Modélisations de l'algorithme LLL et de ses entrées

Loïck LHOTE

GREYC, ENSICAEN, CNRS-UMR 6072

Journées DynA3S

Paris, 4 février 2014

Plan

- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- 2 Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - ullet Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

Généralisations de l'algorithme d'Euclide

Généralisations de l'algorithme d'Euclide

PGCD

Approximation Rationnelle Simultanée

Problème:

Etant donné $\overrightarrow{y} \in \mathbb{R}^n$, trouver $q \in \mathbb{Z}$ avec $q \leq M$ et $\overrightarrow{p} \in \mathbb{Z}^n$ tels que $||q \cdot \overrightarrow{y} - \overrightarrow{p}||$ est petit.

Développement en fractions continues

$$\frac{u}{v} = \frac{1}{m_1 + \frac{1}{m_2 + \frac{1}{m_{p-1} + \frac{1}{m_{p+1}}}}}$$

Généralisations de l'algorithme d'Euclide

Réduction des réseaux

- Algorithmes LLL, HKZ, BKZ,
 ...
- Modélisation des algorithmes (tas de sable, CFG, etc.)
- Modélisation des entrées

La modélisation des algorithmes conduit à de nouveaux systèmes dynamiques

PGCD

Approximation Rationnelle Simultanée

Problème:

Etant donné $\overrightarrow{y} \in \mathbb{R}^n$, trouver $q \in \mathbb{Z}$ avec $q \leq M$ et $\overrightarrow{p} \in \mathbb{Z}^n$ tels que $||q \cdot \overrightarrow{y} - \overrightarrow{p}||$ est petit.

Développement en fractions continues

$$\frac{u}{v} = \frac{1}{m_1 + \cfrac{1}{m_2 + \cfrac{1}{m_{p-1} + \cfrac{1}{m_{n} + 0}}}}$$

3 / 38

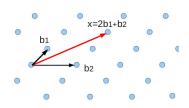
Réseaux euclidiens

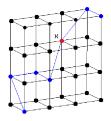
Un réseau euclidien de \mathbb{R}^n est un sous-groupe discret de \mathbb{R}^n .

Si $B := (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_d)$ est un système de d vecteurs linéairement indépendants de \mathbb{R}^n , le réseau engendré par B est

$$\mathcal{L} := \{ \mathbf{x} \in \mathbb{R}^n; \quad \mathbf{x} = \sum_{i=1}^d x_i \mathbf{b}_i, \quad x_i \in \mathbb{Z} \}$$

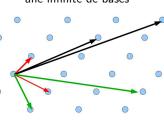
Le système $B:=(\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_d)$ est une base du réseau $\mathcal L$ d: dimension du réseau.





Réseaux euclidiens

Un réseau possède une infinité de bases



Problème essentiel:

Trouver une "bonne base" du réseau \mathcal{L} avec des vecteurs assez courts et assez orthogonaux à partir d'une base quelconque de \mathcal{L} .

[Problème SVP]

Peut-on trouver une base contenant un plus court vecteur non nul du réseau?

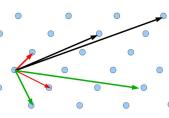
But de la réduction : trouver en un temps "raisonnable" une "assez bonne" base.

L'algorithme LLL conçu en 1982 par A. Lenstra, H. Lenstra et L. Lovász trouve en temps polynomial une assez bonne base d'un réseau.

pour d=2 : l'algorithme de Gauss trouve la meilleure base pour $d\geq 3$: l'algorithme LLL généralise l'algorithme de Gauss

Réseaux euclidiens

Un réseau possède une infinité de bases



Problème essentiel:

Trouver une "bonne base" du réseau \mathcal{L} avec des vecteurs assez courts et assez orthogonaux à partir d'une base quelconque de \mathcal{L} .

[Problème SVP]

Peut-on trouver une base contenant un plus court vecteur non nul du réseau?

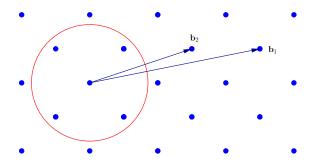
But de la réduction : trouver en un temps "raisonnable" une "assez bonne" base.

L'algorithme LLL conçu en 1982 par A. Lenstra, H. Lenstra et L. Lovász trouve en temps polynomial une assez bonne base d'un réseau.

pour d=2: l'algorithme de Gauss trouve la meilleure base pour d>3: l'algorithme LLL généralise l'algorithme de Gauss

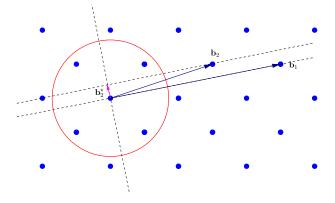
Une application importante pour utiliser une base réduite

Problème : Énumérer tous les vecteurs d'un réseau $\mathcal L$ à l'intérieur d'une boule.



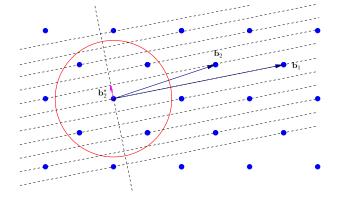
Une application importante pour utiliser une base réduite

Problème : Énumérer tous les vecteurs d'un réseau \mathcal{L} à l'intérieur d'une boule.



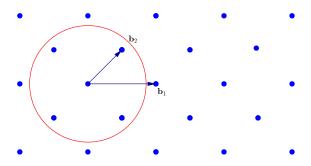
Une application importante pour utiliser une base réduite

Problème : Énumérer tous les vecteurs d'un réseau $\mathcal L$ à l'intérieur d'une boule.



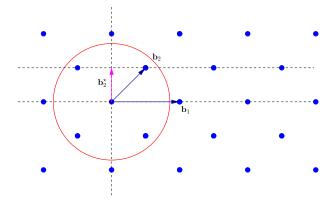
Une application importante pour utiliser une base réduite

Problème : Énumérer tous les vecteurs d'un réseau $\mathcal L$ à l'intérieur d'une boule.



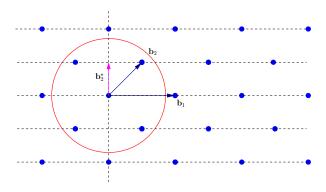
Une application importante pour utiliser une base réduite

Problème : Énumérer tous les vecteurs d'un réseau $\mathcal L$ à l'intérieur d'une boule.



Une application importante pour utiliser une base réduite

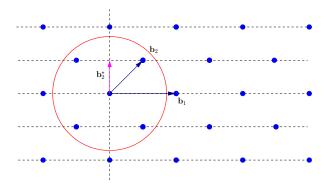
Problème : Énumérer tous les vecteurs d'un réseau $\mathcal L$ à l'intérieur d'une boule.



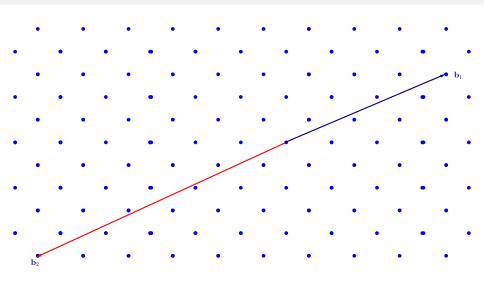
L. Lhote (GREYC) iournées DvnA3S 6 / 38

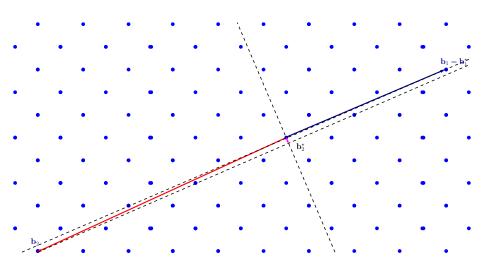
Une application importante pour utiliser une base réduite

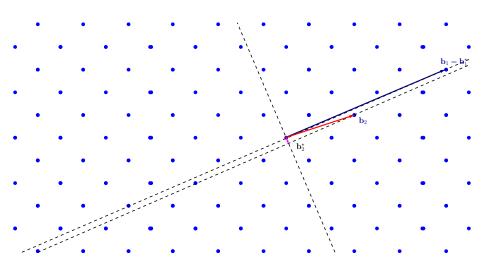
Problème : Énumérer tous les vecteurs d'un réseau $\mathcal L$ à l'intérieur d'une boule.

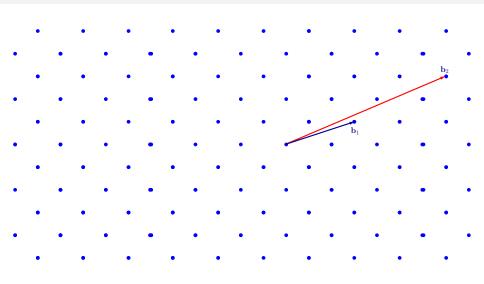


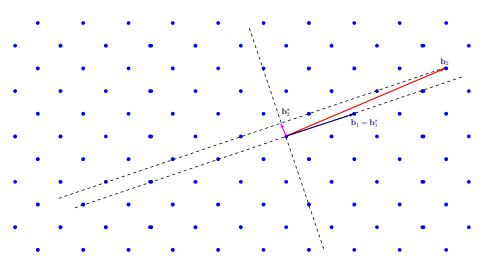
Conclusion : utiliser une base réduite conduit à des calculs plus efficaces. Remarque : \mathbf{b}_2^{\star} doit être le plus long possible.

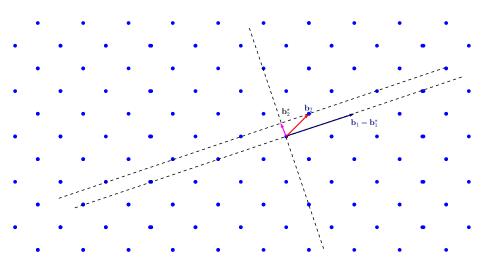


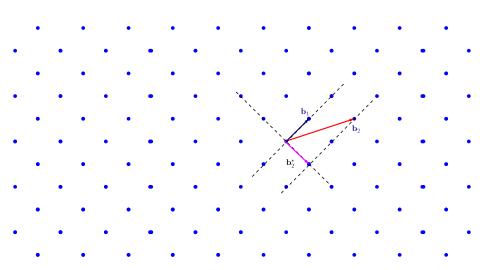


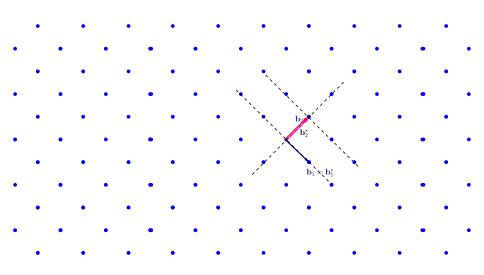












$B^{\star} = (\mathbf{b}_{1}^{\star}, \dots, \mathbf{b}_{d}^{\star})$: la base des orthogonalisés de Gram Schmidt

$$\mathcal{P}: B \to B^{\star}$$
 (la matrice de passage)

$$B_i := \frac{\mathbf{u}_i}{\mathbf{v}_i} \begin{pmatrix} \mathbf{b}_i^* & \mathbf{b}_{i+1}^* \\ 1 & 0 \\ m_{i+1,i} & 1 \end{pmatrix}.$$

$$|m_{i,j}| \le 1/2 \text{ pour } 1 \le j < i \le n$$

$$B^{\star}=(\mathbf{b}_1^{\star},\ldots,\mathbf{b}_d^{\star})$$
 : la base des orthogonalisés de Gram Schmidt

$$\mathcal{P}:B o B^\star$$
 (la matrice de passage)

$$B_i := \frac{\mathbf{u}_i}{\mathbf{v}_i} \begin{pmatrix} \mathbf{b}_i^* & \mathbf{b}_{i+1}^* \\ 1 & 0 \\ m_{i+1,i} & 1 \end{pmatrix}.$$

Les translations :

- diminuent la norme des vecteurs
- rendent la base propre

Une base B est dite propre si la matrice de passage \mathcal{P} vérifie :

$$|m_{i,j}| \le 1/2 \text{ pour } 1 \le j < i \le n$$

$$B^\star = (\mathbf{b}_1^\star, \dots, \mathbf{b}_d^\star)$$
 : la base des orthogonalisés de Gram Schmidt

$$\mathcal{P}:B o B^\star$$
 (la matrice de passage)

$$B_i := \begin{array}{cc} \mathbf{b}_i^\star & \mathbf{b}_{i+1}^\star \\ \mathbf{u}_i & \begin{pmatrix} 1 & 0 \\ m_{i+1,i} & 1 \end{pmatrix}.$$

Les translations :

- diminuent la norme des vecteurs
- rendent la base propre

Une base B est dite propre si la matrice de passage \mathcal{P} vérifie :

$$|m_{i,j}| \le 1/2 \text{ pour } 1 \le j < i \le n$$

Les échanges :

(t paramètre de l'algorithme, t > 1)

- effectués si $\|\mathbf{v}_i\| < (1/t)\|\mathbf{u}_i\|$
- rendent la base plus orthogonale

$$B^\star = (\mathbf{b}_1^\star, \dots, \mathbf{b}_d^\star)$$
 : la base des orthogonalisés de Gram Schmidt

$$\mathcal{P}:B o B^\star$$
 (la matrice de passage)

$$B_i := \frac{\mathbf{u}_i}{\mathbf{v}_i} \ \begin{pmatrix} \mathbf{b}_i^\star & \mathbf{b}_{i+1}^\star \\ 1 & 0 \\ m_{i+1,i} & 1 \end{pmatrix}.$$

Les translations :

- diminuent la norme des vecteurs
- rendent la base propre

Une base B est dite propre si la matrice de passage \mathcal{P} vérifie :

$$|m_{i,j}| \le 1/2 \text{ pour } 1 \le j < i \le n$$

(t paramètre de l'algorithme, t > 1)

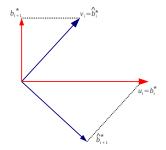
- effectués si $\|\mathbf{v}_i\| < (1/t)\|\mathbf{u}_i\|$
- rendent la base plus orthogonale

L'algorithme LLL = L'algorithme de t-Gauss pour les bases locales B_i

Les échanges rendent la base plus orthogonale

$$\ell_i := \|\mathbf{b}_i^\star\|, \qquad r_i := rac{\ell_{i+1}}{\ell_i} \quad ext{(rapports de Siegel)} \qquad ext{et} \quad
u_i := \{m_{i+1,i}\}$$
 (partie fractionnelle centrée)

$$B_i = \mathbf{u}_i \quad \begin{pmatrix} \mathbf{b}_i^* & \mathbf{b}_{i+1}^* \\ \mathbf{v}_i & \begin{pmatrix} 1 & 0 \\ m_{i+1,i} & 1 \end{pmatrix}$$



Si la base B_i n'est pas réduite, un échange modifie la base B_i .

Les nouveaux rapports de Siegel :

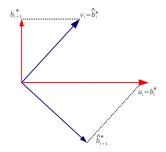
$$\begin{split} \check{r}_{i-1} &= \rho.r_{i-1} \\ \check{r}_i &= \frac{1}{\rho^2}.r_i \\ \check{r}_{i+1} &= \rho.r_{i+1}. \end{split}$$

$$\rho^2 = r_i^2 + \nu_i^2 \le 1$$

Les échanges rendent la base plus orthogonale

$$\ell_i := \|\mathbf{b}_i^\star\|, \qquad r_i := rac{\ell_{i+1}}{\ell_i} \quad ext{(rapports de Siegel)} \qquad ext{et} \quad
u_i := \{m_{i+1,i}\}$$
 (partie fractionnelle centrée)

$$B_i = \mathbf{u}_i \quad \begin{pmatrix} \mathbf{b}_i^* & \mathbf{b}_{i+1}^* \\ \mathbf{v}_i & \begin{pmatrix} 1 & 0 \\ m_{i+1,i} & 1 \end{pmatrix}$$



Si la base B_i n'est pas réduite, un échange modifie la base B_i .

Les nouveaux rapports de Siegel :

$$\begin{split} \check{r}_{i-1} &= \frac{\rho}{\rho}.r_{i-1} \\ \check{r}_i &= \frac{1}{\rho^2}.r_i \\ \check{r}_{i+1} &= \frac{\rho}{\rho}.r_{i+1}. \end{split}$$

avec un facteur de décroissance ρ

$$\rho^2 = r_i^2 + \nu_i^2 \le 1$$

Algorithme LLL(t), t > 1

```
Entrées: B = (\mathbf{b}_1, \dots, \mathbf{b}_d)
Résultat: \widehat{B} = (\widehat{\mathbf{b}}_1, \dots, \widehat{\mathbf{b}}_d) t-réduite.
Calculer (B^*, \mathcal{P});
i \leftarrow 1:
tant que i < d faire
       Translater \mathbf{b}_{i+1} // \mathbf{b}_{i}
                                (t.g |m_{i+1}| < 1/2);
       Tester \|\mathbf{v}_i\| > (1/t) \|\mathbf{u}_i\|?
              Si oui
                     Translater \mathbf{b}_{i+1} // \mathbf{b}_k
                                (t.q \mid m_{k,i} \mid < 1/2);
                     i \leftarrow i + 1:
              Sinon
                     Échanger b_i et b_{i+1};
                     Recalculer (B^{\star}, \mathcal{P});
                     Si i \neq 1 alors i \leftarrow i - 1;
fin
```

Condition de Lovász

$$\mathcal{L}(t): \qquad r_i^2 \ge \frac{1}{t^2} - \nu_i^2$$
$$\|\mathbf{v}_i\| \ge (1/t)\|\mathbf{u}_i\|$$

Condition de Siegel

$$S(s): \qquad r_i \geq \frac{1}{s}$$

Une base B d'un réseau \mathcal{L} qui est propre est dite réduite au sens de t- Lovász (resp. s-Siegel si vérifie la condition $\mathcal{L}(t)$ (resp. $\mathcal{S}(s)$)

si s et t vérifient

$$\frac{1}{s^2} = \frac{1}{t^2} - \frac{1}{4}$$
, avec $s \ge \frac{2}{\sqrt{3}}$ et $t \ge 1$

10 / 38

alors $\mathcal{L}(t) \Rightarrow \mathcal{S}(s)$

Algorithme LLL(t), t > 1

```
Entrées: B = (\mathbf{b}_1, \dots, \mathbf{b}_d)
Résultat: \widehat{B} = (\widehat{\mathbf{b}}_1, \dots, \widehat{\mathbf{b}}_d) t-réduite.
Calculer (B^*, \mathcal{P});
i \leftarrow 1:
tant que i < d faire
       Translater \mathbf{b}_{i+1} // \mathbf{b}_{i}
                                (t.g |m_{i+1}| < 1/2);
       Tester \|\mathbf{v}_i\| > (1/t) \|\mathbf{u}_i\|?
              Si oui
                     Translater \mathbf{b}_{i+1} // \mathbf{b}_k
                               (t.q | m_{k,i} | < 1/2);
                    i \leftarrow i + 1:
              Sinon
                     Échanger b_i et b_{i+1};
                    Recalculer (B^{\star}, \mathcal{P}):
                     Si i \neq 1 alors i \leftarrow i - 1;
fin
```

Condition de Lovász

$$\mathcal{L}(t): \qquad r_i^2 \ge \frac{1}{t^2} - \nu_i^2$$
$$\|\mathbf{v}_i\| \ge (1/t) \|\mathbf{u}_i\|$$

Condition de Siegel

$$S(s): \qquad r_i \ge \frac{1}{s}$$

Une base B d'un réseau \mathcal{L} qui est propre est dite réduite au sens de t- Lovász (resp. s-Siegel) si vérifie la condition $\mathcal{L}(t)$ (resp. $\mathcal{S}(s)$)

si s et t vérifient

$$\frac{1}{s^2} = \frac{1}{t^2} - \frac{1}{4}$$
, avec $s \ge \frac{2}{\sqrt{3}}$ et $t \ge 1$

alors
$$\mathcal{L}(t) \Rightarrow \mathcal{S}(s)$$

Potentiel d'une base : $\Delta(B) = \prod_{i=1}^{a} \ell_i^{(d-i)}$.

À chaque échange $\Delta(B)$ décroît d'un facteur ρ ($\rho^{(j)}: \rho$ à l'étape j).

$$\rho \le \frac{1}{t} = \left(\frac{1}{s^2} + \frac{1}{4}\right)^{1/2} \le 1$$

Le nombre d'échanges :

$$K(B) = rac{1}{|\log ar{
ho}|} \log rac{\Delta(B)}{\Delta(\widehat{B})}, \qquad ext{avec} \qquad \log ar{
ho} = rac{1}{K} \sum_{j=1}^K \log
ho^{(j)}$$

Pire des cas (uniquement t > 1)

$$K(B) \le \frac{1}{\log t} \log \frac{\Delta(B)}{\Delta(\widehat{B})},$$

Remarque

- Le pire des cas peut être rarement atteint
- L'analyse probabiliste rend mieux compte du comportement "générique"

Potentiel d'une base : $\Delta(B) = \prod_{i=1}^{d} \ell_i^{(d-i)}$.

À chaque échange $\Delta(B)$ décroît d'un facteur ρ ($\rho^{(j)}: \rho$ à l'étape j).

$$\rho \le \frac{1}{t} = \left(\frac{1}{s^2} + \frac{1}{4}\right)^{1/2} \le 1$$

Le nombre d'échanges :

$$K(B) = \frac{1}{|\log \bar{\rho}|} \log \frac{\Delta(B)}{\Delta(\widehat{B})}, \quad \text{avec} \quad \log \bar{\rho} = \frac{1}{K} \sum_{j=1}^{K} \log \rho^{(j)}$$

Pire des cas (uniquement t > 1)

$$K(B) \le \frac{1}{\log t} \log \frac{\Delta(B)}{\Delta(\widehat{B})},$$

Remarque

- Le pire des cas peut être rarement atteint
- L'analyse probabiliste rend mieux compte du comportement "générique"

Potentiel d'une base : $\Delta(B) = \prod_{i=1}^{d} \ell_i^{(d-i)}$.

À chaque échange $\Delta(B)$ décroît d'un facteur ρ ($\rho^{(j)}: \rho$ à l'étape j).

$$\rho \le \frac{1}{t} = \left(\frac{1}{s^2} + \frac{1}{4}\right)^{1/2} \le 1$$

Le nombre d'échanges :

$$K(B) = \frac{1}{|\log \bar{\rho}|} \log \frac{\Delta(B)}{\Delta(\widehat{B})}, \quad \text{avec} \quad \log \bar{\rho} = \frac{1}{K} \sum_{j=1}^{K} \log \rho^{(j)}$$

Pire des cas (uniquement t > 1):

$$K(B) \le \frac{1}{\log t} \log \frac{\Delta(B)}{\Delta(\widehat{B})},$$

Remarque

- Le pire des cas peut être rarement atteint
- L'analyse probabiliste rend mieux compte du comportement "générique"

Potentiel d'une base : $\Delta(B) = \prod_{i=1}^{a} \ell_i^{(d-i)}$.

À chaque échange $\Delta(B)$ décroît d'un facteur ρ ($\rho^{(j)}: \rho$ à l'étape j).

$$\rho \le \frac{1}{t} = \left(\frac{1}{s^2} + \frac{1}{4}\right)^{1/2} \le 1$$

Le nombre d'échanges :

$$K(B) = \frac{1}{|\log \bar{\rho}|} \log \frac{\Delta(B)}{\Delta(\widehat{B})}, \quad \text{avec} \quad \log \bar{\rho} = \frac{1}{K} \sum_{j=1}^{K} \log \rho^{(j)}$$

Pire des cas (uniquement t > 1):

$$K(B) \le \frac{1}{\log t} \log \frac{\Delta(B)}{\Delta(\widehat{B})},$$

Remarque:

- Le pire des cas peut être rarement atteint
- L'analyse probabiliste rend mieux compte du comportement "générique"

Plan

- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

12 / 38 L. Lhote (GREYC) iournées DvnA3S

Approches simplifiées

Modélisation simplifiée de l'exécution :

- Une vue simplifiée de la réduction inspirée des tas de sable
- Différents degrés de simplification pour la modélisation allant du tas de sable au véritable algorithme LLL

Modélisation des principales entrées cryptographiques :

- "tas plein" : Ajtai
- "uni-tas" : NTRU, Sac-à-dos, Schnorr...
- "tas à trous" : Coppersmith

Approches simplifiées

Modélisation simplifiée de l'exécution :

- Une vue simplifiée de la réduction inspirée des tas de sable
- Différents degrés de simplification pour la modélisation allant du tas de sable au véritable algorithme LLL

Modélisation des principales entrées cryptographiques :

- "tas plein" : Ajtai
- "uni-tas" : NTRU, Sac-à-dos, Schnorr...
- "tas à trous" : Coppersmith

Approches simplifiées

Modélisation simplifiée de l'exécution :

- Une vue simplifiée de la réduction inspirée des tas de sable
- Différents degrés de simplification pour la modélisation allant du tas de sable au véritable algorithme LLL

Modélisation des principales entrées cryptographiques :

- "tas plein" : Ajtai
- "uni-tas" : NTRU, Sac-à-dos, Schnorr...
- "tas à trous" : Coppersmith

- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- 3 Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

le rôle essentiel est joué par les rapports $r_i = \frac{\ell_{i+1}}{\ell_{\cdot}}$

les coefficients ν_i ont un rôle secondaire

$$\begin{split} & \text{si} \quad r_i < 1/s \quad \text{alors} \\ & \widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \rho.r_{i-1}; \\ \check{r}_i := \frac{1}{\rho^2}.r_i; \\ \check{r}_{i+1} := \rho.r_{i+1}; \end{cases} \end{split}$$

Point de vue additif $\mathbf{c} := (c_1, \dots, c_{d-1})$

avec $c_i = -\log_s r_i$ et $\alpha = -\log_s \rho$

si
$$c_i > 1$$
 alors
$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$

le rôle essentiel est joué par les rapports

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\begin{split} & \text{si} \quad r_i < 1/s \quad \text{alors} \\ & \widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \rho.r_{i-1}; \\ \check{r}_i := \frac{1}{\rho^2}.r_i; \\ \check{r}_{i+1} := \rho.r_{i+1}; \end{cases} \end{aligned}$$

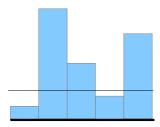
Point de vue additif :

$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

 $\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$



le rôle essentiel est joué par les rapports

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\begin{split} & \text{si} \quad r_i < 1/s \quad \text{alors} \\ & \tilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \rho.r_{i-1}; \\ \check{r}_i := \frac{1}{\rho^2}.r_i; \\ \check{r}_{i+1} := \rho.r_{i+1}; \end{cases} \end{aligned}$$

Point de vue additif :

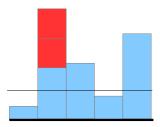
$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

 $\mbox{avec } c_i = -\log_s r_i \quad \mbox{ et } \quad \alpha = -\log_s \rho$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$

15 / 38



le rôle essentiel est joué par les rapports ℓ_{i+1}

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\begin{split} & \text{si} \quad r_i < 1/s \quad \text{alors} \\ & \widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho}.r_{i-1}; \\ \check{r}_i := \frac{1}{\rho^2}.r_i; \\ \check{r}_{i+1} := \frac{\rho}{\rho}.r_{i+1}; \end{cases} \end{aligned}$$

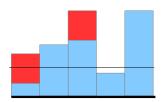
Point de vue additif :

$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

$$\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$
 $T_{lpha}^{(i)}(\mathbf{c}) = egin{cases} \check{c}_{i-1} := c_{i-1} + \pmb{lpha} \ \check{c}_i := c_i - 2\pmb{lpha} \ \check{c}_{i+1} := c_{i+1} + \pmb{lpha} \end{cases}$

15 / 38



le rôle essentiel est joué par les rapports

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\begin{split} & \text{si} \quad r_i < 1/s \quad \text{alors} \\ & \widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho}.r_{i-1}; \\ \check{r}_i := \frac{1}{\rho^2}.r_i; \\ \check{r}_{i+1} := \frac{\rho}{\rho}.r_{i+1}; \end{cases} \end{aligned}$$

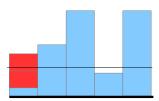
Point de vue additif :

$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

$$\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$



le rôle essentiel est joué par les rapports ℓ

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho}.r_{i-1}; \\ \check{r}_{i} := \frac{1}{\rho^{2}}.r_{i}; \\ \check{r}_{i+1} := \frac{\rho}{\rho}.r_{i+1}; \end{cases}$$

Point de vue additif :

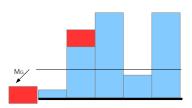
$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

 $\mbox{avec } c_i = -\log_s r_i \quad \mbox{ et } \quad \alpha = -\log_s \rho$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_{i} := c_{i} - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$

15 / 38



le rôle essentiel est joué par les rapports ℓ

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients ν_i ont un rôle secondaire

$$\widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho}.r_{i-1}; \\ \check{r}_{i} := \frac{1}{\rho^{2}}.r_{i}; \\ \check{r}_{i+1} := \frac{\rho}{\rho}.r_{i+1}; \end{cases}$$

Point de vue additif :

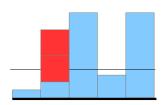
$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

 $\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \boldsymbol{\alpha} \\ \check{c}_{i} := c_{i} - 2\boldsymbol{\alpha} \\ \check{c}_{i+1} := c_{i+1} + \boldsymbol{\alpha} \end{cases}$$

15 / 38



le rôle essentiel est joué par les rapports ℓ

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho} \cdot r_{i-1}; \\ \check{r}_{i} := \frac{1}{\rho^{2}} \cdot r_{i}; \\ \check{r}_{i+1} := \frac{\rho}{\rho} \cdot r_{i+1}; \end{cases}$$

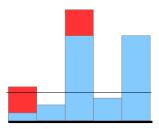
Point de vue additif :

$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

$$\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$



le rôle essentiel est joué par les rapports ℓ

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho} \cdot r_{i-1}; \\ \check{r}_{i} := \frac{1}{\rho^{2}} \cdot r_{i}; \\ \check{r}_{i+1} := \frac{\rho}{\rho} \cdot r_{i+1}; \end{cases}$$

Point de vue additif :

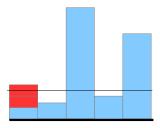
$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

 $\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$

15 / 38



le rôle essentiel est joué par les rapports ℓ_{i+1}

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \rho.r_{i-1}; \\ \check{r}_{i} := \frac{1}{\rho^{2}}.r_{i}; \\ \check{r}_{i+1} := \rho.r_{i+1}; \end{cases}$$

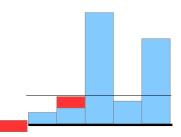
Point de vue additif :

$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

 $\mbox{avec } c_i = -\log_s r_i \quad \mbox{ et } \quad \alpha = -\log_s \rho$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$



le rôle essentiel est joué par les rapports ℓ_{i+1}

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

si
$$r_i < 1/s$$
 alors
$$\widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho} \cdot r_{i-1}; \\ \check{r}_i := \frac{1}{\rho^2} \cdot r_i; \\ \check{r}_{i+1} := \frac{\rho}{\rho} \cdot r_{i+1}; \end{cases}$$

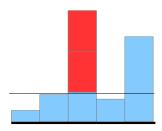
Point de vue additif :

$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

 $\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$



le rôle essentiel est joué par les rapports ℓ

$$r_i = \frac{\ell_{i+1}}{\ell_i}$$

les coefficients u_i ont un rôle secondaire

$$\begin{split} & \text{si} \quad r_i < 1/s \quad \text{alors} \\ & \widetilde{T}_{\rho}^{(i)}(\mathbf{r}) = \begin{cases} \check{r}_{i-1} := \frac{\rho}{\rho}.r_{i-1}; \\ \check{r}_i := \frac{1}{\rho^2}.r_i; \\ \check{r}_{i+1} := \frac{\rho}{\rho}.r_{i+1}; \end{cases} \end{aligned}$$

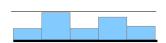
Point de vue additif :

$$\mathbf{c} := (c_1, \dots, c_{d-1})$$

$$\text{avec } c_i = -\log_s r_i \quad \text{ et } \quad \alpha = -\log_s \rho$$

$$\mathbf{si} \quad c_i > 1 \quad \mathsf{alors}$$

$$T_{\alpha}^{(i)}(\mathbf{c}) = \begin{cases} \check{c}_{i-1} := c_{i-1} + \alpha \\ \check{c}_i := c_i - 2\alpha \\ \check{c}_{i+1} := c_{i+1} + \alpha \end{cases}$$



Sorties: $\mathbf{c} \in \mathcal{O} = \prod \mathcal{O}_i$

tant que $\mathbf{c} \not\in \mathcal{O}$ faire

Choisir i tel que $c_i \notin \mathcal{O}_i$; Choisir $\alpha \in \mathbb{R}^+$:

 $\mathbf{c} \leftarrow T_{\alpha}^{(i)}(\mathbf{c});$

fin

Renvoyer c

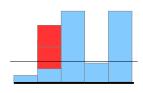
Deux principaux choix :

Choisir *i* : la stratégie classique, gloutonne, aléatoire...

Choisir α : calculé, fixé...

$$\alpha_i = -\frac{1}{2}\log_s(s^{-2c_i} + \nu_i^2)$$

M1 : $\alpha_i=\alpha$ est fixé au cours de l'algorithme M2 : α_i est fonction de $c_i,\ \nu_i$ fixé dans $[-\frac{1}{2},\frac{1}{2}]$ M3 : α_i est fonction de $c_i,\ \nu_i\in_{\mathcal{R}}\ [-\frac{1}{2},\frac{1}{2}]$ M4 : LLL avec la condition de Siegel $(c_i\leq 1)$ tyrai LLL avec la condition de Lovász $c_i\leq \frac{1}{2}\log_{\pi}\left(\frac{1}{12}+\nu_i^2\right)$



Sorties: $\mathbf{c} \in \mathcal{O} = \prod \mathcal{O}_i$

tant que $\mathbf{c} \not\in \mathcal{O}$ faire

Choisir i tel que $c_i \notin \mathcal{O}_i$; Choisir $\alpha \in \mathbb{R}^+$;

 $\mathbf{c} \leftarrow T_{\alpha}^{(i)}(\mathbf{c});$

fin

Renvoyer c

Deux principaux choix :

Choisir *i* : la stratégie classique, gloutonne, aléatoire...

Choisir α : calculé, fixé...

$$\alpha_i = -\frac{1}{2}\log_s(s^{-2c_i} + \nu_i^2)$$

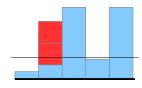
M1 : $\alpha_i = \alpha$ est fixé au cours de l'algorithme

M2 : α_i est fonction de c_i , ν_i fixé dans $[-\frac{1}{2},\frac{1}{2}]$

M3 : α_i est fonction de c_i , $\nu_i \in_{\mathcal{R}} \left[-\frac{1}{2}, \frac{1}{2}\right]$

M4 : LLL avec la condition de Siegel ($c_i \leq 1$)

M5 : vrai LLL avec la condition de Lovász $c_i \leq rac{1}{2}\log_s\left(rac{1}{42}+
u_i^2
ight)$



Sorties: $\mathbf{c} \in \mathcal{O} = \prod \mathcal{O}_i$

tant que $c \notin \mathcal{O}$ faire

Choisir i tel que $c_i \notin \mathcal{O}_i$; Choisir $\alpha \in \mathbb{R}^+$;

 $\mathbf{c} \leftarrow T_{\alpha}^{(i)}(\mathbf{c});$

fin

Renvoyer c

Deux principaux choix :

Choisir *i* : la stratégie classique, gloutonne, aléatoire...

Choisir α : calculé, fixé...

$$\alpha_i = -\frac{1}{2}\log_s(s^{-2c_i} + \nu_i^2)$$

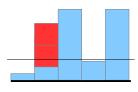
M1 : $\alpha_i = \alpha$ est fixé au cours de l'algorithme

M2 : $lpha_i$ est fonction de c_i , u_i fixé dans $[-rac{1}{2},rac{1}{2}]$

M3 : α_i est fonction de c_i , $\nu_i \in_{\mathcal{R}} \left[-\frac{1}{2},\frac{1}{2}\right]$

M4 : LLL avec la condition de Siegel ($c_i \leq 1$)

M5 : vrai LLL avec la condition de Lovász $c_i < rac{1}{2}\log_2\left(rac{1}{2^2} +
u_i^2
ight)$



Sorties: $c \in \mathcal{O} = \prod \mathcal{O}_i$

tant que $c \notin \mathcal{O}$ faire

Choisir i tel que $c_i \notin \mathcal{O}_i$; Choisir $\alpha \in \mathbb{R}^+$;

 $\mathbf{c} \leftarrow T_{\alpha}^{(i)}(\mathbf{c});$

fin

Renvoyer c

Deux principaux choix :

Choisir *i* : la stratégie classique, gloutonne, aléatoire...

Choisir α : calculé, fixé...

$$\alpha_i = -\frac{1}{2}\log_s(s^{-2c_i} + \nu_i^2)$$

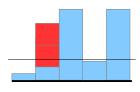
M1 : $\alpha_i = \alpha$ est fixé au cours de l'algorithme

M2 : $lpha_i$ est fonction de c_i , u_i fixé dans $[-\frac{1}{2},\frac{1}{2}]$

M3 : α_i est fonction de c_i , $\nu_i \in_{\mathcal{R}} \left[-\frac{1}{2}, \frac{1}{2}\right]$

M4: LLL avec la condition de Siegel $(c_i \leq 1)$

M5: vrai LLL avec la condition de Lovász $c_i < \frac{1}{2} \log \left(\frac{1}{2} + \nu_i^2 \right)$



Sorties: $c \in \mathcal{O} = \prod \mathcal{O}_i$

tant que $c \notin \mathcal{O}$ faire

Choisir
$$i$$
 tel que $c_i \notin \mathcal{O}_i$;
Choisir $\alpha \in \mathbb{R}^+$;
 $\mathbf{c} \leftarrow T_{\alpha}^{(i)}(\mathbf{c})$;

fin

Renvoyer c

Deux principaux choix :

Choisir i: la stratégie classique, gloutonne, aléatoire...

Choisir α : calculé, fixé...

$$\alpha_i = -\frac{1}{2}\log_s(s^{-2c_i} + \nu_i^2)$$

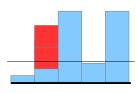
M1 : $\alpha_i = \alpha$ est fixé au cours de l'algorithme

M2 : $lpha_i$ est fonction de c_i , u_i fixé dans $\left[-\frac{1}{2},\frac{1}{2}
ight]$

M3 : α_i est fonction de c_i , $\nu_i \in_{\mathcal{R}} \left[-\frac{1}{2}, \frac{1}{2}\right]$

M4 : LLL avec la condition de Siegel $(c_i \leq 1)$

M5: vrai LLL avec la condition de Lovász $c_i < \frac{1}{2} \log \left(\frac{1}{2} + \nu_i^2 \right)$



Sorties: $c \in \mathcal{O} = \prod \mathcal{O}_i$

tant que $c \notin \mathcal{O}$ faire

Choisir i tel que $c_i \notin \mathcal{O}_i$; Choisir $\alpha \in \mathbb{R}^+$; $\mathbf{c} \leftarrow T_{\alpha}^{(i)}(\mathbf{c})$;

fin

Renvoyer c

Deux principaux choix :

Choisir *i* : la stratégie classique, gloutonne, aléatoire...

Choisir α : calculé, fixé...

$$\alpha_i = -\frac{1}{2}\log_s(s^{-2c_i} + \nu_i^2)$$

M1 : $\alpha_i = \alpha$ est fixé au cours de l'algorithme

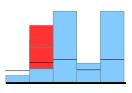
M2 : $lpha_i$ est fonction de c_i , u_i fixé dans $[-\frac{1}{2},\frac{1}{2}]$

M3 : α_i est fonction de c_i , $\nu_i \in_{\mathcal{R}} \left[-\frac{1}{2}, \frac{1}{2}\right]$

M4 : LLL avec la condition de Siegel $(c_i \leq 1)$

M5 : vrai LLL avec la condition de Lovász

$$c_i \le \frac{1}{2} \log_s \left(\frac{1}{t^2} + \nu_i^2 \right)$$



- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - ullet Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

Approche générale

$$\mathcal{B} = \begin{pmatrix} \ell_1 & 0 & \cdots & 0 \\ * & \ell_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ * & \cdots & * & \ell_d \end{pmatrix}.$$

La longueur des orthogonalisés se lit sur la diagonale

18 / 38

Trois paramètres : (Υ, d, g)

- d : dimension du réseau
- ullet densité g strictement positive définie sur [0,1] qui vérifie donc $\int_0^1 g(t)dt=1$
- ullet Υ : masse moyenne totale du cfg

$$\mathbb{E}[c_i] = rac{1}{d-1} \Upsilon g\left(rac{i}{d}
ight) \quad ext{et} \quad \mathbb{E}[\mathcal{M}] pprox \Upsilon$$

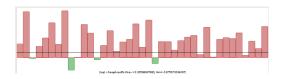
L'énergie moyenne vérifie

$$\mathbb{E}[\mathcal{E}] \sim d^2 \mathbb{E}[\mathcal{M}] \int_0^1 x(1-x)g(x)dx.$$

Les entrées "grand tas" (Ajtai)

Applications

- Preuve de la connection entre le pire des cas/le cas moyen (Ajtai '96)
- Les bases d'Ajtai modélisent des instances difficiles en moyenne, vis-à-vis du problème SVP



 $\mathcal{A}(\Upsilon,d,g)$: des cfg défini par une densité g strictement positive définie sur [0,1] et de classe \mathcal{C}^1 qui vérifie donc $\int_0^1 g(t)dt = 1$.

$$\mathbb{E}[c_i] = rac{1}{d-1} \Upsilon g\left(rac{i}{d}
ight) \quad ext{et} \quad \mathbb{E}[\mathcal{M}] pprox \Upsilon$$

L. Lhote (GREYC) journées DynA3S 19 / 38

Réseaux uni-tas

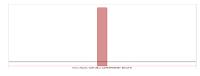
Applications

- Cryptanalyse des protocoles de type sac à dos
- Factorisation des entiers par la méthode de Schnorr
- Cryptosystème NTRU

$$\mathcal{B} = \left(\begin{array}{c|c} X \cdot I_i & 0 \\ \hline A & Y \cdot I_{d-i} \end{array}\right).$$

 $\begin{array}{ll} (i) & d \in \mathbb{N}, \text{un r\'eel } \beta \in [0,1] \text{ et l'entier} \\ & i \in [1 \ldots d-1] \text{ est d\'efini par } i := [\beta d], \end{array}$

(iii) X et Y str. positives, avec $X \gg Y$,



$$\mathcal{U}(\Upsilon,d,eta)$$
 $\mathbb{E}[c_i]=\Upsilon$ et $\mathbb{E}[c_j]=0$ $j
eq i$

L'énergie vérifie, pour $d \to \infty$,

$$\mathbb{E}[\mathcal{E}] = \sum_{i=1}^{d-1} i(d-i) \mathbb{E}[c_i] \sim \begin{cases} d^2 \beta (1-\beta) \, \Upsilon & \text{ si } \beta \in]0,1[\\ d \, \Upsilon & \text{ si } \beta \in \{0,1\} \end{cases}.$$

- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- 2 Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- 3 Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - ullet Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

Chip Firing Game : le modèle $C_d(\mathbf{c}, H, \alpha)$

si
$$c_i > H$$
 alors $\check{c}_{i-1} := c_{i-1} + \alpha$ $\check{c}_i := c_i - 2\alpha$ $\check{c}_{i+1} := c_{i+1} + \alpha$

Énergie d'un
$$\mathit{cfg}: \mathcal{E}(\mathbf{c}) := \sum_{i=1}^{d-1} i(d-i)c_i$$

$$\mathcal{E}(\check{\mathbf{c}}) = \mathcal{E}(\mathbf{c}) - 2\alpha$$

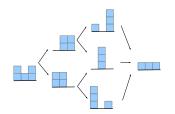
22 / 38

iournées DvnA3S L. Lhote (GREYC)

Chip Firing Game : le modèle $C_d(\mathbf{c}, H, \alpha)$

si
$$c_i > H$$
 alors $\check{c}_{i-1} := c_{i-1} + \alpha$ $\check{c}_i := c_i - 2\alpha$ $\check{c}_{i+1} := c_{i+1} + \alpha$

La configuration finale est unique et ne dépend pas de la stratégie.



 $K(\mathbf{c} \mapsto \widehat{\mathbf{c}})$ est indépendante du chemin

Énergie d'un
$$\mathit{cfg}: \mathcal{E}(\mathbf{c}) := \sum_{i=1}^{d-1} i(d-i)c_i$$

 $\mathcal{E}(\check{\mathbf{c}}) = \mathcal{E}(\mathbf{c}) - 2\alpha$

$$K(\mathbf{c}) = \frac{1}{2\alpha} \left[\mathcal{E}(\mathbf{c}) - \mathcal{E}(\widehat{\mathbf{c}}) \right] = \frac{1}{2\alpha} \sum_{i=1}^{d-1} i(d-i)(c_i - \widehat{c}_i)$$

Détermine

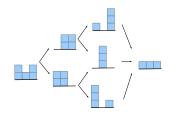
- le nombre d'itérations
- la configuration finale et son énergie

auv problème très liés

Chip Firing Game : le modèle $C_d(\mathbf{c}, H, \alpha)$

si
$$c_i > H$$
 alors $\check{c}_{i-1} := c_{i-1} + \alpha$ $\check{c}_i := c_i - 2\alpha$ $\check{c}_{i+1} := c_{i+1} + \alpha$

La configuration finale est unique et ne dépend pas de la stratégie.



 $K(\mathbf{c} \mapsto \widehat{\mathbf{c}})$ est indépendante du chemin

Énergie d'un
$$\mathit{cfg}: \mathcal{E}(\mathbf{c}) := \sum_{i=1}^{d-1} i(d-i)c_i$$

 $\mathcal{E}(\check{\mathbf{c}}) = \mathcal{E}(\mathbf{c}) - 2\alpha$

$$K(\mathbf{c}) = \frac{1}{2\alpha} \left[\mathcal{E}(\mathbf{c}) - \mathcal{E}(\widehat{\mathbf{c}}) \right] = \frac{1}{2\alpha} \sum_{i=1}^{d-1} i(d-i)(c_i - \widehat{c}_i)$$

Détermine

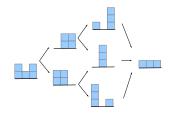
- le nombre d'itérations
- la configuration finale et son énergie

auv problème très liés

Chip Firing Game : le modèle $C_d(\mathbf{c}, H, \alpha)$

si
$$c_i > H$$
 alors $\check{c}_{i-1} := c_{i-1} + \alpha$ $\check{c}_i := c_i - 2\alpha$ $\check{c}_{i+1} := c_{i+1} + \alpha$

La configuration finale est unique et ne dépend pas de la stratégie.



 $K(\mathbf{c} \mapsto \widehat{\mathbf{c}})$ est indépendante du chemin

Énergie d'un
$$\mathit{cfg}: \mathcal{E}(\mathbf{c}) := \sum_{i=1}^{d-1} i(d-i)c_i$$

 $\mathcal{E}(\check{\mathbf{c}}) = \mathcal{E}(\mathbf{c}) - 2\alpha$

$$K(\mathbf{c}) = \frac{1}{2\alpha} \left[\mathcal{E}(\mathbf{c}) - \mathcal{E}(\widehat{\mathbf{c}}) \right] = \frac{1}{2\alpha} \sum_{i=1}^{d-1} i(d-i)(c_i - \widehat{c}_i).$$

Détermine

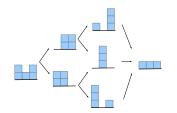
- le nombre d'itérations
- la configuration finale et son énergie

auv problème très liés

Chip Firing Game : le modèle $C_d(\mathbf{c}, H, \alpha)$

si
$$c_i > H$$
 alors $\check{c}_{i-1} := c_{i-1} + \alpha$ $\check{c}_i := c_i - 2\alpha$ $\check{c}_{i+1} := c_{i+1} + \alpha$

La configuration finale est unique et ne dépend pas de la stratégie.



 $K(\mathbf{c} \mapsto \widehat{\mathbf{c}})$ est indépendante du chemin

Énergie d'un
$$\mathit{cfg}: \mathcal{E}(\mathbf{c}) := \sum_{i=1}^{d-1} i(d-i)c_i$$

$$\mathcal{E}(\check{\mathbf{c}}) = \mathcal{E}(\mathbf{c}) - 2\alpha$$

$$K(\mathbf{c}) = \frac{1}{2\alpha} \left[\mathcal{E}(\mathbf{c}) - \mathcal{E}(\widehat{\mathbf{c}}) \right] = \frac{1}{2\alpha} \sum_{i=1}^{d-1} i(d-i)(c_i - \widehat{c}_i).$$

22 / 38

Déterminer

- le nombre d'itérations
- la configuration finale et son énergie deux problème très liés

Réduction des réseaux dans le modèle CFG

CFG	Réseaux
$\mathbf{c} = (c_1, \dots, c_{d-1})$	$\mathbf{c} = (\log_s r_1, \dots, \log_s r_{d-1})$
Masse $\mathcal{M}(\mathbf{c}) = \sum_{i=1}^{d-1} c_i$	$\log_s \prod_{i=1}^{d-1} r_i$
Énergie $\mathcal{E}(\mathbf{c})$	$\log_s \Delta(B)$
$K(B) = \frac{1}{2\alpha} \left(\mathcal{E}(\mathbf{c}) - \mathcal{E}(\widehat{\mathbf{c}}) \right)$	$K(B) = \frac{1}{2\alpha} \log_s \frac{\Delta(B)}{\Delta(\widehat{B})}$

Pour un réseau totalement non réduit, la masse $\mathcal{M}(\mathbf{c})$ quantifie la difficulté de la réduction $\Upsilon := \mathcal{M}(\mathbf{c}) = \log_s \ell_1 - \log_s \ell_d = \log_s \ell_{\max} - \log_s \ell_{\min}$

L. Lhote (GREYC) journées DynA3S 23 / 38

Réduction des réseaux dans le modèle CFG

CFG	Réseaux
$\mathbf{c} = (c_1, \dots, c_{d-1})$	$\mathbf{c} = (\log_s r_1, \dots, \log_s r_{d-1})$
Masse $\mathcal{M}(\mathbf{c}) = \sum_{i=1}^{d-1} c_i$	$\log_s \prod_{i=1}^{d-1} r_i$
Énergie $\mathcal{E}(\mathbf{c})$	$\log_s \Delta(B)$
$K(B) = \frac{1}{2\alpha} \left(\mathcal{E}(\mathbf{c}) - \mathcal{E}(\widehat{\mathbf{c}}) \right)$	$K(B) = \frac{1}{2\alpha} \log_s \frac{\Delta(B)}{\Delta(\widehat{B})}$

Pour un réseau totalement non réduit, la masse $\mathcal{M}(\mathbf{c})$ quantifie la difficulté de la réduction

$$\Upsilon := \mathcal{M}(\mathbf{c}) = \log_s \ell_1 - \log_s \ell_d = \log_s \ell_{\max} - \log_s \ell_{\min}$$

Réduction des réseaux dans le modèle CFG

CFG	Réseaux
$\mathbf{c} = (c_1, \dots, c_{d-1})$	$\mathbf{c} = (\log_s r_1, \dots, \log_s r_{d-1})$
Masse $\mathcal{M}(\mathbf{c}) = \sum_{i=1}^{d-1} c_i$	$\log_s \prod_{i=1}^{d-1} r_i$
Énergie $\mathcal{E}(\mathbf{c})$	$\log_s \Delta(B)$
$K(B) = \frac{1}{2\alpha} \left(\mathcal{E}(\mathbf{c}) - \mathcal{E}(\widehat{\mathbf{c}}) \right)$	$K(B) = \frac{1}{2\alpha} \log_s \frac{\Delta(B)}{\Delta(\widehat{B})}$

Pour un réseau totalement non réduit, la masse $\mathcal{M}(\mathbf{c})$ quantifie la difficulté de la réduction

$$\Upsilon := \mathcal{M}(\mathbf{c}) = \log_s \ell_1 - \log_s \ell_d = \log_s \ell_{\max} - \log_s \ell_{\min}$$

- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- 3 Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - ullet Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

Réseaux uni-tas

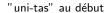
Pour un cfg $C_d(\mathbf{c}, h, H)$ avec une seule pile en position i de hauteur $\Upsilon = \Theta(d^a)$.

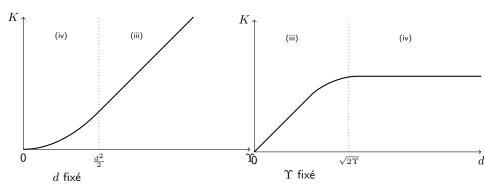
Si la pile n'est pas sur les bords, i.e., $i=\beta d$ avec $\beta\in]0,1[$

- Si $0 < a \le 1$ (ne s'étale pas jusqu'au bord), alors $K = O(d^3)$
- Si a>1 (s'étale jusqu'au bord), alors $K=\Theta(d^{2+a})$

Si la pile est sur les bords, en position $i \in \{1, d-1\}$:

- \bullet Si $a \leq 2$ (ne s'étale pas jusqu'à l'autre bord), alors on a $K = O(d^3)$
- ullet Si a>2 (s'étale complètement), alors on a $K=\Theta(d^{a+1})$





Entrées "grand-tas" et cfg

Nombre d'itérations :

dans le modèle $\mathcal{A}(\Upsilon,d,g)$, la masse moyenne Υ est une fonction au moins linéaire de d, et l'énergie initiale $\mathcal{E}=\mathcal{E}(\mathbf{c})$ moyenne vérifie

$$\mathbb{E}[\mathcal{E}] \sim d^2 \Upsilon I(g), \quad \text{avec} \quad I(g) = \int_0^1 x(1-x)g(x)dx.$$

Il y a deux cas principaux :

Cas où la masse moyenne Υ vérifie $\Upsilon = \Theta(d^a)$ avec a > 1.

$$\mathbb{E}[K] = \Theta(d^{a+2})$$

Cas où la masse moyenne Υ est linéaire en d et asymptotique à $C \cdot d$, avec C > 1.

$$\mathbb{E}[K] = \Theta(d^3)$$

$$\widetilde{\Upsilon} = \log \prod r_i = rac{1}{\log s} \Upsilon$$
 $s =$ paramètre condition de Siegel

Modèles	${\cal K}$ pire des cas	K pour $\mathtt{M1}(\alpha)$	$K \text{ pour } M2(\mu)$	K exp.
$\mathcal{A}(\widetilde{\Upsilon},d)$	$\frac{1}{12\log t}d(d+1)\widetilde{\Upsilon}$	$\frac{1}{12\alpha}d(d+1)\widetilde{\Upsilon}$		$\Theta(d^2\widetilde{\Upsilon})$
$\mathcal{N}(\widetilde{\Upsilon},d)$	$\frac{1}{8\log t}d^2\widetilde{\Upsilon}$	$\frac{1}{8\alpha} d^2 \widetilde{\Upsilon}$		$\Theta(d^2\widetilde{\Upsilon})$
$\mathcal{K}(\widetilde{\Upsilon},d)$	$rac{1}{2\log t}d\widetilde{\Upsilon}$	$\frac{1}{2\alpha}d\widetilde{\Upsilon}$		$\Theta(d\widetilde{\Upsilon})$

TABLE: La réduction est supposée difficile : $\widetilde{\Upsilon}/d^a \to \infty$ avec a=1 pour les modèles \mathcal{A}, \mathcal{N} et a=2 pour le modèle \mathcal{K} .

$$\mathcal{A}=$$
Ajtaï (grands-tas), $\mathcal{N}=$ NTRU (uni-tas au milieu), $\mathcal{K}=$ Sac-à-dos (uni-tas au début)

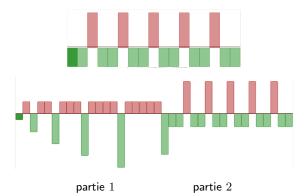
L. Lhote (GREYC) journées DynA3S 28 / 38

29 / 38

CFG à trous : réseaux de Coppersmith

Interviennent dans la méthode de Coppersmith

- qui permet de calculer les petites racines de polynômes multivariés modulo un entier
- utiliser dans les attaques de RSA



L. Lhote (GREYC) journées DynA3S

 \mathbf{c}_g et \mathbf{c}_d : deux *cfg* avec des piles strictement positives à gauche et à droite,

avec des configurations finales $\widehat{\mathbf{c}}_g$ et $\widehat{\mathbf{c}}_d$

 \mathbf{c}_m : un cfg avec des piles négatives ou nulles au milieu

Indépendance

Les \mathbf{c}_g et \mathbf{c}_d sont indépendants dans le cfg composé des trois blocs s'il existe une configuration $\widehat{\mathbf{c}}_m$ réduite telle que la configuration finale du *cfg* total est $\widehat{\mathbf{c}}_g \cdot \widehat{\mathbf{c}}_m \cdot \widehat{\mathbf{c}}_d$

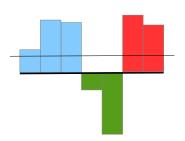
Des conditions suffisantes pour l'indépendance et la dépendance

pour l'indépendance :

$$M_D + M_C < M$$

pour la dépendance

$$\mathcal{M}_{\mathcal{D}} + \mathcal{M}_{\mathcal{G}} > \mathcal{M}$$



 \mathbf{c}_g et \mathbf{c}_d : deux *cfg* avec des piles strictement positives à gauche et à droite,

avec des configurations finales $\widehat{\mathbf{c}}_g$ et $\widehat{\mathbf{c}}_d$

 \mathbf{c}_m : un cfg avec des piles négatives ou nulles au milieu

Indépendance

Les \mathbf{c}_g et \mathbf{c}_d sont indépendants dans le cfg composé des trois blocs s'il existe une configuration $\widehat{\mathbf{c}}_m$ réduite telle que la configuration finale du *cfg* total est $\widehat{\mathbf{c}}_g \cdot \widehat{\mathbf{c}}_m \cdot \widehat{\mathbf{c}}_d$

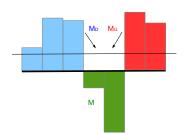
Des conditions suffisantes pour l'indépendance et la dépendance

pour l'indépendance :

$$M_D + M_C < M$$

pour la dépendance

$$M_D + M_C > M$$



 \mathbf{c}_g et \mathbf{c}_d : deux *cfg* avec des piles strictement positives à gauche et à droite, avec des configurations finales $\widehat{\mathbf{c}}_g$ et $\widehat{\mathbf{c}}_d$

 \mathbf{c}_m : un cfg avec des piles négatives ou nulles au milieu

Indépendance

Les \mathbf{c}_g et \mathbf{c}_d sont indépendants dans le cfg composé des trois blocs s'il existe une configuration $\widehat{\mathbf{c}}_m$ réduite telle que la configuration finale du *cfg* total est $\widehat{\mathbf{c}}_g \cdot \widehat{\mathbf{c}}_m \cdot \widehat{\mathbf{c}}_d$

Des conditions suffisantes pour l'indépendance et la dépendance :

pour l'indépendance :

$$\mathcal{M}_{\mathcal{D}} + \mathcal{M}_{\mathcal{G}} < \mathcal{M}$$

pour la dépendance :

$$\mathcal{M}_{\mathcal{D}} + \mathcal{M}_{\mathcal{G}} > \mathcal{M}$$

30 / 38

 \mathbf{c}_g et \mathbf{c}_d : deux *cfg* avec des piles strictement positives à gauche et à droite, avec des configurations finales $\widehat{\mathbf{c}}_g$ et $\widehat{\mathbf{c}}_d$

 \mathbf{c}_m : un cfg avec des piles négatives ou nulles au milieu

Indépendance

Les \mathbf{c}_g et \mathbf{c}_d sont indépendants dans le cfg composé des trois blocs s'il existe une configuration $\widehat{\mathbf{c}}_m$ réduite telle que la configuration finale du *cfg* total est $\widehat{\mathbf{c}}_g \cdot \widehat{\mathbf{c}}_m \cdot \widehat{\mathbf{c}}_d$

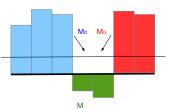
Des conditions suffisantes pour l'indépendance et la dépendance :

pour l'indépendance :

$$M_D + M_G < M$$

pour la dépendance

$$\mathcal{M}_{\mathcal{D}} + \mathcal{M}_{\mathcal{G}} > \mathcal{M}$$



30 / 38

 \mathbf{c}_q et \mathbf{c}_d : deux cfg avec des piles strictement positives à gauche et à droite, avec des configurations finales $\hat{\mathbf{c}}_a$ et $\hat{\mathbf{c}}_d$

 \mathbf{c}_m : un cfg avec des piles négatives ou nulles au milieu

Indépendance

Les c_a et c_d sont indépendants dans le cfg composé des trois blocs s'il existe une configuration \hat{c}_m réduite telle que la configuration finale du cfg total est $\hat{c}_q \cdot \hat{c}_m \cdot \hat{c}_d$

Des conditions suffisantes pour l'indépendance et la dépendance :

pour l'indépendance :

$$M_D + M_C < M$$

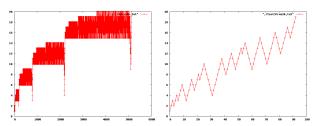
30 / 38

pour la dépendance :

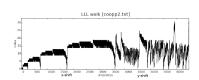
$$\mathcal{M}_{\mathcal{D}} + \mathcal{M}_{\mathcal{G}} > \mathcal{M}$$

Les entrées "à trous"

Marche aléatoire de l'indice sur le réseau de Coppersmith



Une grande partie de la réduction peut être effectuée indépendamment sur les blocs



L. Lhote (GREYC) journées DynA3S 31 / 38

- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- 3 Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - ullet Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

 ρ est fonction de r_i , ν_i fixé dans $[-\frac{1}{2},\frac{1}{2}]$

On pose :

$$x_i := r_i^2 = \frac{\ell_{i+1}^2}{\ell_i^2} \leftarrow \text{variable}, \qquad \check{x}_i := \check{r}_i^2 = \frac{\check{\ell}_{i+1}^2}{\check{\ell}_i^2}, \qquad \mu := \nu_i^2 \leftarrow \text{constant}$$

Le facteur de décroissance : $\rho = x_i + \mu$

Si
$$r_i^2 < \frac{1}{t^2} - \mu$$

$$\check{r}_{i-1} = \rho r_{i-1}$$

$$\check{r}_i = \frac{1}{\rho^2} r_i$$

$$\check{r}_{i+1} = \rho r_{i+1}.$$

Si
$$x_i < \frac{1}{t^2} - \mu$$

$$\check{x}_{i-1} = x_{i-1}(x_i + \mu)$$

$$\check{x}_i = \frac{x_i}{(x_i + \mu)^2}$$

$$\dot{x}_{i+1} = x_{i+1}(x_i + \mu)$$

 $\mathtt{M2}(t,\,\mu)$ modélise et analyse l'algorithme $\mathtt{LLL}(t)$ (également pour t=1) Le trou du système $\mathtt{M2}(t,\,\mu)$ (condition d'arrêt) est $(x_1,\ldots,x_{d-1})\in \left\lceil\frac{1}{t^2}-\mu,+\infty\right\rceil^{d-1}$.

 ρ est fonction de r_i , ν_i fixé dans $\left[-\frac{1}{2},\frac{1}{2}\right]$

On pose:

$$x_i := r_i^2 = \frac{\ell_{i+1}^2}{\ell_i^2} \leftarrow \text{variable}, \qquad \check{x}_i := \check{r}_i^2 = \frac{\check{\ell}_{i+1}^2}{\check{\ell}_i^2}, \qquad \mu := \nu_i^2 \leftarrow \text{constant}$$

Le facteur de décroissance : $\rho = x_i + \mu$

Si
$$r_i^2<rac{1}{t^2}-\mu$$
 $ilde{r}_{i-1}=
ho r_{i-1}$ $ilde{r}_i=rac{1}{
ho^2}r_i$ $ilde{r}_{i+1}=
ho r_{i+1}.$

 $M2(t, \mu)$

Si
$$x_i < \frac{1}{t^2} - \mu$$

 $\check{x}_{i-1} = x_{i-1}(x_i + \mu)$
 $\check{x}_i = \frac{x_i}{(x_i + \mu)^2}$
 $\check{x}_{i+1} = x_{i+1}(x_i + \mu)$

ho est fonction de r_i , u_i fixé dans $\left[-\frac{1}{2},\frac{1}{2}\right]$

On pose:

$$x_i := r_i^2 = rac{\ell_{i+1}^2}{\ell_i^2} \leftarrow ext{variable}, \qquad \check{x}_i := \check{r}_i^2 = rac{\check{\ell}_{i+1}^2}{\check{\ell}_i^2}, \qquad \mu :=
u_i^2 \leftarrow ext{constant}$$

Le facteur de décroissance : $\rho = x_i + \mu$

Si
$$r_i^2 < \frac{1}{t^2} - \mu$$
 $\check{r}_{i-1} = \rho r_{i-1}$ $\check{r}_i = \frac{1}{\rho^2} r_i$ $\check{r}_{i+1} = \rho r_{i+1}$.

 $M2(t, \mu)$

Si
$$x_i < \frac{1}{t^2} - \mu$$

 $\check{x}_{i-1} = x_{i-1}(x_i + \mu)$
 $\check{x}_i = \frac{x_i}{(x_i + \mu)^2}$
 $\check{x}_{i+1} = x_{i+1}(x_i + \mu)$

 $\mathtt{M2}(t,\,\mu)$ modélise et analyse l'algorithme $\mathtt{LLL}(t)$ (également pour t=1)

ho est fonction de r_i , u_i fixé dans $\left[-\frac{1}{2},\frac{1}{2}\right]$

On pose :

$$x_i := r_i^2 = rac{\ell_{i+1}^2}{\ell_i^2} \leftarrow ext{variable}, \qquad \check{x}_i := \check{r}_i^2 = rac{\check{\ell}_{i+1}^2}{\check{\ell}_i^2}, \qquad \mu :=
u_i^2 \leftarrow ext{constant}$$

Le facteur de décroissance : $\rho = x_i + \mu$

bissance :
$$\rho = x_i + \mu$$
 M2 (t, μ)

$$\begin{aligned} &\text{Si} \quad r_i^2 < \frac{1}{t^2} - \mu \\ &\check{r}_{i-1} = \rho r_{i-1} \\ &\check{r}_i = \frac{1}{\rho^2} r_i \\ &\check{r}_{i+1} = \rho r_{i+1}. \end{aligned}$$

Si
$$x_i < \frac{1}{t^2} - \mu$$

 $\check{x}_{i-1} = x_{i-1}(x_i + \mu)$
 $\check{x}_i = \frac{x_i}{(x_i + \mu)^2}$
 $\check{x}_{i+1} = x_{i+1}(x_i + \mu)$

33 / 38

 $\mathtt{M2}(t,\,\mu)$ modélise et analyse l'algorithme $\mathtt{LLL}(t)$ (également pour t=1) Le trou du système $\mathtt{M2}(t,\,\mu)$ (condition d'arrêt) est $(x_1,\ldots,x_{d-1})\in \left[\frac{1}{t^2}-\mu,+\infty\right[^{d-1}.$

Étude du modèle M2

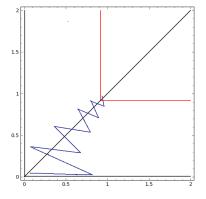
M2 n'est plus un tas de sable : c'est un système dynamique général, "à trou" Nous analysons ce modèle avec $\mu \le 1/4$:

- en dimension 2 : pour $t \ge 1$
 - des résultats similaires à ceux connus sur l'algorithme de Gauss
 - une distribution géométrique pour le nombre d'itérations
- ullet en dimension 3 : (le premier cas où l'algorithme LLL(t) n'est pas bien connu)
 - pour t ≥ 1 : le nombre d'étapes suit toujours une loi géométrique sauf pour des densités particulières
- \bullet en dimension d:
 - pour t>1 : l'asymptotique du nombre d'itérations du modèle ${\tt M2}(t,\mu)$, ce résultat n'étant pas connu pour ${\tt LLL}(t)$
 - le passage entre LLL(t) et LLL(1) est conjecturé.

Modèle M2 en dimension 3

$$T_1(x,y) = \left(\frac{x}{(x+\mu)^2}, y(x+\mu)\right)$$

si $x < \frac{1}{t^2} - \mu$



$$T_1(x,y) = \left(\frac{x}{(x+\mu)^2}, y(x+\mu)\right), \quad T_2(x,y) = \left(x(y+\mu), \frac{y}{(y+\mu)^2}\right)$$

$$\operatorname{si} \quad x < \frac{1}{t^2} - \mu \qquad \qquad \operatorname{si} \quad y < \frac{1}{t^2} - \mu$$

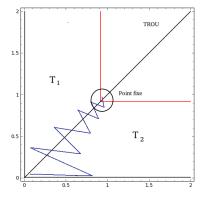
$$\mathcal{O}_{\mu,t}^2 = \{(x,y): x \ge \frac{1}{t^2} - \mu; y \ge \frac{1}{t^2} - \mu\}.$$

(si
$$x \leq y$$
 on applique T_1 , sinon T_2)

alors
$$\frac{\check{x}\check{y}}{xy} = \frac{1}{\min(x,y) + \mu} > 1$$

Modèle M2 en dimension 3

$$T_1(x,y) = \left(\frac{x}{(x+\mu)^2}, y(x+\mu)\right)$$
si $x < \frac{1}{t^2} - \mu$



$$\begin{split} T_1(x,y) &= \left(\frac{x}{(x+\mu)^2}, y(x+\mu)\right), \quad T_2(x,y) = \left(x(y+\mu), \frac{y}{(y+\mu)^2}\right) \\ &\text{si} \quad x < \frac{1}{t^2} - \mu \qquad \qquad \text{si} \quad y < \frac{1}{t^2} - \mu \end{split}$$

$$\mathcal{O}_{\mu,t}^2 = \{(x,y): x \ge \frac{1}{t^2} - \mu; y \ge \frac{1}{t^2} - \mu\}.$$

La stratégie gloutonne :

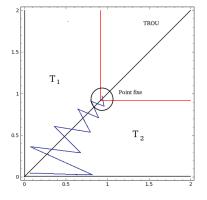
(si
$$x \leq y$$
 on applique T_1 , sinon T_2)

alors
$$\frac{\check{x}\check{y}}{xy} = \frac{1}{\min(x,y) + \mu} > 1$$

xy joue le même rôle que \mathcal{E} (l'énergie d'un cfg) et Δ (le potentiel d'une base)

Modèle M2 en dimension 3

$$T_1(x,y) = \left(\frac{x}{(x+\mu)^2}, y(x+\mu)\right)$$
si $x < \frac{1}{t^2} - \mu$



$$\begin{split} T_1(x,y) &= \left(\frac{x}{(x+\mu)^2}, y(x+\mu)\right), \quad T_2(x,y) = \left(x(y+\mu), \frac{y}{(y+\mu)^2}\right) \\ &\text{si} \quad x < \frac{1}{t^2} - \mu \qquad \qquad \text{si} \quad y < \frac{1}{t^2} - \mu \end{split}$$

$$\mathcal{O}_{\mu,t}^2 = \{(x,y): x \ge \frac{1}{t^2} - \mu; y \ge \frac{1}{t^2} - \mu\}.$$

La stratégie gloutonne :

(si
$$x \leq y$$
 on applique T_1 , sinon T_2)

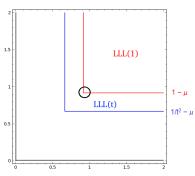
alors
$$\frac{\check{x}\check{y}}{xy} = \frac{1}{\min(x,y) + \mu} > 1$$

xy joue le même rôle que \mathcal{E} (l'énergie d'un cfg) et Δ (le potentiel d'une base)

Difficulté : point fixe attractif $(1 - \mu, 1 - \mu)$

35 / 38 L. Lhote (GREYC) iournées DvnA3S

Hyperbole:
$$\mathcal{D}_{t,\mu} = \{(x,y) \in I_{\mu} \times I_{\mu} \mid xy \geq (\frac{1}{t^2} - \mu)^2 \}$$

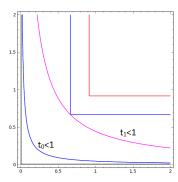


idée de la preuve (trois phases

- ullet jusqu'au $\mathcal{D}_{t,\mu}$, t>1 (LLL(t))
- ullet passage de $\mathcal{D}_{t,\mu}$ à $\mathcal{D}_{1,\mu}$
- entre $\mathcal{D}_{1,\mu}$ et le trou (LLL(1))

L. Lhote (GREYC) journées DynA3S 36 / 38

Hyperbole :
$$\mathcal{D}_{t,\mu} = \{(x,y) \in I_{\mu} \times I_{\mu} \mid xy \geq (\frac{1}{t^2} - \mu)^2\}$$



le nombre d'itérations $K_{t,u}$ du

idée de la preuve (trois phases)

- jusqu'au $\mathcal{D}_{t,\mu}$, t > 1 (LLL(t))
- passage de $\mathcal{D}_{t,\mu}$ à $\mathcal{D}_{1,\mu}$
- entre $\mathcal{D}_{1,\mu}$ et le trou (LLL(1))

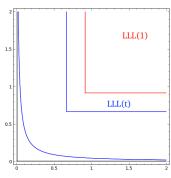
système dynamique $M2(t, \mu)$ satisfait : $K_{t,\mu}(x,y) = \log_{\mu} xy + O(1)$

Pour t > 1 et $\mu \le 1/4$, lorsque $xy \to 0$

$$K_{t,\mu}(x,y) = \log_{\mu} xy + O(1)$$

36 / 38

Hyperbole :
$$\mathcal{D}_{t,\mu} = \{(x,y) \in I_{\mu} \times I_{\mu} \mid xy \geq (\frac{1}{t^2} - \mu)^2\}$$



le nombre d'itérations $K_{t,\mu}$ du système dynamique $\mathtt{M2}(t,\mu)$ satisfait :

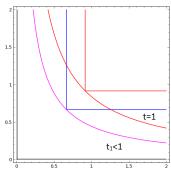
Pour t > 1 et $\mu \le 1/4$, lorsque $xy \to 0$

 $K_{t,\mu}(x,y) = \log_{\mu} xy + O(1)$

idée de la preuve (trois phases)

- ullet jusqu'au $\mathcal{D}_{t,\mu}$, t>1 (LLL(t))
- passage de $\mathcal{D}_{t,\mu}$ à $\mathcal{D}_{1,\mu}$
- entre $\mathcal{D}_{1,\mu}$ et le trou (LLL(1))

Hyperbole :
$$\mathcal{D}_{t,\mu} = \{(x,y) \in I_{\mu} \times I_{\mu} \mid xy \ge (\frac{1}{t^2} - \mu)^2\}$$



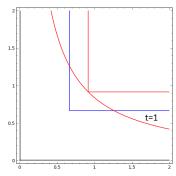
idée de la preuve (trois phases)

- jusqu'au $\mathcal{D}_{t,\mu}$, t > 1 (LLL(t))
- passage de $\mathcal{D}_{t,\mu}$ à $\mathcal{D}_{1,\mu}$
- entre $\mathcal{D}_{1,\mu}$ et le trou (LLL(1))

Pour $t \in]1, 2/\sqrt{3}[$ en partant d'un point $(x,y) \in \mathcal{D}_{t,u}$, le système applique alternativement les fonctions T_1 et T_2

Pour tout $\mu \in]0,1/4]$, il existe $t_1 \leq 2/\sqrt{3}$ pour lequel, pour tout $t < t_1$, le système M2(1, μ) effectue au plus 3 itérations sur $\mathcal{D}_{t,\mu}$.

Hyperbole :
$$\mathcal{D}_{t,\mu} = \{(x,y) \in I_{\mu} \times I_{\mu} \mid xy \ge (\frac{1}{t^2} - \mu)^2\}$$

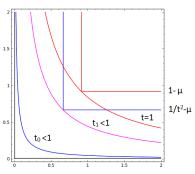


Le système dynamique $M2(1, \mu)$ effectue au plus une itération sur le domaine $\mathcal{D}_{1,\mu}$.

idée de la preuve (trois phases)

- jusqu'au $\mathcal{D}_{t,\mu}$, t > 1 (LLL(t))
- passage de $\mathcal{D}_{t,\mu}$ à $\mathcal{D}_{1,\mu}$
- entre $\mathcal{D}_{1,\mu}$ et le trou (LLL(1))

Hyperbole :
$$\mathcal{D}_{t,\mu} = \{(x,y) \in I_{\mu} \times I_{\mu} \mid xy \ge (\frac{1}{t^2} - \mu)^2\}$$



idée de la preuve (trois phases)

- jusqu'au $\mathcal{D}_{t,\mu}$, t > 1 (LLL(t))
- passage de $\mathcal{D}_{t,\mu}$ à $\mathcal{D}_{1,\mu}$
- entre $\mathcal{D}_{1,\mu}$ et le trou (LLL(1))

Pour t > 1 et $\mu < 1/4$, lorsque $xy \to 0$ le nombre d'itérations $K_{t,\mu}$ du système dynamique $M2(t, \mu)$ satisfait :

$$K_{t,\mu}(x,y) = \log_{\mu} xy + O(1)$$

Pour tout $\mu \in]0, 1/4]$, il existe $t_1 \leq 2/\sqrt{3}$ pour lequel, pour tout $t \leq t_1$, le système M2(1, μ) effectue au plus 3 itérations sur $\mathcal{D}_{t,\mu}$.

Le système dynamique M2 $(1, \mu)$ effectue au plus une itération sur le domaine $\mathcal{D}_{1,\mu}$.

Proposition

Pour $t \ge 1$ et $\mu \le 1/4$, le nombre d'itérations $K_{t,\mu}$ du système dynamique $\mathtt{M2}(t,\mu)$ satisfait : $K_{t,\mu}(x,y) = \log_{\mu} xy + O(1)$ lorsque $xy \to 0$ où la constante du O est uniforme pour $t \to 1$.

Le nombre d'itérations $K_{t,\mu}$ suit une loi asymptotiquement géométrique si (x,y) est distribué selon des lois puissances de paramètre r alors

- ullet $K_{t,\mu}$ suit asymptotiquement une loi géométrique de raison μ^r
- ullet la raison de la loi ne dépend que de μ et non de t

En dimension d

Une extension naturelle de la "quantité qui augmente" en dimension supérieure :

$$P(\mathbf{x}) := \prod_{i=1}^{d-1} x_i^{i(d-i)} = \prod_{i=1}^{d-1} r_i^{2i(d-i)},$$

Pour la stratégie gloutonne :

$$P(T(\mathbf{x})) = \frac{P(\mathbf{x})}{\min(x_i + \mu)^2} > P(\mathbf{x}),$$

Pour t>1 et $\mu \leq 1/4$, pour tout $d\geq 3$ lorsque $P(\mathbf{x})\to 0$ le nombre d'itérations $K_{t,\mu}$ du système dynamique $\mathrm{M2}(t,\mu)$ satisfait :

$$K_{t,\mu}(\mathbf{x}) = \frac{1}{2} \log_{\mu} P(\mathbf{x}) + O(1)$$

K pire des cas $LLL(t)$	K pour $\mathrm{M1}(\alpha)$	K pour $\mathrm{M2}(\mu)$
$\frac{1}{\log t} \log \frac{\Delta(B)}{\Delta(\widehat{B})}$	$\frac{1}{2\alpha}\log\frac{\Delta(B)}{\Delta(\widehat{B})}$	$\frac{1}{ \log \mu } \log \frac{\Delta(B)}{\Delta(\widehat{B})}$

t = 1?

L. Lhote (GREYC) journées DynA3S 38 / 38

En dimension d

Une extension naturelle de la "quantité qui augmente" en dimension supérieure :

$$P(\mathbf{x}) := \prod_{i=1}^{d-1} x_i^{i(d-i)} = \prod_{i=1}^{d-1} r_i^{2i(d-i)},$$

Pour la stratégie gloutonne :

$$P(T(\mathbf{x})) = \frac{P(\mathbf{x})}{\min(x_i + \mu)^2} > P(\mathbf{x}),$$

Pour t > 1 et $\mu \le 1/4$, pour tout $d \ge 3$ lorsque $P(\mathbf{x}) \to 0$ le nombre d'itérations $K_{t,\mu}$ du système dynamique $M2(t, \mu)$ satisfait :

$$K_{t,\mu}(\mathbf{x}) = \frac{1}{2} \log_{\mu} P(\mathbf{x}) + O(1)$$

K pire des cas $LLL(t)$	K pour $\mathrm{M1}(\alpha)$	K pour $\mathrm{M2}(\mu)$
$\frac{1}{\log t} \log \frac{\Delta(B)}{\Delta(\widehat{B})}$	$\frac{1}{2\alpha}\log\frac{\Delta(B)}{\Delta(\widehat{B})}$	$\frac{1}{ \log \mu } \log \frac{\Delta(B)}{\Delta(\widehat{B})}$

En dimension d

Une extension naturelle de la "quantité qui augmente" en dimension supérieure :

$$P(\mathbf{x}) := \prod_{i=1}^{d-1} x_i^{i(d-i)} = \prod_{i=1}^{d-1} r_i^{2i(d-i)},$$

Pour la stratégie gloutonne :

$$P(T(\mathbf{x})) = \frac{P(\mathbf{x})}{\min(x_i + \mu)^2} > P(\mathbf{x}),$$

Pour t > 1 et $\mu \le 1/4$, pour tout $d \ge 3$ lorsque $P(\mathbf{x}) \to 0$ le nombre d'itérations $K_{t,\mu}$ du système dynamique $M2(t, \mu)$ satisfait :

$$K_{t,\mu}(\mathbf{x}) = \frac{1}{2} \log_{\mu} P(\mathbf{x}) + O(1)$$

K pire des cas $LLL(t)$	K pour $\mathtt{M1}(\alpha)$	K pour M2 (μ)
$\frac{1}{\log t} \log \frac{\Delta(B)}{\Delta(\widehat{B})}$	$\frac{1}{2\alpha}\log\frac{\Delta(B)}{\Delta(\widehat{B})}$	$\frac{1}{ \log \mu } \log \frac{\Delta(B)}{\Delta(\widehat{B})}$

t = 1?

$$\widetilde{\Upsilon} = \log \prod r_i = rac{1}{\log s} \Upsilon$$
 $s =$ paramètre condition de Siegel

Modèles	K pire des cas	K pour $\mathtt{M1}(\alpha)$	K pour $\mathrm{M2}(\mu)$	K exp.
$\mathcal{A}(\widetilde{\Upsilon},d)$	$\frac{1}{12\log t}d(d+1)\widetilde{\Upsilon}$	$\frac{1}{12\alpha}d(d+1)\widetilde{\Upsilon}$	$\frac{1}{6 \log \mu }d(d+1)\widetilde{\Upsilon}$	$\Theta(d^2\widetilde{\Upsilon})$
$\mathcal{N}(\widetilde{\Upsilon},d)$	$\frac{1}{8\log t}d^2\widetilde{\Upsilon}$	$\frac{1}{8\alpha} d^2 \widetilde{\Upsilon}$	$\frac{1}{4 \log\mu }d^2\widetilde{\Upsilon}$	$\Theta(d^2\widetilde{\Upsilon})$
$\mathcal{K}(\widetilde{\Upsilon},d)$	$rac{1}{2\log t}d\widetilde{\Upsilon}$	$\frac{1}{2\alpha}d\widetilde{\Upsilon}$	$\frac{1}{ \log \mu }d\widetilde{\Upsilon}$	$\Theta(d\widetilde{\Upsilon})$

TABLE: La réduction est supposée difficile : $\widetilde{\Upsilon}/d^a \to \infty$ avec a=1 pour les modèles \mathcal{A}, \mathcal{N} et a=2 pour le modèle \mathcal{K} .

$$\mathcal{A}=$$
Ajtaï (grands-tas), $\mathcal{N}=$ NTRU (uni-tas au milieu), $\mathcal{K}=$ Sac-à-dos (uni-tas au début)

L. Lhote (GREYC) journées DynA3S 39 / 38

- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - ullet Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

Modèle M3 : systèmes dynamiques probabilistes

 ρ est fonction de r_i , ν_i est uniforme dans $\left[-\frac{1}{2},\frac{1}{2}\right]$

On pose:

$$x_i := r_i^2 = \frac{\ell_{i+1}^2}{\ell_i^2} \leftarrow \text{variable}, \qquad \check{x}_i := \check{r}_i^2 = \frac{\check{\ell}_{i+1}^2}{\check{\ell}_i^2}, \qquad \mu_i := \nu_i^2 \quad \text{avec} \quad \nu_i \in_R [-\frac{1}{2}, \frac{1}{2}]$$

$$i \coloneqq r_i \equiv rac{ec{\ell}_i^2}{ec{\ell}_i^2}, \qquad \mu_i \coloneqq
u_i \quad \mathsf{avec}$$

Si
$$x_i < \frac{1}{t^2} - \mu_i$$

 $\check{x}_{i-1} = x_{i-1}(x_i + \mu_i)$
 $\check{x}_i = \frac{x_i}{(x_i + \mu_i)^2}$
 $\check{x}_{i+1} = x_{i+1}(x_i + \mu_i)$

- Le facteur de décroissance : $\rho = x_i + \mu_i$
- M3(t) modélise et analyse l'algorithme LLL(t)
- Le trou du système $M2(t, \mu)$ (condition d'arrêt)

$$(x_1,\ldots,x_{d-1}),\;(\mu_1,\ldots,\mu_{d_1})\;\;\;$$
 tels que

$$\forall i = 1, \dots, d-1, \quad x_i \in \left[\frac{1}{t^2} - \mu_i, +\infty\right].$$

41 / 38 L. Lhote (GREYC) iournées DvnA3S

Modèle M3 : systèmes dynamiques probabilistes

 ρ est fonction de r_i , ν_i est uniforme dans $\left[-\frac{1}{2},\frac{1}{2}\right]$

On pose:

$$x_i := r_i^2 = \frac{\ell_{i+1}^2}{\ell_i^2} \leftarrow \text{variable}, \qquad \check{x}_i := \check{r}_i^2 = \frac{\check{\ell}_{i+1}^2}{\check{\ell}_i^2}, \qquad \mu_i := \nu_i^2 \quad \text{avec} \quad \nu_i \in_R [-\frac{1}{2}, \frac{1}{2}]$$

$$\dot{\ell}:=T_i=rac{ec{\ell}_i^2}{ec{\ell}_i^2}, \qquad \mu_i:=
u_i$$
 at

M3(t)

$$\mathrm{Si} \quad x_i < \frac{1}{t^2} - \mu_i$$

$$\dot{x}_{i-1} = x_{i-1}(x_i + \mu_i)$$

$$\check{x}_i = \frac{x_i}{(x_i + \mu_i)^2}$$

$$\dot{x}_{i+1} = x_{i+1}(x_i + \mu_i)$$

Générer un nouveau μ_i

• Le facteur de décroissance :
$$\rho = x_i + \mu_i$$

- M3(t) modélise et analyse l'algorithme LLL(t) (également pour t=1)
- Le trou du système M2 (t, μ) (condition d'arrêt) est

$$(x_1,\ldots,x_{d-1}),\;(\mu_1,\ldots,\mu_{d_1})$$
 tels que

$$\forall i = 1, \dots, d-1, \quad x_i \in \left[\frac{1}{t^2} - \mu_i, +\infty\right].$$

Modèle M3 : systèmes dynamiques probabilistes

 ρ est fonction de r_i , ν_i est uniforme dans $\left[-\frac{1}{2},\frac{1}{2}\right]$

On pose:

$$x_i := r_i^2 = rac{\ell_{i+1}^2}{\ell_i^2} \leftarrow \mathsf{variable},$$

$$\operatorname{Si} \quad x_i < \frac{1}{t^2} - \mu_i$$

$$\dot{x}_{i-1} = x_{i-1}(x_i + \mu_i)$$

$$\check{x}_i = \frac{x_i}{(x_i + \mu_i)^2}$$

$$\dot{x}_{i+1} = x_{i+1}(x_i + \mu_i)$$

Générer un nouveau μ_i

$$x_i := r_i^2 = \frac{\ell_{i+1}^2}{\ell_i^2} \leftarrow \text{variable}, \qquad \check{x}_i := \check{r}_i^2 = \frac{\check{\ell}_{i+1}^2}{\check{\ell}_i^2}, \qquad \mu_i := \nu_i^2 \quad \text{avec} \quad \nu_i \in_R \left[-\frac{1}{2}, \frac{1}{2}\right]$$

- Le facteur de décroissance : $\rho = x_i + \mu_i$
- M3(t) modélise et analyse l'algorithme LLL(t) (également pour t=1)
- Le trou du système $M2(t, \mu)$ (condition d'arrêt) est

$$(x_1,\ldots,x_{d-1}),\;(\mu_1,\ldots,\mu_{d_1})$$
 tels que

$$\forall i = 1, \dots, d-1, \quad x_i \in \left[\frac{1}{t^2} - \mu_i, +\infty\right].$$

C'est un système dynamique probabiliste dans \mathbb{R}^{d-1} , à trou, chaque transformation ayant un point fixe attractif

Modèle M3 : résultats

Aucun!

Posons $K(\mathbf{x})$ le nombre d'itérations sur l'entrée $\mathbf{x} = (x_1, \dots, x_{d-1})$

Posons P_0 le potentiel tel que $P(\mathbf{x}) \geq P_0 \Rightarrow \mathbf{x}$ est "presque réduit"

Considérons une suite i.i.d. de variables aléatoires $(\mu_i = \nu_i^2)_i$ telle que ν_i suit la même lo uniforme sur $[-\frac{1}{2},\frac{1}{2}]$.

Considérons le temps d'arrêt $T(\mathbf{x})$ défini comme le plus petit k tel que

$$P_0 \prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Conjecture : $\mathbb{E}\left[K
ight] \sim \mathbb{E}\left[T
ight]$

L. Lhote (GREYC) journées DynA3S 43 / 38

Posons $K(\mathbf{x})$ le nombre d'itérations sur l'entrée $\mathbf{x}=(x_1,\ldots,x_{d-1})$

Posons P_0 le potentiel tel que $P(\mathbf{x}) \geq P_0 \Rightarrow \mathbf{x}$ est "presque réduit"

Considérons une suite i.i.d. de variables aléatoires $(\mu_i = \nu_i^2)_i$ telle que ν_i suit la même la uniforme sur $[-\frac{1}{2},\frac{1}{2}]$.

Considérons le temps d'arrêt $T(\mathbf{x})$ défini comme le plus petit k tel que

$$P_0 \prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Conjecture : $\mathbb{E}\left[K
ight] \sim \mathbb{E}\left[T
ight]$

Posons $K(\mathbf{x})$ le nombre d'itérations sur l'entrée $\mathbf{x} = (x_1, \dots, x_{d-1})$

Posons P_0 le potentiel tel que $P(\mathbf{x}) \geq P_0 \Rightarrow \mathbf{x}$ est "presque réduit"

Considérons une suite i.i.d. de variables aléatoires $(\mu_i = \nu_i^2)_i$ telle que ν_i suit la même loi uniforme sur $[-\frac{1}{2},\frac{1}{2}]$.

Considérons le temps d'arrêt $T(\mathbf{x})$ défini comme le plus petit k tel que

$$P_0 \prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Conjecture : $\mathbb{E}\left[K
ight] \sim \mathbb{E}\left[T
ight]$

Posons $K(\mathbf{x})$ le nombre d'itérations sur l'entrée $\mathbf{x} = (x_1, \dots, x_{d-1})$

Posons P_0 le potentiel tel que $P(\mathbf{x}) \geq P_0 \Rightarrow \mathbf{x}$ est "presque réduit"

Considérons une suite i.i.d. de variables aléatoires $(\mu_i = \nu_i^2)_i$ telle que ν_i suit la même loi uniforme sur $[-\frac{1}{2},\frac{1}{2}]$.

Considérons le temps d'arrêt $T(\mathbf{x})$ défini comme le plus petit k tel que

$$P_0 \prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Conjecture : $\mathbb{E}\left[K
ight] \sim \mathbb{E}\left[T
ight]$

Posons $K(\mathbf{x})$ le nombre d'itérations sur l'entrée $\mathbf{x} = (x_1, \dots, x_{d-1})$

Posons P_0 le potentiel tel que $P(\mathbf{x}) \geq P_0 \Rightarrow \mathbf{x}$ est "presque réduit"

Considérons une suite i.i.d. de variables aléatoires $(\mu_i = \nu_i^2)_i$ telle que ν_i suit la même loi uniforme sur $[-\frac{1}{2},\frac{1}{2}]$.

Considérons le temps d'arrêt $T(\mathbf{x})$ défini comme le plus petit k tel que

$$P_0 \prod_{i=1}^k \mu_i < P(\mathbf{x}).$$

Conjecture : $\mathbb{E}[K] \sim \mathbb{E}[T]$

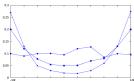
- Algorithme LLL
 - Réduction des réseaux
 - Exemple d'application
 - Algorithme LLL
- Modélisations de l'algorithme LLL et de ses entrées
 - Modèles d'exécution (part 1)
 - Modèles d'entrée
- Résultats obtenus dans les différents modèles
 - Modèle M1 : cfg/tas de sable
 - Modèle M1 et modèles d'entrée
 - ullet Modèle M2 : système dynamique de \mathbb{R}^d
 - ullet Modèle M3 : systèmes dynamiques probabilistes de \mathbb{R}^d
- Conclusion

Conclusion

- Une classe de modèles simplifiés pour l'exécution de l'algorithme :
 - du plus simple : cfg
 - au plus compliqué : l'algorithme LLL
- Étude d'un modèle semi-simplifié d'exécution :
 - ullet une analyse totale pour d=3
 - où l'analyse du véritable algorithme LLL est déjà mal comprise
 - analyse partielle en dimension générale.
- Modélisation des familles de réseaux cryptographiques, dans le cadre d'un cfg
 - "tas plein" : dit réseaux d'Ajtai
 - "uni-tas" : sac-à-dos ou réseaux NTRU
 - "tas à trous" : de Coppersmith :

Perspectives

- Modélisation d'autres algorithmes de réduction de réseaux (DeepLLL)
- ullet Pour le modèle M2, prouver la conjecture, qui permettrait d'avoir un modèle simplifié pour l'algorithme LLL associé au paramètre t=1
- Analyser le modèle M3
- Modèle de l'évolution du coefficient sous diagonal (Brigitte?)



Merci pour votre attention!