Integration in Positive Cones

Thomas Ehrhard IRIF, CNRS and Université de Paris

Joint work with Guillaume Geoffroy, IRIF

ANR PPS 4th general meeting

January 4, 2023

Motivations

- Design a general semantics of functional programming languages with probabilistic choice.
- Based on Kozen's idea of (1st order) programs as probability distribution transformers.
- Extending probabilistic coherence spaces, which work only for "discrete" data-types.
- And featuring *continuous* data-types (like \mathbb{R}).
- This requires a general notion of integration of "paths" valued in any object to represent sampling.

Selinger's positive cones

Cones are objects which have at the same time

- algebraic and analytic features: sum, scalar multiplication, norm (similar to normed vector spaces)
- order-theoretic features: positivity assumptions → order structure. + Scott completeness assumption.

Cones can be shown to be Cauchy-complete metric spaces, but we use Scott completeness to interpret general recursion \rightsquigarrow *no need to restrict to contractive maps*.

Cones and measure theory

Cones fit very well with the basic ideas of Measure Theory:

- Basic measures are ℝ_{≥0}-valued, and satisfy a Scott-continuity requirement wrt. inclusion of measurable sets (besides finite additivity).
- Central result of MT, the monotone convergence theorem deals with $\mathbb{R}_{\geq 0}$ -valued measurable maps and is very much order-theoretic.
- Any ℝ_{≥0}-valued measurable function is the pointwise lub of an ω-indexed sequence of simple functions: this gives a very easy definition of integration (Lebesgue).

Simple function: measurable function taking only finitely many different values.

We consider $\mathbb{R}_{\geq 0}$ as a commutative monoid for 0 and +.

A $\mathbb{R}_{\geq 0}$ -semimodule is a set *P* with:

- a commutative monoid structure (0, +)
- a bilinear scalar multiplication R_{≥0} × P → P mapping (λ, x) to λx with 1x = x and (λμ)x = λ(μx).

Definition

P is

- positive if $x + y = 0 \Rightarrow x = 0$
- cancellative if $x + y = x' + y \Rightarrow x = x'$.

Algebraic order, partially defined subtraction

If *P* is positive and cancellative, it is (partially) ordered by: $x \le y$ if $\exists z \in P \ x + z = y$. This *z* is unique: z = y - x.

Definition of cones

A cone is a positive and cancellative $\mathbb{R}_{\geq 0}$ -semimodule P equipped with a function $\|_{-}\|_{P} : P \to \mathbb{R}_{\geq 0}$ (its norm) such that

•
$$\|\lambda x\| = \lambda \|x\|$$
 (hence $\|0\| = 0$)

- $||x + y|| \le ||x|| + ||y||$
- $||x|| = 0 \Rightarrow x = 0$
- $||x|| \le ||x+y||$, that is $x \le y \Rightarrow ||x|| \le ||y||$
- if (x_n)_{n=1}[∞] is monotone and ∀n ||x_n|| ≤ 1 then sup_n x_n exists in P and ||sup_n x_n|| ≤ 1. NB: ω-sequences, not arbitrary directed sets, because we need the monotone conv. thm.

Fact

Addition, scalar multiplication and the norm are Scott-continuous (= monotone and commute with lubs of monotone bounded ω -sequences).

The cone of finite measures

Let \mathcal{X} be a measurable space with σ -algebra $\sigma_{\mathcal{X}}$.

The set of all $\mathbb{R}_{\geq 0}\text{-valued}$ measures on $\mathcal X$ is a cone, with

- algebraic operations defined "pointwise": $(\mu + \nu)(U) = \mu(U) + \nu(U)$ for all $U \in \sigma_{\mathcal{X}}$
- and $\|\mu\| = \mu(\mathcal{X}).$

Notice that $\mu \leq \nu$ means $\forall U \in \sigma_{\mathcal{X}} \ \mu(U) \leq \nu(U)$.

Notation: $Meas(\mathcal{X})$

Linear and continuous morphisms

If P, Q are cones, a function $f : P \to Q$ is linear if $f(\lambda x) = \lambda f(x)$ and $f(x_1 + x_2) = f(x_1) + f(x_2)$. Notice that f is monotone.

Fact

Such a function is bounded: $\exists \lambda \in \mathbb{R}_{\geq 0} \, \forall x \in P \, ||x|| \leq 1 \Rightarrow ||f(x)|| \leq \lambda.$ We set $||f|| = \sup_{||x|| \leq 1} ||f(x)||.$

We say that f is continuous if it is Scott-continuous, that is: $((x_n)_{n=1}^{\infty} \text{ monotone and } \forall n ||x_n|| \le 1) \Rightarrow f(\sup_n x_n) = \sup_n f(x_n).$

Finite kernels as linear and cont. maps

 \mathcal{X}, \mathcal{Y} measurable spaces, $\kappa : \mathcal{X} \rightsquigarrow \mathcal{Y}$ a finite kernel, that is:

- $\kappa : \mathcal{X} \to \operatorname{Meas}(\mathcal{Y})$
- and for all V ∈ σ_Y the function λr ∈ X · κ(r)(V) : X → ℝ_{≥0} is measurable and bounded.

We can define

$$f: \underline{\mathsf{Meas}(\mathcal{X})} \to \underline{\mathsf{Meas}(\mathcal{Y})}$$
$$\mu \mapsto \mathbf{\lambda} V \in \sigma_{\mathcal{Y}} \cdot \int_{\mathcal{X}} \kappa(r)(V) \mu(dr)$$

which is linear and continuous.

If $f : Meas(\mathcal{X}) \to Meas(\mathcal{Y})$ is linear and continuous, we can define

$$\kappa: \mathcal{X} \to \underline{\mathsf{Meas}(\mathcal{Y})}$$
$$r \mapsto f(\underbrace{\boldsymbol{\delta}^{\mathcal{X}}(r)}_{\mathsf{Dirac measure at } r})$$

but

- given $V \in \sigma_{\mathcal{Y}}$ the map $r \mapsto f(\boldsymbol{\delta}^{\mathcal{X}}(r))(V)$ has no reason to be measurable
- and even if it is measurable, it is not necessarily true that $f(\mu)(V) = \int f(\boldsymbol{\delta}^{\mathcal{X}}(r))(V)\mu(dr).$

Fact

We need further measurability and integrability conditions on linear and continuous maps.

Measurability structures

A reference category of arities

We assume to be given a set **ar** of *arities* with $0 \in$ **ar** and +: **ar** \times **ar** \rightarrow **ar** and for each $a \in$ **ar**, we assume to be given a measurable space \overline{a} with $\overline{0} = \{*\}$ and $\overline{a + b} = \overline{a} \times \overline{b}$.

We consider **ar** as a small cartesian category, with

$$\operatorname{ar}(a, b) = \{ \varphi : \overline{a} \to \overline{b} \mid \varphi \text{ is measurable} \}.$$

Measurability structure on a cone

Let P be a cone. A measurability structure on P is a family $\mathcal{M} = (\mathcal{M}_a)_{a \in ar}$ such that

- *M_a* ⊆ (*P'*)^ā where *P'* is the set of linear and continuous maps *P* → ℝ_{≥0}, in particular: *M*₀ ⊆ *P'*, if *m* ∈ *M_a*, *m* : ā × *P* → ℝ_{≥0} linear and continuous in the second argument;
- if $m \in \mathcal{M}_a$ and $x \in P$ with $||x|| \le 1$ the function $\lambda r \in \overline{a} \cdot m(r, x)$ is measurable $\overline{a} \to [0, 1]$;
- if m ∈ M_b and φ ∈ ar(a, b) then m ∘ φ ∈ M_a, in particular M₀ ⊆ M_b;

• if $x, y \in P$ satisfy $\forall m \in \mathcal{M}_0 \ m(x) = m(y)$ then x = y (separation);

• if
$$x \in P$$
 then $||x|| = \sup\{\frac{m(x)}{\|m\|} \mid m \in \mathcal{M}_0 \setminus \{0\}\}$

 $||m|| = \sup_{||y||_P \le 1} m(y)$ so $\forall y \in P \ m \in \mathcal{M}_0 \setminus \{0\} \ \frac{m(y)}{||m||} \le ||y||$. The elements of \mathcal{M}_a are the measurability tests of arity a.

Measurable cone

A measurable cone is a pair $C = (\underline{C}, \mathcal{M}^{C})$ where

- <u>C</u> is a cone
- and $\mathcal{M}^{\mathcal{C}} = (\mathcal{M}^{\mathcal{C}}_a)_{a \in ar}$ is a measurability structure on $\underline{\mathcal{C}}$.

If $a \in \mathbf{ar}$, a (measurable) *a-path* of *C* is a bounded map $\gamma : \overline{a} \to \underline{C}$ such that, for all $b \in \mathbf{ar}$ and $m \in \mathcal{M}_b^C$, the function

$$\boldsymbol{\lambda}(s,r) \in \overline{b+a} \cdot m(s,\gamma(r)) : \overline{b+a} \to \mathbb{R}_{\geq 0}$$

is measurable.

Measurable cones as QBSs

Equipped with these paths \underline{C} can be considered as a quasi Borel space, but the algebraic structure of \underline{C} is also important for us.

Integrals

If $\gamma : \overline{a} \to \underline{C}$ is a measurable *a*-path and $\mu \in \underline{\text{Meas}}(\overline{a})$ of *C*, an integral of γ over μ is an $x \in \underline{C}$ such that for all $m \in \mathcal{M}_0^C$, one has (NB: $m \circ \gamma : \overline{a} \to \mathbb{R}_{>0}$ is measurable and bounded):

$$\underbrace{\int_{\overline{a}} m(\gamma(r))\mu(dr)}_{\text{defined Lebesgue integral} \in \mathbb{R}_{\geq 0}} = m(x).$$

If x exists, it is unique by separation, notation

well

$$x=\int_{\overline{a}}\gamma(r)\mu(dr)$$

Pettis integral

This is very similar to the definition of a *Pettis integral* (1938) for a function from a measurable space to a topological vector space with good separation properties, typically a locally convex tvs. Aka. Gelfand-Pettis or weak integral.

Our objects: integrable cones

A measurable cone *C* is integrable if for any $a \in \operatorname{ar}, \gamma : \overline{a} \to \underline{C}$ measurable path and $\mu \in \underline{\operatorname{Meas}(\overline{a})}$, the path γ is integrable over μ , that is

$$\int \gamma(r)\mu(dr) \in \underline{C}$$

exists.

Linear morphisms of integrable cones

Given integrable cones *C*, *D*, a linear and continuous $f : \underline{C} \rightarrow \underline{D}$ is

- *measurable* if $f \circ \gamma$ is a measurable path $\overline{a} \to \underline{D}$ for any $a \in \mathbf{ar}$ and any measurable path $\gamma : \overline{a} \to \underline{C}$
- *integrable* if, moreover, for any $\mu \in Meas(\overline{a})$, one has

$$f\left(\int \gamma(r)\mu(dr)\right) = \int f(\gamma(r))\mu(dr)$$

The linear category of integrable cones

Definition

ICones is the category

- whose objects are the integrable cones
- morphisms: $f \in \mathbf{ICones}(C, D)$ if $f : \underline{C} \to \underline{D}$ is linear, continuous, integrable and $||f|| = \sup_{||x||_C \le 1} ||f(x)||_D \le 1$.

The integrable cone of finite measures

For $a \in ar$ we define the integrable cone Meas(a):

- the underlying cone is Meas(a), the cone of finite measures on the measurable space a
- for $b \in \operatorname{ar}$, $\mathcal{M}_{b}^{\operatorname{Meas}(a)} = \mathcal{M}_{0}^{\operatorname{Meas}(a)} = \{ \widetilde{U} \mid U \in \sigma_{\overline{a}} \}$ where $\widetilde{U}(\mu) = \mu(U)$ for all $\mu \in \operatorname{Meas}(\overline{a})$.

Fact

The measurable paths $\kappa : \overline{b} \to \underline{\text{Meas}(a)}$ are exactly the finite kernels. All such paths are integrable, with, for all $\nu \in \underline{\text{Meas}(\overline{b})}$ and $U \in \sigma_{\overline{a}}$:

$$\left(\int_{\overline{b}}\kappa(s)\nu(ds)\right)(U)=\int_{\overline{b}}\kappa(s)(U)\nu(ds)$$

The integrable cone of paths

For $a \in ar$ and for an integrable cone C we define Path(a, C) as follows:

- $\underline{\operatorname{Path}(a, C)}$ is the cone of measurable paths $\overline{a} \to \underline{C}$, operations defined pointwise and $\|\gamma\| = \sup_{r \in \overline{a}} \|\gamma(r)\| \in \mathbb{R}_{\geq 0}$ since $\gamma \in \operatorname{Path}(a, C)$ is bounded;
- and for *b* ∈ **ar**,

$$\mathcal{M}_{b}^{\mathsf{Path}(a,C)} = \{ \varphi \triangleright m \mid \varphi \in \mathsf{ar}(b,a) \text{ and } m \in \mathcal{M}_{b}^{C} \}$$

where $\varphi \triangleright m = \lambda(s, \gamma) \in \overline{b} \times \operatorname{Path}(a, C) \cdot m(s, \gamma(\varphi(s)))$.

Paths of paths and their integral

So $\eta : \overline{b} \to Path(a, C)$, that is $\eta : \overline{b} \times \overline{a} \to \underline{C}$, is a measurable path if for all $c \in ar$, $\varphi \in ar(c, b)$ and $m \in \mathcal{M}_c^C$, the function

$$\boldsymbol{\lambda}(t,r) \in \overline{c} \times \overline{a} \cdot m(t,\eta(\varphi(t),r)) : \overline{c} \times \overline{a} \to \mathbb{R}_{\geq 0}$$

is measurable.

Given $\nu \in \underline{Meas}(b)$, $\int \eta(s)\nu(ds) \in \underline{Path}(a, C)$ exists and is given by

$$\left(\int \eta(s)\nu(ds)\right)(r) = \int \eta(s,r)\nu(ds) \in \underline{C}.$$

Fubini

So given $\mu \in Meas(a)$, the integral

$$\int_{\overline{a}} \left(\int_{\overline{b}} \eta(s) \nu(ds) \right) (r) \mu(dr) \in \underline{C}$$

is well defined.

Fubini theorem for cones

$$\int_{\overline{a}} \left(\int_{\overline{b}} \eta(s)\nu(ds) \right)(r)\mu(dr) = \int_{\overline{b}} \left(\int_{\overline{a}} \eta'(r)\mu(dr) \right)(s)\nu(ds)$$
$$= \iint_{\overline{a},\overline{b}} \eta(s,r)\mu(dr)\nu(ds)$$

where $\eta' \in \underline{\operatorname{Path}(a,\operatorname{Path}(b,C))}$ given by $\eta'(r)(s) = \eta(s)(r)$.

The cone of linear morphisms

Given integrable cones C, D, we define a cone $C \multimap D$ by

• $\underline{C \multimap D}$ is the cone of linear, Scott-continuous, measurable and integrable linear maps $\underline{C} \to \underline{D}$, algebraic operations defined pointwise and $\|f\|_{C \multimap D} = \sup_{\|x\|_{C} \leq 1} \|f(x)\|_{D}$;

and

$$\mathcal{M}_{a}^{C \to D} = \{ \gamma \triangleright m \mid \gamma \in \underline{\mathsf{Path}}(a, C) \text{ and } m \in \mathcal{M}_{a}^{D} \}$$

where $\gamma \triangleright m = \lambda(r, f) \in \overline{a} \times \underline{C \multimap D} \cdot m(r, f(\gamma(r))).$

Fact

This cone is integrable, if $\eta \in Path(a, C \multimap D)$ then

$$\forall \mu \in \underline{\mathsf{Meas}(a)} \ \int \eta(r)\mu(dr) = \boldsymbol{\lambda} x \in \underline{C} \cdot \int \eta(r)(x)\mu(dr) \in \underline{C \multimap D}$$

Tensor product in **ICones**

The SAFT applies!

The category ICones is locally small and

- is complete (it has all small products and all equalizers);
- has a cogenerator, namely the cone 1 = ℝ_{≥0}, that is if f, g ∈ ICones(C, D) satisfy mf = mg for all m ∈ ICones(C, 1), then f = g by the separation condition on the measurability structure;
- and is well-powered, that is the class of subobjects of any object *C* is essentially small. Because a subobject of *C* is, up to iso, a cone structure on a subset of <u>*C*</u>.

By the Special Adjoint Functor Theorem (SAFT)

Any functor $\textbf{ICones} \rightarrow \mathcal{C}$ which preserves all limits has a left adjoint.

Tensor product

Given an object *C* of **ICones** the functor $C \multimap _$ preserves all limits. So it has a left adjoint $_ \otimes C$.

Since $_ \multimap _$: **ICones**^{op} × **ICones** \rightarrow **ICones**, we have $_ \otimes _$: **ICones** × **ICones** \rightarrow **ICones**.

Fact

The natural bijection $ICones(B \otimes C, D) \rightarrow ICones(B, C \multimap D)$ induced by this adjunction is actually an iso in

ICones
$$(B \otimes C \multimap D, B \multimap (C \multimap D))$$
.

Consequence

(**ICones**, $1, \otimes$) is a symmetric monoidal closed category.

Bilinear maps and the tensor product

A map $f : \underline{C} \times \underline{D} \to \underline{B}$ is bilinear if it is separately linear, Scott continuous, measurable in the sense that if $\gamma \in Path(a, C)$ and $\delta \in Path(a, D)$ then $f \circ \langle \gamma, \delta \rangle \in Path(a, B)$ and separately integrable in the sense that

$$f\left(\int \gamma(r)\mu(dr), y\right) = \int f(\gamma(r), y)\mu(dr)$$
$$f\left(x, \int \delta(r)\mu(dr)\right) = \int f(x, \delta(r))\mu(dr).$$

Fact

There is a bilinear $\tau : \underline{C} \times \underline{D} \to \underline{C \otimes D}$ which is universal in the sense that for any bilinear $f : \underline{C} \times \underline{D} \to \underline{B}$ there is exactly one $\tilde{f} \in \mathbf{ICones}(C \otimes D, B)$ such that $f = \tilde{f} \tau$. Notation $x \otimes y = \tau(x, y)$. One has $||x \otimes y|| = ||x|| ||y||$.

Integration is a bilinear map

The function

$$\mathcal{I}: \underline{\mathsf{Path}(a, C)} \times \underline{\mathsf{Meas}(a)} \to \underline{C}$$
$$(\gamma, \mu) \mapsto \int \gamma(r)\mu(dr)$$

is bilinear. Let $I \in ICones(Path(a, C) \otimes Meas(a), C)$ be such that

$$l(\gamma \otimes \mu) = \int \gamma(r) \mu(dr)$$
.

Fact

The "Curry transpose" of I, $cur(I) \in ICones(Path(a, C), Meas(a) \multimap C)$, is an iso. If $f \in Meas(a) \multimap C$, the associated $\gamma \in Path(a, C)$ is given by

$$\gamma(r) = f(\boldsymbol{\delta}^{\overline{a}}(r))$$
 .

Because f is integrable, we have

$$\int \gamma(r)\mu(dr) = \int f(\boldsymbol{\delta}^{\overline{a}}(r))\mu(dr) = f\left(\int \boldsymbol{\delta}^{\overline{a}}(r)\mu(dr)\right) = f(\mu)$$

for all $\mu \in Meas(a)$.

As a consequence an element of **ICones**(Meas(*a*), Meas(*b*)) is the same thing as a sub-probability kernel $\overline{a} \rightsquigarrow \overline{b}$.

Consequence

The category whose objects are the mesurable spaces \overline{a} (for $a \in ar$) and whose morphisms are the subprobability kernels is a full subcategory of **ICones**.

Analytic morphisms

Homogeneous polynomials

We define *n*-linear maps

$$g:\underline{C}\times\cdots\times\underline{C}\to\underline{D}$$

as we did for bilinear maps.

A function $h: \underline{C} \to \underline{D}$ is *n*-homogeneous polynomial if there is such a *g*, with

$$h(x) = g(\overbrace{x,\ldots,x}^{n \text{ times}}).$$

Fact

If we assume that g is symmetric, it is possible to recover it from h by the Polarization Formula.

Analytic functions

 $\mathcal{B}\underline{C} = \{x \in \underline{\mathcal{B}C} \mid ||x||_{C} \leq 1\}$ the "unit ball".

A function $f : \mathcal{B}\underline{C} \to \underline{D}$ is analytic if

- f is bounded, that is $\exists \lambda \in \mathbb{R}_{\geq 0} \, \forall x \in \mathcal{BC} \, \|f(x)\| \leq \lambda$;
- there is a family $(f_n : \underline{C} \to \underline{D})_{n \in \mathbb{N}}$ of functions such that f_n is *n*-homogeneous polynomial and

$$\forall x \in \mathcal{B}\underline{C} \quad f(x) = \sum_{n=0}^{\infty} f_n(x) = \sup_{N \in \mathbb{N}} \sum_{n=0}^{N} f_n(x);$$

• and for any $a \in \operatorname{ar}$ and $\gamma \in \mathcal{B}\underline{\mathsf{Path}(a, C)}$, one has $f \circ \gamma \in \underline{\mathsf{Path}(a, D)}$.

Taylor expansion of an analytic function

Fact

If f is analytic then the f_n 's are uniquely determined by f, so there are uniquely determined symmetric multilinear functions $D_0^{(n)}f: \underline{C}^n \to \underline{D}$ such that

$$\forall n \in \mathbb{N} \ f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \mathsf{D}_0^{(n)} f(x, \ldots, x) \, .$$

Examples of analytic and non-analytic function

1 = Meas(0) is the integrable cone $\mathbb{R}_{\geq 0}$ with ||u|| = u. So $\mathcal{B}1 = [0, 1]$.

 $f: [0, 1] \to \mathbb{R}_{\geq 0}$ is analytic if $f(u) = \sum_{n=0}^{\infty} a_n u^n$ with $a_n \in \mathbb{R}_{\geq 0}$ and $\sum_{n=0}^{\infty} a_n < \infty$.

 e^{u-1} and $1 - \sqrt{1-u}$ are analytic functions. The second one cannot be extended to $\mathbb{R}_{\geq 0}$.

 $2u - u^2$, $\sin(\frac{\pi}{2}u)$ and $k(u) = \sqrt{u}$ are not.

All these functions are smooth and monotone $[0, 1] \rightarrow [0, 1]$.

The cone of analytic functions

The set of all analytic functions $\mathcal{B}\underline{\mathit{C}}\to\underline{\mathit{D}}$ with

- algebraic operations defined pointwise
- $||f|| = \sup_{x \in \mathcal{B}\underline{C}} ||f(x)||_D$
- measurability structure defined as for $C \multimap D$

is an integrable cone $C \Rightarrow_a D$. Integrals are defined "pointwise" as in $C \multimap D$.

Warning: stable order

If $f, g: \mathcal{B}\underline{C} \to \underline{D}$ are analytic then $f \leq g \Rightarrow \forall x \in \mathcal{B}\underline{C} \ f(x) \leq g(x)$ but the converse is not true. It is true for linear morphisms.

The CCC of analytic functions

Fact

If
$$f \in \underline{C} \Rightarrow_{a} \underline{D}$$
 with $||f|| \le 1$ and $g \in \underline{D} \Rightarrow_{a} \underline{E}$ then $g \circ f \in \underline{C} \Rightarrow_{a} \underline{E}$.

One defines a category ACones:

- objects are the integrable cones
- ACones(C, D) = { $f \in \underline{C} \Rightarrow_a D | ||f|| \le 1$ }
- identities and composition as in **Set**.

Fact

ACones is a CCC, evaluation and curryfication defined as in Set.

The analytic exponential comonad

If $f \in \mathbf{ICones}(C, D)$ then by restricting f to $\mathcal{B}\underline{C}$ one gets an analytic function $f \in \mathbf{ACones}(C, D)$.

This defines a functor $\mathsf{Der}: \mathsf{ICones} \to \mathsf{ACones}.$

Der preserves all limits and hence has a left adjoint E_a : **ACones** \rightarrow **ICones**, by the SAFT.

 $!^a{}_- = \mathsf{E}_a \circ \mathsf{Der} : I\!\!Cones \to I\!\!Cones$ is therefore a resource comonad.

Fact

ICones is a model of ILL, with and **ICones**_{1^a} \simeq **ACones**.

Scott continuity of analytic maps

Any $f \in ACones(C, D)$ is monotone and Scott-continuous:

- if $x_1, x_2 \in \mathcal{B}\underline{C}$ and $x_1 \leq x_2$ then $f(x_1) \leq f(x_2)$;
- and if $(x_n)_{n=1}^{\infty}$ monotone in $\mathcal{B}\underline{C}$ then $f(\sup_{n=1}^{\infty} x_n) = \sup_{n=1}^{\infty} f(x_n)$.

As a consequence (using cartesian closedness) for any integrable cone C there is

$$\mathcal{Y} \in \mathbf{ACones}(\mathcal{C} \Rightarrow_{a} \mathcal{C}, \mathcal{C}) \quad \text{with} \quad \mathcal{Y}(f) = \sup_{n=0}^{\infty} f^{n}(0).$$

And hence we have a model of general recursion.

Another consequence of the SAFT

The category **ICones** has also all small colimits.

They seem difficult to describe explicitly (especially for coequalizers), contrarily to limits which are easy.

Measurable spaces as !a-coalgebras

The universal analytic function

By the adjunction $E_a \dashv Der$ we have

 $\operatorname{an}_{C} \in \operatorname{ACones}(C, !^{a}C)$

such that for all $f \in \mathbf{ACones}(C, D)$ there is exactly one $\tilde{f} \in \mathbf{ICones}(!^{a}C, D)$ such that

 $f = \tilde{f} \circ \operatorname{an}_C$

Notation: if $x \in \mathcal{B}\underline{C}$, then $x^{!_a} = \operatorname{an}_{\mathcal{C}}(x)$, so that $f(x) = \widetilde{f}(x^!)$.

Let $a \in ar$.

We have a measurable Dirac path $\delta^a \in \mathcal{B}Path(a, Meas(a))$ such that $\delta^a(r)$ is the Dirac measure at r.

Hence $\operatorname{an}_{\operatorname{Meas}(a)} \circ \boldsymbol{\delta}^a \in \operatorname{Path}(a, !^{\operatorname{a}}\operatorname{Meas}(a)).$

Remember that we have an iso $\Phi \in ICones(Path(a, !^aMeas(a)), Meas(a) \rightarrow !^aMeas(a))$ given by

$$\Phi(\alpha)(\mu) = \int_{\overline{a}} \alpha(r) \mu(dr).$$

Let $h_a = \Phi(an_{Meas(a)} \circ \boldsymbol{\delta}^a) \in ICones(Meas(a), !^aMeas(a))$

$$\mathsf{h}_a(\mu) = \int \boldsymbol{\delta}^a(r)^! \mu(dr)$$

A functor from measurable spaces to coalgebras

Fact

For any $a \in ar$, (Meas(a), h_a) is a coalgebra for the $!^a_-$ comonad.

If $\varphi: \overline{a} \to \overline{b}$ is a measurable function we have the push-forward map on measures

$$arphi_*: rac{\mathsf{Meas}(a)}{\mu}
ightarrow rac{\mathsf{Meas}(b)}{\mathbf{\lambda}V \in \sigma_{\overline{V}}} \cdot \mu(arphi^{-1}(V)) \,.$$

Fact

 φ_* is a coalgebra morphism (Meas(a), h_a) \rightarrow (Meas(b), h_b).

Conversely, if $f : (Meas(a), h_a) \to (Meas(b), h_b)$ is a coalgebra morphism, it is not always true that $f = \varphi_*$ for some measurable $\varphi : \overline{a} \to \overline{b}$. But

Fact

If b is a Polish space equipped with its Borelian σ -algebra then, for any coalgebra morphism $f : (Meas(a), h_a) \rightarrow (Meas(b), h_b)$ there is exacly one measurable function $\varphi : \overline{a} \rightarrow \overline{b}$ such that $f = \varphi_*$.

So, under the reasonable assumption that all the \overline{a} 's are Polish spaces, the Eilenberg-Moore category of $!^a_-$ contains as a full subcategory the category **ar**

- whose objects are the $a \in ar$
- and morphisms are the measurable functions.

Intuitively the Eilenberg-Moore category **ICones**^{!a} is the category of data-types or positive formulas.

 \textbf{ICones}^{l^a} is cartesian with \otimes as cartesian product.

The full and faithful embedding of **ar** into **ICones**^{!a} respects cartesian products because

 $Meas(a + b) \simeq Meas(a) \otimes Meas(b)$.

So if all the \overline{a} 's are Polish spaces we can consider **ar** (with measurable functions as morphisms) as a category of data-types and value preserving functions.

Concluding remarks

- **ICones** also contains the category of probabilistic coherence spaces and linear morphisms as a full subcategory.
- We conjecture that $!^{a}_{-}$ is the free exponential.
- Integrable cones seem to provide a very flexible setting for the semantics of probabilistic programming languages: completeness, cocompleteness, ILL, fixpoints operators at all types, Polish spaces as data-types etc.