
Comparing Coherent Differentiation (CD) and
AD

Workshop on Differentiable Programming — 29, 30 June 2022

Thomas Ehrhard
IRIF, CNRS and Université Paris Cité

Derivatives

If E ,F are, say, Banach spaces, U ⊆ E open and f : U → F , a
derivative of f is a function

f ′ : U → L(E ,F)

such that for any x ∈ U there is Vx ⊆ E open and hx : Vx → F
such that 0 ∈ Vx , x + Vx ⊆ U and,

∀u ∈ Vx f (x + u) = f (x) + f ′(x) · u + ‖u‖hx(u)

where

‖hx(u)‖ −→
→0

0 .

If it exists, f ′ is unique.

The chain rule

We can consider f ′ as a function

U × E → F

and then we can define the “tangent function”

Tf : U × E → F × F

(x , u) 7→ (f (x), f ′(x) · u)

Fact (Chain rule)

If the (open) domain of g contains f (U) then

T(g ◦ f) = Tg ◦ Tf .

Generalizes quite well to manifolds: Tangent Categories.

Gradient

If E and F are finite dimensional, we can assume that they are
Euclidian spaces, that is they are given together with a scalar
product (positive-definite inner product)

〈 | 〉 : E × E → R

which induces a canonical isomorphism

ηE : E → E ∗ η(x)(y) = 〈x | y〉

Then ‖x‖ =
√
〈x | x〉.

Transpose

If t ∈ L(E ,F) then t∗ ∈ L(F ∗,E ∗) and hence

t> = ηE
−1 t∗ ηF ∈ L(F ,E)

F F ∗ E ∗ E
ηF t∗ ηE

−1

characterized by

∀x ∈ E ∀y ∈ F 〈t · x | y〉 = 〈x | t> · y〉 .

So if f : U → F where U ⊆ E open has a derivative
f ′ : U → L(E ,F), we can define

f ′(x)
> ∈ L(F ,E)

When F = R we can define

∇f (x) = f ′(x)
> · 1 ∈ E

the gradient vector field on U, characterized locally by

f (x + u) = f (x) + 〈u | ∇f (x)〉+ o(‖u‖)

Fact

If y ∈ E with ‖y‖ = 1 then

arg max‖z‖=1 〈z | y〉 = y

So if we look for a small u in E (say ‖u‖ = ε) such as f (x + u) is
as large as possible, it is a good idea to take

u = ε
∇f (x)

‖∇f (x)‖
.

In concrete AD applications in AI:

• f is described as a program

• the dimension d of E is very large (typically several billions),
say E = Rd with its canonical inner product

• F = R.

And one wants to compute ∇f (x) as efficiently as possible, which
is the same thing as f ′(x) ∈ L(E ,R) up to the ηE iso:

f ′(x) · u =
d∑

i=1

ui
∂f (x)

∂xi
= 〈u | ∇f (x)〉

∇f (x) =

(
∂f (x)

∂xi

)d

i=1

A simple implementation

A simplified AD in the typed λ-calculus, in Brunel-Mazza-Pagani
approach (in forward style): ΛAD.

Data types:

A,B, · · · := R | A× B | A⇒ B

Notation: An =

n︷ ︸︸ ︷
A× · · · × A

• Typing context: Γ = (x1 : A1, . . . , xn : An)

• Typing judgment: Γ ` t : A

for terms t that we describe now together with typing rules.

Basic ingredient: sets (Sigde)d∈N,e∈N\{0} of function symbols, and

for each f ∈ Sigde , its interpretation as a function f : Rd → Re .

Terms and typing

i ∈ {1, . . . , n}
(xj : Aj)

n
j=1 ` xi : Ai

f ∈ Sigde

Γ ` f : Rd ⇒ Re

Γ ` t1 : A1 Γ ` t2 : A2

Γ ` 〈t1, t2〉 : A1 × A2

Γ ` t : A1 × A2

Γ ` pri t : Ai

Γ, x : A ` t : B

Γ ` λx : A · t : A⇒ B

Γ ` s : A⇒ B Γ ` t : A

Γ ` (s)t : B

Γ ` t : A⇒ A

Γ ` fix(t) : A

The signature

For instance we can take

• Sig01 the set of all r for r ∈ R, with r = r etc.

• ifp ∈ Sig31,

ifp(r , r1, r2) =

{
r1 if r > 0

r2 otherwise

• softmax ∈ Sigkk
• relu, tanh, · · · ∈ Sig11
• etc.

Operational semantics

Transformation rules for these expressions:

• λ-calculus rules:

(λx : A · s)t → s [t/x]

pri 〈t1, t2〉 → ti

fix(t)→ (t)fix(t)

• The so called “δ-rules”: if f ∈ Sigde and r1, . . . , rd ∈ R then

f (r1, . . . , rd)→ f (r1, . . . , rd)

for instance cos(π)→ −1.

Specific evaluation strategies can be implemented by means of
abstract machines.

Formal differentiation

If ` t : Rd ⇒ Re we want a differential

` t ′ : Rd × Rd ⇒ Re

It will be much more convenient to have a chain-rule compatible
operation

` T t : Rd × Rd ⇒ Re × Re

BMP homomorphic differentiation

It is a syntactic transformation T from the language to itself.

Basic assumption

For each symbol f ∈ Sigde with d , e > 0 there is a symbol
f ′ ∈ Sigd+d

e .

Then we define

• Type transformation: T (Rd) = R2d and
T (A⇒ B) = (T A⇒ T B).

• T (A× B) = T A× T B
• A term transformation such that

(x1 : A1, . . . , xn : An) ` t : B

⇒ (x1 : T A1, . . . , xn : T An) ` T t : T B

The definition is straightforward:

• T x = x

• for c ∈ Sig01, T (c) = 〈c , 0〉 Reals are at the same time the
values on which we compute and the coefficients of the
matrices.

• for f ∈ Sigde with d , e > 0,
T f = λx : Rd × Rd · 〈f (pr1x), f ′(x)〉

• T 〈t1, t2〉 = 〈T t1, T t2〉
• T (pri t) = pri (T t)

• T (λx : A · t) = λx : T A · T t
• T (s)t = (T s)T t.

Fact (easy)

If s → t then T s →∗ T t

Denotation

In a recent paper by Mazza and Pagani it is strongly suggested
that this language can be interpreted in a cartesian closed category
C. This category contains R as an object.

Morphisms should be partially defined functions which are
differentiable “almost” everywhere.

• With any type A we associate an object JAK of C
• and if (xi : Ai)

n
i=1 ` t : B then JtK ∈ C(JA1K× · · · × JAnK, JBK)

Main features

• If s → t then JsK = JtK
• If x : Rd ` t : Re so that JtK ∈ C(Rd ,Re) and

JT tK ∈ C(R2d ,R2e); then

JT tK = TJtK

Consequence: the T syntactic construct computes almost
everywhere the “true” differential (gradient) of t.

Actually they manage to prove this without building the model.

Linearity in AD

Differentiation is linearization: if f : E → F then

Tf : TE = E × E → TF = F × F

the second component is linear.

But in AD this is true only at ground type: we have

JT AK = TJAK

only when A = Rd .

Question

Can we understand T t as a kind of derivative at higher types as
well?
For instance when ` t : (R⇒ R)⇒ R we have

` T t : (R2 ⇒ R2)⇒ R2

whereas the differential of t should rather be of type

(R⇒ R2)⇒ R2

since (R⇒ R)2 = (R⇒ R2)

. . . probably not straightforwardly

The derivative wrt. f of t such that f : R⇒ R ` t : R involves in
general the derivative of f , for instance if

t = (f)(f)42

then (with f , h : R⇒ R)

t ′(f) · h = (h)(f)0 + f ′(f (0)) · h(42)

depending linearly on the function h.

Whereas in AD

T t(f) = (f)(f)(42, 1)

where now f has type R2 ⇒ R2.

DiLL and CD

Origins of DiLL

In the 1960’s Christopher Stachey promotes a mathematical
semantics of programs: what function does a program compute?

Meaningful also for stateful programs, seen as functions:

machine state→ machine state

In 1969 Christopher Strachey meets Dana Scott: they invent
Denotational Semantics.

Denotational Semantics (DS)

Types are interpreted as lattices (or more general domains with
order-completeness properties Domain Theory).

The order relation of these domains reflects the degree of
definiteness of partial data.

Program 7→ monotone and Scott continuous function, that is
f (supn∈N xn) = supn∈N f (xn).

Scott continuity accounts for the finiteness of computations.

Scott continuity ⇔ continuity for the Scott topology.

So the standard viewpoint on denotational semantics was mainly
topological.

Linear Logic: algebraic viewpoint on DS

Girard’s LL (1986) reflects the fact that denotational models have
an underlying linear structure featuring operations very similar to
those of linear algebra: tensor product, direct product, linear
function space, dual etc.

Of course such models have also non linear morphisms.

The exponential modality of LL explains the connection between
the linear and the non-linear worlds (categories).

Basic principle: we can forget that a function is linear, this is
dereliction.

Differentiation in LL

Differential LL axiomatizes the converse operation:

dereliction : linear→ non-linear

differentiation : non-linear→ linear

reformulating the standard laws of the differential calculus.

Then differentiation becomes a very general logical operation.

Until recently DiLL was strongly non-deterministic, there was a
deduction rule

Γ ` A Γ ` A
(+)

Γ ` A

apparently required to take into account the Leibniz rule
(uv)′ = u′v + uv ′.

Coherent differentiation

Very recently we have developed a new approach which doesn’t
require this rule anymore.

Leads to a differential λ-calculus ΛCD which has some similarities
with ΛAD.

Linearity in ΛCD

We don’t need to have a ground type of real numbers.

LL linearity is in some sense intrinsic, it does not rely on a specific
choice of coefficients. Coefficients are not a data-type.

And so is differentiation in LL and in ΛCD: it is agnostic as to
coefficients. Differentiation is orthogonal to data-types.

Types of ΛCD

A,B, · · · := Dd ι | A⇒ B

where d is an abitrary element of N.

The ground type ι is the type of integers. We could also have a
type of booleans and many more discrete data types (recursive
types).

Then one extends D to all types

D(Dd ι) = Dd+1ι D(A⇒ B) = (A⇒ DB)

Intuition

DA is the type of pairs (u, v) with u, v : A and u + v : A.

DA 6= A×A in general: in ΛCD one deals with situations where this
sum u + v does not always exist: we drop the (+) rule of DiLL.

So an u : DdA should be thought of as a balanced tree with 2d

leaves labeled by elements u1, . . . , u2d : A such that
∑2d

i=1 ui : A

Term syntax: very close to that of ΛAD, 3 kinds of construct

• λ-calculus

• arithmetics

• differentiation and tree management.

M,N, · · · := x | λx : A ·M | (M)N | YM

| n | ifzd(M,P,Q) | succd(M) | · · ·
| DM | πdi (M) | ιdi (M) | θd(M) | cdl (M) | 0A | M + N

The exponents d express at which depth in the tree u : DeA (with
e ≥ d) the corresponding construct should be applied.

Ordinary typing rules

The λ-calculus rules are as in ΛAD.

The arithemtic rules must take depth into account, for instance

Γ ` n : ι
Γ ` M : Dd ι Γ ` P : A Γ ` Q : A

Γ ` ifzd(M,P,Q) : DdA

Some differential / tree typing rules

Γ ` M : A⇒ B

Γ ` DM : DA⇒ DB

Intuitively DM maps (x , u) to (M(x),M ′(x) · u) exactly as T t in
ΛAD at ground types. Here differentiation makes sense at all types.

Γ ` M : Dd+2A

Γ ` θd(M) : Dd+1A

Intuitively, if M : D2A represents ((u00, u01), (u10, u11)) then
θ0(M) : DA represents (u00, u01 + u10)

Γ ` M : DdA

Γ ` ιd0 (M) : Dd+1A

If M : A represents u then ι00(M) represents (u, 0).

Similarly for ιd1 (M) on the other side.

Dually

Γ ` M : Dd+1A

Γ ` πdi (M) : DdA

implements the obvious projections for i = 0, 1.

The most puzzling rule is perhaps

Γ ` M : Dd+l+2A

Γ ` cdl (M) : Dd+l+2A

which implements a circular permutation of length l + 2 at depth d
in the access words in the tree represented by M.

Example

If d = 0, l = 1 and M : D3A represents

(((u000, u001), (u010, u011)), ((u100, u101), (u110, u111)))

then c01(M) represents

(((u000, u100), (u001, u101)), ((u010, u110), (u011, u111)))

Cf the standard flip in tangent categories.

The differential reduction

Assuming Γ, x : A ` M : B

D(λx : A ·M)→ λx : DA · ∂(x ,M)

where ∂(x ,M) is an operation defined by induction on M such
that Γ, x : DA ` ∂(x ,M) : DB.

Remark

The definition of ∂(x ,M) is homomorphic wrt. the structure of
terms, very much like the definition of T in ΛAD though slightly
more complicated!

Sums induced by Leibniz are not performed immediately, their
position are marked by the construct θd().

Major difference wrt. the definition of ∂M
∂x · x in the differential

λ-calculus, which is an inefficient symbolic differentiation.

Some cases of the def. of ∂(x ,M)

• ∂(x , x) = x

• ∂(x , y) = ι00(y)

• ∂(x , λy : A ·M) = λy : DA · ∂(x ,M)

• ∂(x , (M)N) = (θ0(D∂(x ,M)))∂(x ,N)

Indeed if Γ, x : A ` M : B ⇒ C and Γ, x : A ` N : B

Γ, x : DA ` ∂(x ,M) : B ⇒ DC

Γ, x : DA ` D∂(x ,M) : DB ⇒ D2C

Γ, x : DA ` θ0(D∂(x ,M)) : DB ⇒ DC Γ, x : DA ` ∂(x ,N) : DB

Γ, x : DA ` ∂(x , (M)N) : DC

Notice that (DB ⇒ D2C) = D2(DB ⇒ C).

Remark

Actually (D, θ0(), ι00()) is a strong monad.

Works also for fixpoints.

• ∂(x ,YM) = Yθ0(D∂(x ,M))

Assuming Γ, x : A ` M : B ⇒ B so that Γ, x : A ` YM : B, we
have

Γ, x : DA ` ∂(x ,M) : B ⇒ DB

Γ, x : DA ` D∂(x ,M) : DB ⇒ D2B

Γ, x : DA ` θ0(D∂(x ,M)) : DB ⇒ DB

Γ, x : DA ` Yθ0(D∂(x ,M)) : DB

The cdl (M) construct is very important, for instance

• ∂(x ,DM) = c00(D∂(x ,M))

typed as follows, assuming that Γ, x : A ` M : B ⇒ C so that
Γ, x : A ` DM : DB ⇒ DC

Γ, x : DA ` ∂(x ,M) : B ⇒ DC

Γ, x : DA ` D∂(x ,M) : DB ⇒ D2C

Γ, x : DA ` c00(D∂(x ,M)) : DB ⇒ D2C

Why do basic operations act at depth d?

This is required by the definition of ∂(x ,M).

The case of the successor.

• ∂(x , succd(M)) = succd+1(∂(x ,M))

Assuming Γ, x : A ` M : Dd ι we have:

Γ, x : DA ` ∂(x ,M) : Dd+1ι

Γ, x : DA ` succd+1(∂(x ,M)) : Dd+1ι

Reflects the linearity of succ().

Remark

All these typing and reduction rules are justified (and actually
inspired) by a general categorical semantics which has many
instances which are well known models of LL.

• Relational semantics, finiteness spaces, profunctors (actually
all models of the old DiLL), but also:

• Girard’s coherence spaces and hypercoherences with multiset
exponential.

• Non-uniform coherence spaces (Bucciarelli and E.).

• Probabilistic coherence spaces (PCS, Danos and E.).

• What about game models?

What is the meaning of this differential?

In the PCS model, Bool is interpreted as the set of all probability
sub-distributions on {t, f}.
M : Bool× Bool→ Bool e.g. is seen as a subdistribution
transformer and as such is a very regular funtion: typically analytic.

More precisely M(x , y) is analytic at x , y s.t. xt + xf < 1 and
yt + yf < 1. For such x , y , and abitrary u, one can compute

∂M(x , y)

∂y
· u algebraically linear in u

The ΛCD computes exactly this kind of derivative.

A Bool→ Bool example

Consider the recursive program M:

x : Bool ` M : Bool M = if(x , if(x ,M, t), if(x , f,M))

then f = JMKx :Bool in the model of probabilistic coherence spaces
is the “least” function f : P(Bool)→ P(Bool) such that

f (x) = (x2t + x2f)f (x) + xtxf(t + f)

f (x) =

{
0 if xt = 1 or xf = 1

xtxf
1−x2t −x2f

(t + f) otherwise

P(Bool): the space of proba subdistr. on {t, f}.

Convergence probability of f : with rαt+ r(1−α)f = x ∈ P(Bool),

g(r , α) = f (rαt + r(1− α)f)t + f (rαt + r(1− α)f)f

0.5
1

0.5

10.5

1

r

α

For r < 1 we can see g(r ,) as an analytic approximation of
g(1,).

min(10, r ∂g∂r /g) = min(10, 2/(1− r2(1− 2α + 2α2))):

0.5
1

0.5

15

10

r

α

Fact

r ∂g∂r /g = expectation of the number of uses of x , conditioned by
termination.

Differences: the role of R

• Semantically, extending ΛCD to continuous data-types (R) is
not straightforward: the interpretation of R is the “cone” of
finite positive measures on R, not the real line itself.

• Example of a major difference between ΛAD and ΛCD: in the
latter

ifz : N & (X & X)→ X

is bilinear, in the former, ifp is not even continuous (replacing
N with R).

• In CD coefficients are not values. Linearity has clearly not the
same status in both settings though the difference is not
completely clear yet. The BMP backpropagation approach to
AD is based on LL as well!

Similarity: syntaxes look close

• Formally ΛAD and ΛCD look very close! We can hope to use
the homomorphic ΛCD syntax to extend ΛAD to higher types,
and conversely to import backpropagation ideas from ΛAD to
ΛCD.

• More specifically: ΛCD provides an evaluation mechanism
based on an environment-free Krivine machine whose states
are (δ,M, s) where M is a term, s is a stack and δ is a
sequence of bits. The diff/tree constructions are instructions
for handling δ. Could such a mechanism make sense in AD?

Can CD meet AD?

	DiLL and CD

