is far from being reduced,

$$\min_{i=1...d-1}(x_i+\mu)^2 \sim \mu^2, \qquad P(\mathbf{x}) \sim \mu P(T(\mathbf{x})), \qquad P(\mathbf{x}) \sim \mu^k P(T^k(\mathbf{x}))$$

$$\min_{i=1...d-1} (x_i + \mu)^2 \approx \frac{1}{t^2} < 1 \quad \text{if } t > 1$$

Number of iterations when t > 1

Consider the dynamical system M2(μ , t) with t > 1, $\mu \in [0, \frac{1}{4}]$ and $\mathbf{x} \notin \mathcal{O}_{t,\mu}^{d-1}$. The number of iterations of M2(μ , t) on \mathbf{x} , denoted by $K_{t,\mu}(\mathbf{x})$ satisfies

$$\mathcal{K}_{t,\mu}(\mathbf{x}) = rac{1}{2}\log_{\mu}P(\mathbf{x}) + O(d^3).$$

Remark :

- the known results on the complexity of LLL involve $\log_t P(\mathbf{x})$,
- nothing is known when t = 1.

We did not succeed in generalizing the result except for d = 2 (Gauss) and d = 3 (LLL in dimension 3).

Number of iterations when t = 1 and d = 2, 3

Consider the dynamical system M2(μ , 1), $\mu \in [0, \frac{1}{4}]$, $\mathbf{x} \notin \mathcal{O}_{t,\mu}^{d-1}$ and d = 2, 3. The number of iterations of M2(μ , 1) on \mathbf{x} , denoted by $K_{1,\mu}(\mathbf{x})$ satisfies

$$K_{1,\mu}(\mathbf{x}) = rac{1}{2}\log_{\mu}P(\mathbf{x}) + O(1).$$

Conjecture

$$K_{1,\mu}(\mathbf{x}) = \frac{1}{2} \log_{\mu} P(\mathbf{x}) + O(d^3).$$

We did not succeed in generalizing the result except for d = 2 (Gauss) and d = 3 (LLL in dimension 3).

Number of iterations when t = 1 and d = 2, 3

Consider the dynamical system M2(μ , 1), $\mu \in [0, \frac{1}{4}]$, $\mathbf{x} \notin \mathcal{O}_{t,\mu}^{d-1}$ and d = 2, 3. The number of iterations of M2(μ , 1) on \mathbf{x} , denoted by $K_{1,\mu}(\mathbf{x})$ satisfies

$$K_{1,\mu}(\mathbf{x}) = rac{1}{2}\log_{\mu}P(\mathbf{x}) + O(1).$$

Conjecture

$$\mathcal{K}_{1,\mu}(\mathbf{x}) = rac{1}{2}\log_{\mu}P(\mathbf{x}) + O(d^3).$$

Introduction

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

Conclusion

Simplified versions of the LLL algorithm

Updates in the LLL algorithm:

During an exchange, the norms of the vectors in the orthogonal basis become

$$||\mathbf{b}_{i}^{\star}|| \leftarrow \rho ||\mathbf{b}_{i}^{\star}|| \quad \text{and} \quad ||\mathbf{b}_{i+1}^{\star}|| \leftarrow \frac{1}{\rho} ||\mathbf{b}_{i+1}^{\star}|| \quad \text{with} \quad \rho^{2} = \frac{||\mathbf{b}_{i+1}^{\star}||^{2}}{||\mathbf{b}_{i}^{\star}||^{2}} + \mu_{i+1,i}^{2}$$

	LLL	Model 3	Model 2	Model 1
Conditions		- $\mu_{i+1,i}$ fol-	- the $\mu_{i+1,i}$	ho is supposed
on ρ		lows a uniform	are supposed	to be constant
		law on $\left[-\frac{1}{2},\frac{1}{2}\right]$	to be constant	
		- $ ho$ depends	- $ ho$ only de-	
		on the ratio	pends on the	
		$\frac{ \mathbf{b}_{i+1}^{\star} ^2}{ \mathbf{b}_{i}^{\star} ^2} \text{and} $	ratio $\frac{ \mathbf{b}_{i+1}^{\star} ^2}{ \mathbf{b}_{i}^{\star} ^2}$	
		$\mu_{i+1,i}$		
Remarks	Too compli-	Open problem	Work in	True Chip Fir-
	cated		progress	ing Game
				[Madritsch,
				Vallée]

Model M3(t, μ)

Entrées: Le vecteur
$$\mathbf{x} = (x_1, \dots, x_{d-1}) \in \mathbb{R}^{d-1}_+$$

Le vecteur $\mu = (\mu_1, \dots, \mu_{d-1}) \in [0, \frac{1}{4}]^{d-1}$
Résultat: Les vecteurs $\hat{\mathbf{x}} = (\hat{x}_1, \dots, \hat{x}_{d-1})$ et $\hat{\mu} = (\hat{\mu}_1, \dots, \hat{\mu}_{d-1})$ tels que
 $\hat{x}_i \ge \frac{1}{t^2} - \hat{\mu}_i$
tant que *il existe i tel que* $x_i < \frac{1}{t^2} - \mu_i$ faire
Choisir *i* tel que $x_i < \frac{1}{t^2} - \mu_i$
Calculer $\mathbf{x} := T_{i,\mu_i}(\mathbf{x})$ vérifiant
 $x_{i-1} := x_{i-1}(x_i + \mu_i), \quad x_{i+1} := x_{i+1}(x_i + \mu_i), \quad x_i = \frac{x_i}{(x_i + \mu_i)^2};$
Générer aléatoirement un nouveau μ_i
fintq

This is a probabilistic dynamical system

NONE!

Consider P_0 the potential such that $P(\mathbf{x}) \ge P_0 \Rightarrow \mathbf{x}$ is "reduced"

Consider a sequence of i.i.d. random variables $(\mu_i)_i$ that follow the same uniform law over $[0, \frac{1}{4}]$.

Consider the stopping time $T(\mathbf{x})$ defined as the minimum k such that

$$P_0 \prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Consider P_0 the potential such that $P(\mathbf{x}) \ge P_0 \Rightarrow \mathbf{x}$ is "reduced"

Consider a sequence of i.i.d. random variables $(\mu_i)_i$ that follow the same uniform law over $[0, \frac{1}{4}]$.

Consider the stopping time $T(\mathbf{x})$ defined as the minimum k such that

$$P_0 \prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Consider P_0 the potential such that $P(\mathbf{x}) \ge P_0 \Rightarrow \mathbf{x}$ is "reduced"

Consider a sequence of i.i.d. random variables $(\mu_i)_i$ that follow the same uniform law over $[0, \frac{1}{4}]$.

Consider the stopping time $T(\mathbf{x})$ defined as the minimum k such that

$$P_0\prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Consider P_0 the potential such that $P(\mathbf{x}) \ge P_0 \Rightarrow \mathbf{x}$ is "reduced"

Consider a sequence of i.i.d. random variables $(\mu_i)_i$ that follow the same uniform law over $[0, \frac{1}{4}]$.

Consider the stopping time $T(\mathbf{x})$ defined as the minimum k such that

$$P_0\prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

 $K(\mathbf{x})$ denotes the number of iterations on the input \mathbf{x}

Consider P_0 the potential such that $P(\mathbf{x}) \ge P_0 \Rightarrow \mathbf{x}$ is "reduced"

Consider a sequence of i.i.d. random variables $(\mu_i)_i$ that follow the same uniform law over $[0, \frac{1}{4}]$.

Consider the stopping time $T(\mathbf{x})$ defined as the minimum k such that

$$P_0\prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

my feeling :
$$K(\mathbf{x}) = T(\mathbf{x}) + O(d^3)$$
.

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

Various notions of a random basis of a lattice.

(a) "Useful" lattice bases arise in applications : variations around knapsack bases and their transposes with bordered identity matrices.

$$\begin{pmatrix} A \mid I_p \end{pmatrix} \begin{pmatrix} y \mid 0 \\ \hline x \mid qI_p \end{pmatrix} \begin{pmatrix} I_p \mid H_p \\ \hline 0_p \mid qI_p \end{pmatrix} \begin{pmatrix} q \mid 0 \\ \hline x \mid I_{p-1} \end{pmatrix}$$

(b) Ajtai "bad" bases $B_p := (b_{i,p})$ associated to a sequence $a_{i,p}$

$$b_{i,p} \in \mathbb{Z}^p, \quad b_{i,p} = a_{i,p} e_i + \sum_{j=1}^{i-1} a_{i,j,p} e_j \qquad (\Rightarrow ||b_{i,p}^{\star}|| = a_{i,p})$$

with
$$\alpha_{i,j,p} = \frac{a_{i,j}^{(p)}}{a_j^{(p)}} = \operatorname{rand}\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 [size-reduced]

and $\frac{||\boldsymbol{b}_{i+1,p}^{*}||}{||\boldsymbol{b}_{i+1}^{*}||} = \frac{\boldsymbol{a}_{i+1}^{\circ,*}}{\boldsymbol{a}_{i+1}^{(p)}} \to 0$ when $p \to \infty$ [bad ratios - non reduced]

Experimental mean values versus proven upper bounds [Nguyen and Stehlé]

Main parameters.	$ b_{i+1,p}^{\star} / b_{i,p}^{\star} $	approx. factor	Nb. steps
Worst-case	1/s	s ^{p-1}	$\Theta(Mp^2)$
(Proven upper bounds)			
"Bad" lattice bases			
Random Ajtai bases	1/eta	β^{p-1}	$\Theta(Mp^2)$
(Experimental mean values)			
"Useful " lattice bases			
Random knapsack-shape bases	1/eta	β^{p-1}	$\Theta(M_p)$
(Experimental mean values)			

The execution parameters depend on the type of the lattice basis.

The output configuration does not depend strongly neither on index *i* nor on the type of bases.

"experimental" value :
$$\beta \approx 1.04$$

the

Other notions of a random basis of a lattice – reference models.

(c) Spherical model.

Choose independently each one of the p vectors in the ambient space \mathbb{R}^n , under a common distribution that is invariant by rotation. Classical instances :

- uniform distribution in the ball, on the sphere
- gaussian distribution on coordinates

(d) Random lattices.

The space of (full-rank) lattices in \mathbb{R}^n (modulo scale) is $X_n = SL_n(\mathbb{R})/SL_n(\mathbb{Z})$. It possesses a unique probability measure which is invariant under the action of $SL_n(\mathbb{R})$. This gives rise to a natural notion of random lattices.

Probabilistic analyses of lattice reduction

- Akhavi, Marckert, Rouault (2005) [spherical model]
 - All the local bases are reduced except the last few ones
 - For the last few local bases, the length of the \mathbf{b}_i^* follows an explicit distribution

- Daudé and Vallée (1994) [random ball model]
 - The mean number of steps K satisfies

$$\operatorname{E}_{n}[K] \leq n^{2} \left(\frac{1}{\log t}\right) \left[\frac{1}{2}\log n + 2\right]$$

• The mean size of the smallest nonzero vector of the lattice satisfies

$$\operatorname{E}_n[\lambda] \geq rac{1}{4\sqrt{n}}$$

2 The LLL algorithm

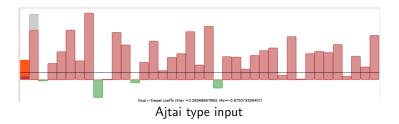
3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

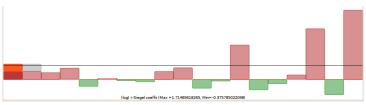
Some instances of cfg related to natural inputs



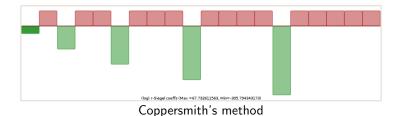
Knapsack type input

Loïck Lhote ((GREYC, Caen)	
---------------	---------------	--

Some instances of cfg related to natural inputs



uniform distribution in the unit ball



2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

General model of Ajtai inputs

This is a general model of random cfg. Once a cfg is given, it is easy to compute a random lattice associated to the cfg.

The general model is based on 3 parameters

- Υ : the total mass of the cfg
- d : the dimension of the cfg
- g : density function over [0, 1]

The cfg (c_1, \ldots, c_{d-1}) satisfies

• for all *i*, *c_i* follows an exponential law

•
$$\mathbb{E}[c_i] = \frac{1}{d-1} \Upsilon g\left(\frac{i}{d}\right)$$

- the total mass : $\mathbb{E}[\mathcal{M}] = \sum_{i=1}^{d-1} \mathbb{E}[c_i] \mathop{\sim}_{d \to \infty} \Upsilon$
- the energy (potential) :

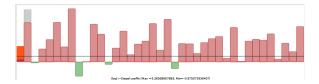
$$\mathbb{E}[\mathcal{E}] = \sum_{i=1}^{d-1} i(d-i) \mathbb{E}[c_i] \underset{d \to \infty}{\sim} d^2 \Upsilon \int_0^1 x(1-x)g(x) dx \Upsilon$$

model $\mathcal{A}(\Upsilon, d, g)$

The cfg (c_1, \ldots, c_{d-1}) satisfies

- for all i, c_i follows an exponential law
- $\mathbb{E}[c_i] = \frac{1}{d-1} \Upsilon g\left(\frac{i}{d}\right)$
- the total mass : $\mathbb{E}[\mathcal{M}] = \sum_{i=1}^{d-1} \mathbb{E}[c_i] \mathop{\sim}_{d \to \infty} \Upsilon$
- the energy (potential) :

$$\mathbb{E}[\mathcal{E}] = \sum_{i=1}^{d-1} i(d-i) \mathbb{E}[c_i] \underset{d \to \infty}{\sim} d^2 \Upsilon \int_0^1 x(1-x) g(x) dx \Upsilon$$



In Ajtai work,

$$g(x) = \frac{a+1}{2^{a+1}-1}(2-x)^a.$$

"Uni-tas" general model : $\mathcal{U}(\Upsilon, d, \beta)$

The general model is based on 3 parameters

- $\bullet~\Upsilon$: the total mass of the cfg
- d : the dimension of the cfg
- $\beta \in [0,1]$ related to the position of the unique "pile"

$$i = 1 + \lfloor \beta(d-2) \rfloor$$

The cfg (c_1, \ldots, c_{d-1}) satisfies

- $\mathbb{E}[c_i] = \Upsilon$, $\mathbb{E}[c_j] = 0$ for $j \neq i$
- the total mass : $\mathbb{E}[\mathcal{M}] = \Upsilon$
- the energy (potential) :

$$\mathbb{E}[\mathcal{E}] \sim \left\{ egin{array}{cc} d^2eta(1-eta) \Upsilon & ext{si }eta\in]0,1[\ d \ \Upsilon & ext{si }eta\in \{0,1\} \end{array}
ight.$$

٠

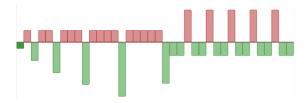
"Uni-tas" general model : $\mathcal{U}(\Upsilon, d, \beta)$

Applications

- Knapsack problem : $\beta = 0$ (model $\mathcal{K}(\Upsilon, d)$)
- Schnorr factorization : $\beta = 0$
- protocol NTRU : $\beta = 1/2$ (model $\mathcal{N}(\Upsilon, d)$)

• . . .

A Coppersmith cfg can also be represented as the concatenation of several cfg



Modèles	K pire des cas	K pour $M1(\alpha)$	K pour $M2(\mu)$	K expérimental
$\mathcal{A}(\Upsilon, d)$	$\frac{1}{12\log t}d(d+1)\tilde{\Upsilon}$	$rac{1}{12lpha}d(d+1) ilde{\Upsilon}$	$\frac{1}{6 \log\mu }d(d+1)\tilde{\Upsilon}$	$\Theta(d^2 \tilde{\Upsilon})$
$\mathcal{N}(\Upsilon, d)$	$\frac{1}{8\log t}d^2\tilde{\Upsilon}$	$\frac{1}{8lpha} d^2 \tilde{\Upsilon}$	$\frac{1}{4 \log\mu }d^2\tilde{\Upsilon}$	$\Theta(d^2 \tilde{\Upsilon})$
$\mathcal{K}(\Upsilon, d)$	$\frac{1}{2\log t}d\tilde{\Upsilon}$	$\frac{1}{2lpha}d\tilde{\Upsilon}$	$rac{1}{ \log \mu }d ilde{\Upsilon}$	$\Theta(d ilde{\Upsilon})$

• $\tilde{\Upsilon} = \alpha \cdot \Upsilon$ with α a known constant

2 The LLL algorithm

3 Modelling the LLL algorithm

- Model 1 : sandpile and cfg
- Model 2 : dynamical system with hole
- Model 3 : Probabilistic dynamical system

4 Modelling the input bases

- Classical models
- Input bases coming from applications
- General model of inputs

- Simplified models,

very useful for explaining, making experiments, finding conjectures.....

- Only qualitative similarities with the actual LLL algorithm.
- Possible (easy) proofs.
- Some results in dimension $d \ge 3$ that do not exist for the LLL algorithm
- New challenges : model M3 which is a probabilistic dynamical system with a hole