
Böhm trees, Krivine machine and the Taylor expansion of
ordinary lambda-terms

Thomas Ehrhard and Laurent Regnier�Institut de Mathématiques de Luminy (UMR 6206)andPreuves, Programmes et Systèmes (UMR 7126)Thomas.Ehrhard@pps.jussieu.fr and Laurent.Regnier@iml.univ-mrs.fr
January 6, 2006

AbstractWe show that, given an ordinary lambda-termM and a normal resource lambda-term u which appearsin the normal form of the Taylor expansion of M , the unique resource term t of the Taylor expansion ofM whose normal form contains u can be obtained by running the Krivine abstract machine on M .This result, combined with a previous result of the same authors, alows to show that, in the ordinarylambda-calculus, Taylor expansion and normalization commute � by normalizing an ordinary lambda-term, we mean here computing its Böhm tree.
Introduction
After having introduced the di�erential lambda-calculus in [ER03], we studied in [ER05] a subsystem ofthe di�erential lambda-calculus which turns out to be very similar to resource oriented versions of thelambda-calculus previously introduced and studied by various authors [Bou93, BCL99, Kfo00]: the resourcelambda-calculus.
Resource lambda-calculus as the target language of the complete Taylor expansion of lambda-terms. Our viewpoint on this resource lambda-calculus is that it is the sublanguage of the di�erentiallambda-calculus where the complete1Taylor expansions of ordinary lambda-terms can be written.Indeed, the only notion of application available in this resource calculus consists in taking a term s (oftype A ! B if the calculus is typed) and a �nite number of terms s1; : : : ; sn (of type A) and applyings to the multiset consisting of the terms si, written multiplicatively s1 : : : sn. This application is writtenhsi (s1 : : : sn). In ordinary di�erential calculus, this operation would correspond to taking the nth derivativeof s at 0, which is a symmetric n-linear map, and applying this derivative to the tuple (s1; : : : ; sn).De�ning a beta-reduction in this calculus (as in the original di�erential lambda-calculus) requires thepossibility of adding terms, because the analogue of substitution is a notion of formal partial derivative whoseinductive de�nition is based on Leibniz rule2, and the expression hsi (s1 : : : sn) is linear in s, s1; : : : ; sn; theconnection between ordinary linearity and this syntactical notion of linearity is discussed in the introductionof [ER03]. The logical signi�cance of this derivative, and the analogue in linear logic of this resource lambda-calculus are discussed in [ER04], where di�erential interaction nets are introduced. The striking fact is that�This work has been supported by the ACI project GEOCAL.1By complete, we mean that all applications in the lambda-terms are Taylor expanded.2In [ER04], it is shown that Leibniz rule is more pecisely connected to the interaction between derivation and contraction.

1

this new structure appears in this linear logic setting as new operations associated to the exponentials,completely dual to the traditional structural operations (weakening, contraction), and to dereliction.In constrast, ordinary lambda-calculus has a notion of application which is linear in the function but notin the argument, for which we used the notation (M)N (parenthesis around the function, not around theargument). The connection between these two applications is given by the Taylor formula.
Taylor expansion and normalization. In [ER05], we explained how to Taylor expand arbitrary ordinarylambda-terms as (generally in�nite) linear combinations of resource lambda-terms with rational coe�cients.We showed moreover that, when normalizing the resource terms which occur in such a Taylor expansion,one gets � generally in�nitely many � �nite linear combinations of normal resource terms (with positiveintegers as coe�cients) which do not overlap; so it makes sense to sum up all these linear combinations.Moreover, the numerical coe�cients �behave well� during the reduction, in a sense which is made precise inthe corresponding statement, Theorem 4 in the present paper.
OverviewWe show that this sum s of normal resource terms obtained by normalizing the Taylor expansion of anordinary lambda-term M is simply the Taylor expansion of the Böhm tree of M (the extension of Taylorexpansion to Böhm trees is straightforward). Thanks to the results obtained in [ER05], this reduces toshowing that a normal resource term appears in s with a nonzero coe�cient i� it appears with a nonzerocoe�cient in the Taylor expansion of the Böhm tree of M . The �only if� part of this equivalence is fairlystraightforward, whereas the �if� part requires the introduction of a version of the Krivine machine whichalso provides an appealing computational interpretation of the result.
Krivine machine. Usually, the Krivine machine [Kri05] is described as an abstract environment machinewhich performs the weak linear head reduction on lambda-terms: given a term M which is beta-equivalentto a variable x, starting from the state (M; ;; ;) (empty environment and empty stack3), after a certainnumber of steps, the machine will produce the result (x;E; ;) where the resulting variable x is not boundby the environment E.This computation can be understood as a special kind of reduction of lambda-terms which cannot bedescribed exactly as a beta-reduction because, at each reduction step, only the leftmost occurrence of variablein the term is substituted. Rather than giving a formal de�nition4, it is simpler to contemplate an example,so consider the term M0 = (�x (x) (x) y)�z z. After one step of linear head reduction, we get M1 =(�x (�z z) (x) y)�z z. Observe that the argument and the lambda of the main redex are still there, and thatthe function still contains an occurrence of the variable x. Now the leftmost variable occurrence is z andthe term M1 reduces to M2 = (�x (�z (x) y) (x) y)�z z. The leftmost occurrence of variable is x again andwe get M3 = (�x (�z (�z z) y) (x) y)�z z which reduces to M4 = (�x (�z (�z y) y) (x) y)�z z. We arrive to aterm M4 whose redexes are all K-redexes5 and reduces to the variable y.This is exactly this kind of computation that the Krivine machine performs, with the restriction that onedoes not reduce under the lambda's, in some sense (whence the word �weak�).We extend the Krivine machine in two directions6.� First, we accept to reduce under lambda's.

� Second, when the Krivine machine arrives to a state (x;E;�) where the environment E does not bind xand � is a non-empty stack, it classically stops with an error. Here instead we continue the computationby running the machine on each element of �. This corresponds, in the linear head reduction process,to reducing within the arguments of the head variable when a head normal form has been reached.3The stack is there as usual for pushing the arguments of applications.4By the way, the best formal de�nition available is certainly the Krivine machine itself.5A K-redex is a redex (�xM)N such that x does not occur free in M . In M4, the outermost redex is not a K-redex, butbecomes a K-redex after reduction of the internal K-redexes.6These extensions are fairly standard and are part of the folklore.
2

We call K this extended machine. When fed with a triple (M;E; ;) where E does not bind the freevariables of M , this machine produces the Böhm tree of M (all �nite approximations being obtained in a�nite number of steps).
A more informative version of the machine. Then we de�ne a version bK of that machine where a�tracing mechanism� is added. The idea is to count precisely how many times the various parts of the termM have been used, starting from the state (M; ;; ;), for reaching the state (x;E0; ;) (when one knows thatMis equivalent to the variable x). This information is summarized as a resource term which has the same shapeas M (or, equivalently, appears in the Taylor expansion of M with a nonzero coe�cient). For example, inthe example of M0, the corresponding resource term is h�x hxi hxi yi (�z z)2, which appears with coe�cient12 in the Taylor expansion of M0.But there is no reason for limiting our attention to lambda-terms equivalent to a variable: when Mreduces to a Böhm tree B, we just add a parameter to our Krivine machine, which is a resource term uoccurring in the Taylor expansion of B. Then bK(M; ;; ;; u) produces a resource term s which appears in theTaylor expansion of M and, in some sense, counts how much of M the machine uses for producing u. Thisresource term s will depend on M and on u: the larger will be u, the larger will be s.This machine also gives us a proof for the �if� part of our main result (see the beginning of this �Overview�section), because u appears with a nonzero coe�cient in the normal form of the resource term s producedby the machine.
Implementation. We implemented this modi�ed Krivine machine in OCaml, you can try this program atthe followin URL:

http://iml.univ-mrs.fr/�regnier/taylor/

1 Ordinary notions
Böhm trees. We recall a few de�nitions, more or less standard in lambda-calculus. An elementary Böhmtree (EBT) is a normal term in the lambda-calculus extended with the constant
 subject to the followingequations: (
)M =
 and �x
 =
. In other words:

�
 is an elementary Böhm tree;
� if x; x1; : : : ; xn are variables and B1; : : : ; Bk are elementary Böhm trees, then �x1 : : : xn (x)B1 : : : Bkis an elementary Böhm tree.

The following clauses de�ne an order relation on EBT's:
�
 � B for all EBT B;
� �x1 : : : xn (x)B1 : : : Bk � C if c = �x1 : : : xn (x)C1 : : : Ck with Bj � Cj for all j.A (general) Böhm tree is now de�ned as an ideal of elementary Böhm trees, in other word, it is a set B ofEBT's such that:
� if B � C 2 B then B 2 B;
� B 6= ; (equivalently,
 2 B);
� if B;B0 2 B, there exists C 2 B such that B;B0 � C.
To any ordinary lambda-term M is associated its Böhm tree. We de�ne �rst a family of functions fromlambda-terms to EBT's.
� BT0(M) =
;

3

� BTn+1(�x1 : : : xp (x)M1 : : :Mk) = �x1 : : : xp (x)BTn(M1) : : :BTn(Mk);� BTn+1(�x1 : : : xp ((�y P)Q)M1 : : :Mk) = BTn(�x1 : : : xp (P [Q=y])M1 : : :Mk)It is straightforward to check that BTn(M) is a non decreasing sequence of EBT's. Then the Böhm tree ofM is the downwards closure of the set fBTn(M) j n 2 Ng, which is an ideal of EBT's.
The Krivine Abstract Machine. If f : S ! S0 is a partial function, a 2 S and b 2 S0, we denote byfa7!b the partial function g : S ! S0 which is de�ned like f but for a, where it is de�ned and takes the valueb. By simultaneous induction, we de�ne the two following concepts:� A closure is a pair � = (M;E) where M is a lambda-term and E is an environment such thatFV(M) � DomE.� An environment is a �nite partial function on variables, taking closures or the distinguished symbolfree as value. We use DomcE for the subset of DomE whose elements are not mapped to free.We need also an auxiliary concept: a stack is a �nite list � of closures.We �rst de�ne a sequence of functions from states to EBT's.� K0(�;�) =
;� Kn+1(x;E;�) = Kn(E(x);�) if x 2 Domc(E);� Kn+1(x;E;�) = (x)Kn(�1; ;) : : :Kn(�k; ;) where � = (�1; : : : ;�n), if E(x) = free;� Kn+1(�xM;E; ;) = �xKn(M;Ex7!free; ;) (assuming that x =2 Dom(E) and that x does not appear freein any of the terms mentioned in E);� Kn+1(�xM;E;� ::�) = Kn(M;Ex7!�;�) (with similar assumptions for x);� Kn+1((M)N;E;�) = Kn(M;E; (N;E) :: �).Observe that the de�nition is correct in the sense that, in all �recursive calls� of the function K, the closuresare well formed (the domain of their environment contains the free variables of their term).
Lemma 1 Let S = (�;�) be a state. Then (Kn(S))n2N is a non decreasing sequence of EBT's.
This is easy to check. We de�ne K(S) as the downwards closure of the set fKn(S) j n 2 Ng; this set is aBöhm tree.We de�ne another toral function T, from closures to lambda-terms. Given a closure � = (M;E), we set

T(�) =M [T(E(x))=x]x2Domc EThis is a de�nition by induction on the height of closures, seen as �nitely branching trees. We extend thismapping to states: T(�; (�1; : : : ;�n)) = (T(�))T(�1) : : :T(�n) :The main, standard, property of the Krivine machine is as follows.
Theorem 2 Let S be a state. Then K(S) = BT(T(S)) :
This �soundness� result shows in particular that the Krivine machine computes the Böhm tree of lambda-terms: BT(M) = K(M;E; ;), where E is any environment mapping all the free variables of M to the valuefree. However the way it computes it is not the standard head reduction, but the linear head reductionof [DR99], also known as De Bruijn mini-reduction [DB87]. This reduction is much more �elementary� thanthe standard notion, since each substitution performed by the machine is linear (only head occurrences ofvariables are substituted).

4

2 Resource notions
2.1 NotationsLet E be a set. A multiset on E is a function m : E ! N. The support supp(m) of m is the set of all a 2 Esuch that m(a) 6= 0. The multiset m is �nite if supp(m) is �nite. The number m(a) is the multiplicity of ain m. We denote by M�n(E) the set of all �nite multisets on E.
2.2 The resource lambda-calculus.We give a short account of the resource lambda-calculus, as developped in [ER05]. We recall the syntax andterminology of [ER05]. As usual we are given a countable set of variables.
Simple terms and poly-terms.

� If x is a variable, then x is a simple term.
� If x is a variable and t is a simple term, then �x t is a simple term.
� If t is a simple term and T is a simple poly-term, then htiT is a simple term.
� A simple poly-term is a multiset of simple terms. We use multiplicative notations for these multisets:1 denotes the empty poly-term, if t is a simple term, we use also t for denoting the simple poly-termwhose only element is t, and if S and T are simple poly-terms, we use ST for the multiset union (sum)of S and T .

We use the greek letters �; � : : : for simple terms or poly-terms when we do not want to be speci�c. Thesize of a simple resource (poly-)term � is a nonnegative integer S(�), de�ned by induction: S(x) = 1,S(�x s) = 1 + S(s), S(hsiS) = 1 + S(s) + S(S) and last, for poly-terms, S(s1 : : : sn) = S(s1) + � � � + S(sn).Observe that S(�) = 0 holds i� � is the poly-term 1.We use � for the set of all simple terms and �! for the set of all simple poly-terms.
Linear combinations and reduction. Let R be a set of scalars, a commutative semi-ring with multi-plicative unit 1 (so that there is a canonical semi-ring homomorphism from N to R, under which we considernonnegative integers as elements of R, although this homomorphism has no reason to be injective). If A isa set, we use RhAi for the free module over R generated by A. If � 2 RhAi, we use Supp(�) for the set ofall a 2 A such that �a 6= 0.A redex is a simple term of the shape r = h�x siS. There is a �small-step� notion of reduction for theseredexes, but we do not consider it here, we focus on the big-step reduction which stipulates that r reducesto 0 2 Rh�i if the cardinality of the multiset S is distinct from the number of free occurrences of x in s, andotherwise reduces to @x(s; S) = X

f2Sd

s �s1; : : : ; sd=xf(1); : : : ; xf(d)� 2 Rh�i
where S = s1 : : : sd and x1; : : : ; xd are the d free occurrences of x in s. In this expression, Sd stands for thegroup of all permutations on the set f1; : : : ; dg.This notion of reduction extends to all simple (poly-)terms, using the fact that all constructions of thesyntax are linear. For instance, if s1; : : : ; sn 2 � and for each i, si reduces to s0i 2 Rh�i, then the simplepoly-term s1 : : : sn reduces to Qni=1 s0i 2 Rh�!i.This notion of reduction is a relation; from �(!) to Rh�(!)i; it is extended to a relation from Rh�(!)i toitself by linearity (the linear span of ; in the product space Rh�(!)i �Rh�(!)i). This relation is con�uent,and strongly normalizing when R = N. We use �0 for the set of all normal simple terms, and NF for thenormalization map Nh�(!)i ! Nh�(!)0 i, which is linear.The following lemma is straightforward and will be useful in the sequel.

5

Lemma 3 Let s1; : : : ; sp be simple terms and T1; : : : ; Tp be simple poly-terms. Then
Supp(pY

i=1 @x(si; Ti)) � Supp(@x(s1 : : : sp; T1 : : : Tp)) :
Taylor expansion of ordinary lambda-terms. Let us give an intuition of the resource lambda-calculus,explaining why it is related to the idea of Taylor expansion. Usually, when f is a su�ciently regular functionfrom a vector space E to a vector space F (�nite dimensional spaces, or Banach spaces, typically), at allpoint x 2 E, f has nth derivatives for all n 2 N, and these derivatives are maps f (n) : E � En ! F withthe same regularity as f and such that f (n)(x; u1; : : : ; un) = f (n)(x) � (u1; : : : ; un) is n-linear and symmetricin u1; : : : ; un. When one is lucky, and at least locally around 0, the Taylor formula holds:

f(x) = 1X
n=0 1n!f (n)(0) � (u; : : : ; u) :

If we want to Taylor-expand lambda-terms, which after all are functions, we need to extend the languagewith explicit di�erentials, or more precisely a construction of di�erential application of a term M to n termsN1; : : : ; Nn, as we did in [ER03] (a simpli�ed version of that calculus is now available in [Vau05]). The ideais that if M represents a function f from E to F and if N1; : : : ; Nn represent n vectors u1; : : : ; un 2 E,then this new construction DnM � (N1; : : : ; Nn) will represent the function from E to F which maps x tof (n)(x) � (u1; : : : ; un), and therefore this construction is linear and symmetric in the Ni's.The Taylor expansion of a single lambda-calculus application (M)N would then read
1X
n=0 1n! (DnM � (N; : : : ; N)) 0 :

If we want now to Taylor expand all the applications occurring in a lambda-term, we see that the usuallambda-calculus application in its generality will become useless: only application to 0 is needed. This isexactly the purpose of the construction hsi s1 : : : sn of the resource lambda-calculus; with the notations ofthe di�erential lambda-calculus, the expression hsi s1 : : : sn stands for (Dns � (s1; : : : ; sn)) 0.So the resource lambda-calculus is a �target language� for completely Taylor expanding ordinary lambda-terms. The expansion of a term M will be an in�nite linear combination of resource terms, with rationalcoe�cients (actually, inverses of positive integers). Let us use M� for the complete Taylor expansion of M .By what we said, this operation should obey
(M)N� = 1X

n=0 1n! hM�i (N�)n
as well as x� = x and (�xM)� = �xM�. From these equations, we obtain, applying the multinomial formula,that M� = X

s2T (M)
1m(s)s

where T (M) � � is de�ned inductively by T (x) = fxg, T (�xM) = f�x s j s 2 T (M)g and T ((M)N) =fhsiS j s 2 T (M) and S 2 M�n(T (N))g. The positive number m(�) associated to each (poly-)term � iscalled its multiplicity coe�cient ; see the de�nition and properties of these numbers in [ER05]. We can recallnow the main result proven in that paper.
Theorem 4 Let M be an ordinary lambda-term.

1. If s; s0 2 T (M) and s and s0 are not �-equivalent, then Supp(NF(s)) \ Supp(NF(s0)) = ;.
6

2. If s 2 T (M) and u 2 Supp(NF(s)), then the coe�cient NF(s)u of u in NF(s) (remember that thiscoe�cient must be a positive integer) is equal to m(s)=m(u).
For proving the �rst part of this theorem, we have been led to introduce a coherence relation _̂ on resourceterms and on resource poly-terms, in such a way that T (M) is a maximal clique for this coherence relation,for any ordinary termM , and we have showed that NF is in some sense �stable� with respect to this coherencerelation.The second part is based on the observation that m(s) has a simple combinatorial interpretation: it isthe order of the group of permutations of variable occurrences of s which respect the variables associated tothese occurrences and leave s unchanged; this group is non trivial in general because the elements of a simplepoly-term commutes with each other (ST = TS). For instance, if s = hxi (hyi z2)3, there are 3!� (2!)3 = 48such permutations.Given an ordinary lambda-term M , it makes sense therefore to apply NF to each of the simple termsoccurring in its Taylor expansion, de�ning

NF(M�) = X
s2T (M)

1m(s) NF(s) :
Indeed by Theorem 4, if u is a normal simple term, there is at most one s 2 T (M) such that NF(s)u 6= 0.Moreover, if such a simple term s exists, the coe�cient of u in the sum above is

NF(M�)u = 1m(s) NF(s)u = 1m(u)
by Theorem 4 again.We want to prove that this sum is equal to BT(M)�, the Taylor expansion of the Böhm tree of M . Togive a meaning to this notion, we need �rst to de�ne T (B) when B is an EBT: the de�nition is the same asfor ordinary lambda-terms, with the additional clause that T (
) = ;. For instance T ((x)
) = fhxi 1g.Observe that B � C) T (B) � T (C).We generalize this notion to arbitrary Böhm trees: T (B) = SB2B T (B) (this is a directed union since Bis an ideal). Of course, all these resource terms are normal. The obtained set is still a clique of (�; _̂), butthis clique has no reason to be maximal anymore (think of the clique associated with
!). Given a Böhmtree B, it makes sense �nally to de�ne its Taylor expansion, as we did for ordinary lambda-terms:

B� = X
b2T (B)

1m(b)b :
2.3 Resource closures and resource stacks.We adapt now the concepts of closure and stack to the framework of the resource lambda-calculus, introducingmulti-set based versions thereof. We stick to our multiplicative conventions for denoting multi-sets.

� A resource environment is a total function e on variables, taking resource closures or the symbol free asvalues. We extend pointwise the multi-set notations to resource environments, e.g. (ee0)(x) = e(x)e0(x)(equal to free when one of these two values is equal to free). For an environment e, we require moreovere(x) = 1 for almost all variables x, where 1 is the unit resource closure (see below).If x is a variable and c is a resource closure, we denote by [x 7! c] the resource environment which takesthe value 1 for all variables but for x, for which it takes the value c. If e is a resource environment,e n x denotes the resource environment which takes the same values as e but for x where it takes thevalue free. We use Domc e for the (co-�nite) set of all variables where e does not take the value free.� A resource closure is a pair c = (T; e) where T is a simple resource poly-term and e is a resourceenvironment, or is the special unit closure 1. Intuitively, this special closure is �equal� to any closure of
7

the shape (1; e) where e maps all variables to free, to the unit closure 1 or to any closure of the shapewe are now describing.Poly-term multiplication is extended to closures in the obvious way: the unit closure 1 is neutral, and(T; e)(T 0; e0) = (TT 0; ee0).A resource closure (T; e) will be said to be elementary if T has exactly one element. All resourceclosures are product (in many di�erent ways, usually) of elementary resource closures. We use theletters c; c0; : : : for general resource closures and ; 0 : : : for elementary resource closures.Finally, a resource stack � is a �nite sequence of resource closures.A resource state is a triple (t; e; �) where t is a simple resource term, e is a resource environment and� is a resource stack. In such a resource state, the pair (t; e) will be considered as an elementary resourceclosure.By mutual induction, we de�ne T (E) and T (�), the set of all resource environments and resource closuresof shape E and � respectively:� T (E) is the set of all resource environments e such that
� if E(x) = free, then e(x) = free;� otherwise and if E(x) is de�ned, then e(x) 2 T (E(x));� if E(x) is unde�ned, then e(x) = 1.

� If � = (M;E), then T (�) = (M�n(T (M))� T (E)) [f1g.This extends to standard stacks and resource stacks in the obvious way, de�ning � 2 T (�). Last we setT (�;�) = T (�)� T (�).As we did for the ordinary lambda-calculus, we associate to each resource closure c a (generally notsimple) resource poly-term TD(c) 2 Rh�!i by the following inductive de�nition
TD(c) = (1 if c = 1@x1;:::;xn(T;TD(e(x1)); : : : ;TD(e(xn))) if c = (T; e)

where x1; : : : ; xn is any repetition-free sequence of variables which contains all the variables of Domc e whichare free in T or satisfy e(x) 6= 1 (in particular, this expression is equal to 0 if there exists a variable x notfree in T and such that e(x) 6= 1).Due to the basic properties of partial derivatives explained in [ER05], the expression above of TD(c) doesnot depend on the choice of the sequence of variables x1; : : : ; xn.Observe that when c is elementary, TD(c) can be seen as a resource term.Last, we extend this de�nition to resource states (; �) where � = (c1; : : : ; ck) is a resource stack (andthe ci's are therefore resource closures, and we know moreover that is elementary), setting
TD(; �) = h� � � hTD()iTD(c1) � � �iTD(ck) 2 Nh�i :

3 A resource driven Krivine machine
We de�ne a new version bK of the Krivine machine which, fed with an ordinary closure �, an ordinary stack �and a normal resource term u, will return a pair (; �) 2 T (�;�) where is an elementary resource closure,or will be unde�ned.As we shall see, this partial function bK will be de�ned exactly on the triples (�;�; u)) such that u 2T (BT(T(�;�))). We use the symbol �"� for the result of the function when it is unde�ned. As before, wede�ne by induction on n an increasing sequence of partial functions bKn and we set bK = S1n=0 bKn.The base case is trivial: bK0(�;�; t) = ", always.The inductive step is by case on the shape of the �rst element of the closure � = (M;E) (remember thatwe assume that FV(M) � DomE).

8

� If M = x is a variable, we have two subcases.
� Assume �rst that x 2 Domc(E). If bKn(E(x);�; u) = ", then bKn+1(�;�; u) = " and otherwise, let(; �) = bKn(E(x);�; u), then

bKn+1(M;E;�; u) = (x; e; �) where e(y) =
8><>:
 if y = xfree if E(y) = free1 otherwise.

� Otherwise, we have x 2 Dom(E) and E(x) = free. The stack � is a sequence (�1; : : : ;�k) ofclosures.� If u = h� � � hxiV1 � � �iVk and for each j = 1; : : : ; k and v 2 supp(Vj), there exists an elementaryresource closure j(v) such that bKn(�j ; ;; v) = (j(v); ;), then
bKn+1(M;E;�; u) = (x; e; �) where e(y) = (free if E(y) = free1 otherwise.

and where � = (c1; : : : ; ck) with cj =Qv2supp(Vj) j(v)Vj(v) (this product has to be understoodas a product of resource closures, in the sense de�ned above � remember that Vj(v) is apositive integer, the multiplicity of v in the multiset Vj).� Otherwise, bKn+1(M;E;�; u) = ".
� Assume now that M = �xN . Without loss of generality, we can assume that E(x) = ". Again, wehave two subcases.

� Assume �rst that � = ; is the empty stack. If u = �x v and bKn(N;Ex7!free; ;; v) = (t; e; ;) withe(x) = free, then bKn+1(M;E; ;; u) = (�x t; ex 7!1; ;)and otherwise, bKn+1(M;E; ;; u) = ".� Assume next that � = � ::�0. If bKn(N;Ex 7!�;�0; u) = (t; e; �0) with e(x) 6= free, then
bKn+1(M;E;�; u) = (�x t; ex 7!1; e(x) ::�0)

and otherwise, bKn+1(M;E; ;; u) = ".
� Last assume that M = (P)Q. If bKn(P;E; (Q;E) :: �; u) = (t; e; (T; e0) ::�), then

bKn+1(M;E;�; u) = (htiT; ee0; �)
and otherwise, bKn+1(M;E; ;; u) = ".

Lemma 5 Let � be an ordinary closure, � be an ordinary stack and u be a simple resource term.If bK(�;�; u) is de�ned, then u is normal and bK(�;�; u) is a resource state (; �) which belongs to T (�;�).
The proof is by simple inspection of the de�nition above.
Lemma 6 Let � be an ordinary closure, � be an ordinary stack and u be a normal simple resource term.For each n 2 N, we have the following equivalence:

u 2 T (Kn(�;�)) i� bKn(�;�; u) is de�ned.
9

Proof. By induction on n. For n = 0, this is trivial. Assume that the result is true for n, and consider thevarious following cases, according to the shape of � and �. When needed, we give names to the elements of�: (�1; : : : ;�k) = �.� Assume that � = (x;E) with E(x) = free. Then u 2 T (Kn+1(�;�)) holds i� u = h� � � hxiV1 � � �iVkwith Vj 2M�n(Kn(�j ; ;)) for each j = 1; : : : ; k. By inductive hypothesis, this latter property holds i�for each j and each v 2 supp(Vj), we have that bKn(�j ; ;; v) is de�ned. But this in turn is equivalentto saying that bKn+1(�;�; u) is de�ned.� Assume that � = (x;E) with E(x) 6= free. Then u 2 T (Kn+1(�;�)) holds i� u 2 T (Kn(E(x);�))which, by inductive hypothesis, holds i� bKn(E(x);�; u) is de�ned, and this latter condition is equivalentto saying that bKn+1(�;�; u) is de�ned.� The cases � = ((M)N;E) and � = (�x t;E) with � 6= ; are handeled similarly.
� We are left with the case � = (�xM;E) with � = ; which is straightforward.

2

Lemma 7 Let � be an odinary closure, � be an ordinary stack and u be a normal simple resource term.Let n 2 N. If bKn(�;�; u) = (; �), then u 2 Supp(NF(TD(; �))).
Proof. When needed, we use (�1; : : : ;�k) = �. The proof is by simple induction on n.For n = 0, this is trivial. So assume that bKn+1(�;�; u) = (; �). We have several cases to consider,depending on � and �.� Assume �rst that � = (x;E) with E(x) = free. Then by our hypothesis and by the de�nition of bK, weknow that u = h� � � hxiV1 � � �iVk and that for each j = 1; : : : ; k and v 2 supp(Vj), there is an elementaryresource closure j(v) such that bKn(�j ; ;; v) = (j(v); ;). Moreover, we know that = (x; e) with

e(y) = (free if E(y) = free1 otherwise,
so that TD() = x. By inductive hypothesis, for each j = 1; : : : ; k and v 2 supp(Vj), we havev 2 Supp(NF(TD(j(v); ;))). But we also know that � = (c1; : : : ; ck) with cj = Qv2supp(Vj) j(v)Vj(v),so that Vj 2 Supp(NF(TD(cj))) and �nally u 2 Supp(NF(TD(; �))) as required.

� Assume next that � = (x;E) with x 2 DomcE. Then we know that bKn(E(x);�; u) is de�ned, withvalue (0; �) and that = (x; e) with e given by
e(y) =

8><>:
0 if y = xfree otherwise and if E(y) = free1 otherwise.

By inductive assumption, we have u 2 Supp(NF(TD(0; �))) and we conclude since TD() = TD(0).� The case � = (�xM;E) and � = ; is straightforward.
� Assume that � = (�xM;E) and � = � ::�0. Assume also that x =2 Dom(E). Then we know thatbKn(M;Ex 7!�;�0; u) is de�ned, with value (t; e; �0), and bKn+1(�;�; u) = (�x t; ex 7!1; e(x) ::�0) (thatis = (�x t; ex 7!1) and � = e(x) ::�0). Let us set (c1; : : : ; ck) = �0. By inductive assumption, u 2Supp(NF(TD(t; e; �0))). One sees easily that

NF(TD(�x t; ex 7!1; e(x) ::�0)) = NF(h: : : hh�xTD(t; ex 7!free)iTD(e(x))iTD(1) : : :iTD(k)) :
10

Let x1; : : : ; xp be an enumeration without repetitions of all the free variables of t which do belong toDomc (ex7!free), so that the variable x does not occur in that list.We have TD(t; ex 7!free) = @x1;:::;xp(t;TD(e(x1)); : : : ;TD(e(xp))) by de�nition of TD and of ex7!free andhence
NF(TD(�x t; ex 7!1; e(x) ::�0))= NF(
� � �
@x1;:::;xp;x(t;TD(e(x1)); : : : ;TD(e(xp));TD(e(x)))�TD(1) � � ��TD(k))= NF(TD(t; e; �0))

so that u 2 Supp(NF(TD(; �))).
� Assume last that � = ((M)N;E). We know that bKn(M;E; (N;E) :: �; u) is de�ned, with value(t; e; (S; e0) ::�), and Kn+1(�;�) = (htiS; ee0; �), that is = (htiS; ee0). By inductive hypothesis,we know that u 2 Supp(NF(TD(t; e; (S; e0) ::�))). Applying Lemma 3 and the de�nition of TD we getthe inclusion Supp(TD(t; e; (S; e0) ::�)) � Supp(TD(htiS; ee0; �));which is strict in general. We conclude, applying the NF operator to both sides.

2

4 Normal form of the Taylor expansion
Lemma 8 Let M and N be ordinary lambda-terms and let x be a variable. Let s 2 T (M) and S 2M�n(T (N)). Then Supp(@x(s; S)) � T (M [N=x]).
The proof is a straightforward induction on M , using Lemma 3 when M is an application.
Lemma 9 Let M be an ordinary lambda-term and let s 2 T (M). Then Supp(NF(s)) � T (BT(M)).
Proof. One de�nes a family of function NFn : �! Nh�i, mimicking the de�nition of BT. We set NF0(t) = 0and

� NFn+1(�x1 : : : xp h� � � hxiS1 � � �iSk) = �x1 : : : xp h� � � hxiNFn(S1) � � �iNFn(Sk)� and NFn+1(�x1 : : : xp h� � � hh�x siSiS1 � � �iSk) = NFn(�x1 : : : xp h� � � h@x(s; S)iS1 � � �iSk),where NFn is extended multiplicatively to simple poly-terms, and linearly to linear combinations of simple(poly-)terms.One checks easily that for any s 2 �, there exists n such that NF(s) = NFn(s) (take any n � S(s)). Oneconcludes by proving by induction on n that Supp(NFn(s)) � T (BTn(M)), using Lemma 8. 2Now we can prove the main theorem of the paper.
Theorem 10 Let M be an ordinary lambda-term and let u be a normal simple resource term. Then u 2T (BT(M)) if and only if there exists s 2 T (M) such that u 2 Supp(NF(s)). Moreover, when this simpleterm s exists, it is unique.

11

Proof. Assume �rst that u 2 T (BT(M)). Let E be an environment such that E(x) = free for all x 2 FV(M).Since BT(M) = K(M;E; ;) by Theorem 2, we obtain by Lemma 6 that bK(M;E; ;; u) is de�ned ant takes avalue (s; e; ;) with (s; e) 2 T (M;E) by Lemma 5. Moreover, by Lemma 7 we have u 2 Supp(NF(TD(s; e))) =Supp(NF(s)) since e takes the value free for all free variables of s (indeed, FV(s) � FV(M)).Assume conversely that u 2 Supp(NF(s)) for some s 2 T (M). By Lemma 9, we have u 2 T (BT(M)), soagain bK(M;E; ;; u) is de�ned ant takes a value (s0; e; ;) with (s0; e) 2 T (M;E) and hence u 2 Supp(NF(s0)).But both s and s0 belong to T (M) and hence they must be equal by Theorem 4 and we conclude.The unicity statement also results from Theorem 4. 2As a consequence of this theorem and of the �quantitative� part of Theorem 4, we get immediately theannounced commutation statement.
Theorem 11 Let M be an ordinary lambda-term. Then

BT(M)� = NF(M�) = X
s2T (M)

1m(s) NF(s) :
5 Concluding remarks
By Theorem 10, there exists a partial function E : � � �0 ! � such that E(M;u) is de�ned if and onlyif u 2 T (BT(M)) and then takes as value the unique simple term s 2 T (M) such that u 2 Supp(NF(s)).In the proof of that theorem, we have seen how this function E can be de�ned, using a modi�ed version ofKrivine machine.When BT(M) is a variable ?, the situation is particularly simple: we have T (BT(M)) = f?g and E(M;?)is the unique s 2 T (M) which has a non-zero normal form, and the normal form of s must be m(s)?. Inthat particular case, it is interseting to observe that S(s) is the number of steps in the reduction of M to ?by the Krivine machine, which seems to be a sensible measure of the complexity of the reduction of M .The map S � E : ���0 ! N seems therefore to provide more generally a way of measuring the complexityof the reduction of lambda-terms. The interesting point is that this measure is associated to the algebraicproperty stated by Theorems 10 and 11.
References
[BCL99] Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantics for lambda calculi withresource. Mathematical Structures in Computer Science, 9(4):437�482, 1999.
[Bou93] Gérard Boudol. The lambda calculus with multiplicities. Technical Report 2025, INRIA Sophia-Antipolis, 1993.
[DB87] N.G. De Bruijn. Generalizing Automath by means of a lambda-typed lambda calculus. In D.W.Kueker, E.G.K. Lopez-Escobar, and C.H. Smith, editors, Mathematical Logic and Theoretical Com-puter Science, Lecture Notes in Pure and Applied Mathematics, pages 71�92. Marcel Dekker, 1987.Reprinted in: Selected papers on Automath, Studies in Logic, volume 133, pages 313-337, North-Holland, 1994.
[DR99] Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal lambda-machines. The-oretical Computer Science, 227(1-2):273�291, 1999.
[ER03] Thomas Ehrhard and Laurent Regnier. The di�erential lambda-calculus. Theoretical ComputerScience, 309(1-3):1�41, 2003.
[ER04] Thomas Ehrhard and Laurent Regnier. Di�erential interaction nets. In Proceedings of WoLLIC'04,Electronic Notes in Theoretical Computer Science. Elsevier Science, 2004. To appear.

12

[ER05] Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary lambda-terms. Technical report, Institut de mathématiques de Luminy, 2005. Submitted for publication.
[Kfo00] Assaf J. Kfoury. A linearization of the lambda-calculus. Journal of Logic and Computation,10(3):411�436, 2000.
[Kri05] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Com-putation, 2005. To appear.
[Vau05] Lionel Vaux. The di�erential lambda-mu calculus. Technical report, Institut de Mathématiques deLuminy, 2005. Submitted for publication.

13

