
Böhm Trees, Krivine’s Machine
and the Taylor Expansion of Lambda-Terms

Thomas Ehrhard1 and Laurent Regnier2 ?

1 Preuves, Programmes et Systèmes (UMR 7126) Thomas.Ehrhard@pps.jussieu.fr
2 Institut de Mathématiques de Luminy (UMR 6206)

Laurent.Regnier@iml.univ-mrs.fr

Abstract. We introduce and study a version of Krivine’s machine which
provides a precise information about how much of its argument is needed
for performing a computation. This information is expressed as a term of
a resource lambda-calculus introduced by the authors in a recent article;
this calculus can be seen as a fragment of the differential lambda-calculus.
We use this machine to show that Taylor expansion of lambda-terms (an
operation mapping lambda-terms to generally infinite linear combina-
tions of resource lambda-terms) commutes with Böhm tree computation.

Introduction

After having introduced the differential lambda-calculus in [1], we studied in [2] a
subsystem of the differential lambda-calculus which turns out to be very similar
to resource oriented versions of the lambda-calculus previously introduced and
studied by various authors [3–5]: the resource lambda-calculus. It is a finitary
calculus in the sense that it enjoys strong normalization, even in the untyped
case.

Resource lambda-calculus as the target language of the complete Taylor expansion
of lambda-terms. Our viewpoint on this resource lambda-calculus is that it is
the sublanguage of the differential lambda-calculus where the complete3Taylor
expansions of ordinary lambda-terms can be written.

Indeed, the only notion of application available in this resource calculus con-
sists in taking a term s (of type A → B if the calculus is typed) and a finite
number of terms s1, . . . , sn (of type A) and applying s to the multiset consist-
ing of the terms si, written multiplicatively s1 . . . sn. This application is written
〈s〉 (s1 . . . sn). In differential calculus, this operation would correspond to taking
the nth derivative of s at 0, which is a symmetric n-linear map, and applying
this derivative to the tuple (s1, . . . , sn).

Defining a beta-reduction in this calculus (as in the original differential
lambda-calculus) requires the possibility of adding terms, because the analogue

? This work has been supported by the ACI project GEOCAL.
3 By complete, we mean that all applications in the lambda-terms are expanded.



of substitution is a notion of formal partial derivative whose inductive defini-
tion is based on Leibniz rule4, and the expression 〈s〉 (s1 . . . sn) is linear in s,
s1, . . . , sn; the connection between algebraic linearity and this syntactical notion
of linearity is discussed in the introduction of [1]. The logical significance of this
derivative, and the linear logic analogue of this resource lambda-calculus are
discussed in [6], where differential interaction nets are introduced. The striking
fact is that this new structure appears in this linear logic setting as new opera-
tions associated to the exponentials, completely dual to the traditional structural
operations (weakening, contraction), and to dereliction.

In constrast, the usual lambda-calculus has a notion of application which
is linear in the function but not in the argument, for which we used the nota-
tion (M) N (parenthesis around the function, not around the argument). The
connection between these two applications is given by the Taylor formula.

Taylor expansion and normalization. In [2], we explained how to Taylor expand
arbitrary lambda-terms (of the usual lambda-calculus) as (generally infinite) lin-
ear combinations of resource lambda-terms with rational coefficients. We showed
moreover that, when normalizing the resource terms which occur in such a Tay-
lor expansion, one gets – generally infinitely many – finite linear combinations
of normal resource terms (with positive integers as coefficients) which do not
overlap; so it makes sense to sum up all these linear combinations. Moreover,
the numerical coefficients “behave well” during the reduction, in a sense which
is made precise in the corresponding statement, recalled as Theorem 1 in the
present paper.

Overview

We show that this sum s of normal resource terms obtained by normalizing the
Taylor expansion of a lambda-term M is simply the Taylor expansion of the
Böhm tree of M (the extension of Taylor expansion to Böhm trees is straight-
forward). Thanks to the results obtained in [2], this reduces to showing that a
normal resource term appears in s with a nonzero coefficient iff it appears with
a nonzero coefficient in the Taylor expansion of the Böhm tree of M . The “only
if” part of this equivalence is fairly straightforward, whereas the “if” part re-
quires the introduction of a version of Krivine’s machine which also provides an
appealing computational interpretation of the result.

Krivine’s machine. Usually, Krivine’s machine [7] is described as an abstract
environment machine which performs the weak linear head reduction on lambda-
terms: given a term M which is beta-equivalent to a variable x, starting from the
state (M, ∅, ∅) (empty environment and empty stack5), after a certain number of
steps, the machine will produce the result (x, E, ∅) where the resulting variable
x is not bound by the environment E.
4 In [6], it is shown that Leibniz rule is more pecisely related to the interaction between

derivation and contraction.
5 The stack is there as usual for pushing the arguments of applications.



This computation can be understood as a special kind of reduction of lambda-
terms (mini-reduction, aka. linear head reduction [8, 9]) which cannot be de-
scribed exactly as a beta-reduction because, at each reduction step, only the
leftmost occurrence of variable in the term is substituted. As an example, con-
sider the term M0 = (λx (x) (x) y) λz z. After one step of linear head reduction,
we get M1 = (λx (λz z) (x) y)λz z. Observe that the argument and the lambda
of the main redex are still there, and that the function still contains an occur-
rence of the variable x. Now the leftmost variable occurrence is z and the term
M1 reduces to M2 = (λx (λz (x) y) (x) y) λz z. The leftmost occurrence of vari-
able is x again and we get M3 = (λx (λz (λz z) y) (x) y) λz z which reduces to
M4 = (λx (λz (λz y) y) (x) y)λz z. We arrive to a term M4 whose redexes are all
K-redexes6 and reduces to the variable y.

This is exactly this kind of computation that Krivine’s machine performs,
with the restriction that one does not reduce under the lambda’s, in some sense
(whence the word “weak”). We extend Krivine’s machine in two directions7.

– First, we accept to reduce under lambda’s.
– Second, when Krivine’s machine arrives to a state (x,E,Π) where the envi-

ronment E does not bind x and Π is a non-empty stack, it classically stops
with an error. Here instead we continue the computation by running the ma-
chine on each element of Π. This corresponds, in the linear head reduction
process, to reducing within the arguments of the head variable when a head
normal form has been reached.

We call K this extended machine. When fed with a triple (M,E, ∅) where E
does not bind the free variables of M , this machine produces the Böhm tree of
M (all finite approximations being obtained in a finite number of steps).

A more informative version of the machine. Then we define a version K̂ of that
machine where a “tracing mechanism” is added. The idea is to count precisely
how many times the various parts of the term M have been used, starting from
the state (M, ∅, ∅), for reaching the state (x, E′, ∅) (when one knows that M
is equivalent to the variable x). This information is summarized as a resource
term which has the same shape as M (or, equivalently, appears in the Taylor
expansion of M with a nonzero coefficient). For example, in the example of M0,
the corresponding resource term is 〈λx 〈x〉 〈x〉 y〉 (λz z)2, which appears with
coefficient 1

2 in the Taylor expansion of M0.
But there is no reason for limiting our attention to lambda-terms equivalent

to a variable: when M reduces to a Böhm tree B, we just add a parameter to our
Krivine’s machine, which is a resource term u occurring in the Taylor expansion
of B. Then K̂(M, ∅, ∅, u) produces a resource term s which appears in the Taylor
expansion of M and, in some sense, counts how much of M the machine uses for

6 A K-redex is a redex (λx M) N such that x does not occur free in M . In M4, the
outermost redex is not a K-redex, but becomes a K-redex after reduction of the
internal K-redexes.

7 These extensions are fairly standard and are part of the folklore.



producing u. This resource term s will depend on M and on u: the larger will
be u, the larger will be s.

This machine also gives us a proof for the “if” part of our main result (see
the beginning of this “Overview” section), because u appears with a nonzero
coefficient in the normal form of the resource term s produced by the machine.

1 Ordinary notions

We use the word “ordinary” for qualifying the usual lambda-calculus (as opposed
to the resource lambda-calculus to be introduced later), and we adopt Krivine’s
notations: application of M to N is written (M) N , and (M) N1 . . . Np stands
for (((M)N1) . . .) Np.

Böhm trees. An elementary Böhm tree (EBT) is a normal term in the lambda-
calculus extended with the constant Ω subject to the following equations:
(Ω) M = Ω and λxΩ = Ω. In other words: Ω is an elementary Böhm tree and
if x, x1, . . . , xn are variables and B1, . . . , Bk are elementary Böhm trees, then
λx1 . . . xn (x) B1 . . . Bk is an elementary Böhm tree. The following clauses define
an order relation on EBTs:

– Ω ≤ B for all EBT B;
– λx1 . . . xn (x)B1 . . . Bk ≤ C if C = λx1 . . . xn (x) C1 . . . Ck with Bj ≤ Cj for

all j.

A (general) Böhm tree is now defined as an ideal of elementary Böhm trees, in
other word, it is a set B of EBTs which is downwards closed and directed (and
hence non-empty). We define now a family of functions from lambda-terms to
EBTs.

– BT0(M) = Ω;
– BTn+1(λx1 . . . xp (x) M1 . . .Mk) = λx1 . . . xp (x) BTn(M1) . . .BTn(Mk);
– BTn+1(λx1 . . . xp ((λy P ) Q) M1 . . .Mk)

= BTn(λx1 . . . xp (P [Q/y])M1 . . .Mk)

It is straightforward to check that BTn(M) is a non decreasing sequence of EBTs.
Then the Böhm tree of M is the downwards closure of the set {BTn(M) | n ∈ IN},
which is an ideal of EBTs.

Krivine’s Abstract Machine. If f : S → S′ is a partial function, a ∈ S and
b ∈ S′, we denote by fa7→b the partial function g : S → S′ which is defined like
f but for a, where it is defined and takes the value b.

By simultaneous induction, we define the two following concepts: a closure is
a pair Γ = (M,E) where M is a lambda-term and E is an environment such that
FV(M) ⊆ Dom E and an environment is a finite partial function on variables,
taking closures or the distinguished symbol free as value. We use Domc E for
the subset of Dom E whose elements are not mapped to free. We need also an
auxiliary concept: a stack is a finite list Π of closures.

We define a sequence of functions from states to EBTs.



– K0(Γ,Π) = Ω;
– Kn+1(x,E,Π) = Kn(E(x),Π) if x ∈ Domc(E);
– Kn+1(x,E,Π) = (x) Kn(Γ1, ∅) . . .Kn(Γk, ∅) where Π = (Γ1, . . . , Γn),

if E(x) = free;
– Kn+1(λxM,E, ∅) = λxKn(M,Ex7→free, ∅) (assuming that x /∈ Dom(E) and

that x does not appear free in any of the terms mentioned in E);
– Kn+1(λxM,E, Γ ::Π) = Kn(M,Ex7→Γ ,Π) (with similar assumptions for x);
– Kn+1((M) N,E, Π) = Kn(M,E, (N,E) :: Π).

Observe that the definition is correct in the sense that, in all “recursive calls” of
the function K, the closures are well formed (the domain of their environment
contains the free variables of their term).

Let S = (Γ,Π) be a state. One checks easily that (Kn(S))n∈IN is a non
decreasing sequence of EBTs. We define K(S) as the downwards closure of the
set {Kn(S) | n ∈ IN}; this set is a Böhm tree.

We define another total function T, from closures to lambda-terms. Given a
closure Γ = (M,E), we set T(Γ ) = M [T(E(x))/x]x∈Domc E . This is a definition
by induction on the height of closures, seen as finitely branching trees. We extend
this mapping to states: T(Γ, (Γ1, . . . , Γn)) = (T(Γ ))T(Γ1) . . .T(Γn).

The main, standard, property of Krivine’s machine is that K(S) = BT(T(S))
for any state S. This “soundness” result shows in particular that Krivine’s ma-
chine computes the Böhm tree of lambda-terms: BT(M) = K(M,E, ∅), where E
is any environment mapping all the free variables of M to the value free.

2 Resource notions

Notations. Let E be a set. A multiset on E is a function m : E → IN. The
support supp(m) of m is the set of all a ∈ E such that m(a) 6= 0. The multiset
m is finite if supp(m) is finite. The number m(a) is the multiplicity of a in m.
We denote by Mfin(E) the set of all finite multisets on E.

2.1 The resource lambda-calculus.

We give a short account of the resource lambda-calculus, as developped in [2].
We recall the syntax and terminology of [2]. As usual we are given a countable
set of variables.

Simple terms and poly-terms.

– If x is a variable, then x is a simple term.
– If x is a variable and t is a simple term, then λx t is a simple term.
– If t is a simple term and T is a simple poly-term, then 〈t〉T is a simple term.
– A simple poly-term is a multiset of simple terms. We use multiplicative

notations for these multisets: 1 denotes the empty poly-term, if t is a simple
term, we use also t for denoting the simple poly-term whose only element is
t, and if S and T are simple poly-terms, we use ST for the multiset union
(sum) of S and T .



We use the greek letters σ, τ . . . for simple terms or poly-terms when we do not
want to be specific. We use ∆ for the set of all simple terms, ∆! for the set of
all simple poly-terms and ∆(!) for one of these two sets when we don’t want to
be specific.

Linear combinations and reduction. We use Q+ (the rig of non-negative rational
numbers) as set of scalars. If A is a set, we use Q+〈A〉 for the free Q+-module
generated by A. If α ∈ Q+〈A〉, we use Supp(α) for the set of all a ∈ A such that
αa 6= 0. We use IN〈A〉 for the elements of Q+〈A〉 whose coefficients are integers.

A redex is a simple term of the shape r = 〈λx s〉S. It reduces to 0 ∈ IN〈∆〉 if
the cardinality of the multiset S is distinct from the number of free occurrences
of x in s, and otherwise reduces to

∂x(s, S) =
∑

f∈Sd

s
[
s1, . . . , sd/xf(1), . . . , xf(d)

]
∈ IN〈∆〉

where S = s1 . . . sd and x1, . . . , xd are the d free occurrences of x in s. In this
expression, Sd stands for the group of all permutations on the set {1, . . . , d}.

This notion of reduction extends to all simple (poly-)terms, using the fact
that all constructions of the syntax are linear. For instance, if s1, . . . , sn ∈ ∆ and
for each i, si reduces to s′i ∈ IN〈∆〉, then the simple poly-term s1 . . . sn reduces
to

∏n
i=1 s′i ∈ IN〈∆!〉.

This notion of reduction is a relation ; from ∆(!) to IN〈∆(!)〉; it is extended
to a relation from Q+〈∆(!)〉 to itself by linearity (the linear span of ; in the
product space Q+〈∆(!)〉 × Q+〈∆(!)〉). This relation is confluent, and strongly
normalizing if we only consider integer coefficients. We use ∆0 for the set of all
normal simple terms, and NF for the normalization map IN〈∆(!)〉 → IN〈∆(!)

0 〉,
which is linear.

Taylor expansion of ordinary lambda-terms. Let us give an intuition of the re-
source lambda-calculus, explaining why it is related to the idea of Taylor ex-
pansion. Usually, when f is a sufficiently regular function from a vector space
E to a vector space F (finite dimensional spaces, or Banach spaces, typically),
at all point x ∈ E, f has nth derivatives for all n ∈ IN, and these deriva-
tives are maps f (n) : E × En → F with the same regularity as f and such
that f (n)(x, u1, . . . , un) = f (n)(x) · (u1, . . . , un) is n-linear and symmetric in
u1, . . . , un. When one is lucky, and usually locally only, the Taylor formula holds.
Around 0, it reads

f(x) =
∞∑

n=0

1
n!

f (n)(0) · (u, . . . , u) .

If we want to Taylor-expand lambda-terms, which after all are functions, we need
to extend the language with explicit differentials, or more precisely a construction
of differential application of a term M to n terms N1, . . . , Nn, as we did in [1]
(a simplified version of that calculus is now available in [10]). The idea is that
if M represents a function f from E to F and if N1, . . . , Nn represent n vectors



u1, . . . , un ∈ E, then this new construction DnM · (N1, . . . , Nn) will represent
the function from E to F which maps x to f (n)(x) · (u1, . . . , un), and therefore
this construction is linear and symmetric in the Ni’s.

The Taylor expansion of a single lambda-calculus application (M) N would
then read

∞∑
n=0

1
n!

(DnM · (N, . . . , N)) 0 .

If we want now to Taylor expand all the applications occurring in a lambda-
term, we see that the usual lambda-calculus application in its generality will
become useless: only application to 0 is needed. This is exactly the purpose
of the construction 〈s〉 s1 . . . sn of the resource lambda-calculus; with the nota-
tions of the differential lambda-calculus, the expression 〈s〉 s1 . . . sn stands for
(Dns · (s1, . . . , sn)) 0.

So the resource lambda-calculus is a “target language” for completely Taylor
expanding ordinary lambda-terms. The expansion of a term M will be an infinite
linear combination of resource terms, with rational coefficients (actually, inverses
of positive integers). Let us use M∗ for the complete Taylor expansion of M . By
what we said, this operation should obey (M) N

∗ =
∑∞

n=0
1
n! 〈M

∗〉 (N∗)n as well
as x∗ = x and (λx M)∗ = λx M∗. From these equations, we obtain, applying the
multinomial formula, that

M∗ =
∑

s∈T (M)

1
m(s)

s

where T (M) ⊆ ∆ (the set of resource terms which have “the same shape” as
M) is defined inductively by T (x) = {x}, T (λxM) = {λx s | s ∈ T (M)} and
T ((M) N) = {〈s〉S | s ∈ T (M) and S ∈ Mfin(T (N))}. The positive number
m(σ) associated to each (poly-)term σ is called its multiplicity coefficient ; see
the definition and properties of these numbers in [2]. We can recall now the main
result proven in that paper.

Theorem 1. Let M be an ordinary lambda-term.

1. If s, s′ ∈ T (M) and s and s′ are not α-equivalent, then Supp(NF(s)) ∩
Supp(NF(s′)) = ∅.

2. If s ∈ T (M) and u ∈ Supp(NF(s)), then the coefficient NF(s)u of u in
NF(s) (remember that this coefficient must be a positive integer) is equal to
m(s)/m(u).

Proving this result involved a coherence relation on simple terms for the first
part, and some considerations on groups of permutations of simple term variables
for the second part.

Given an ordinary lambda-term M , it makes sense therefore to apply NF to
each of the simple terms occurring in its Taylor expansion, defining NF(M∗) =∑

s∈T (M)
1

m(s) NF(s). Indeed by Theorem 1, if u is a normal simple term, there



is at most one s ∈ T (M) such that NF(s)u 6= 0. Moreover, if such a simple term
s exists, the coefficient of u in the sum above is

NF(M∗)u =
1

m(s)
NF(s)u =

1
m(u)

by Theorem 1 again.
We want to prove that this sum is equal to BT(M)∗, the Taylor expansion

of the Böhm tree of M . To give a meaning to this notion, we need first to define
T (B) when B is an EBT: the definition is the same as for ordinary lambda-terms,
with the additional clause that T (Ω) = ∅. For instance T ((x)Ω) = {〈x〉 1}.
Observe that B ≤ C ⇒ T (B) ⊆ T (C).

We generalize this notion to arbitrary Böhm trees: T (B) =
⋃

B∈B T (B) (this
is a directed union since B is an ideal). Of course, all these resource terms
are normal. Given a Böhm tree B, it makes sense finally to define its Taylor
expansion, as we did for ordinary lambda-terms: B∗ =

∑
b∈T (B)(1/m(b))b.

2.2 Resource closures and resource stacks.

We adapt now the concepts of closure and stack to the framework of the resource
lambda-calculus, introducing multi-set based versions thereof. We stick to our
multiplicative conventions for denoting multi-sets.

– A resource environment is a total function e on variables, taking resource
closures or the symbol free as values. We extend pointwise the multi-set
notations to resource environments, e.g. (ee′)(x) = e(x)e′(x) (equal to free
when one of these two values is equal to free). For an environment e, we
require moreover e(x) = 1 for almost all variables x, where 1 is the unit
resource closure (see below the definition of resource closures).
If x is a variable and c is a resource closure, we denote by [x 7→ c] the resource
environment which takes the value 1 for all variables but for x, for which it
takes the value c. If e is a resource environment, e \ x denotes the resource
environment which takes the same values as e but for x where it takes the
value free. We use Domc e for the (co-finite) set of all variables where e does
not take the value free.

– A resource closure is a pair c = (T, e) where T is a simple resource poly-term
and e is a resource environment, or is the special unit closure 1. Intuitively,
this special closure is “equal” to any closure of the shape (1, e) where e maps
all variables to free, to the unit closure 1 or to any closure of the shape we
are now describing.
Poly-term multiplication is extended to closures in the obvious way: the unit
closure 1 is neutral, and (T, e)(T ′, e′) = (TT ′, ee′).
A resource closure (T, e) will be said to be elementary if the multi-set T
has exactly one element. All resource closures are product (in many different
ways, usually) of elementary resource closures. We use the letters c, c′, . . .
for general resource closures and γ, γ′ . . . for elementary resource closures.



Finally, a resource stack π is a finite sequence of resource closures.
A resource state is a triple (t, e, π) where t is a simple resource term, e is

a resource environment and π is a resource stack. In such a resource state, the
pair (t, e) will be considered as an elementary resource closure.

By mutual induction, we define T (E) and T (Γ ), the set of all resource en-
vironments and resource closures of shape E (ordinary environment) and Γ
(ordinary closure) respectively:

– T (E) is the set of all resource environments e such that
• if E(x) = free, then e(x) = free;
• otherwise and if E(x) is defined, then e(x) ∈ T (E(x));
• if E(x) is undefined, then e(x) = 1.

– If Γ = (M,E), then T (Γ ) = (Mfin(T (M))× T (E)) ∪ {1}.

This extends to standard stacks and resource stacks in the obvious way,
defining π ∈ T (Π). Last we set T (Γ,Π) = T (Γ )× T (Π).

As we did for the ordinary lambda-calculus, we associate to each resource
closure c a (generally not simple) resource poly-term TD(c) ∈ IN〈∆!〉 by the
following inductive definition

TD(c) =

{
1 if c = 1
∂x1,...,xn

(T,TD(e(x1)), . . . ,TD(e(xn))) if c = (T, e)

where x1, . . . , xn is any repetition-free sequence of variables which contains all
the variables of Domc e which are free in T or satisfy e(x) 6= 1 (in particular,
this expression is equal to 0 if there exists a variable x not free in T and such
that e(x) 6= 1).

Due to the basic properties of partial derivatives explained in [2], the expres-
sion above of TD(c) does not depend on the choice of the sequence of variables
x1, . . . , xn.

Observe that when c is elementary, TD(c) can be seen as a resource term.
Last, we extend this definition to resource states (γ, π) where π = (c1, . . . , ck)

is a resource stack (γ and the ci’s are therefore resource closures, and we know
moreover that γ is elementary), setting

TD(γ, π) = 〈· · · 〈TD(γ)〉TD(c1) · · ·〉TD(ck) ∈ IN〈∆〉 .

3 A resource driven Krivine’s machine

We define a new version K̂ of Krivine’s machine which, fed with an ordinary
closure Γ , an ordinary stack Π and a normal resource term u, will return a pair
(γ, π) ∈ T (Γ,Π) where γ is an elementary resource closure, or will be undefined.

We use the symbol “↑” for the result of the function when it is undefined. As
before, we define by induction on n an increasing sequence of partial functions
K̂n and we set K̂ =

⋃∞
n=0 K̂n.

The base case is trivial: K̂0(Γ,Π, t) = ↑, always.
The inductive step is by case on the shape of the first element of the closure

Γ = (M,E) (remember that we assume that FV(M) ⊆ Dom E).



– If M = x is a variable, we have two subcases.
• Assume first that x ∈ Domc(E). If K̂n(E(x),Π, u) = ↑,

then K̂n+1(Γ,Π, u) = ↑ and otherwise, let (γ, π) = K̂n(E(x),Π, u), then

K̂n+1(M,E,Π, u) = (x, e, π) where e(y) =


γ if y = x

free if E(y) = free

1 otherwise.

• Otherwise, we have x ∈ Dom(E) and E(x) = free. The stack Π is a
sequence (Γ1, . . . , Γk) of ordinary closures.
∗ If u = 〈· · · 〈x〉V1 · · ·〉Vk and for each j = 1, . . . , k and v ∈ supp(Vj),

there exists an elementary resource closure γj(v) such that
K̂n(Γj , ∅, v) = (γj(v), ∅), then

K̂n+1(M,E,Π, u) = (x, e, π) where e(y) =

{
free if E(y) = free

1 otherwise.

and where π = (c1, . . . , ck) with cj =
∏

v∈supp(Vj)
γj(v)Vj(v) (this

product has to be understood as a product of resource closures, in
the sense defined above — remember that Vj(v) is a positive integer,
the multiplicity of v in the multiset Vj).

∗ Otherwise, K̂n+1(M,E,Π, u) = ↑.
– Assume now that M = λxN . Without loss of generality, we can assume that

E(x) = ↑. Again, we have two subcases.
• Assume first that Π = ∅ is the empty stack.

If u = λx v and K̂n(N,Ex7→free, ∅, v) = (t, e, ∅) with e(x) = free, then

K̂n+1(M,E, ∅, u) = (λx t, ex7→1, ∅)

and otherwise, K̂n+1(M,E, ∅, u) = ↑.
• Assume next that Π = Γ ::Π ′. If K̂n(N,Ex7→Γ ,Π ′, u) = (t, e, π′) with

e(x) 6= free, then

K̂n+1(M,E,Π, u) = (λx t, ex7→1, e(x) :: π′)

and otherwise, K̂n+1(M,E, ∅, u) = ↑.
– Last assume that M = (P ) Q. If K̂n(P,E, (Q, E) :: Π,u) = (t, e, (T, e′) :: π),

then
K̂n+1(M,E,Π, u) = (〈t〉T, ee′, π)

and otherwise, K̂n+1(M,E, ∅, u) = ↑.

The following lemmas summarize the main properties of this machine.

Lemma 1. Let Γ be an ordinary closure, Π be an ordinary stack and u be a
simple resource term.

If K̂(Γ,Π, u) is defined, then u is normal and K̂(Γ,Π, u) is a resource state
(γ, π) which belongs to T (Γ,Π).



Lemma 2. Let Γ be an ordinary closure, Π be an ordinary stack and u be a
normal simple resource term.

For each n ∈ IN, we have the following equivalence:

u ∈ T (Kn(Γ,Π)) iff K̂n(Γ, Π, u) is defined.

Lemma 3. Let Γ be an odinary closure, Π be an ordinary stack and u be a
normal simple resource term.

Let n ∈ IN. If K̂n(Γ,Π, u) = (γ, π), then u ∈ Supp(NF(TD(γ, π))).

4 Normal form of the Taylor expansion

Using the lemmas proven so far and some natural properties relating substitution
in ordinary and resource lambda-calculi, we can prove the main theorem of the
paper.

Theorem 2. Let M be an ordinary lambda-term and let u be a normal simple
resource term. Then u ∈ T (BT(M)) if and only if there exists s ∈ T (M) such
that u ∈ Supp(NF(s)). Moreover, when this simple term s exists, it is unique.

From this result and from Theorem 1, we can derive the announced commu-
tation property.

Corollary 1. Let M be an ordinary lambda-term. One has

BT(M)∗ = NF(M∗) =
∑

s∈T (M)

1
m(s)

NF(s) .

5 Concluding remarks

By Theorem 2, there exists a partial function E : Λ × ∆0 → ∆ such that
E(M,u) is defined if and only if u ∈ T (BT(M)) and then takes as value the
unique simple term s ∈ T (M) such that u ∈ Supp(NF(s)). In the proof of that
theorem, one sees how this function E can be defined, using a modified ver-
sion of Krivine’s machine (an implementation of that machine is available at
http://iml.univ-mrs.fr/~regnier/taylor/).

When BT(M) is a variable ?, the situation is particularly simple: we have
T (BT(M)) = {?} and E(M,?) is the unique s ∈ T (M) which has a non-zero
normal form, and the normal form of s must be m(s)?. In that particular case, it
is interesting to observe that the “size” of s (easy to define by a simple induction
on s) is the number of steps in the reduction of M to ? by Krivine’s machine,
which seems to be a sensible measure of the complexity of the reduction of M .

The map S ◦ E : Λ×∆0 → IN seems therefore to provide more generally a way
of measuring the complexity of the reduction of lambda-terms. The interesting
point is that this measure is associated to the algebraic property stated by
Theorems 2 and 1.



References

1. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer
Science 309(1-3) (2003) 1–41

2. Ehrhard, T., Regnier, L.: Uniformity and the Taylor expansion of ordinary lambda-
terms. Technical report, Institut de mathématiques de Luminy (2005) submitted
to Theoretical Computer Science.

3. Boudol, G.: The lambda calculus with multiplicities. Technical Report 2025,
INRIA Sophia-Antipolis (1993)

4. Boudol, G., Curien, P.L., Lavatelli, C.: A semantics for lambda calculi with re-
source. Mathematical Structures in Computer Science 9(4) (1999) 437–482

5. Kfoury, A.J.: A linearization of the lambda-calculus. Journal of Logic and Com-
putation 10(3) (2000) 411–436

6. Ehrhard, T., Regnier, L.: Differential interaction nets. In: Proceedings of WoL-
LIC’04. Volume 103 of Electronic Notes in Theoretical Computer Science., Elsevier
Science (2004) 35–74

7. Krivine, J.L.: A call-by-name lambda-calculus machine. Higher-Order and Sym-
bolic Computation (2005) To appear.

8. De Bruijn, N.: Generalizing Automath by means of a lambda-typed lambda cal-
culus. In Kueker, D., Lopez-Escobar, E., Smith, C., eds.: Mathematical Logic and
Theoretical Computer Science. Lecture Notes in Pure and Applied Mathematics,
Marcel Dekker (1987) 71–92 Reprinted in: Selected papers on Automath, Studies
in Logic, volume 133, pages 313-337, North-Holland, 1994.

9. Danos, V., Regnier, L.: Reversible, irreversible and optimal lambda-machines.
Theoretical Computer Science 227(1-2) (1999) 273–291

10. Vaux, L.: The differential lambda-mu calculus. Technical report, Institut de
Mathématiques de Luminy (2005) Submitted for publication.


