LOCALI 2013 worksop, Beijing

CCS for trees

Thomas Ehrhard

Preuves, Programmes et Systèmes, CNRS and Univ. Paris Diderot Joint work with Ying Jiang

November 5, 2013

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Motivations

Milner introduced CCS in 1980 as an algebraic formalism for representing communicating systems. Finite state automata appear as special cases (processes without internal communications).

We propose a similar calculus, extending tree automata instead of ordinary automata.

We think that it corresponds to an interesting and more general kind of communicating systems.

Main features of CCTS

- ► A generalized parallel composition, represented by graphs.
- Conservative extension of both tree automata and CCS.
- Essential role played by *locations*: crucial in order to define internal reduction as well as bisimulations.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Related to interaction nets.

Finite automata: basic ingredients

- Σ an alphabet.
- \mathcal{V} an infinite set of *states*.
- $\mathcal{V}_0 \subseteq \mathcal{V}$ infinite set of *accepting states*.

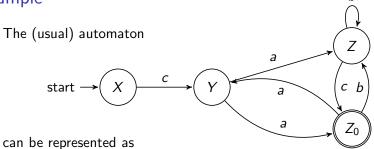
◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Finite automata: a term syntax

- If $X \in \mathcal{V}$ then X is an automaton term.
- If a₁,..., a_n ∈ Σ and P₁,..., P_n are automaton terms then ∑ⁿ_{i=1} a_i · P_i is a automaton term (empty sum: 0; 1 element sum: a · P).

- If P is an automaton term and X ∈ V then µX P is an automaton term.
- μ is a binder (α -conversion, respecting accepting states).

Example



h

$$\mu X c \cdot (\mu Y (a \cdot \mu Z (b \cdot Z + c \cdot \mu Z_0 (b \cdot Z + a \cdot Y)) + a \cdot \mu Z_0 (a \cdot Y + b \cdot \mu Z (b \cdot Z + c \cdot Z_0))))$$

Interactive closure

Automata can accept words but have no internal dynamics.

We can see the acceptance of a word $w = a_1 \dots a_n$ by an automaton P as the interaction between P and a very simple automaton $\overline{w} = \overline{a_1} \dots \overline{a_n} \cdot 0$ on a dual alphabet.

The idea of CCS is to generalize this interaction by introducing the notion of *parallel composition* $P \mid Q$ of two automata (or more generally, CCS processes) P and Q.

P accepts *w* if the *reduction* of the process $P \mid \overline{w}$ succeeds (in some sense).

Syntax of CCS

We assume that Σ is equiped with an involution $a \mapsto \overline{a}$ without fixpoints.

- If $X \in \mathcal{V}$ then X is a process.
- If $a_1, \ldots, a_n \in \Sigma$ and P_1, \ldots, P_n are processes, then $\sum_{i=1}^n a_i \cdot P_i$ is a process (guarded sum).
- If $X \in \mathcal{V}$ and P is a process then $\mu X P$ is a process.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Syntax of CCS: new features

- If P and Q are processes then P | Q is a process (associative and commutative operation: it would be more convenient to introduce the parallel composition of a multiset of processes).
- If P is a process and I is a finite subset of Σ then P \ I is a process (this is a binding operation, subject to α conversion).

 ε is the empty parallel composition.

Operational semantics of CCS (internal reduction)

We define a reduction relation \rightarrow on processes.

$$(\mu X P) \mid R \to P [\mu X P/X] \mid R$$
$$(a \cdot P + S) \mid (\overline{a} \cdot Q + T) \mid R \to P \mid Q \mid R$$
$$P \setminus I \mid R \to (P \mid R) \setminus I$$

 \rightarrow^* : transitive closure or \rightarrow .

Weak barbed bisimilarity

 $a \in \Sigma$ is a *barb* of *P* if $P = (a \cdot P' + S) \mid R$, written $P \downarrow_a$.

A binary relation \mathcal{B} on processes is a *weak barbed congruence* if it is symmetric and, for any $P, Q \in \text{Proc such that } P \mathcal{B} Q$,

- ▶ for any process P', if $P \rightarrow^* P'$, then there exists Q' such that $Q \rightarrow^* Q'$ and $P' \mathcal{B} Q'$;
- ▶ for any P' and any $a \in \Sigma$, if $P \to^* P'$ and $P' \downarrow_a$, then there is Q' such that $Q \to^* Q'$ and $Q' \downarrow_a$.

 $P \stackrel{\bullet}{\approx} Q$ means that there exists such a \mathcal{B} with $P \mathcal{B} Q$; this is an equivalence relation on processes.

Intuitively: P and Q feature the same *external* capabilities.

Weak barbed congruence

An equivalence relation \mathcal{R} is a *congruence* if, for any one hole context C,

$$\forall P, Q \quad P \mathcal{R} \ Q \Rightarrow C[P] \mathcal{R} \ C[Q].$$

The largest congruence contained in $\stackrel{\bullet}{\approx}$ is called *weak barbed congruence*, notation \cong .

Intuition: $P \cong Q$ means that P and Q behave in the same way, in all possible contexts.

Fact

Two automata can accept the same language but not be weak barbed congruent.

Typical example: $a \cdot b \cdot X_0 + a \cdot c \cdot X_0$ and $a \cdot (b \cdot X_0 + c \cdot X_0)$. Take the context $[] | \overline{a}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Why weak bisimilarity?

The trouble with weak barbed congruence is that it involves a universal quantification on contexts: hard to prove!

Whence the idea of defining (still co-inductively) a compositional equivalence relation on processes.

Remark

One has the same phenomenon in the λ -calculus with observational equivalence.

Denotational models are tools which allow to prove that terms are equivalent: denotational equivalence implies operational equivalence.

Weak bisimulation

Write:

▶
$$P \xrightarrow{a} P'$$
 if $P = (a \cdot Q + S) | R$ and $P' = Q | R$
▶ $P \xrightarrow{a} P'$ if there are P_1 and P'_1 with $P \rightarrow^* P_1 \xrightarrow{a} P'_1 \rightarrow^* P'$.

A weak bisimulation is a binary relation \mathcal{R} on processes which is symmetric and satisfies, for all P, Q such that $P \mathcal{R} Q$:

• if $P \to P'$ then there is Q' such that $Q \to^* Q'$ with $P' \mathcal{R} Q'$

• if $P \xrightarrow{a} P'$ then there is Q' such that $Q \xrightarrow{a} Q'$ with $P' \mathcal{R} Q'$.

Weak bisimilarity

P and *Q* are weakly bisimilar if there is a weak bisimulation \mathcal{R} such that $P \mathcal{R} Q$. Notation $P \approx Q$.

Theorem

 $P \approx Q \Rightarrow P \cong Q.$

Idee of the proof: show that \approx is a congruence and implies $\stackrel{\bullet}{\approx}.$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Theorem

The converse is also true: full abstraction.

Tree automata and CCTS

Basic definitions

Replace letters by symbols with arities: Σ is a pairwise disjoint unions of the Σ_n (symbols of arity $n \in \mathbf{N}$).

A tree automaton is a finite set A of triples $(X, f, (X_1, ..., X_n))$, called *transitions*, where $X, X_1, ..., X_n \in \mathcal{V}$ and $f \in \Sigma_n$.

 $\operatorname{ar}(f)$ is the unique *n* such that $f \in \Sigma_n$.

The states of A are the elements of \mathcal{V} occurring in the transitions of A.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Accepted language (top down)

Using Σ one defines trees as usual (they are the terms of this signature): $\mathcal{T}(\Sigma)$.

Remark

Accepting states are not needed anymore because we can have symbols of arity 0: the letters of standard automata are symbols or arity 1.

 $L(A,X)\subseteq \mathcal{T}(\Sigma)$, the language accepted at state X, is defined by:

 $\mathsf{L}(A,X) = \{f(t_1,\ldots,t_n) \mid (X,f,(X_1,\ldots,X_n)) \text{ and } \forall i \ t_i \in \mathsf{L}(A,X_i)\}$

inductively, because we consider only finite trees.

Syntax for tree automata (Mingren Chai, Nan Qu, and Ying Jiang)

- If $X \in \mathcal{V}$ then X is an automaton term.
- ▶ If $f_i \in \Sigma$ and \vec{P}^i (vector of terms of length $\operatorname{ar}(f_i)$) for i = 1, ..., k then $\sum_{i=1}^k f_i \cdot \vec{P}^i$ is an automaton term.
- ▶ If *P* is an automaton term and $X \in V$ then $\mu X P$ is an automaton term.

Term associated with an automaton

Given an automaton A and a state X of A, one defines the term $\langle A \rangle_X$ as $\langle A \rangle_X = \langle A \rangle_X^{\emptyset}$ where $\langle A \rangle_X^{\mathcal{X}}$ (with \mathcal{X} finite subset of \mathcal{V}) is given by

$$\langle A
angle_X^{\mathcal{X}} = X$$
 if $X \in \mathcal{X}$

and

$$\langle A \rangle_X^{\mathcal{X}} = \mu X \sum_{(X,f,(X_1,\dots,X_n)) \in A} f \cdot (\langle A \rangle_{X_1}^{\mathcal{X} \cup \{X\}}, \dots, \langle A \rangle_{X_n}^{\mathcal{X} \cup \{X\}})$$

if $X \notin \mathcal{X}$. $\langle A \rangle_X$ is closed and contains no $\mu X Y$.

Need for a refined parallel composition

We want a parallel composition (and reduction) such that

 $t \in L(A, X)$ iff $\langle A \rangle_X \mid \overline{t}$ reduces to ε .

Remark

Let $f \in \Sigma_2$, $a, b \in \Sigma_0$ with $a \neq b$. The automaton $f \cdot (a, b)$ accepts f(a, b) but not f(b, a). So $f \cdot (P_1, Q_1) | \overline{f} \cdot (P_2, Q_2)$ cannot reduce to $P_1 | Q_1 | P_2 | Q_2$.

We need a more sophisticated notion of parallel composition.

Syntax of CCTS: basic ingredients

Let \mathcal{L} be a countable set of *locations*.

A graph is a pair $G = (|G|, \frown_G)$ where |G| is a finite subset of \mathcal{L} and \frown_G is an antireflexive and symmetric relation on |G|.

We assume that Σ is equipped with an involution $f \mapsto \overline{f}$ which respects arities and has no fixpoints.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Syntax of CCTS: processes

- If $X \in \mathcal{V}$ then X is a *process*.
- ▶ If $f_i \in \Sigma$ and \vec{P}^i are vectors of processes of length $\operatorname{ar}(f_i)$ for i = 1, ..., k, then $\sum_{i=1}^k f_i \cdot \vec{P}^i$ is a guarded sum.
- If G is a graph and Φ is a function from |G| to guarded sums, then G⟨Φ⟩ is a process (parallel composition).
- If $X \in \mathcal{V}$ and P is a process then $\mu X P$ is a process.
- If P is a process and I is a finite subset of Σ then P \ I is a process.

Given $p, q \in |G|$ with $p \neq q$, $\Phi(p)$ and $\Phi(q)$ can interact in $G\langle \Phi \rangle$ if $p \frown_G q$.

Usual parallel composition: $G\langle \Phi \rangle$ where G is the full graph on |G|.

$\alpha\text{-conversion}$ of locations

If $\varphi : |G| \to |H|$ is a graph isomorphism from G to H and if Φ (defined on |G|) and Ψ (defined on |H|) satisfy $\Phi = \Psi \circ \varphi$, then $G\langle \Phi \rangle$ and $H\langle \Psi \rangle$ are the same process.

This equivalence relation is extended to arbitrary contexts.

Nevertheless, we'll have to be extremely careful about locations for defining bisimilarity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Internal reduction of CCTS

Convention: if *P* is a process $G\langle \Phi \rangle$, we use *P* to denote both *G* and Φ .

P reduces to *P'* if there are $p, q \in |P|$ such that $p \frown_P q$, $P(p) = f \cdot (P_1, \ldots, P_n) + S$, $P(q) = \overline{f} \cdot (Q_1, \ldots, Q_n) + T$ and *P'* is defined as follows.

Notice: thanks to α -conversion of locations, we can assume that the sets $|P_i|$, $|Q_j|$ are pairwise disjoint and disjoint from $|P| \setminus \{p, q\}$.

Internal reduction of CCTS: locations and residual function We take $|P'| = (|P| \setminus \{p,q\}) \cup \bigcup_{i=1}^{n} |P_i| \cup \bigcup_{i=1}^{n} |Q_i|$.

$$P'(p') = \begin{cases} P_i(p') & \text{if } p' \in |P_i| \\ Q_i(p') & \text{if } p' \in |Q_i| \\ P(p') & \text{if } p' \notin \bigcup_{i=1}^n |P_i| \cup \bigcup_{i=1}^n |Q_i| \end{cases}$$

We define the "residual function":

$$egin{aligned} \lambda_1 &: |P'| o |P| \ & p' \mapsto egin{cases} p & ext{if } p' \in igcup_{i=1}^n |P_i| \ q & ext{if } p' \in igcup_{i=1}^n |Q_i| \ p' & ext{otherwise.} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Internal reduction of CCTS: end of the definition

 $\frown_{P'}$ is the least symmetric relation on |P'| such that, for any, $p', q' \in |P'|$, one has $p' \frown_{P'} q'$ in one of the following cases:

- 1. $p' \frown_{P_i} q'$ or $p' \frown_{Q_i} q'$ for some $i = 1, \ldots, n$
- 2. $p' \in |P_i|$ and $q' \in |Q_i|$ for some i = 1, ..., n (the same *i* for both)

3. $\{p',q'\} \not\subseteq \bigcup_{i=1}^n |P_i| \cup \bigcup_{i=1}^n |Q_i| \text{ and } \lambda_1(p') \frown_P \lambda_1(q')$

Internal reduction of CCTS: notation

Notation: \to or $\underset{\lambda_1}{\longrightarrow}$ for the reduction and \to^* for its transitive closure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$P \xrightarrow{*}_{\lambda} P' \text{ if } P \xrightarrow{}_{\lambda_1} P_1 \xrightarrow{}_{\lambda_2} P_2 \cdots P_{k-1} \xrightarrow{}_{\lambda_k} P_k = P' \text{ and}$$
$$\lambda = \lambda_k \circ \cdots \circ \lambda_1.$$

Internal reduction of CCTS: example

$$a \in \Sigma_{0} \text{ and } f \in \Sigma_{2}.$$

$$P = \overline{a} \mid a \mid f \cdot (a, \overline{a}) \mid \overline{f} \cdot (a, \overline{a}), \text{ that is } |P| = \{1, 2, 3, 4\}, p \frown_{P} q \text{ for all } p \neq q, P(1) = \overline{a}, P(2) = a, P(3) = f \cdot (a, \overline{a}), P(4) = \overline{f} \cdot (a, \overline{a}).$$

$$P \rightarrow P' \text{ where } |P'| = \{1, 2, 5, 6, 7, 8\} \text{ with}$$

$$P'(1) = a, P'(2) = \overline{a}, P'(5) = a, P'(6) = \overline{a}, P'(7) = a, \text{ and}$$

$$P'(8) = \overline{a}$$

$$P' \frown_{P'} q' \text{ if } p' \neq q' \text{ and } p' \in \{1, 2\} \text{ or } q' \in \{1, 2\}, \text{ or}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

•
$$p' \frown p' q'$$
 if $p' \neq q'$ and $p' \in \{1, 2\}$ or $q' \in \{1, 2\}$, c
 $\{p', q'\} = \{5, 7\}$ or $\{p', q'\} = \{6, 8\}$.

We have
$$2 \frown_{P'} 5$$
, $P'(2) = \overline{a}$ and $P'(5) = a$.
Hence $P' \to P''$ with $|P''| = \{1, 6, 7, 8\}$ and $1 \frown_{P''} p''$ for $p'' \in \{6, 7, 8\}$ and $6 \frown_{P''} 8$, with $P''(1) = a$, $P''(6) = \overline{a}$, $P''(7) = a$ and $P''(8) = \overline{a}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Conservative extension

Theorem

This formalism is a conservative extension of CCS.

Given a tree automaton A, $X \in \mathcal{V}$ and $t \in \mathcal{T}(\Sigma)$, one has $t \in L(A, X)$ iff $G\langle \Phi \rangle \rightarrow^* \varepsilon$ where:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

•
$$|G| = \{p,q\}$$
 with $p \frown_G q$

•
$$\Phi(p) = \langle A \rangle_X$$

• $\Phi(q) = \overline{t}$ (seen as a very simple process).

Weak barbed congruence

As for CCS, we say that P has a barb $f \in \Sigma$ and write $P \downarrow_f$ if there is $p \in |P|$ such that $P(p) = f \cdot (P_1, \ldots, P_n) + S$.

Starting from this notion, we define weak barbed congruence on processes \cong as we did for CCS.

Challenge: define co-inductively a non-trivial weak bisimilarity on CCTS which sould at least

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- imply weak barbed congruence
- extend CCS weak bisimilarity.

Localized relations on processes

A localized relation (on processes): $\mathcal{R} \subseteq Proc \times \mathcal{P}(\mathcal{L}^2) \times Proc$ such that

$$(P, E, Q) \in \mathcal{R} \Rightarrow E \subseteq |P| \times |Q|.$$

Such a relation ${\mathcal R}$ is symmetric if

$$(P, E, Q) \in \mathcal{R} \Rightarrow (Q, {}^{\mathrm{t}}\!E, P) \in \mathcal{R}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

where ${}^{t}E = \{(q, p) \mid (p, q) \in E\}.$

Labeled transitions

We write
$$P \xrightarrow{p:f \cdot (\vec{L})}{\lambda_1} P'$$
 if

- $\blacktriangleright P(p) = f \cdot (P_1, \ldots, P_n) + S$
- ▶ $P' = P[P_1 \oplus \cdots \oplus P_n/p]$ $(P_1 \oplus \cdots \oplus P_n)$: disconnected union of the processes P_1, \ldots, P_n , connected to $|P| \setminus \{p\}$ just as pin P)

•
$$L_i = |P_i|$$
 for $i = 1, ..., n$

$$egin{aligned} \lambda_1 &: |P'| o |P| \ p' &\mapsto egin{cases} p & ext{if } p' \in igcup_{i=1}^n |P_i| \ p' & ext{otherwise.} \end{aligned}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Weak bisimulation

A (localized) weak bisimulation is a symmetric localized relation such that

$$P \xrightarrow[\lambda,\lambda_1,\lambda']{p:f \cdot (\vec{L})} P' \text{ means } P \xrightarrow[\lambda]{*} P_1 \xrightarrow[\lambda_1]{p:f \cdot (\vec{L})} P'_1 \xrightarrow[\lambda']{*} P' \text{ for some } P_1, P'_1.$$

Weak bisimilarity

P and *Q* are weakly bisimilar if there is a weak bisimulation \mathcal{R} and a relation $E \subseteq |P| \times |Q|$ such that $(P, E, Q) \in \mathcal{R}$. Notation: $P \approx Q$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Example (CCS)

If $\Sigma_i = \emptyset$ for $i \neq 1$ (and hence we are in CCS) then this new bisimilarity coincides with the ordinary one. For instance: $a \cdot \varepsilon \mid b \cdot \varepsilon \approx a \cdot b \cdot \varepsilon + b \cdot a \cdot \varepsilon$.

Example (CCTS)

Let $a \in \Sigma_1$ and $f, g \in \Sigma_2$. Let $P = f \cdot (g \cdot (\varepsilon, \varepsilon), \varepsilon) + g \cdot (f \cdot (\varepsilon, \varepsilon), \varepsilon)$ $Q = f \cdot (\varepsilon, \varepsilon) \mid g \cdot (\varepsilon, \varepsilon).$ Then $P \not\approx Q$. Let $R = \overline{f} \cdot (\varepsilon, \overline{g} \cdot (a \cdot \varepsilon, \varepsilon)))$. Then $Q \mid R \to^* a \cdot \varepsilon$ and $a \cdot \varepsilon \downarrow_a$

Let $R = f \cdot (\varepsilon, g \cdot (a \cdot \varepsilon, \varepsilon)))$. Then $Q \mid R \to^* a \cdot \varepsilon$ and $a \cdot \varepsilon \downarrow_a$ whereas there is no process M such that $P \mid R \to^* M$ with $M \downarrow_a$. The best we can do is reduce $P \mid R$ to $g \cdot (\varepsilon, \varepsilon) \oplus \overline{g} \cdot (a \cdot \varepsilon, \varepsilon)$. So $P \not\cong Q$.

Weak bisimilarity implies weak barbed congruence

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem

 $P \approx Q \Rightarrow P \cong Q$

One proves that \approx is a congruence.

Conclusion

- $\blacktriangleright P \cong Q \Rightarrow P \approx Q ?$
- Interaction nets allow to present this formalism more simply.
- This suggests a unification with Laneve, Parrow and Victor's solo calculus (and diagrams), a calculus which subsumes the π-calculus.

- What is localized bisimulation in interaction nets?
- What can we represent in this new setting?