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Motivations

• Design a general semantics of functional programming
languages with probabilistic choice.

• Based on Kozen’s idea of (1st order) programs as probability
distribution transformers.

• Extending probabilistic coherence spaces, which work only for
“discrete” data-types.

• And featuring continuous data-types (like R).
• This requires a general notion of integration of “paths”
valued in any object to represent sampling.



Selinger’s positive cones

Cones are objects which have at the same time

• algebraic and analytic features: sum, scalar multiplication,
norm (similar to normed vector spaces)

• order-theoretic features: positivity assumptions ⇝ order
structure. + Scott completeness assumption.

Cones can be shown to be Cauchy-complete metric spaces, but

we use Scott completeness to interpret general recursion ⇝ no
need to restrict to contractive maps.



Cones and measure theory

Cones fit very well with the basic ideas of Measure Theory:

• Basic measures are R≥0-valued, and satisfy a
Scott-continuity requirement wrt. inclusion of measurable

sets (besides finite additivity).

• Central result of MT, the monotone convergence theorem
deals with R≥0-valued measurable maps and is very much
order-theoretic.

• Any R≥0-valued measurable function is the pointwise lub of
an ω-indexed sequence of simple functions: this gives a very

easy definition of integration (Lebesgue).

Simple function: measurable function taking only finitely many

different values.



We consider R≥0 as a commutative monoid for 0 and +.

A R≥0-semimodule is a set P with:
• a commutative monoid structure (0,+)

• a bilinear scalar multiplication R≥0 × P → P mapping (λ, x)
to λx with 1x = x and (λµ)x = λ(µx).

Definition

P is

• positive if x + y = 0⇒ x = 0
• cancellative if x + y = x ′ + y ⇒ x = x ′.

Algebraic order, partially defined subtraction

If P is positive and cancellative, it is (partially) ordered by: x ≤ y
if ∃z ∈ P x + z = y . This z is unique: z = y − x .



Definition of cones

A cone is a positive and cancellative R≥0-semimodule P equipped
with a function ∥ ∥P : P → R≥0 (its norm) such that
• ∥λx∥ = λ ∥x∥ (hence ∥0∥ = 0)
• ∥x + y∥ ≤ ∥x∥+ ∥y∥
• ∥x∥ = 0⇒ x = 0
• ∥x∥ ≤ ∥x + y∥, that is x ≤ y ⇒ ∥x∥ ≤ ∥y∥
• if (xn)∞n=1 is monotone and ∀n ∥xn∥ ≤ 1 then supn xn exists in
P and ∥supn xn∥ ≤ 1. NB: ω-sequences, not arbitrary
directed sets, because we need the monotone conv. thm.

Fact

Addition, scalar multiplication and the norm are Scott-continuous

(= monotone and commute with lubs of monotone bounded

ω-sequences).



The cone of finite measures

Let X be a measurable space with σ-algebra σX .

The set of all R≥0-valued measures on X is a cone, with
• algebraic operations defined “pointwise”:
(µ+ ν)(U) = µ(U) + ν(U) for all U ∈ σX
• and ∥µ∥ = µ(X ).

Notice that µ ≤ ν means ∀U ∈ σX µ(U) ≤ ν(U).

Notation: Meas(X )



Linear and continuous morphisms

If P,Q are cones, a function f : P → Q is linear if f (λx) = λf (x)
and f (x1 + x2) = f (x1) + f (x2). Notice that f is monotone.

Fact

Such a function is bounded:

∃λ ∈ R≥0 ∀x ∈ P ∥x∥ ≤ 1⇒ ∥f (x)∥ ≤ λ.
We set ∥f ∥ = sup∥x∥≤1 ∥f (x)∥.

We say that f is continuous if it is Scott-continuous, that is:

((xn)
∞
n=1 monotone and ∀n ∥xn∥ ≤ 1)⇒ f (supn xn) = supn f (xn).



Finite kernels as linear and cont. maps

X ,Y measurable spaces, κ : X ⇝ Y a finite kernel, that is:
• κ : X → Meas(Y)
• and for all V ∈ σY the function λr ∈ X · κ(r)(V ) : X → R≥0
is measurable and bounded.

We can define

f : Meas(X )→ Meas(Y)

µ 7→ λV ∈ σY ·
∫
X
κ(r)(V )µ(dr)

which is linear and continuous.



If f : Meas(X )→ Meas(Y) is linear and continuous, we can define

κ : X → Meas(Y)

r 7→ f ( δX (r)︸ ︷︷ ︸
Dirac measure at r

)

but

• given V ∈ σY the map r 7→ f (δX (r))(V ) has no reason to be
measurable

• and even if it is measurable, it is not necessarily true that
f (µ)(V ) =

∫
f (δX (r))(V )µ(dr).

Fact

We need further measurability and integrability conditions on

linear and continuous maps.



Measurability structures



A reference category of arities

We assume to be given a set ar of arities with 0 ∈ ar and
+ : ar × ar→ ar and for each a ∈ ar, we assume to be given a
measurable space a with 0 = {∗} and a + b = a × b.

We consider ar as a small cartesian category, with

ar(a, b) = {ϕ : a→ b | ϕ is measurable} .



Measurability structure on a cone

Let P be a cone. A measurability structure on P is a family

M = (Ma)a∈ar such that

• Ma ⊆ (P ′)a where P ′ is the set of linear and continuous
maps P → R≥0, in particular: M0 ⊆ P ′,
if m ∈Ma, m : a × P → R≥0 linear and continuous in the
second argument;

• if m ∈Ma and x ∈ P with ∥x∥ ≤ 1 the function
λr ∈ a ·m(r , x) is measurable a→ [0, 1];

• if m ∈Mb and ϕ ∈ ar(a, b) then m ◦ ϕ ∈Ma, in particular

M0 ⊆Mb;



• if x , y ∈ P satisfy ∀m ∈M0 m(x) = m(y) then x = y
(separation);

• if x ∈ P then ∥x∥ = sup{m(x)
∥m∥ | m ∈M0 \ {0}}

∥m∥ = sup∥y∥P≤1m(y) so ∀y ∈ P m ∈M0 \ {0} m(y)
∥m∥ ≤ ∥y∥.

The elements ofMa are the measurability tests of arity a.



Measurable cone

A measurable cone is a pair C = (C ,MC ) where

• C is a cone
• andMC = (MC

a )a∈ar is a measurability structure on C .

If a ∈ ar, a (measurable) a-path of C is a bounded map
γ : a→ C such that, for all b ∈ ar and m ∈MC

b , the function

λ(s, r) ∈ b + a ·m(s, γ(r)) : b + a→ R≥0

is measurable.

Measurable cones as QBSs

Equipped with these paths C can be considered as a quasi Borel

space, but the algebraic structure of C is also important for us.



Integrals

If γ : a→ C is a measurable a-path and µ ∈ Meas(a) of C , an
integral of γ over µ is an x ∈ C such that for all m ∈MC

0 , one

has (NB: m ◦ γ : a→ R≥0 is measurable and bounded):

well-defined Lebesgue integral ∈R≥0︷ ︸︸ ︷∫
a

m(γ(r))µ(dr) = m(x) .

If x exists, it is unique by separation, notation

x =

∫
a

γ(r)µ(dr) .



Pettis integral

This is very similar to the definition of a Pettis integral (1938) for

a function from a measurable space to a topological vector space

with good separation properties, typically a locally convex tvs.

Aka. Gelfand-Pettis or weak integral.



Our objects: integrable cones

A measurable cone C is integrable if for any a ∈ ar, γ : a→ C
measurable path and µ ∈ Meas(a), the path γ is integrable over
µ, that is ∫

γ(r)µ(dr) ∈ C

exists.



Linear morphisms of integrable cones

Given integrable cones C ,D, a linear and continuous f : C → D
is

• measurable if f ◦ γ is a measurable path a→ D for any
a ∈ ar and any measurable path γ : a→ C
• integrable if, moreover, for any µ ∈ Meas(a), one has

f

(∫
γ(r)µ(dr)

)
=

∫
f (γ(r))µ(dr) .



The linear category of integrable cones

Definition

ICones is the category

• whose objects are the integrable cones
• morphisms: f ∈ ICones(C ,D) if f : C → D is linear,
continuous, integrable and ∥f ∥ = sup∥x∥C≤1 ∥f (x)∥D ≤ 1 .



The integrable cone of finite measures

For a ∈ ar we define the integrable cone Meas(a):
• the underlying cone is Meas(a), the cone of finite measures
on the measurable space a

• for b ∈ ar,MMeas(a)
b =MMeas(a)

0 = {Ũ | U ∈ σa} where
Ũ(µ) = µ(U) for all µ ∈ Meas(a).

Fact

The measurable paths κ : b → Meas(a) are exactly the finite
kernels. All such paths are integrable, with, for all ν ∈ Meas(b)
and U ∈ σa:(∫

b

κ(s)ν(ds)

)
(U) =

∫
b

κ(s)(U)ν(ds) .



The integrable cone of paths

For a ∈ ar and for an integrable cone C we define Path(a,C ) as
follows:

• Path(a,C ) is the cone of measurable paths a→ C ,
operations defined pointwise and ∥γ∥ = supr∈a ∥γ(r)∥ ∈ R≥0
since γ ∈ Path(a,C ) is bounded;
• and for b ∈ ar,

MPath(a,C)
b = {ϕ ▷ m | ϕ ∈ ar(b, a) and m ∈MC

b }

where ϕ ▷ m = λ(s, γ) ∈ b × Path(a,C ) ·m(s, γ(ϕ(s))) .



Paths of paths and their integral

So η : b → Path(a,C ), that is η : b × a→ C , is a measurable
path if for all c ∈ ar, ϕ ∈ ar(c , b) and m ∈MC

c , the function

λ(t, r) ∈ c × a ·m(t, η(ϕ(t), r)) : c × a→ R≥0

is measurable.

Given ν ∈ Meas(b),
∫
η(s)ν(ds) ∈ Path(a,C ) exists and is given

by (∫
η(s)ν(ds)

)
(r) =

∫
η(s, r)ν(ds) ∈ C .



Fubini

So given µ ∈ Meas(a), the integral∫
a

(∫
b

η(s)ν(ds)

)
(r)µ(dr) ∈ C

is well defined.

Fubini theorem for cones

∫
a

(∫
b

η(s)ν(ds)

)
(r)µ(dr) =

∫
b

(∫
a

η′(r)µ(dr)

)
(s)ν(ds)

=

∫∫
a,b

η(s, r)µ(dr)ν(ds)

where η′ ∈ Path(a,Path(b,C )) given by η′(r)(s) = η(s)(r).



The cone of linear morphisms

Given integrable cones C ,D, we define a cone C ⊸ D by

• C ⊸ D is the cone of linear, Scott-continuous, measurable
and integrable linear maps C → D, algebraic operations
defined pointwise and ∥f ∥C⊸D = sup∥x∥C≤1 ∥f (x)∥D ;
• and

MC⊸D
a = {γ ▷ m | γ ∈ Path(a,C ) and m ∈MD

a }

where γ ▷ m = λ(r , f ) ∈ a × C ⊸ D ·m(r , f (γ(r))).

Fact

This cone is integrable, if η ∈ Path(a,C ⊸ D) then

∀µ ∈ Meas(a)
∫
η(r)µ(dr) = λx ∈ C ·

∫
η(r)(x)µ(dr) ∈ C ⊸ D



Tensor product in ICones



The SAFT applies!

The category ICones is locally small and

• is complete (it has all small products and all equalizers);
• has a cogenerator, namely the cone 1 = R≥0, that is if
f , g ∈ ICones(C ,D) satisfy m f = mg for all
m ∈ ICones(C , 1), then f = g by the separation condition
on the measurability structure;

• and is well-powered, that is the class of subobjects of any
object C is essentially small. Because a subobject of C is, up

to iso, a cone structure on a subset of C .

By the Special Adjoint Functor Theorem (SAFT)

Any functor ICones→ C which preserves all limits has a left
adjoint.



Tensor product

Given an object C of ICones the functor C ⊸ preserves all

limits. So it has a left adjoint ⊗C .

Since ⊸ : IConesop × ICones→ ICones, we have
⊗ : ICones× ICones→ ICones.

Fact

The natural bijection ICones(B ⊗C ,D)→ ICones(B,C ⊸ D)
induced by this adjunction is actually an iso in

ICones(B ⊗C ⊸ D,B ⊸ (C ⊸ D)) .

Consequence

(ICones, 1,⊗) is a symmetric monoidal closed category.



Bilinear maps and the tensor product

A map f : C ×D → B is bilinear if it is separately linear, Scott
continuous, measurable in the sense that if γ ∈ Path(a,C ) and
δ ∈ Path(a,D) then f ◦ ⟨γ, δ⟩ ∈ Path(a,B) and separately
integrable in the sense that

f

(∫
γ(r)µ(dr), y

)
=

∫
f (γ(r), y)µ(dr)

f

(
x ,

∫
δ(r)µ(dr)

)
=

∫
f (x , δ(r))µ(dr) .

Fact

There is a bilinear τ : C ×D → C ⊗D which is universal in the
sense that for any bilinear f : C ×D → B there is exactly one
f̃ ∈ ICones(C ⊗D,B) such that f = f̃ τ .
Notation x ⊗ y = τ(x , y). One has ∥x ⊗ y∥ = ∥x∥ ∥y∥.



Integration is a bilinear map

The function

I : Path(a,C )×Meas(a)→ C

(γ, µ) 7→
∫
γ(r)µ(dr)

is bilinear. Let I ∈ ICones(Path(a,C )⊗Meas(a),C ) be such that

I (γ⊗µ) =
∫
γ(r)µ(dr) .

Fact

The “Curry transpose” of I ,

cur(I ) ∈ ICones(Path(a,C ),Meas(a)⊸ C ), is an iso.



If f ∈ Meas(a)⊸ C , the associated γ ∈ Path(a,C ) is given by

γ(r) = f (δa(r)) .

Because f is integrable, we have∫
γ(r)µ(dr) =

∫
f (δa(r))µ(dr) = f

(∫
δa(r)µ(dr)

)
= f (µ)

for all µ ∈ Meas(a).

As a consequence an element of ICones(Meas(a),Meas(b)) is the
same thing as a sub-probability kernel a⇝ b.

Consequence

The category whose objects are the mesurable spaces a (for

a ∈ ar) and whose morphisms are the subprobability kernels is a
full subcategory of ICones.



Analytic morphisms



Homogeneous polynomials

We define n-linear maps

g : C × · · · × C → D

as we did for bilinear maps.

A function h : C → D is n-homogeneous polynomial if there is
such a g, with

h(x) = g(

n times︷ ︸︸ ︷
x , . . . , x) .

Fact

If we assume that g is symmetric, it is possible to recover it from

h by the Polarization Formula.



Analytic functions

BC = {x ∈ BC | ∥x∥C ≤ 1} the “unit ball”.

A function f : BC → D is analytic if
• f is bounded, that is ∃λ ∈ R≥0 ∀x ∈ BC ∥f (x)∥ ≤ λ;
• there is a family (fn : C → D)n∈N of functions such that fn is
n-homogeneous polynomial and

∀x ∈ BC f (x) =

∞∑
n=0

fn(x) = sup
N∈N

N∑
n=0

fn(x) ;

• and for any a ∈ ar and γ ∈ BPath(a,C ), one has
f ◦ γ ∈ Path(a,D).



Taylor expansion of an analytic function

Fact

If f is analytic then the fn’s are uniquely determined by f , so

there are uniquely determined symmetric multilinear functions

D
(n)
0 f : C

n → D such that

∀n ∈ N f (x) =
∞∑
n=0

1

n!
D

(n)
0 f (x , . . . , x) .



Examples of analytic and non-analytic

function

1 = Meas(0) is the integrable cone R≥0 with ∥u∥ = u. So
B1 = [0, 1].

f : [0, 1]→ R≥0 is analytic if f (u) =
∑∞
n=0 anu

n with an ∈ R≥0
and

∑∞
n=0 an <∞.

eu−1 and 1−
√
1− u are analytic functions. The second one

cannot be extended to R≥0.

2u − u2, sin(π2 u) and k(u) =
√
u are not.

All these functions are smooth and monotone [0, 1]→ [0, 1].



The cone of analytic functions

The set of all analytic functions BC → D with
• algebraic operations defined pointwise
• ∥f ∥ = supx∈BC ∥f (x)∥D
• measurability structure defined as for C ⊸ D

is an integrable cone C ⇒a D. Integrals are defined “pointwise”
as in C ⊸ D.

Warning: stable order

If f , g : BC → D are analytic then f ≤ g ⇒ ∀x ∈ BC f (x) ≤ g(x)
but the converse is not true. It is true for linear morphisms.



The CCC of analytic functions

Fact

If f ∈ C ⇒a D with ∥f ∥ ≤ 1 and g ∈ D ⇒a E then
g ◦ f ∈ C ⇒a E.

One defines a category ACones:

• objects are the integrable cones
• ACones(C ,D) = {f ∈ C ⇒a D | ∥f ∥ ≤ 1}
• identities and composition as in Set.

Fact

ACones is a CCC, evaluation and curryfication defined as in Set.



The analytic exponential comonad

If f ∈ ICones(C ,D) then by restricting f to BC one gets an
analytic function f ∈ ACones(C ,D).

This defines a functor Der : ICones→ ACones.

Der preserves all limits and hence has a left adjoint

Ea : ACones→ ICones, by the SAFT.

!a = Ea ◦ Der : ICones→ ICones is therefore a resource
comonad.

Fact

ICones is a model of ILL, with and ICones!a ≃ ACones.



Scott continuity of analytic maps

Any f ∈ ACones(C ,D) is monotone and Scott-continuous:
• if x1, x2 ∈ BC and x1 ≤ x2 then f (x1) ≤ f (x2);
• and if (xn)∞n=1 monotone in BC then
f (sup∞n=1 xn) = sup∞n=1 f (xn).

As a consequence (using cartesian closedness) for any integrable

cone C there is

Y ∈ ACones(C ⇒a C ,C ) with Y(f ) = ∞
sup
n=0
f n(0) .

And hence we have a model of general recursion.



Another consequence of the SAFT

The category ICones has also all small colimits.

They seem difficult to describe explicitly (especially for

coequalizers), contrariliy to limits which are easy.



Measurable spaces as !a-coalgebras



The universal analytic function

By the adjunction Ea ⊣ Der we have

anC ∈ ACones(C , !aC )

such that for all f ∈ ACones(C ,D) there is exactly one
f̃ ∈ ICones(!aC ,D) such that

f = f̃ ◦ anC

Notation: if x ∈ BC , then x !a = anC (x), so that f (x) = f̃ (x !).



Let a ∈ ar.

We have a measurable Dirac path δa ∈ BPath(a,Meas(a)) such
that δa(r) is the Dirac measure at r .

Hence anMeas(a) ◦ δa ∈ Path(a, !aMeas(a)).

Remember that we have an iso

Φ ∈ ICones(Path(a, !aMeas(a)),Meas(a)⊸ !aMeas(a)) given by

Φ(α)(µ) =

∫
a

α(r)µ(dr) .

Let ha = Φ(anMeas(a) ◦ δa) ∈ ICones(Meas(a), !aMeas(a))

ha(µ) =

∫
δa(r)!µ(dr)



A functor from measurable spaces to

coalgebras

Fact

For any a ∈ ar, (Meas(a), ha) is a coalgebra for the !a comonad.

If ϕ : a→ b is a measurable function we have the push-forward
map on measures

ϕ∗ : Meas(a)→ Meas(b)

µ 7→ λV ∈ σV · µ(ϕ
−1(V )) .

Fact

ϕ∗ is a coalgebra morphism (Meas(a), ha)→ (Meas(b), hb).



Conversely, if f : (Meas(a), ha)→ (Meas(b), hb) is a coalgebra
morphism, it is not always true that f = ϕ∗ for some measurable
ϕ : a→ b. But

Fact

If b is a Polish space equipped with its Borelian σ-algebra then, for

any coalgebra morphism f : (Meas(a), ha)→ (Meas(b), hb) there
is exacly one measurable function ϕ : a→ b such that f = ϕ∗.

So, under the reasonable assumption that all the a’s are Polish

spaces, the Eilenberg-Moore category of !a contains as a full
subcategory the category ar

• whose objects are the a ∈ ar
• and morphisms are the measurable functions.



Intuitively the Eilenberg-Moore category ICones!
a
is the category

of data-types or positive formulas.

ICones!
a
is cartesian with ⊗ as cartesian product.

The full and faithful embedding of ar into ICones!
a
respects

cartesian products because

Meas(a + b) ≃ Meas(a)⊗Meas(b) .

So if all the a’s are Polish spaces we can consider ar (with

measurable functions as morphisms) as a category of data-types

and value preserving functions.



Concluding remarks

• ICones also contains the category of probabilistic coherence
spaces and linear morphisms as a full subcategory.

• We conjecture that !a is the free exponential.
• Integrable cones seem to provide a very flexible setting for
the semantics of probabilistic programming languages:

completeness, cocompleteness, ILL, fixpoints operators at all

types, Polish spaces as data-types etc.
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