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The transfer operator (I).

Density Transformer:

For a density f on [0, 1], H[f ] is the density on [0, 1]

after one iteration of the shift

H[f ](x) =
∑
h∈H

|h′(x)| f◦h(x) =
∑
m∈N

1

(m+ x)2
f(

1

m+ x
).

Transfer operator (Ruelle):

Hs[f ](x) =
∑
h∈H

|h′(x)|s f ◦ h(x).

The k-th iterate satisfies:

Hk
s [f ](x) =

∑
h∈Hk

|h′(x)|s f ◦ h(x)



The transfer operator (II)

The density transformer H expresses the new density f1 as a function of

the old density f0, as f1 = H[f0]. It involves the set H

H : H[f ](x) :=
∑
h∈H

|h′(x)| · f ◦ h(x)

With a cost c : H → R+ extended to H? by additivity,

it gives rise to the weighted transfer operator

Hs,w : Hs,w[f ](x) :=
∑
h∈H

exp[wc(h)] · |h′(x)|s · f ◦ h(x)

{
Multiplicative properties of the derivative

Additive properties of the cost

}
=⇒

Hn
s,w[f ](x) :=

∑
h∈Hn

exp[wc(h)] · |h′(x)|s · f ◦ h(x)

The n–th iterate of Hs,w generates the CFs of depth n.

The quasi inverse (I−Hs,w)−1 =
∑
n≥0 H

n
s,w generates all the finite CFs.



Properties of the dynamical system: the Good Class

Mh := sup{|h′(x)|, x ∈ X}

(1) Uniform contraction.

∀h ∈ H, Mh ≤ 1

∃ρ < 1, n0 ≥ 1 Mh ≤ ρ ∀h ∈ Hn0

(2) Bounded distortion.

∃K > 0,∀h ∈ H,∀x ∈ X, |h′′(x)| ≤ K |h′(x)|.

(3) Convergence on the left of <s = 1.

∃σ0 < 1,∀σ > σ0,
∑
h∈H

Mσ
h <∞



Properties of the cost

A cost c : H → R+ first defined on H,

then extended to H? by additivity c(h ◦ k) := c(h) + c(k).

A cost is of moderate growth if c(h) = O(| logMh|)



What is needed on the operator Hs,w for the analysis of the algorithm?

For the average case,

only properties on (I −Hs)
−1 for <s ≥ 1 and near s = 1

For the distributional analysis,

additional properties on (I −Hs,w)−1 on the left of <s = 1.



Quasi-Compactness

For an operator L,

– the spectrum Sp(L) := {λ ∈ C; L− λI non inversible}

– the spectral radius R(L) := sup{|λ|, λ ∈ Sp(L)}

– the essential spectral radius Re(L) = the smallest r > 0 s.t

any λ ∈ Sp(L) with |λ| > r is an isolated eigenvalue of finite multiplicity.

– For compact operators, the essential radius equals 0.

– L is quasi-compact if the inequality Re(L) < R(L) holds.

Then, outside the closed disk of radius Re(L), the spectrum of the operator

consists of isolated eigenvalues of finite multiplicity.



Sufficient conditions for quasi-compactness

A theorem, due to Hennion:

Suppose that the Banach space F
– is endowed with two norms, a weak norm |.| and a strong norm ||.||,
– and the unit ball of (F , ||.||) is precompact in (F , |.|).

If L is a bounded operator on (F , ||.||) for which there exist two sequences

{rn ≥ 0} and {tn ≥ 0} s.t.

||Ln[f ]|| ≤ rn · ||f ||+ tn · |f | ∀n ≥ 1,∀f ∈ F ,

Then: Re(L) ≤ r := lim
n→∞

inf (rn)1/n.

If R(L) > r, then the operator L is quasi-compact on (F , ||.||).

For systems of the Good Class, F := C1(X),

– the weak norm is the sup-norm ||f ||0 := sup |f(t)|,
– the strong norm is the norm ||f ||1 := sup |f(t)|+ sup |f ′(t)|.
– the density transformer satisfies the hypotheses of Hennion’s Theorem.



Main Analytical Properties of Hs,w for a dynamical system

of the Good Class and a digit-cost c of moderate growth.

Hs,w acts on C1(I) for <s > σ0 and <w small enough

The map (s, w) 7→ Hs,w is analytic near the reference point (1, 0)

For s and w real, the operator is quasi–compact. Thus:

Property UDE : Unique dominant eigenvalue λ(s, w),

Property SG : Existence of a spectral gap.

With perturbation theory, this remains true for (s, w) near (1, 0),

(s, w) 7→ λ(s, w) is analytic.

A spectral decomposition Hs,w = λ(s, w) ·Ps,w + Ns,w.

Ps,w is the projector on the dominant eigensubspace.

Ns,w is the operator relative to the remainder of the spectrum,

whose spectral radius ρs,w satisfies ρs,w ≤ θλ(s, w) with θ < 1.

.....which extends to all n ≥ 1, Hn
s,w = λn(s, w) ·Ps,w + Nn

s,w.



Unique Dominant
Eigenvalue

Spectral Gap



Then, a Quasi–Power Property

Hn
s,w[f ] = λn(s, w) ·Ps,w[f ] · [1 +O(θn)]

and, a decomposition for the quasi–inverse

(I −Hs,w)−1 = λ(s, w)
Ps,w

1− λ(s, w)
+ (I −Ns,w)−1

Since H1,0 is a density transformer, one has

λ(1, 0) = 1, P1,0[f ](x) = Ψ(x) ·
∫
I

f(t)dt

“Dominant” (polar) singularities of (I − Hs,w)−1 near the point (1, 0):

along a curve s = σ(w) on which the dominant eigenvalue satisfies

λ(σ(w), w) = 1



Another important condition: the Aperiodicity condition:

On the line <s = 1, 1 6∈ SpHs.



The triple UDE + SG+ Aperiodicity entails good properties for (I −Hs)
−1,

sufficient for applying Tauberian Theorems

s = 1 is the only pole

on the line <s = 1

Expansion near the pole s = 1

(I −Hs)
−1 ∼ a

s− 1

Half–plane of convergence <s > 1

No hypothesis needed

on the half–plane <s < 1.

s=1



Property US(s, w) : Uniformity on Vertical Strips

There exist α > 0, β > 0 such that,

on the vertical strip S := {s; |<(s)− 1| < α},
and uniformly when w ∈ W := {w; |<w] < β},

(i) [Strong aperiodicity] s 7→ (I −Hs,w)−1 has a unique pole inside S;

it is located at s = σ(w) defined by λ(σ(w), w) = 1.

(ii) [Uniform polynomial estimates] For any γ > 0, there exists ξ > 0 s.t,

(I −Hs,w)−1[1] = O(|=s|ξ) ∀s ∈ S, |t| > γ, w ∈ W

With the Property US,

it is easy to deform the contour of the Perron Formula

and use Cauchy’s Theorem . . .



Near w = 0, the function σ is defined by λ(σ(w), w) = 1

s = σ(w) is the only pole

on the strip |<s− 1| ≤ α

Expansion

near the pole s = σ(w)

(I−Hs,w)−1 ∼ a

s− σ(w)

Half–plane of

convergence <s > σ(w)

Uniform polynomial estimates

needed on the left domain

1− α ≤ <s ≤ 1, |=s| ≥ γ. !
!

1



Property US(s) is not always true

Item (i) is always false for Dynamical Systems with affine branches.

Example: Location of poles of (I −Hs)
−1 near <s = 1

in the case of affine branches of slopes 1/p and 1/q with p+ q = 1.

Two main cases

If
log p

log q
∈ Q If

log p

log q
6∈ Q

Regularly spaced poles Only one pole at s = 1

on <s = 1 on <s = 1

but accumulation of poles

on the left of <s = 1



Three main facts.

(a) There exist various conditions, (introduced by Dolgopyat),

the Conditions UNI that express that

“the dynamical system is quite different from a system

with piecewise affine branches”

(b) For a good Dynamical system

[complete, strongly expansive, with bounded distortion],

Conditions UNI imply the Uniform Property US(s, w).

(c) Conditions UNI are true in the Euclid context.



Dolgopyat (98) proves the Item (b) but

– only for Dynamical Systems with a finite number of branches

– He considers only the US(s) Property

Baladi-Vallée adapt his arguments to generalize this result:

For a Dynamical System

with a denumerable number of branches (possibly infinite),

Conditions UNI [Strong or Weak] imply US(s, w).



Precisions about the UNI Conditions

Distance ∆. ∆(h, k) := inf
x∈I

Ψ′h,k(x), with Ψh,k(x) := log
|h′(x)]

|k′(x)|

Contraction ratio ρ. ρ := lim sup ({max |h′(x)|;h ∈ Hn, x ∈ I})1/n .

Probability Prn on Hn ×Hn. Prn(h, k) := |h(I)| · |k(I)|

For a system C2–conjugated with a piecewise-affine system :

For any ρ̂ with ρ < ρ̂ < 1, for any n, Prn[∆ < ρ̂n] = 1

Strong Condition UNI.

For any ρ̂ with ρ < ρ̂ < 1, for any n, Prn[∆ < ρ̂n] << ρ̂n

Weak Condition UNI.

∃D > 0,∃n0 ≥ 1 , ∀n ≥ n0, Prn[∆ ≤ D] < 1.



The main ideas to prove

UNI Condition =⇒ Vertical Strip with Polynomial Growth.

(I) Using the L2 norm.

Study

∫
I
|Hn

s,w[f ](x)|2dx, s = σ + it, w = ν + iτ

There are two parts in the double sum

|Hn
s,w[f ]|2 =

∑
(h,k)∈Hn×Hn

exp[wc(h) + w̄c(k)] · exp[itΨh,k(x)] ·Rh,k(x) ,

with Ψh,k(x) := log
|h′(x)|
|k′(x)|

, ∆(h, k) := inf
x∈I

Ψ′h,k(x) .

– the part brought by the “close” pairs (h, k) (with ∆(h, k) small)

With the UNI Condition, there are ”few” close pairs

– the part brought by the other pairs, (with ∆(h, k) large and a lower

bound for Ψ′k,k). Then, there are oscillatory integrals

I(h,k) =

∫
I

exp[itΨh,k(x)] Rh,k(x) dx



Van der Corput Lemma [Stein]

Oscillatory integrals.

I(t) =

∫
I

exp[itΨ(x)] r(x) dx

with t ∈ R and

(i) Ψ ∈ C2(I), |Ψ′′(x)| ≤ Q, |Ψ′(x)| ≥ ∆ with |t|−1 ≤ ∆ ≤ 1

(ii) r ∈ C∞(I) with ||r||0 ≤ R , ||r||1,1 ≤ RD

Then |I(t)| ≤ RC(Q)

[
D + 1

|t|∆
+

1

|t|∆2

]
.

wth a uniform bound C(Q)



The main ideas to prove

UNI Condition =⇒ Vertical Strip with Polynomial Growth.

(II) From the L2 norm to other norms.

More standard. Seems easy to extend...



The UNI Condition in the Euclidean context.

For two LFT’s h1 and h2, with hi(x) = (aix+ bi)/(cix+ di), we have

Ψ′h1,h2
(x) =

∣∣∣∣h′′1h′1 (x)− h′′2
h′2

(x)

∣∣∣∣ =
|c1d2 − c2d1|

|(c1x+ d1)(c2x+ d2)|
,

∆(h1, h2) :=

∣∣∣∣ c1d1 − c2
d2

∣∣∣∣ · inf
x∈I

∣∣∣∣h′1(x)h′2(x)

h′1(0)h′2(0)

∣∣∣∣1/2 ≥ 1

L

∣∣∣∣ c1d1 − c2
d2

∣∣∣∣
h∗ the mirror of h : h∗(x) =

ax+ c

bx+ d
if h(x) =

ax+ b

cx+ d
.

∆(h1, h2) ≥ 1

L
|h∗1(0)− h∗2(0)| .

For the Classical Euclidean algorithm,

the two systems (I∗, T ∗) and (I, T ) coincide.

One has ρ = ρ?, and L? is the distortion constant.



The UNI Condition in the Euclidean context.

Using the mirror system.

Compare

J∗(h, η) =
⋃
k∈Hn

∆(h,k)≤η

|k∗(I)|, J(h, η) =
⋃
k∈Hn

∆(h,k)≤η

|k(I)|

∆(h, k) ≥ 1

L
|h∗(0)− k∗(0)| ⇒ |J∗(h, η)| << 2Lη + 2ρ̂n

1

(LL∗)1/2
≤ |k(I)|
|k∗(I∗)|

=
|k(I)|
|k′(0)|

|(k∗)′(0)|
|k∗(I∗)|

≤ (LL∗)1/2 .

|J(h, η)| ≤ (LL∗)1/2|J∗(h, η)| << (LL∗)1/2(2Lη + ρn)

And finally

η ≤ ρ̂n ⇒ |J(h, η)| << ρ̂n


