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Computing GCDs of d inputs

For d = 2: the “classical” Euclid algorithm,

For d ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , xd), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..d]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd yd := gcd(x1, x2, . . . , xd) is obtained after d− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book, but not yet analyzed.

In this talk, – we focus on the analysis of the number case,

– we explain the similarities/differences between the two cases.



Computing GCDs of d inputs

For d = 2: the “classical” Euclid algorithm,

For d ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , xd), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..d]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd yd := gcd(x1, x2, . . . , xd) is obtained after d− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book, but not yet analyzed.

In this talk, – we focus on the analysis of the number case,

– we explain the similarities/differences between the two cases.



Computing GCDs of d inputs

For d = 2: the “classical” Euclid algorithm,

For d ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , xd), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..d]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd yd := gcd(x1, x2, . . . , xd) is obtained after d− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book, but not yet analyzed.

In this talk, – we focus on the analysis of the number case,

– we explain the similarities/differences between the two cases.



Which behavior can be expected?

Knuth wrote: “In most cases, the length of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

In the integer case, we prove the following facts about the number of

divisions performed, measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a QUASI–beta law;

– during subsequent phases:

– it is constant in average

– it asymptotically follows a QUASI–geometric law

The same phenomena occur for the size of the partial gcd.
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Probabilistic analysis of the plain d–GCD algorithm on Z.

On the input (x1, x2, . . . , xd),

– the algorithm computes the total gcd yd := gcd(x1, x2, . . . , xd)

– with d− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {x := (x1, . . . , xd); xi ∈ N}
The size of an input: d(x) := d(x1x2 . . . xd) with d(x) := dlog xe

“almost additive” d(x) ≈ d(x1) + . . .+ d(xd)

Main parameters of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the size Dk of the k–th gcd

(at the beginning of the k-th phase).
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The combinatorial bijection induced by the Euclid Algorithm [d = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 is positive, with

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1
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Dirichlet generating functions relative to the Euclid algorithm (d = 2).

The Dirichlet generating function of the inputs is∑
(a1,a2)∈N2

1

as11

1

as22
= ζ(s1) · ζ(s2), ζ(s) =

∑
p∈N

1

ps
,

where the Riemann zeta function ζ(s) is the gen. function of the set N.

With the gcd y

ζ(s1)ζ(s2) =

∑
y≥1

1

ys1+s2

 ∑
(u1,u2)∈N2

gcd(u1,u2)=1

1

us11

1

us22

With the previous decomposition with the LFT’s

2
∑

(u1,u2)

1

us11

1

us22
= (I −Gs1+s2)−1 ◦ (Gs1 + Gs2)[1](0)

where Gs is the generating operator for the quotients,

Gs[f ](x) =
∑
m≥1

|h′m(x)|s/2f ◦ hm(x) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ x

)
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Gs[f ](x) =
∑
m≥1

|h′m(x)|s/2f ◦ hm(x) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ x

)



The Euclid algorithm (d = 2) on integers

translates as a product of Dirichlet generating functions

2ζ(s) ζ(t) = ζ(s+ t) ·
[
(I −Gs+t)

−1 ◦ (Gs + Gt)[1](0)
]

which involve – the Riemann Dirichlet series ζ(s) =
∑
p≥1 p

−s

– the generating operator Gs for the quotients

This is a functional operator which depends on a complex parameter s,

Gs[f ](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
This is the transfer operator of the Euclidean underlying dynamical system,

The analysis is more involved than the previous one,

but provides the same type of results.
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Similarities and differences between the two analyses

Polynomials Integers

GF Power GF Dirichlet GF and operators

Basic tool G(z) =
∑
m

zd(m) Gs[f ](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)

Phase GF
U(zk) + U(z)− 1

1−G(zk+1)
(I −G(k+1)s)

−1 ◦ [Gks + Gs]

Singularities z s.t. G(zk+1) = 1 s s.t. λ((k + 1)s) = 1

Extraction Cauchy Formula Perron Formula

Contours Disks Vertical lines

λ(s) is the dominant eigenvalue of Gs

λ(2) = 1 ; λ′(2) closely related to the entropy
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Generating function relative to the d-Euclid Algorithm

We have shown that the Euclid algorithm (d = 2) translates as a product

ζ(s1) ζ(s2) = T (s1, s2) ζ(s1 + s2),

with 2T (s, t) = (1−Gs+t)
−1 ◦ (Gs + Gt) [1](0)

Then, for any d ≥ 2, the d–Euclid algorithm translates as the product

ζ(s1) · . . . · ζ(sd) = ζ(td)
d−1∏
k=1

T (sk+1, tk) [tk := s1 + s2 + . . .+ sk, ]

Now, with s = s1 = . . . = sd,

the (plain) generating function S(s) of Nd has an alternative expression

S(s) = ζ(s)d = ζ(ds)
d−1∏
k=1

T (s, ks)

which is an exact translation of the d-Euclid algorithm.

T is the “phase generating function”.
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Generating functions relative to the d-Euclid Algorithm

We start with: S(s) = ζ(s)d = ζ(ds)

d−1∏
k=1

T (s, ks)

For studying the distribution of the two parameters :

– Lk (number of steps in the k-th phase)

– Dk (size of the gcd at the beginning of the k-th phase)

we use bivariate generating functions, with an extra variable u

Lk(s, u) = ζ(s)d · T (s, ks, u)

T (s, ks)
, Dk(s, u) = ζ(s)d · Z(ks, u)

ζ(ks)
,

2T (s, t, u) = u(1−uGs+t)
−1◦(Gs+Gt)[1](0), Z(s, u) =

∑
n≥1

ud(n)

ns

For the expectations, the cumulative generating functions are useful:

L̂k(s) :=
∂

∂u
Lk(s, u)|u=1 =

ζ(s)d

T (s, ks)

∂

∂u
T (s, ks, u)|u=1

D̂k(s) :=
∂

∂u
Dk(s, u)|u=1 =

ζ(s)d

ζ(ks)

∂

∂u
Z(s, u)|u=1
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Towards the distributional analysis of Lk and Dk.

The generating functions of the events [Lk > m] and [Dk > m] are

L̂
[m]
k (s) :=

∑
j>m

[uj ]Lk(s, u), D̂
[m]
k (s) =

∑
j>m

[uj ]Dk(s, u)

They admit the alternative expressions

L̂
[m]
k (s) =

ζ(s)d

T (ks, s)
·Gm

(k+1)s◦(1−G(k+1)s)
−1 ◦ (Gs + Gks)[1](0)

D
[m]
k (s) = ζ(s)d · ζe

m(ks)

ζ(ks)
, ζM (s) :=

∑
n≥M

1

ns

both of type B(s) ·Ak,m(s), with Ak,m(s) ≈ Amk (s)

Ak(s) = λ((k + 1)s) [L –case] Ak(s) = exp[1− ks] [D –case]

The asymptotics depends on the value a := Ak(1) at the pole s = 1

For k = 1, one has a = 1 – For k ≥ 2, one has a < 1.
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Towards the distributional analysis of Lk and Dk.

We need extractors. For a Dirichlet generating function,

S(s) =
∑
p≥1

ap
ps

we need to isolate the terms with indices p with d(p) = n, and we define

Ψn[S] :=
∑

p;d(p)=n

ap =

en∑
p=en−1+1

ap d(p) := dlog pe

Then : Pn[Lk > m] =
Ψn

[
L̂
[m]
k (s)

]
Ψn [S(z)]

, Pn[Dk > m] =
Ψn

[
D̂

[m]
k (s)

]
Ψn [S(z)]

,

We need theorems which relate

– the asymptotic properties of Ψn[S] (for n→∞)

– and analytic properties of S(s) near its dominant singularity,

Dominant singularity = singularity with the largest real part = here s = 1.

We are interested in the case when S contains a large m-th power.
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A general result.

Consider the sequence of Dirichlet series

F [m](s) = B(s) A(s)m =
∑
p≥1

a
[m]
p

ps
, a[m]

p ≥ 0

If there exists a vertical strip V = {s; |<s− 1| < δ for which

(i) B(s) has an only pole at s = 1 of order d ≥ 2;

assume lims→1B(s)/(s− 1)d = 1

(ii) A(s) is analytic on V
(iii) [on vertical lines], |A(s)| ≤ |A(<s)|.
(iv) [on the real axis] s 7→ A(s) strictly decreasing and log convex

a := A(1) 6= 0, b := A′(1) < 0,

(v) s 7→ B(s) of polynomial growth in V for |=s| → ∞

Then, when m/n ∈ [0, c0] with c0 < a/|b|, one has:

Ψn

(
F [m]

)
:=

∑
p;d(p)=n

a[m]
p = en(e− 1)

nd−1

(d− 1)!
am

(
1− |b|

a

m

n

)d−1 [
1 +O

(
1

n

)]
.
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Result based on the Landau Theorem: it uses the Perron formula

which relates Ψn[S] to

∫
L
ens

S(s)

s
ds

– Main asymptotic term related to the residue at s = 1 of ensB(s)A(s)m

itself related to the (d− 1)-th derivative at s = 1 of s 7→ ensAm(s)

[
ensem logA(s)

](d−1)
s=1

≈
[
n+m

A′(1)

A(1)

]d−1
[enA(1)m]

– Remainder term: related to the asymptotic growth for |τ | := |=s| → ∞.

Here, the dependence with respect to m be made more precise,

We have to adapt the previous result, as Am(s) is not a true m–th power.

When |τ | is small: Am(s) = am(s)f(s)[1 + θm(s)], |θm(s)| ≤ θm, (θ < 1)
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Application to our context.

For the L case, with the constants a = λ(k + 1), b = (k + 1)λ′(k + 1).

Pn[Lk > m] = Gm
k+1[1](0)

(
1− |b|

a

m

n

)d−1 [
1 +O

(
1

n

)]

= am[1 +O(θm)]

(
1− |b|

a

m

n

)d−1 [
1 +O

(
1

n

)]

For the D-case, with the constants a = e1−k, b = −ke1−k.

Pn[Dk > m] =
ζem(k)

ζ(k)

(
1− |b|

a

m

n

)d−1 [
1 +O

(
1

n

)]

= am[1 +O(θm)]

(
1− |b|

a

m

n

)d−1 [
1 +O

(
1

n

)]

For the first phase: a = 1 =⇒ A quasi –beta behavior (1, d− 1)

For the subsequent phases: a < 1 =⇒ A quasi–geometric behavior
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Main result for the number of divisions Lk – First phase (k = 1)

The number of divisions L1 performed by the d-Euclid algorithm during

the first phase has a mean value of linear order

En[L1] =
6 log 2

π2

n

d

[
1 +O

(
1

n

)]
π2

6 log 2
= entropy

It follows an asymptotic quasi-beta law of parameter (1, d−1) and its distri-

bution satisfies when n→∞, and m/n ∈ [0, c0] with c0 ∈ [0, (6 log 2)/π2[

P[L1 > m] =

(
1− m

n

π2

6 log 2

)d−1 [
1 +O

(
1

n

)
+O(θm)

]
,

θ related to the subdominant spectral radius .
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Main result for the number of divisions Lk – Subsequent phases (case k ≥ 2)

For k ≥ 2, the number of divisions performed by the d-Euclid algorithm

during the k-th phase

– has a mean value of constant order

En[Lk] = (I −Gk+1)−1[1](0)

[
1 +O

(
1

n

)]
=

(
2

ζ(k)

ζ(k + 1)
− 1

) [
1 +O

(
1

n

)]
– follows an asymptotic quasi-geometric law, with quasi–ratio λ(k + 1)

Pn[Lk > m] = Gm
k+1[1](0)

[
1 +O

(m
n

)]
for m = o(n),
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Main result for the size Dk of the gcd – First phase (k = 1)

The size D1 of the gcd at the beginning of the first phase has a mean

value of linear order

En[D1] =
n

d

[
1 +O

(
1

n

)]
It follows an asymptotic quasi-beta law of parameter (1, d − 1) and its

distribution satisfies when n→∞, and m/n ∈ [0, c0] with c0 ∈ [0, 1[

P[D1 > m] =
(

1− m

n

)d−1 [
1 +O

(
1

n

)
+O(e−m)

]
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Main result for the size Dk of the gcd– Subsequent phases (case k ≥ 2)

For k ≥ 2, the size Dk at the beginning of the k–th phase

– has a mean value of constant order
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ζ̂ ′(k)
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ζ̂ ′(s) =

∑
p≥1

dlog pe
ps

– follows an asymptotic quasi-geometric law, with quasi–ratio e1−k
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