
Full Abstraction for Resource Calculus with Tests∗

Antonio Bucciarelli1, Alberto Carraro1,3, Thomas Ehrhard1, and
Giulio Manzonetto2

1 Laboratoire PPS, CNRS, Université Paris-Diderot, Paris, France
{antonio.bucciarelli,alberto.carraro,thomas.ehrhard}@pps.jussieu.fr

2 Intelligent Systems, Radboud University, Nijmegen, The Netherlands
g.manzonetto@cs.ru.nl

3 Department of Computer Science, Ca’Foscari University, Venice, Italy

Abstract
We study the semantics of a resource sensitive extension of the λ-calculus in a canonical reflexive
object of a category of sets and relations, a relational version of the original Scott D∞ model of
the pure λ-calculus. This calculus is related to Boudol’s resource calculus and is derived from
Ehrhard and Regnier’s differential extension of Linear Logic and of the λ-calculus. We extend it
with new constructions, to be understood as implementing a very simple exception mechanism,
and with a “must” parallel composition. These new operations allow to associate a context of
this calculus with any point of the model and to prove full abstraction for the finite sub-calculus
where ordinary λ-calculus application is not allowed. The result is then extended to the full
calculus by means of a Taylor Expansion formula.

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems

Keywords and phrases resource lambda calculus, relational semantics, full abstraction, differen-
tial linear logic

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In concurrent calculi like CCS [11], guarded processes are resources which can be used
only once by other processes. This fundamental linearity of resources leads naturally to
non-determinism, since several agents (senders and receivers) can interact on the same
channel. In general, various synchronization scenarios are possible, giving rise to different
behaviours. On the other hand in the λ-calculus, a function (receiver) can duplicate its
argument (sender) arbitrarily. Thanks to this asymmetry, the λ-calculus enjoys a strong
determinism (Church-Rosser), but it lacks any form of control on resource handling.

Resource Lambda Calculi. Resource λ-calculi stem from an attempt to combine the
functionality of the λ-calculus and the resource sensitivity of process calculi. Boudol has
been the first to design a resource conscious functional programming language, the resource
λ-calculus, extending the usual one along two directions [2]: a function is not necessarily
applied to a single argument but can also be applied to a multiset of arguments called
resources; a resource can be either linear (it must be used exactly once) or reusable (it can
be used ad libitum). In this context, the evaluation of a function applied to a multiset of
resources gives rise to several possible choices, corresponding to the different possibilities of

∗ This work was partially supported by NWO Project 612.000.936 CALMOC (CAtegorical and ALgebraic
Models of Computation) and ANR Project ANR-07-BLAN-0324 CHOCO.

© Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard and Giulio Manzonetto;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Full Abstraction for Resource Calculus with Tests

distributing the resources in the multiset among the occurrences of the formal parameter.
From the viewpoint of concurrent programming, this was a natural step to take since one
of the main features of this programming setting is the consumption of resources which
cannot be copied. Milner’s π-calculus [12] features this phenomenon in great generality, and
Boudol’s calculus keeps track of it in a functional setting.

Together with Regnier, Ehrhard observed that this idea of resource consumption can
be understood as resulting from a differential extension of λ-calculus (and of Linear Logic)
[6]. Instead of considering two kinds of resources, they defined two kinds of applications:
the ordinary application and a linear one. In a simply typed setting, linear application of
a term M : A→ B to a multiset made of n terms N1, . . . , Nn : A, combined with ordinary
application to a term N : A, corresponds to computing M (n)(N)(N1, . . . , Nn) : B, where
M (n) is the n-th derivative ofM , which is of type A→ (An → B) and associates a symmetric
n-linear map with any element of A. The symmetry of this multilinear map corresponds to
the Schwarz Lemma of differential calculus and is implemented in the resource λ-calculus by
the use of multisets for representing linear applications.

The main difference between the resource λ-calculus and the differential λ-calculus is
that the first is lazy and is endowed with an explicit substitution mechanism. Therefore,
Boudol’s calculus is not an extension of the ordinary λ-calculus. Also, the resource λ-calculus
is rather affine than linear, since depletable resources cannot be duplicated but can be erased.
Another difference lies in the respective origins of these calculi: the resource λ-calculus
originates from syntactical considerations related to the theory of concurrent processes,
while the differential one arises from denotational models of linear logic where the existence
of differential operations has been observed. These models are based on the well known
relational model of Linear Logic and the interpretation of the new differential constructions
is as natural and simple as the interpretation of the ordinary LL constructions.

Two main syntaxes have been proposed for the differential λ-calculus: Ehrhard and
Regnier’s original one [6], simplified by Vaux in [16], and Tranquilli’s resource calculus of [15]
whose syntax is close to Boudol’s one. These calculi share a common semantical backbone as
well as similar connections with differential Linear Logic and proof nets. We adopt roughly
Tranquilli’s syntax and call our calculus ∂λ-calculus.

Full Abstraction. A natural open problem when a new calculus is introduced is to
characterize when two programs are operationally equivalent, namely when one can be
replaced by the other in every context without noticing any difference with respect to a given
observational equivalence. In this paper we prove a full abstraction result (a semantical
characterization of operational equivalence) for the ∂λ-calculus in the spirit of [3]. As in
that paper, we extend the language with a convergence testing mechanism. Implicitly, this
extension already appears in [5], in a differential LL setting: it corresponds to the 0-ary tensor
and par cells. To implement the corresponding extension of the λ-calculus, we introduce two
sorts of expressions: the terms (variable, application, abstraction, “throw” τ̄(P) where P is
a test) and the tests (empty test, parallel composition of tests and “catch” τ(M) where M is
a term). Parallel composition allows to combine tests in such a way that the combination
succeeds if and only if each test succeeds. Outcomes of tests (convergence or divergence) are
the only observations allowed in our calculus, and the corresponding contextual equivalence
and preorder on terms constitute our main object of study.

This extended ∂λ-calculus, that we call ∂λ-calculus with tests, has a natural denotational
interpretation in a model of the pure λ-calculus introduced by Bucciarelli, Ehrhard and
Manzonetto in [4], which is indeed a denotational model of the differential pure nets of [5]
as one can check easily. This model is a reflexive object D in the Kleisli category of the LL

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 3

model of sets and relations where !X is the set of all finite multisets over X. An element
of D can be described as a finite tree which alternates two kinds of layers: multiplicative
layers where subtrees are indexed by natural numbers and exponential layers where subtrees
are organized as non-empty multisets. To be more precise, `−? (negative) pairs of layers
alternate with ⊗−! (positive) pairs, respecting a strict polarity discipline very much in the
spirit of Ludics [9]. The empty positive multiplicative tree corresponds to the empty tensor
cell and the negative one to the empty par cell. The corresponding constructions τ , τ̄ are
therefore quite easy to interpret.

We use this logical interpretation to turn the elements of D into ∂λ-calculus terms with
tests. More precisely, with each element α of D, we associate a test α+L·M with a hole L·M for
a term, and we show that α belongs to the interpretation of a (closed) term M iff the test
α+LMM converges. From this fact, we derive a full abstraction result for the fragment of the
∂λ-calculus with tests in which all ordinary applications are trivial, that we call ∂0λ-calculus
with tests. To extend this result to the ∂λ-calculus with tests, we use the Taylor formula
introduced in [6] which allows to turn any ordinary application into a sum of infinitely many
linear applications of all possible arities. One exploits then the fact that the Taylor formula
holds in the model, as well as a simulation lemma which relates the head reduction of a term
with the head reduction of its Taylor expansion.

Contributions. The definability of the elements of D in the ∂λ-calculus with tests
is the main conceptual contribution of this paper: it shows that, in the ∂λ-calculus with
tests, the standard syntax versus semantics dichotomy is essentially meaningless. We also
consider the use of the Taylor expansion to reduce the full abstraction problem to its ∂0λ

version as an original and promising reduction technique. Notice that the tests added to the
calculus are needed to develop this new methodology, although we conjecture they do not
add discriminating power to the calculus (contrary to [3]).

Notations and basic definitions. We denote by N the set of natural numbers and by
1 an arbitrary singleton set. We write Sk for the set of all permutations of {1, . . . , k}.

Let S be a set. We write P(S) (resp. Pf(S)) for the set of all (resp. finite) subsets of S.
A multiset a over S is defined as an unordered list a = [α1, α2, . . .] with repetitions such that
αi ∈ S for all indices i. A multiset a is called finite if it is a finite list, we denote by #a its
cardinality. We writeMf(S) for the set of all finite multisets over S. Given two multisets
a, b we denote their union by a] b. Given two finite sequences of multisets ~a,~b of the same
length n we define ~a]~b = (a1] b1, . . . , an] bn).

An operator F (−) is extended by linearity by setting F (Σixi) = ΣiF (xi).

2 The ∂0λ-Calculus with Tests

We now introduce the ∂0λ-calculus with tests which is the promotion-free fragment of the
∂λ-calculus with tests presented in Section 5. The ∂0λ-calculus with tests has four syntactic
categories: terms that are in functional position, bags that are in argument position and
represent multisets of linear resources, tests that are “corked” multisets of terms having
only two possible outcomes and finite formal sums representing all possible results of a
computation. Formally, we have the following grammar:

(Λτ̄) M,N,L,H ::= x | λx.M | MP | τ̄(Q) terms
(Λb) P ::= [L1, . . . , Lk] bags
(Λτ) Q,R ::= τ [L1, . . . , Lk] tests
(Λe) A,B ::= M | P | Q expressions

4 Full Abstraction for Resource Calculus with Tests

Tests are multisets of terms, the “τ” being a tag for distinguishing them from bags.
Throughout the paper, we will enforce the distinction between bags and tests by using

systematically the following notational conventions.
For bags, we use the usual multiset notation: [] is the empty bag and P] P ′ is the union.
For tests, ε is the empty multiset and Q|R is the multiset union of Q and R. In other
words, ε = τ [] and τ [L1, . . . , Lk] | τ [Lk+1, . . . , Ln] = τ [L1, . . . , Ln].

Terms are the real protagonists of the ∂0λ-calculus with tests. The term λx.M represents
the λ-abstraction and MP the application of a term M to a bag P of linear resources. Thus,
in (λx.M)P , each resource in P is available exactly once for λx.M and if the number of
occurrences of x in M “disagrees” with the cardinality of P then the result is 0 (see later,
when sums are introduced). We set I := λx.x, where ‘:=’ denotes definitional equality.

Tests are expressions which can produce two results: either success, represented by ε, or
failure, represented by 0. The test Q|R represents the (must-)parallel composition of Q and
R (i.e., Q|R succeeds if both Q and R succeed). The composition is parallel in the sense
that the order of evaluation is inessential.

The operator τ̄(·) allows to build a term out of a test: intuitively, the term τ̄(Q) may be
thought of as Q preceded by an infinite sequence of dummy λ-abstractions. Dually, the “cork
construction” τ [L1, . . . , Lk] may be thought of as an operator applying to all its arguments
an infinite sequence of empty bags. This suggests that it is sound to reduce τ [τ̄(Q)] to Q.

Hence the term τ̄(Q) raises an exception encapsulating Q and the test τ [L1, . . . , Lk]
catches the exception possibly raised by any of the Li’s and replaces Li by the multiset
of terms encapsulated in that exception. The context of the exception is thrown away by
the dummy abstractions of τ̄ and the dummy applications of τ . A test needs to catch an
exception in order to succeed; for instance, τ [M] fails as soon as M is a τ̄ -free, closed term.

We will write ‖ni=1 Ri for R1| · · · |Rn; obviously we have ‖0i=1 Ri = ε and ‖1i=1 Ri = R1.
Expressions are either terms, bags or tests.
Sums. Let 2 be the semiring {0, 1} with 1 + 1 = 1 and multiplication defined in the

obvious way. For any set A, we write 2〈A〉 for the free 2-module generated by A, so that
2〈A〉 ∼= Pf(A) with addition corresponding to union, and scalar multiplication defined in
the obvious way. However we prefer to keep the algebraic notations for elements of 2〈A〉,
hence set unions will be denoted by + and the empty set by 0. This amounts to say that
2〈Λτ̄ 〉 (resp. 2〈Λτ 〉, 2〈Λb〉) is the set of finite formal sums of terms (resp. tests, bags) with an
idempotent sum. We also set 2〈Λe〉 = 2〈Λτ 〉 ∪ 2〈Λτ̄ 〉 ∪ 2〈Λb〉. This is an abuse of notation
as 2〈Λe〉 here does not denote the 2-module generated over Λτ ∪ Λτ̄ ∪ Λb, but rather the
union of the three 2-modules; this means that sums should be taken only in the same sort.

Typical metavariables to denote sums are: M,N,L,H ∈ 2〈Λτ̄ 〉, P ∈ 2〈Λb〉, Q,R ∈ 2〈Λτ 〉,
A,B ∈ 2〈Λe〉. The α-equivalence relation and the set FV(A) of free variables of A are
defined as usual, like in the ordinary λ-calculus [1]. We write degx(A) for the number of free
occurrences of x in A. Hereafter, (sums of) expressions are considered up to α-equivalence.

2.1 Two Kinds of Substitutions
Notice that the grammar for terms and tests does not include any sums, so they may arise
only on the “surface”. However, as syntactic sugar – and not as actual syntax – we extend all
the constructors to sums by multilinearity, setting for instance (ΣiMi)(ΣjPj) := Σi,jMiPj ,
in such a way that the following equations hold:

λx.(ΣiMi) = Σiλx.Mi M(ΣiP) = ΣiMPi (ΣiMi)P = ΣiMiP τ [ΣiMi] = Σiτ [Mi]
(ΣiRi) | Q = Σi Ri | Q [ΣiLi] = Σi[Li] (ΣiPi)] P = ΣiPi] P τ̄(ΣiRi) = Σiτ̄(Ri)

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 5

As an example of this extended (meta-)syntax, we may write (x1 + x2)[y1 + y2] for x1[y1] +
x1[y2] + x2[y1] + x2[y2]. This kind of meta-syntactic notation is discussed thoroughly in [8].

Observe that in the particular case of empty sums, we get λx.0 := 0, M0 := 0, 0P := 0,
τ [0] := 0, τ̄(0) := 0, R|0 := 0, [0] := 0, 0] P := 0. Thus 0 annihilates any term, bag or test.

We now introduce two kinds of substitutions: the usual λ-calculus substitution and a
linear one, which is proper to differential and resource calculi (see [2, 6, 15]).

Let A ∈ Λe and N ∈ Λτ̄ . The (capture-free) substitution of N for x in A, denoted by
A{N/x}, is defined as usual. Accordingly, A{N/x} denotes a term of the extended syntax.
Finally, we extend this operation to sums as in A{N/x} by linearity in A.

The linear (capture-free) substitution of N for x in A, denoted by A〈N/x〉, is defined as
follows (in this definition we strongly use the extended syntax):

y〈N/x〉 =

{
N if y = x,
0 otherwise,

[L1, . . . , Lk]〈N/x〉 = Σki=1[L1, . . . , Li〈N/x〉 . . . , Lk],
τ [L1, . . . , Lk]〈N/x〉 = Σki=1τ [L1, . . . , Li〈N/x〉, . . . , Lk],

(MP)〈N/x〉 = M〈N/x〉P +M(P 〈N/x〉), τ̄(Q)〈N/x〉 = τ̄(Q〈N/x〉),
(λy.M)〈N/x〉 = λy.M〈N/x〉, (in the abstraction case we assume wlog x 6= y).
Roughly speaking, linear substitution replaces the resource to exactly one linear free

occurrence of x. If there is no occurrence of x then the result is 0. In presence of multiple
occurrences, all possible choices are made and the result is the sum of them. For example,
we have (y[x][x])〈I/x〉 = y[I][x] + y[x][I].

An example of regular substitution is (x[x]){(z1 + z2)/x} = z1[z1] + z1[z2] + z2[z1] + z2[z2].
Turning to the extension of linear substitution to sums: the term A〈N/x〉 belongs to the

extended syntax, and we extend it to sums as in A〈N/x〉 by linearity in A, as we did for
usual substitution.

Observe that A〈N/x〉 is linear in A and in N, whereas A{N/x} is linear in A but not in N.
Linear substitutions commute in the sense expressed by the next lemma.

I Lemma 1 (Schwarz Lemma, cf. [6]). For A ∈ 2〈Λe〉, M,N ∈ 2〈Λτ̄ 〉 and y /∈ FV(M)∪FV(N)
we have A〈M/y〉〈N/x〉 = A〈N/x〉〈M/y〉+ A〈M〈N/x〉/y〉. In particular, if x /∈ FV(M) then
the two substitutions commute.

Given a bag P = [L1, . . . , Lk] such that x /∈ FV(P) it makes sense to define A〈P/x〉 :=
A〈L1/x〉 · · · 〈Lk/x〉, because this expression does not depend on the enumeration L1, . . . , Lk.
In particular, A〈[]/x〉 = A. Given bags P1, . . . , Pn we set A〈~P/~x〉 := A〈P1/x1〉 · · · 〈Pn/xn〉.

2.2 The Operational Semantics
We are going to introduce the reduction rules defining the operational semantics of the
∂0λ-calculus with tests and show that it enjoys Church-Rosser and strong normalization,
even in the untyped version of the calculus.

I Definition 2. The reduction semantics of the ∂0λ-calculus with tests is generated by the
following rules (in the abstraction case we suppose wlog that x 6∈ FV(P)):

(λx.M)P →β M〈P/x〉{0/x}, τ̄(Q)P →τ̄

{
τ̄(Q) if P = [],
0 otherwise,

τ [λx.M]|R→τ τ [M{0/x}]|R, τ [τ̄(Q)]|R→γ Q|R.

Notice that the reduction preserves the sort of an expression in the sense that terms
rewrite to (sums of) terms and tests to (sums of) tests. Also remark that, if M has k
free occurrences of x (represented by x1, . . . , xk) then we have M〈L1/x〉 · · · 〈Lk/x〉{0/x} =
Σσ∈Sk

M{Lσ(1)/x
1, . . . , Lσ(k)/x

k}; it is equal to 0 otherwise (namely, when degx(M) 6= k).

6 Full Abstraction for Resource Calculus with Tests

We denote by → ⊆ 2〈Λe〉 × 2〈Λe〉 the contextual closure of →β ∪ →τ̄ ∪ →τ ∪ →γ . In
particular, parallel composition is treated asynchronously, thus R→ R entails Q|R→ Q|R
(which is equal to R|Q). This means, for instance, that if L → τ̄(Q), then τ [L, ~N] →
τ [τ̄(Q), ~N]→ Q | τ [~N]. We write � for the transitive and reflexive closure of →.

I Definition 3. An expression A is in normal form (nf, for short) if there is no B such that
A→ B. A sum of expressions A is in nf if A 6= 0 and all its summands are in nf.

It is easy to check that a term M ∈ Λτ̄ is in normal-form if either M = λ~x.yP1 · · ·Pn or
M = λ~x.τ̄(‖ni=1 τ [yiP i1 · · ·P iki

]) where n ≥ 0, ki ≥ 0 and each P ij is a bag of terms in nf.

I Theorem 4. The ∂0λ-calculus with tests is strongly normalizing and Church-Rosser.

Proof. The fact that there are no infinite reduction chains is trivial, since every reduction step
decreases the size of an expression (which is straightforward to define). For the Church-Rosser
property just check local confluence and conclude by Newman’s lemma. J

I Lemma 5. For any closed term M , either τ [M]� ε or τ [M]� 0.

Proof. As ∂0λ-calculus with tests is strongly normalizing, we have that M � Σki=1Mi, where
each Mi is a closed nf. If k = 0 then τ [M]� 0 since τ [0] = 0. Otherwise for each Mi there
are two possibilities:

Mi = λ~x.xjP1 · · ·Pn with xj ∈ ~x and n ≥ 0. Then τ [Mi] � τ [(xjP1 · · ·Pn){0/~x}] =
τ [0] = 0.
Mi = λ~x.τ̄(‖nj=1 τ [xjP j1 · · ·P

j
kj

]) with n ≥ 0 and xj ∈ ~x. If n = 0 then we have
‖nj=1 τ [xjP j1 · · ·P

j
kj

] = ε and τ [λ~x.τ̄(ε)]� τ [τ̄(ε)]→ ε. If n > 0, then we have τ [Mi]�
τ [τ̄(‖nj=1 τ [0P j1 {0/~x} · · ·P

j
kj
{0/~x}])] = 0.

We conclude since τ [M]� Σki=1τ [Mi], and this latter expression reduces to a finite (possibly
empty) sum of ε’s, which is thus equal either to 0 or to ε. J

I Corollary 6. If R is a closed test then either R� ε or R� 0.

Contexts. A test-context CL·M is a test having one occurrence of a hole, denoted by L·M,
appearing in term-position. The set of test-contexts is denoted by ΛτL·M. Given M ∈ Λτ̄ we
indicate by CLMM the test resulting by blindly replacing M for the hole (allowing capture of
free variables) in CL·M. We say that CL·M is closed if it contains no free variable; it is closing
M if CLMM is closed. We say that a test Q converges, and we write Q↓, if Q� ε.

I Definition 7. The operational pre-order vO is defined by:

M vO N ⇔ ∀CL·M ∈ ΛτL·M closing M,N (CLMM↓ ⇒ CLNM↓).

We set M ≈O N if and only if M vO N and N vO M .

The choice of test-convergence as the basic observation in our calculus is very natural.
Indeed, tests provide a canonical notion of observation since – by design – they either converge
(to ε) or diverge.

3 A Relational Semantics

This section is devoted to build a relational model D of ∂0λ-calculus with tests, that has
been first introduced in [4] as a model of the ordinary λ-calculus. We first give a sketchy
presentation of the Cartesian closed category MRel where D lives.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 7

The objects of MRel are all the sets. A morphism from S to T is a relation fromMf(S)
to T , in other words, MRel(S, T) = P(Mf(S) × T). The identity of S is the relation
IdS = {([α], α) : α ∈ S}. The composition of s : S → T and t : T → U is defined by:

t ◦ s = {(m, c) : ∃(m1, β1), ..., (mk, βk) ∈ s such that m =]ki=1mi and ([β1, ..., βk], c) ∈ t}.

The categorical product S & T of two sets S and T is their disjoint union. The terminal
object is the empty set ∅. The exponential object internalizing MRel(S, T) isMf(S)× T .

An infinite sequence α = (a1, a2, . . .) of multisets is quasi-finite if ai = [] holds for all but
a finite number of indices i. If S is a set, we denote byMf(S)(ω) the set of all quasi-finite
N-indexed sequences of multisets over S.

We build a family of sets (Dn)n∈N as follows: D0 = ∅, Dn+1 =Mf(Dn)(ω). Since the
operation S 7→ Mf(S)(ω) is monotonic with respect to inclusion and D0 ⊆ D1, we have
Dn ⊆ Dn+1 for all n ∈ N. Finally, we set D =

⋃
n∈N Dn.

To define an isomorphism between D andMf(D)×D just remark that every element
α = (a1, a2, a3, . . .) ∈ D stands for the pair (a1, (a2, a3, . . .)) and vice versa. Hence D ∼= [D⇒
D] (we have a canonical bijection between these two sets, and therefore an isomorphism
in MRel). Given α = (a1, a2, a3, . . .) ∈ D and a ∈ Mf(D), we write a ::α for the element
(a, a1, a2, a3, . . .) ∈ D. We set ∗ = ([], [], . . . , [], . . .) ∈ D. Remark that [] :: ∗ = ∗.

3.1 Interpreting the ∂0λ-calculus with tests
For all terms M , bags P , tests Q and repetition-free sequences ~x, ~y, ~z respectively con-
taining the free variables of M,P,Q, we define by mutual induction the interpretations
JMK~x : Dn → D, JP K~y : Dm →Mf(D) and JQK~z : Dk → 1 (n,m, k are the lengths of ~x, ~y, ~z)
as follows1:

JxiK~x = {(([], . . . , [], [α], [], . . . , []), α) : α ∈ D}, where [α] stands in i-th position,
Jλy.MK~x = {(~a, b ::α) : ((~a, b), α) ∈ JMK~x,y}, where we suppose wlog that y /∈ ~x,
JMP K~x = {(~a0] ~a1, α) : ∃b ∈Mf(D) (~a0, b ::α) ∈ JMK~x, (~a1, b) ∈ JP K~x},
J[L1, . . . , Lk]K~x = {(]ki=1~ai, [β1, . . . , βk]) : (~ai, βi) ∈ JLiK~x, 1 ≤ i ≤ k},
Jτ̄(Q)K~x = {(~a, ∗) : ~a ∈ JQK~x},
Jτ [M]K~x = {~a : (~a, ∗) ∈ JMK~x},
JQ|RK~x = {~a0] ~a1 : ~a0 ∈ JQK~x,~a1 ∈ JRK~x},
JεK~x = {([], . . . , [])}.

The interpretation is then extended to sums by setting JΣki=1AiK~x = ∪ki=1JAiK~x.
Note that J[]K~x = {([], . . . , [])} ∈ Mf(D)n+1. Since every test R is of the form τ [L1, . . . , Lk]
we might define its interpretation directly as JRK~x = {]ki=1~ai : (~ai, ∗) ∈ JLiK~x, 1 ≤ i ≤ k}.

Hereafter, whenever we write JAK~x we suppose that ~x is a repetition-free list of variables
of length n containing FV(A). Moreover, we will sometimes silently use the fact JMK~x,y =
{((~a, []), α) : (~a, α) ∈ JMK~x} whenever y /∈ ~x.

Clearly the interpretation is monotonic, i.e., for any test context CL·M with free variables
~y, if JMK~x ⊆ JNK~x then JCLMMK~x,~y ⊆ JCLNMK~x,~y.

The following substitution lemmas are needed for proving the invariance of the interpret-
ation under reduction. The proofs are lengthy but not difficult, and are omitted.

1 Since Mf(S & T) ∼= Mf(S) ×Mf(T) we have, up to isomorphism, JMK~x ⊆ Mf(D)n × D, JP K~y ⊆
Mf(D)m+1 and JQK~z ⊆Mf(D)k × 1 ∼=Mf(D)k.

8 Full Abstraction for Resource Calculus with Tests

I Lemma 8 (Linear Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and P = [L1, . . . , Lk] ∈ Λb
such that degy(M) = degy(Q) = k. We have:
(i) (~a, α) ∈ JM〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n

such that ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and]ki=0~ai = ~a.
(ii) ~a ∈ JQ〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n such

that (~a0, [β1, . . . , βk]) ∈ JQK~x,y and]ki=0~ai = ~a.

I Lemma 9 (Regular Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and N ∈ 2〈Λτ̄ 〉. We have:
(i) (~a, α) ∈ JM{N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈ Mf(D)n such that

(~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k), ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a =]kj=0~aj,
(ii) ~a ∈ JQ{N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈Mf(D)n such that (~ai, βi) ∈

JNK~x (for 1 ≤ i ≤ k) and (~a0, [β1, . . . , βk]) ∈ JQK~x,y and ~a =]kj=0~aj.

The substitution lemmas above generalize straightforwardly to sums. Although Lemma 9
is stated in full generality, for the ∂0λ-calculus with tests it is only useful for N = 0. However,
this formulation will be needed in Section 5 for the ∂λ-calculus with tests.

I Theorem 10. D is a model of the ∂0λ-calculus with tests, i.e., if A� B then JAK~x = JBK~x.

Proof. It is easy to check that the interpretation is contextual. The fact that the semantics
is invariant under reduction follows from Lemmas 8 and 9. J

4 First Full Abstraction Results

A model is equationally fully abstract (FA, for short) if the equivalence induced on terms
by their interpretations is exactly ≈O; it is inequationally FA if the induced preorder is vO.
Every inequationally FA model is also FA. In this section we prove that D is inequationally
FA for the ∂0λ-calculus (Thm. 19), i.e., that JMK~x ⊆ JNK~x iff M vO N .

4.1 Building Separating Test-Contexts
In this section we are going to associate a test-context α+L·M with each element α ∈ D, the
idea being that – for every closed term M – we have α ∈ JMK iff α+LMM converges.

I Definition 11. Let α ∈ D. The rank of α, written rk(α), is the least n ∈ N such that
α ∈ Dn+1; the length of α, written `(α), is 0 if α = ∗, and it is the unique r such that
α = a1 :: · · · ::ar ::∗ with ar 6= [], otherwise.

Note that if α = a1 :: · · · :: ar :: ∗ then for all 1 ≤ i ≤ r and for all α′ ∈ ai we have
rk(α) > rk(α′). Hence rk(α) = 0 entails α = ∗ and the following definition is well-founded.

I Definition 12. For α ∈ D of the form α = [α1
1, . . . , α

1
k1

] :: · · · :: [αr1, . . . , αrkr
] :: ∗ with

`(α) = r, define by mutual induction a closed term α– and a test-context α+L·M as follows:
α– = λx1 . . . xr.τ̄(‖ri=1 ((αi1)+LxiM| · · · |(αiki

)+LxiM)),
α+L·M = τ [L·M[(α1

1)–, . . . , (α1
k1

)–] · · · [(αr1)–, . . . , (αrkr
)–]].

Given a = [α1, . . . , αk] we set a– = [α–1, . . . , α–k].

For instance, we have ∗– = τ̄(ε) (as the empty parallel composition is equal to ε) and
∗+L·M = τ [L·M].

The next lemma, along with its corollaries, shows the interplay between the elements of
D and the terms/tests of Definition 12. It provides the main motivation for our extension of
the ∂λ-calculus.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 9

I Lemma 13. Let α ∈ D. Then:
(i) Jα–K = {α},
(ii) Jα+LxMKx = {[α]}.

Proof. The points (i) and (ii) are proved simultaneously by induction on rk(α). We write
IH(i) and IH(ii) for the induction hypotheses concerning (i) and (ii), respectively.

If rk(α) = 0 then α = ∗, hence J∗–K = Jτ̄(ε)K = {∗} and J∗+LxMKx = Jτ [x]Kx = {[∗]}.
If rk(α) > 0 and `(α) = r, then we have α = a1 :: · · · ::ar ::∗ with ai = [αi1, . . . , αiki

] for
1 ≤ i ≤ r.

We prove (i). Remember that by definition Jα–K = Jλy1 . . . yr.τ̄(‖ri=1‖
ki
j=1 (αij)+LyiM)K.

So we have β ∈ Jα–K iff β = b1 :: · · · :: br :: ∗ and for all 1 ≤ i ≤ r, 1 ≤ j ≤ ki there
is ~d ij ∈ J(αij)+LyiMK~y such that ~b =]ri=1]

ki
j=1

~d ij . By IH(ii) we have ~d ij ∈ J(αij)+LyiMK~y iff
~d ij = (~[], [αij], ~[]) where [αij] appears in i-th position. Therefore]ki

j=1
~d ij = (~[], ai, ~[]) and bi = ai

for every index i. Thus β = α.
We prove (ii). By def. Jα+LxMKx = Jτ [xa–1 · · · a–r]Kx. So we have c ∈ Jα+LxMKx iff there are

bi = [βii , . . . , βiki
], c0, c i1 , . . . , c iki

∈Mf(D) (for 1 ≤ i ≤ r) such that (c0, b1 :: · · · ::br ::∗) ∈ JxKx,
(cij , βij) ∈ J(αij)–Kx (for all 1 ≤ i ≤ r and 1 ≤ j ≤ ki) and c = c0] (]ri=1]

ki
j=1 c

i
j). As, by

IH(i), J(αiji
)–Kx = {([], αij)} we get cij = [] and βij = αij . Thus c = c0, α = b1 :: · · · ::br ::∗ and

from this it follows that (c, α) ∈ JxKx. We conclude that c = [α]. J

I Corollary 14. Jα+LMMK~x = {~c : (~c, α) ∈ JMK~x}.

Proof. By Lemma 13(ii) we have Jα+LyMK~x,y = {([], . . . , [], [α])}. As α+L·M does not have outer
λ-abstractions we have α+LMM = α+LyM〈[M]/y〉. We then apply Lemma 8 to conclude. J

I Corollary 15. All finite subsets of D are definable.

Proof. By Lemma 13(i), for every finite set u = {α1, . . . , αk} we have Jα–1 +· · ·+α–kK = u. J

Lemma 13 reveals the behaviour of a test-context α+L·M when applied to a term β–.

I Corollary 16. Let α, β ∈ D. If α = β then α+Lβ–M� ε, otherwise α+Lβ–M� 0.

Proof. By Lemma 13, Jα+Lβ–MK = {()} ⊆ Mf(D)0 if α = β, ∅ otherwise. By Corollary 6, we
know that α+Lβ–M reduces either to ε or to 0. The result follows by soundness (Thm. 10). J

4.2 (In)equational Full Abstraction
We now show that the operational preorder vO (Def. 7) coincides with the inclusion of
interpretations in D. The proof of this full abstraction result needs some preliminary lemmas.

I Lemma 17. Let Q ∈ Λτ , FV(Q) ⊆ ~x and ~a ∈Mf(D)n. Then ~a ∈ JQK~x ⇔ JQ〈~a–/~x〉K 6= ∅
and degxi

(Q) = #ai.

Proof. By applying n times (one for each variable in ~x) Lemma 8 and Corollary 14. J

The ensuing lemma is the key argument for proving that D is inequationally fully abstract.

I Lemma 18. Let M ∈ Λτ̄ , ~x ⊇ FV(M), α ∈ D, ~a ∈Mf(D). The following are equivalent:
(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M↓.

Proof. We have the following chain of equivalences:
(~a, α) ∈ JMK~x ⇔ ~a ∈ Jα+LMMK~x, by Corollary 14,

10 Full Abstraction for Resource Calculus with Tests

⇔ Jα+LM〈~a–/~x〉MK 6= ∅ and degxi
(M) = #ai, by Lemma 17, using (α+LMM)〈~a–/~x〉 =

α+LM〈~a–/~x〉M,
⇔ α+LM〈~a–/~x〉M � ε, by Corollary 6, i.e. the fact that closed tests can only reduce to

either ε or 0, and Theorem 10, i.e. the soundness of the model. J

I Theorem 19. D is inequationally fully abstract for the ∂0λ-calculus with tests:

JMK~x ⊆ JNK~x ⇔M vO N

Proof. (⇒) Assume that JMK~x ⊆ JNK~x, and let CL·M be a context closing both M and N
and such that CLMM � ε. By Thm. 10, JCLMMK = JεK = {()}. By monotonicity of the
interpretation we get JCLMMK ⊆ JCLNMK, thus JCLNMK 6= ∅. By Cor. 6 this entails CLNM↓.

(⇐) Suppose, by the way of contradiction, that M vO N holds but there is an element
(~a, α) ∈ JMK~x − JNK~x. Then the test-context CL·M = α+L(λ~x.L·M)~a–M is such that CLMM �
α+LM〈~a–/~x〉M� ε and CLNM 6� ε by Lemma 18. This leads to a contradiction. J

The rest of the paper is devoted to extend the above result to the ∂λ-calculus with tests.
The main ingredients will be the Taylor expansion and the head-reduction introduced in
Subsections 6.1 and 5.1, respectively.

5 The ∂λ-Calculus with Tests

The ∂λ-calculus with tests is an extension of the ∂0λ-calculus with tests with a promotion
available on resources. In this calculus a resource can be linear (it must be used exactly once)
or not (it can be used ad libitum) and in the latter case it is decorated with a “!” superscript.

Syntax. The grammar generating the terms, the tests and the expressions of the ∂λ-
calculus with tests, is the same as the one for the ∂0λ-calculus with tests (in particular
tests are still plain multisets of linear resources), except for the rule concerning bags which
becomes:

P ::= [L1, . . . , Lk,N!] bags

where N is a finite sum of terms of this new syntax. We write Λτ̄! for the set of terms
generated by this new grammar, Λτ! for the set of tests, Λb! for the set of bags, Λe! for
the set of expressions. From now on bags are no more plain multisets of terms: they are
compound objects, consisting of a multiset of terms [L1, . . . , Lk] and a sum of terms N,
denoted as [L1, . . . , Lk,N!]. We shall deal with them as if they were multisets, defining
union by [L1, . . . , Lk,N!]] [Lk+1, . . . , Ln,M!] := [L1, . . . , Ln, (N + M)!]. This operation is
commutative, associative and has [0!] as neutral element.

The ∂0λ-calculus with tests is the sub-calculus of ∂λ-calculus with tests in which all bags
have shape [L1, . . . , Lk, 0!], and this identification is compatible with the reduction rules.

As in the ∂0λ-calculus with tests, we extend this syntax by multilinearity to sums of
expressions with the only exception that the bag [~L, (N + M)!] is not required to be equal
to [~L,N!] + [~L,M!]. The intuition is that in the first expression N + M can be used several
times and each time one can choose either N or M, whereas in the second expression one has
to choose once and for all one of the summands, and then use it as many times as needed.

Substitutions. Linear substitution is denoted and defined as in the ∂0λ-calculus with tests,
except of course for bags, where we set:

[L1, . . , Lk,N!]〈N/x〉 = Σki=1[L1, . . , Li〈N/x〉, . . , Lk,N!] + [L1, . . , Lk,N〈N/x〉,N!] .

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 11

For example, (x[x!])〈y/x〉〈z/x〉 = y[z, x!] + z[y, x!] + x[y, z, x!]. Remark that in the !-free
case, that is when N = 0, the above definitions and notations agree with those introduced in
Subsection 2.1, because in that case we have [L1, . . . , Lk,N〈N/x〉,N!] = 0, since 0〈N/x〉 = 0.

We also define the regular substitution A{N/x} for the ∂λ-calculus with tests, by simply
replacing each occurrence of x in the expression A with N: in that way we get an expression of
the extended syntax, since N is a sum in general. E.g., x[x!]{(y + z)/x} = y[y!, z!] + z[y!, z!].

Both substitutions are then generalized to sums: linear substitution is extended to A〈N/x〉
by bilinearity in A and N, while ordinary substitution to A{N/x} by linearity in A.

A Schwarz lemma, analogous to Lemma 1, holds for the ∂λ-calculus with tests. Hence,
given a sum of expressions A and a bag P = [L1, . . . , Lk] with x /∈ FV(P), it still makes
sense to set A〈P/x〉 := A〈L1/x〉 · · · 〈Lk/x〉 because this expression does not depend on the
enumeration of L1, . . . , Lk. In particular we have A〈[]/x〉 = A.

Operational semantics. The reduction rules of ∂λ-calculus extend those of the ∂0λ-calculus
with tests in the sense that they are equivalent on !-free expressions.

The rules (τ) and (γ) are exactly the same, while the β-reduction and τ̄ -reduction are
rephrased as follows:

(λx.M)[L1, . . , Lk,N!]→β M〈[L1, . . , Lk]/x〉{N/x}, where wlog x 6∈ FV([L1, ..., Lk]),

τ̄(Q)[L1, . . . , Lk,N!]→τ̄

{
τ̄(Q) if k = 0,
0 otherwise.

The ∂λ-calculus with tests is still Church-Rosser (just adapt the proof in [14]), while it
is no more strongly normalizing. For instance the term Ω = (λx.x[x!])[(λx.x[x!])!] has an
infinite reduction chain, just like the paradigmatic homonymous unsolvable λ-term. Indeed,
the usual λ-calculus can be embedded into the ∂λ-calculus with tests by translating every
application MN into M [N !].

In this framework a test-context CL·M is a test of the ∂λ-calculus with tests having a single
occurrence of its hole, appearing in term-position. The set of test-contexts is denoted by Λτ !

L·M.
A test Q converges, notation Q↓, if there exists a sum Q such that Q� ε+ Q.

I Definition 20. The operational pre-order v!
O on the ∂λ-calculus with tests is defined by:

M v!
O N ⇔ ∀CL·M ∈ Λτ !

L·M closing M,N (CLMM↓ ⇒ CLNM↓).

We then set M ≈!
O N if and only if M v!

O N and N v!
O M .

Relational semantics. The ∂λ-calculus with tests can be interpreted into D by extending the
interpretation of the ∂0λ-calculus with tests as follows:

J[L1, . . . , Lk,N!]K~x = {(]k+m
r=1 ~ar, [β1, . . . , βk+m]) : (~aj , βj) ∈ JLjK~x, 1 ≤ j ≤ k and

(~ai, βi) ∈ JNK~x, k < i ≤ k +m}.

It is easy to check that both Lemma 8 and Lemma 9 generalize to this context. From these
lemmas it ensues that D is also a model of the ∂λ-calculus with tests.

I Theorem 21. D is a model of ∂λ-calculus with tests.

5.1 Head Reduction
We now provide a notion of head-reduction for the ∂λ-calculus with tests. Intuitively, the
head-reduction is obtained by reducing a head-redex, that is a redex occurring in head-
position in an expression A. The interest of introducing this reduction strategy is that it
“behaves well” with respect to the Taylor expansion in the sense of Proposition 31.

We start by defining the notion of redex.

12 Full Abstraction for Resource Calculus with Tests

x◦ = {x}, (λx.M)◦ = {λx.M ′ : M ′ ∈M◦}, (MP)◦ = {M ′P ′ : M ′ ∈M◦, P ′ ∈ P ◦},
(τ̄(Q))◦ = {τ̄(Q′) : Q′ ∈ Q◦}, (τ [M1, . . . ,Mk])◦ = {τ [M ′1, . . . ,M ′k] : M ′i ∈M◦i , for 1 ≤ i ≤ k},

[L1, . . . , Lk,N!]◦ = {[L′1, . . . , L′k]] P : L′i ∈ L◦i , for 1 ≤ i ≤ k, P ∈Mf(N◦)},
(Σki=1Ai)◦ = ∪ki=1A

◦
i .

Figure 1 The Taylor expansion A◦ of A ∈ 2〈Λe! 〉.

I Definition 22. A term-redex is any term of the form (λx.M)P or τ̄(Q)P . A test-redex is
any test of the form τ [λx.M], τ [τ̄(Q)].

Among term- and test-redexes we distinguish those redexes that are in “head” position.

I Definition 23. A head-redex is:
either a term-redex H in terms of shape λ~y.H ~P ,
or a term-redex H in tests of shape τ [H ~P]|Q,
or a test-redex R in tests of shape R|Q.

I Definition 24. We say that A→ B is a step of head-reduction if B is obtained from A by
contracting a head-redex. If A→ B is a step of head-reduction then also A+ A→ B + A is.

One-step head-reduction is denoted by →h, while�h indicates its reflexive and transitive
closure. Notice that, unlike in ordinary λ-calculus, an expression A may have more than one
head-redex, hence there may be more than one head-reduction steps starting from A.

The head-reduction induces a notion of head-normal form on (finite sums of) expressions.

I Definition 25. An expression A is in head-normal form (hnf, for short) if there is no B
such that A→h B; a sum A is in hnf if A 6= 0 and each summand is in hnf.

This notion of hnf differs from that given by Pagani and Ronchi della Rocca in [13]. We keep
this name since their definition captures the notion of “outer-nf” rather than that of hnf.

It is easy to check that a term M is in hnf iff M := λ~x.y ~P or M := λ~x.τ̄(Q); a test R is
in hnf iff R := ε, R := τ [x~P] or R := Q1|Q2 for some tests Q1, Q2 in hnf.

The following two lemmas concern reduction properties of !-free closed tests.

I Lemma 26. Let R ∈ Λτ . If R is closed and R 6= ε then it has a head-redex (hence,
R→h R′ for some R′).

Proof. By induction on R. It suffices to consider the case R = τ [M]. We then proceed by
cases on the structure of M (which must be closed). If M = λx.N then R head-reduces
using (τ). If M is an application then it must be written either as M = (λy.N)P1 · · ·Pk or
as M = τ̄ [Q]P1 · · ·Pk (in both cases k ≥ 1) and hence R head-reduces using either (β) or
(τ̄), respectively. If M = τ̄(Q) then R head-reduces using (γ). J

I Lemma 27. If R ∈ Λτ is closed then R� ε iff R�h ε.

Proof. (⇒) Suppose, by contradiction, that R � ε but R 6�h ε. By confluence (Thm. 4),
we cannot have R�h 0. Thus, since R ∈ Λτ is strongly normalizing, the only way to have
R 6�h ε is that R�h R where R 6= ε is in hnf. This is impossible by Lemma 26.

(⇐) Trivial since �h ⊆ �. J

One should be careful when trying to extend the above result to terms M ∈ Λτ̄ . For instance,
it is false that M � 0 iff M �h 0. Indeed M := λx.x[I[]] is in hnf but M → λx.x[0] := 0.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 13

6 Full Abstraction via Taylor Expansion

In this section we are going to define the Taylor expansion of terms and tests of the ∂λ-calculus
with tests. We will then use this expansion, combined with head-reduction, to generalize the
full abstraction results obtained in Subsection 4.2 to the framework of ∂λ-calculus with tests.

6.1 Taylor Expansion
The (full) Taylor expansion was first introduced in [6, 7], in the context of λ-calculus. The
Taylor expansion M◦ of an ordinary λ-term M gives an infinite formal linear combination of
terms of the ∂0λ-calculus. In the case of ordinary application it looks like:

(MN)◦ =
∞∑
n=0

1
n!M [N, . . . , N︸ ︷︷ ︸

n times

]

in accordance with the intended meaning and the denotational semantics of application in
the resource calculus. In the syntax of differential λ-calculus [6] the above formula looks like∑∞
n=0

1
n!M

(n)(0)(N, . . . , N), hence the connection with analytical Taylor expansion is clear.
Following [10], we extend the definition of Taylor expansion from ordinary λ-terms to

the expressions of the ∂λ-calculus with tests. Since the sum is idempotent, the coefficients
disappear and our Taylor expansion corresponds to the support of the actual Taylor expansion.

As the set 2〈Λe〉∞ of possibly infinite formal sums of expressions is isomorphic to P(Λe),
in the following we may use sets instead of sums.

I Definition 28. Let A ∈ 2〈Λe! 〉. The (full) Taylor expansion of A is the set A◦ ⊆ Λe which
is defined (by structural induction on A) in Figure 1.

As previously announced, the Taylor expansion of an expression A can be infinite. For
example, we have that (λx.x[x!])◦ = {λx.x[xn] : n ∈ N}.

To lighten the notations, we adopt for infinite sets of expressions the same abbreviations as
introduced for finite sums in Subsection 2.1 (including those for substitutions). For instance, if
X,Y ⊆ Λτ̄ then λx.X denotes the set {λx.M ′ : M ′ ∈ X} and X〈Y/x〉 = ∪M∈X,N∈YM〈N/x〉.

In [10] it is proved that MRel is a differential Cartesian closed category that “models
the Taylor expansion”. This property entails that Taylor expansion preserves the meaning of
an expression in D, as expressed in the next theorem.

I Theorem 29. JAK~x = ∪A∈A◦JAK~x, for all A ∈ 2〈Λe! 〉.

Proof. By adapting the proof in [10] of the analogous result for the differential λ-calculus. J

We now need the following lemma stating the commutation of Taylor expansion with respect
to ordinary and linear substitutions. The proof is lengthy but not difficult and is omitted.
For the sake of readability, in the next statements we use sums and unions interchangeably.

I Lemma 30. Let A ∈ Λe! , N ∈ Λτ̄! and N ∈ 2〈Λτ̄! 〉. Then, for x /∈ FV(N) ∪ FV(N):
(i) (A〈N/x〉)◦ = A◦〈N◦/x〉,
(ii) (A{N/x})◦ =

⋃
P∈Mf(N◦)A

◦〈P/x〉{0/x}.

The next proposition is devoted to show how Taylor expansion interacts with head-
reduction. To ease the formulation of the next proposition we assimilate 2〈Λe! 〉 to Pf(Λe!).

I Proposition 31. Let A ∈ Λe! and let A′ ∈ A◦ be such that A′ →h B′, for some B′. Then
there exists B such that A→h B and B′ ⊆ B◦.

14 Full Abstraction for Resource Calculus with Tests

Proof. The idea is that the syntactic tree of A has the same structure as that of A′ and we
can define a surjective mapping of the redexes of A′ into those of A.

We only treat the case A′ = λ~x.H ′P ′1 · · ·P ′p where H ′ = (λy.M ′)P ′ is a head-redex. From
A′ ∈ A◦ we get A = λ~x.HP1 · · ·Pp for some H such that H ′ ∈ H◦. Hence, supposing
wlog P ′ = [~L′, ~N ′], we have that H = (λy.M)[~L,N!] where M ′ ∈ M◦, the lengths of
~L′ and ~L coincide, L′i ∈ L◦i for all i and [~N ′] ∈ Mf(N◦). We now know that H ′ →h

M ′〈[~L′]/y〉〈[~N ′]/y〉{0/y} and H →h M〈[~L]/y〉{N/y}. By Lemma 30, (M〈[~L]/y〉{N/y})◦ =
∪P∈Mf(N◦)M

◦〈[~L◦]/y〉〈P/y〉{0/y} ⊇M〈P ′/y〉{0/y}.
We can conclude that λ~x.M ′〈P ′/y〉{0/y}P ′1 · · ·P ′p ⊆ (λ~x.M〈[~L]/y〉{N/y}P1 · · ·Pp)◦. J

Note that the above proposition is false for regular β-reduction. E.g., take A := x[(I[y])!]
and A′ := x[I[y], I[y]] ∈ A◦, then A′ →β x[y, I[y]] and A→β x[y!] but x[y, I[y]] /∈ (x[y!])◦.

I Corollary 32. Let R ∈ Λτ! be closed. If there is an R′ ∈ R◦ such that R′ � ε, then R↓.

Proof. Suppose that there exists R′ ∈ R◦ such that R′ � ε. By Lemma 27 there is a
head-reduction chain of the form R′ →h R′1 →h · · · →h R′n = ε. By iterated application of a
corollary2 of Prop. 31 there are tests Ri (for i = 1, . . . , n) such that R→h R1 →h · · · →h Rn
with R′i ⊆ R◦i . We conclude since ε ∈ R◦n is only possible when ε ∈ Rn. J

6.2 Full Abstraction for the ∂λ-Calculus with Tests
We now prove that the relational model D is fully abstract for the ∂λ-calculus with tests.

I Lemma 33. Given A ∈ Λe! and M ∈ Λτ̄! we have:

(i) (α+LMM)◦ = α+LM◦M, for all α ∈ D,
(ii) (A〈a–/x〉)◦ = A◦〈a–/x〉, for all a ∈Mf(D).

Proof. As α+L·M and a– are !-free, and (·)◦ behaves like the identity on !-free expressions. J

I Proposition 34. Let M ∈ Λτ̄! , ~x ⊇ FV(M), α ∈ D and ~a ∈ Mf(D). Then the following
statements are equivalent:
(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M↓.

Proof. (i ⇒ ii) Suppose (~a, α) ∈ JMK~x, then by Thm. 29 there is an M ′ ∈ M◦ such
that (~a, α) ∈ JM ′K~x. Applying Lemma 18 we know that α+LM ′〈~a–/~x〉M � ε. Now, since
α+LM ′〈~a–/~x〉M ∈ (α+LM〈~a–/~x〉M)◦ (by Lemma 33), we can apply Corollary 32 and get
α+LM〈~a–/~x〉M↓.

(ii ⇒ i) Suppose that α+LM〈~a–/~x〉M � ε + Q, for some Q; then Jα+LM〈~a–/~x〉MK~x 6= ∅.
Hence, by Theorem 29, there is a closed test R ∈ (α+LM〈~a–/~x〉M)◦ such that JRK 6= ∅. By
Lemma 33 R = α+LM ′〈~a–/~x〉M for some M ′ ∈M◦ and since its interpretation is non-empty
we have R� ε. By applying Lemma 18 we get (~a, α) ∈ JM ′K~x ⊆ JMK~x (by Theorem 29). J

I Theorem 35. D is inequationally fully abstract for the ∂λ-calculus with tests:

JMK~x ⊆ JNK~x ⇔M v!
O N.

2 If A′ ⊆ A◦ and A′ →h B′ then there exists B such that A→h B and B′ ⊆ B◦.

A. Bucciarelli, A. Carraro, T. Ehrhard and G. Manzonetto 15

Proof. (⇒) Suppose that JMK~x ⊆ JNK~x and there is a test-context CL·M (closing M,N) such
that CLMM↓. Since CLMM� ε+Q, for some Q, we have JCLMMK 6= ∅. Thus, by monotonicity
of the interpretation we get JCLMMK ⊆ JCLNMK = J(CLNM)◦K 6= ∅. By Corollary 6 there is
R ∈ (CLNM)◦ such that R� ε and we conclude that CLNM↓ by applying Proposition 34.

(⇐) Suppose by contradiction that M v!
O N , but there is an (~a, α) ∈ JMK~x − JNK~x. By

Prop. 34 α+LM〈~a–/~x〉M↓ and since M v!
O N we have α+LN〈~a–/~x〉M↓. Again, by Prop. 34

(~a, α) ∈ JNK~x. Contradiction. J

Further Work. We proved that D is a fully abstract model of the ∂λ-calculus and of the
∂0λ-calculus with tests. We strongly conjecture that it also (in)equationally fully abstract
for the corresponding calculi without tests. A possible approach to obtain these results might
be to define a “test-expansion” translating every test-context CL·M sending M ∈ Λτ̄! to ε+ R
into a term-context C ′L·M sending M to I + N. This generalization is non trivial and is kept
for future work. Another open problem is to find a fully abstract model of these calculi where
+ is treated as must non-determinism (a sum converges if all its summands converge).

References
1 H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Ams-

terdam, 1984.
2 G. Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor, CON-

CUR, volume 715 of Lecture Notes in Computer Science, pages 1–6. Springer, 1993.
3 G. Boudol, P.-L. Curien, and C. Lavatelli. A semantics for lambda calculi with resources.

Math. Struct. in Comp. Sci., 9(4):437–482, 1999.
4 A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Not enough points is enough. In CSL’07,

volume 4646 of LNCS, pages 298–312. Springer, 2007.
5 T. Ehrhard and O. Laurent. Interpreting a finitary pi-calculus in differential interaction

nets. Inf. Comput., 208(6):606–633, 2010.
6 T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1-

3):1–41, 2003.
7 T. Ehrhard and L. Regnier. Böhm trees, Krivine’s machine and the Taylor expansion of

lambda-terms. In CiE, volume 3988 of LNCS, pages 186–197. Springer, 2006.
8 T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion of ordinary lambda-terms.

Theor. Comput. Sci., 403(2-3):347–372, 2008.
9 J.-Y. Girard. From foundations to ludics. Bulletin of Symbolic Logic, 9(2):131–168, 2003.
10 G. Manzonetto. What is a categorical model of the differential and the resource lambda

calculi? June 2010. Submitted to Mathematical Structures in Computer Science.
11 R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.
12 R. Milner. The polyadic π-calculus: a tutorial. Logic and algebra of specification, pages

203–246, 1993.
13 M. Pagani and S. Ronchi Della Rocca. Solvability in resource lambda-calculus. In Proc. of

FOSSACS’10, volume 6014 of LNCS, pages 358–373. Springer, 2010.
14 M. Pagani and P. Tranquilli. Parallel reduction in resource lambda-calculus. In APLAS’09,

volume 5904 of LNCS, pages 226–242. Springer, 2009.
15 P. Tranquilli. Intuitionistic differential nets and lambda-calculus. Theor. Comp. Sci. To

appear.
16 L. Vaux. The differential λµ-calculus. Theor. Comput. Sci., 379(1-2):166–209, 2007.

	Introduction
	The 0-Calculus with Tests
	Two Kinds of Substitutions
	The Operational Semantics

	A Relational Semantics
	Interpreting the 0-calculus with tests

	First Full Abstraction Results
	Building Separating Test-Contexts
	(In)equational Full Abstraction

	The -Calculus with Tests
	Head Reduction

	Full Abstraction via Taylor Expansion
	Taylor Expansion
	Full Abstraction for the -Calculus with Tests

