
Cartesian Coherent Differential Categories

Thomas Ehrhard
Université Paris Cité, CNRS, Inria, IRIF

Aymeric Walch
Université Paris Cité, CNRS, IRIF

March 13, 2023

Abstract

We extend to general Cartesian categories the idea of Coherent Differentiation re-
cently introduced by Ehrhard in the setting of categorical models of Linear Logic.
The first ingredient is a summability structure which induces a partial left-additive
structure on the category. Additional functoriality and naturality assumptions on this
summability structure implement a differential calculus which can also be presented in
a formalism close to Blute, Cockett and Seely’s Cartesian differential categories. We
show that a simple term language equipped with a natural notion of differentiation can
easily be interpreted in such a category.

Contents
Introduction 2

1 Summability Structure 4
1.1 Pre-Summability Structures . 4
1.2 Axioms on the addition . 5
1.3 Comparison with Summability Structures . 7

2 Differential 8
2.1 Differential Structure . 8
2.2 Linearity . 9
2.3 The Differentiation Monad . 11

3 Interpreting the axioms as properties of the derivative 11

4 Compatibility with the cartesian product 15
4.1 Cartesian product and Summability Structure 15
4.2 Cartesian product and Differential Structure 16
4.3 Partial derivatives . 17
4.4 Generalization to arbitrary finite products . 19
4.5 Multilinear morphism . 20

1

5 Models arising as the Kleisli category of the exponential comonad of a
model of LL 22
5.1 Coherent Differentiation in a linear setting . 22
5.2 The example of Probabilistic Coherence Spaces 25

6 Link with Cartesian Differential Categories 27
6.1 Cartesian Left Additive Categories . 27
6.2 Cartesian Differential Categories . 28

7 A first order Coherent Differential language 29
7.1 Terms . 29
7.2 Semantics . 31
7.3 Reduction . 32

Introduction
Linear Logic (LL) and its models [1] strongly suggest that differentiation of proofs should
be a natural operation, extracting their best “local” linear approximation. Remember that
if E,F are Banach spaces and if f : E → F and x ∈ E then f is differentiable at x if there
is a neighborhood U of 0 in E and a linear and continuous function ϕ : E → F such that,
for all u ∈ U

f(x+ u) = f(x) + ϕ(u) + o(∥u∥) . (1)

When such a ϕ exists, it is unique and is often denoted as f ′(x), and called the differential
(or derivative) of f at x.

When f ′(x) exists for all x ∈ E in the domain of definition of f , the function f ′ : E →
L(E,F) where L(E,F) is the Banach space of linear and continuous functions E → F is
also called the differential of f . This function can itself admit a differential etc, and when
all these iterated differentials exist one says that f is smooth and the nth derivative of f is a
function f (n) : E → Ln(E,F) where Ln(E,F) is the space of n-linear symmetric functions
En → F . It can even happen that f is locally (or even globally) expressed using its iterated
derivatives by means of the Taylor Formula f(x+u) =

∑∞
n=0

1
n!f

(n)(x)(u, . . . , u); when this
holds locally at any point x, f is said analytic.

Based on categorical models of LL where all functions are analytic in a similar sense, the
Differential λ-Calculus and Differential LL provide a logical and syntactical account of dif-
ferentiation where a program of type A⇒ B is turned into a program of type A⇒ (A⊸ B),
providing in particular a new approach of finite approximations of functions by a syntacti-
cal version of the Taylor Formula which has shown relevance in the study of the λ-calculus
and of LL. One crucial feature of the differential calculus in general is its deep connection
with the basic operation of addition as can already be seen in its definition Eq. (1). This
connection appears most clearly when one writes the differential of f : Rn → R as a sum of
partial derivatives:

f ′(x1, . . . , xn) · (u1, . . . , un) =
n∑

i=1

∂f(x1, . . . , xn)

∂xi
ui

and, of course, in the Taylor formula itself. For this reason, until recently, all categorical
models of the Differential λ-Calculus and of Differential LL were using categories where
hom-sets have a structure of commutative monoid (additive or left-additive categories), and

2

both formalisms feature a formal and unrestricted addition operation on terms or proofs of
the same type. The only available operational interpretation of such a sum being erratic
choice, these formalisms are inherently non-deterministic.

Recently, the first author observed that, in a setting where all coefficients are non-
negative, differentiation survives to strong restrictions on the use of addition. Consider
for instance a function [0, 1] → [0, 1] which is smooth on [0, 1) and whose all derivatives
are everywhere ≥ 01. If x, u ∈ [0, 1] are such that x + u ∈ [0, 1] then f(x) + f ′(x)u ≤
f(x + u) ∈ [0, 1] (this makes sense even if f ′(1) = ∞, which can happen: take f(x) =
1−

√
1− x). So if S is the set of all such pairs (x, u) that we call summable, we can consider

the function D(f) : (x, u) → (f(x), f ′(x)u) as a map S → S. This basic observation is
generalized in [2] to a wide range of categorical models L of LL including coherence spaces,
probabilistic coherence spaces etc. where hom-sets have only a partially defined addition. In
these Summable Categories, S becomes an endofunctor L → L equipped with an additional
structure which allows to define summability and (partial) sums in a very general way and
turns out to induce a monad. Differentiation is then axiomatized as a distributive law
between this monad (similar to the tangent bundle monad of a tangent category [3]) and
the resource comonad !_ of the LL structure of the category2 L. Indeed, this distributive
law allows to extend S to the Kleisli category of !_ and this extension D : L! → L! turns
out to be a monad which has all the required properties of differentiation.

We show in the present paper that the idea of Coherent Differentiation is very general
and by no means limited to categorical models of LL: we define Coherent Differentiation in
an arbitrary category, whose morphisms are intuitively considered as smooth. So we start
from a category C that we assume to be equipped with a function3 D : Ob(C) → Ob(C)
given together with morphisms (π0)X , (π1)X , σX ∈ C(D(X), X) (for each X ∈ Obj(C)), the
intuition being that D(X) is the object of summable pairs of elements of X, that πi are
the obvious projections and that σ computes the sums. We assume π0, π1 to be jointly
monic and this is sufficient to say when f0, f1 ∈ C(X,Y) are summable: this is when there
is a necessarily unique h ∈ C(X,D(Y)) such that πi ◦ h = fi and when this holds we set
f0 + f1 = σ ◦ h. Under suitable assumptions this very light structure suffices to equip
hom-sets of C with a structure of partial commutative monoid which is compatible with
composition on the left4 This structure is also a convenient setting for differentiation: it
suffices to equip furthermore D with a functorial action on morphisms wrt. which some
morphisms easily definable in terms of π0, π1, σ satisfy simple equational properties. This is
the notion of Coherent Differential Category whose axioms are in one-to-one correspondence
with those of a Cartesian Differential Category as presented in [4], a categorical notion of
differentiation in additive categories. Just as in Tangent Categories [3, 5], our functor D
can be equipped with a monad structure. Contrarily to the additive framework of [4], our
differentiation functor D is not defined in terms of the Cartesian product so it is important to
understand how it interacts with the Cartesian product when available: this is formalized by
the concept of Cartesian Coherent Differential Category (CCDC). This compatibility can be
expressed in terms of a strength with which D can be equipped, turning it into a commutative
monad. This induces a satisfactory theory of partial derivatives. We provide a concrete
example of such a category based on Probabilistic Coherence Spaces and illustrate our
formalism by interpreting a simple term language equipped with a notion of differentiation
in a CCDC.

1This actually implies that f is analytic.
2Which by the way needs not be a fully-fledged LL model.
3Or more precisely a functional class, which will become a functor and even a monad later.
4And not on the right in general since, intuitively, the morphisms of C are not assumed to be linear.

3

1 Summability Structure
We introduce in this section the notion of Left Summability Structure in order to generalize
the notion of Summability Structure introduced in [2] to a setting where morphisms are not
necessarily additive.

1.1 Pre-Summability Structures
Let C be a category with objects Obj(C) and hom-set C(X,Y) for any X,Y ∈ Obj(C). We
assume that any hom-set C(X,Y) contains a morphism 0X,Y (usually X and Y are kept
implicit) such that for any f ∈ C(Z,X), 0X,Y ◦ f = 0Z,Y .

Definition 1. A Summable Pairing Structure on a category C is a tuple (D, π0, π1, σ) such
that:

• D : Obj(C) → Obj(C) is a map (a functional class) on objects;

• (π0,X)X∈Obj(C), (π1,X)X∈Obj(C) and (σX)X∈Obj(C) are collections of morphisms in
C(DX,X). The object X will usually be kept implicit;

• π0, π1 are jointly monic: for any f, g ∈ C(Y,DX), if π0 ◦ f = π0 ◦ g and π1 ◦ f = π1 ◦ g
then f = g.

We assume in what follows that C is equipped with a Summable Pairing Structure
(D, π0, π1, σ).

Definition 2. Two morphisms f0, f1 ∈ C(X,Y) are said to be summable if there exists
h ∈ C(X,DY) such that πi ◦ h = fi. The joint monicity of the πi’s ensures that when
h exists, it is unique. We set ⟪f0, f1⟫ := h, and we call it the witness of the sum. By
definition, πi ◦ ⟪f0, f1⟫ = fi. Then we set f0 + f1 := σ ◦ ⟪f1, f2⟫.
Remark 1. A more standard approach to notations would be to write π1 and π2 instead of
π0 and π1. The reason we proceed that way is that Equation (1) will be formalized in our
setting with the use of a pair ⟪f(x), f ′(x) · u⟫. That is, the left element of this pair is of
order 0, and the right element is of order 1.

Notations 1. We write f0 ⊞ f1 for the property that f0 and f1 are summable. We say that
an algebraic expression containing binary sums is well defined if each pair of morphisms
involved in these sums is summable. For example, (f0 + f1) + f2 is well defined if f0 ⊞ f1
and f0 + f1 ⊞ f2.

Proposition 1. The morphisms π0, π1 are summable of witness ⟪π0, π1⟫ = id and sum
π0 + π1 = σ.

Proof. πi ◦ id = πi so by definition, π0, π1 are summable of witness id and sum σ ◦ id =
σ.

Proposition 2 (Left compatibility of sum). For any f0, f1 ∈ C(Y,Z) and g ∈ C(X,Y), if
f0 ⊞ f1, then f0 ◦ g ⊞ f1 ◦ g with witness ⟪f0 ◦ g, f1 ◦ g⟫ = ⟪f0, f1⟫ ◦ g. Moreover,
f0 ◦ g + f1 ◦ g = (f0 + f1) ◦ g.

Proof. Let w = ⟪f0, f1⟫ ◦ g. Then πi ◦ w = fi ◦ g so w is a witness for the summability of
f0 ◦ g and f1 ◦ g. And f0 ◦ g + f1 ◦ g := σ ◦ w = (f0 + f1) ◦ g.

An important class of morphisms is that of additive morphisms, for which addition is
compatible with composition on the right.

4

Definition 3. A morphism h ∈ C(Y, Z) is additive if h ◦ 0 = 0 and if for any f0, f1 ∈
C(X,Y), if f0 ⊞ f1 then h ◦ f0 ⊞ h ◦ f1 and h ◦ (f0 + f1) = h ◦ f0 + h ◦ f1. Note that id is
additive and that the composition of two additive morphisms is an additive morphism.

Proposition 3. A morphism h is additive if and only if h ◦ 0 = 0 and h ◦ π0 ⊞ h ◦ π1 of
sum h ◦ σ.

Proof. For the forward implication, remember that π0 ⊞ π1. Thus by assumption, h ◦ π0 ⊞
h ◦ π1 of sum h ◦ (π0 + π1) = h ◦ σ.

For the reverse implication, assume that f0 ⊞ f1. Since h ◦ π0 ⊞ h ◦ π1, Proposition 2
ensures that h ◦ f0 = h ◦ π0 ◦ ⟪f0, f1⟫ and h ◦ f1 = h ◦ π1 ◦ ⟪f0, f1⟫ are summable, of sum
(h ◦ π0 + h ◦ π1) ◦ ⟪f0, f1⟫ = h ◦ σ ◦ ⟪f0, f1⟫ = h ◦ (f0 + f1).

Definition 4. The Summable Pairing Structure (D, π0, π1, σ) is a Left Pre-Summability
Structure if π0, π1 and σ are additive

The additivity of the projections implies that the structure behaves well with respect to
the summability witness operation ⟪_,_⟫ itself.

Proposition 4. For any f0, f1, g0, g1 ∈ C(X,Y). If f0 ⊞ f1, g0 ⊞ g1 and ⟪f0, f1⟫ ⊞
⟪g0, g1⟫, then f0 ⊞ g0, f1 ⊞ g1 f0+g0 ⊞ f1+g1 and ⟪f0, f1⟫+⟪g0, g1⟫ = ⟪f0+g0, f1+g1⟫.
Proof. By additivity of πi, πi ◦ ⟪f0, f1⟫ = fi and πi ◦ ⟪g0, g1⟫ = gi are summable of sum
fi + gi = πi ◦ (⟪f0, f1⟫+ ⟪g0, g1⟫). Since π0 ⊞ π1 this entails by Proposition 2 that f0 + g0,
f1 + g1 are summable of witness ⟪f0, f1⟫+ ⟪g0, g1⟫.

The additivity of σ means that whenever ⟪f0, f1⟫ ⊞ ⟪g0, f1⟫, one has σ ◦ ⟪f0, f1⟫ ⊞ σ ◦
⟪g0, g1⟫ and

σ ◦ (⟪f0, f1⟫+ ⟪g0, g1⟫) = (σ ◦ ⟪f0, f1⟫) + (σ ◦ ⟪g0, g1⟫)
Assuming the additivity of the projections, it means that whenever ⟪⟪f0, f1⟫, ⟪g0, g1⟫⟫
exists, the two sums below are well defined (see Notations 1) and

(f0 + g0) + (f1 + g1) = (f0 + f1) + (g0 + g1) . (2)

Proposition 5. The morphisms 0 and 0 are summable of witness 0 and sum 0. In partic-
ular, 0 is additive.

Proof. On the one hand, πi ◦ 0 = 0 by additivity of πi, so 0 ⊞ 0 of witness 0. On the
other hand, σ ◦ 0 = 0 by additivity of σ so 0 + 0 = 0. In particular, 0 is additive thanks
to Proposition 3 because 0 ◦ π0 = 0 and 0 ◦ π1 = 0 are summable of witness 0 and sum
0 = 0 ◦ σ.

1.2 Axioms on the addition
We consider a category C equipped with a Left Pre-Summability Structure (D, π0, π1, σ).
The goal of this section is to make (C(X,Y),+, 0) a partial commutative monoid. Similar
structures appear in [6] or more recently in [7], in a setting where sums can be infinitary. Our
partial monoids have only finite sums5. More crucially, the categorical notion of summability
defined above is essential for us whereas it is not categorically formalized in these works.

5Although the extension of the finite sum to an infinitary operations will have to be considered when
dealing with fixpoints.

5

Definition 5. The Left Pre-Summability Structure is commutative if for any object X,
π1, π0 ∈ C(DX,X) are summable of sum σ. Then we set γ = ⟪π1, π0⟫ ∈ C(DX,DX) so that
πi ◦ γ = π1−i. This property is called (D-com).

Proposition 6 (Commutativity). The Left Pre-Summability Structure is commutative if
and only if for any f0, f1 ∈ C(X,Y), if f0 ⊞ f1 then f1 ⊞ f0 and f0 + f1 = f1 + f0.

Proof. For the direct implication, assume that f0 ⊞ f1. Then πi ◦ γ ◦ ⟪f0, f1⟫ = π1−i ◦
⟪f0, f1⟫ = f1−i so f1 ⊞ f0 of witness γ ◦ ⟪f0, f1⟫. Furthermore, f1 + f0 = σ ◦ γ ◦
⟪f0, f1⟫ = σ ◦ ⟪f0, f1⟫ = f0 + f1. Conversely, π0 ⊞ π1 so by commutativity π1 ⊞ π0 and
π1 + π0 = π0 + π1 = σ.

Definition 6. The Left Pre-Summability Structure has 0 as a neutral element if for any
object X, idX ⊞ 0 and 0 ⊞ idX with sums equal to idX . We call this property (D-zero). We
define ι0, ι1 ∈ C(X,DX) as ι0 := ⟪idX , 0⟫ and ι1 := ⟪0, idX⟫.
Proposition 7 (Neutrality of 0). The Left Pre-Summability Structure has 0 as a neutral
element if and only if for any morphism f ∈ C(X,Y), 0 ⊞ f , f ⊞ 0 and f + 0 = 0+ f = f .

Proof. By definition of ι0, π0 ◦ ι0 ◦ f = id ◦ f = f and π1 ◦ ι0 ◦ f = 0 ◦ f = 0. So f ⊞ 0
of witness ι0 ◦ f and f + 0 = σ ◦ ι0 ◦ f = id ◦ f = f . We do the same for 0 + f with ι1.
Conversely, we apply the neutrality of 0 on id to get that id ⊞ 0 and 0 ⊞ id, of sum id.

Associativity is not that straightforward, as there are two possible notions in the partial
monoid setting. The situation is similar in the infinitary setting of [7] with the distinction
between Weak Partition Associativity and Partition Associativity.

Definition 7 (Weak Associativity). The operation + is called weakly associative if whenever
(f0+f1)+f2 and f0+(f1+f2) are well defined (recall Notations 1), we have (f0+f1)+f2 =
f0 + (f1 + f2).

Definition 8 (Associativity). The operation + is called associative if whenever (f0+f1)+f2
or f0+(f1+f2) is well defined, the other expression is also well defined and (f0+f1)+f2 =
f0 + (f1 + f2).

We need to work in a partial setting in which addition is associative: this is required for
instance in Section 2.1 to define θ = ⟪π0 ◦ π0, π0 ◦ π1 + π1 ◦ π0⟫. This associativity seems
related to a kind of positivity of the morphisms.
Example 1. Let x, y ∈ [−1, 1] be summable when |x|+ |y| ≤ 1, with x+ y as sum. Then +
is weakly associative, but is not associative. Indeed, take x0 = − 1

2 , x1 = 1
2 , y1 = 1. Then

(x0 + x1) + y1 is defined, but x0 + (x1 + y1) is not since |x1|+ |y1| = 3
2 > 1. However, the

same definition on [0, 1] yields an associative operation.
Recall from Eq. Equation (2) that whenever ⟪⟪f0, f1⟫, ⟪g0, g1⟫⟫ exists, the expressions

(f0 + g0) + (f1 + g1) and (f0 + f1) + (g0 + g1) are well defined and equal. Taking g0 = 0
and assuming (D-zero), this means that whenever ⟪⟪f0, f1⟫, ⟪0, g1⟫⟫ exists, (f0 + f1) + g1
and f0 + (f1 + g1) are well defined and equal. Taking f1 = 0 and assuming (D-zero),
whenever ⟪⟪f0, 0⟫, ⟪g0, g1⟫⟫ exist, f0 + (g0 + g1) and (f0 + g0) + g1 are well defined and
equal. Thus associativity holds if (D-zero) and whenever (f0+f1)+g1 is defined (respectively
f0 + (g0 + g1) is defined), then ⟪⟪f0, f1⟫, ⟪0, g1⟫⟫ exists (respectively ⟪⟪f0, 0⟫, ⟪g0, g1⟫⟫
exists). This shows that associativity follows from the following axiom.

Definition 9. The Left Pre-Summability Structure admits witnesses if for any f, g ∈
C(Y,DX), if σ ◦ f ⊞ σ ◦ g then f ⊞ g. We call this property (D-witness).

6

Theorem 1. The properties (D-zero), (D-com) and (D-witness) give to C(X,Y) the struc-
ture of a partial commutative monoid for any objects X,Y . That is, for any f, f0, f1, f2 ∈
C(X,Y):

• f ⊞ 0, 0 ⊞ f and 0 + f = f + 0 = f ;

• If f0 ⊞ f1 then f1 ⊞ f0 and f0 + f1 = f1 + f0;

• If (f0+ f1)+ f2 or f0+(f1+ f2) is defined, then both are defined and (f0+ f1)+ f2 =
f0 + (f1 + f2).

One can define inductively from this binary sum a notion of arbitrary finite sum. The
empty family is always summable of sum 0. The family (fi)i∈I for I ̸= ∅ is summable
if ∃i0 ∈ I such that (fi)i∈I/{i0} is summable and if (

∑
i∈I/{i0} fi) ⊞ fi0 . Then we set∑

i∈I fi :=
∑

i∈I/{i0} fi + fi0 . It is shown in [2] that the choice of order for the sum is
irrelevant. More precisely.

Theorem 2. A family (fi)i∈I is summable if and only if for all partition6 I1, . . . , In of I,
we have that for all j ∈ J1, nK := {1, . . . , n}, (fi)i∈Ij is summable and (

∑
i∈Ij

fi)j∈J1,nK is
summable. Moreover,

∑
i∈I fi =

∑
j∈J1,nK

∑
i∈Ij

fi.

Definition 10. A Left Pre-Summability Structure (D, π0, π1, σ) is called a Left Summability
Structure if (D-zero), (D-com), (D-witness) hold. A Left Summable Category is a category
equipped with a Left Summability Structure.

1.3 Comparison with Summability Structures
In the LL setting of [2], the first author introduced a notion of Pre-Summability Structure
as a Summable Pairing Structure (S, π0, π1, σ) (recall Definition 1) where S is a functor for
which π0, π1, σ are natural transformations (his S is our D).

Theorem 3. The following are equivalent

• (S, π0, π1, σ) is a Left Pre-Summability Structure and every morphism is additive;

• (S, π0, π1, σ) is a Pre-Summability Structure [2].

Proof. Let (S, π0, π1, σ) be a Left Pre-Summability Structure in which every morphism is
additive. By Proposition 3, for any f ∈ C(X,Y) we can define Sf := ⟪f ◦ π0, f ◦ π1⟫ and
the following equations hold: πi ◦ Sf = f ◦ πi, σ ◦ Sf = f ◦ σ. Furthermore, S is a functor:
πi ◦ Sid = id ◦ πi = πi ◦ id and πi ◦ Sf ◦ Sg = f ◦ πi ◦ Sg = f ◦ g ◦ πi = πi ◦ S(f ◦ g).
Thus, by joint monicity of the πi, Sid = id and S(f ◦ g) = Sf ◦ Sg. Then the equations
πi ◦ Sf = f ◦ πi and σ ◦ Sf = f ◦ σ introduced above correspond to the naturality of π0, π1
and σ.

Conversely, let (S, π0, π1, σ) be a Pre-Summability Structure in the sense of [2]. The
naturality of π0 and π1 ensures that for any f , f ◦ π0 ⊞ f ◦ π1 (of witness Sf). The
naturality of σ ensures that the sum of those two morphisms is σ ◦ Sf = f ◦ σ. Finally,
f ◦ 0 = 0 by assumption. So every morphism is additive by Proposition 3. In particular,
π0, π1 and σ are additive, so (S, π0, π1, σ) is a Left Pre-Summability Structure.

Corollary 1. The Summability Structures introduced in [2] are exactly the Left Summability
Structures for which all morphisms are additive.

6Where we admit that some Ijs can be empty.

7

2 Differential

2.1 Differential Structure
Recall from Eq. Equation (1) the main idea of the differential calculus. We generalize it
to a partial additive setting: f is differentiable at x if for any u, if x ⊞ u then f ′(x) · u is
defined, f(x) ⊞ f ′(x) · u and, intuitively, f(x+ u) ≃ f(x) + f ′(x) · u. Hence the differential
of f can be seen as a function Df that maps a pair of two summable elements ⟪x, u⟫ to a
pair of two summable elements Df(x, u) = ⟪f(x), f ′(x) · u⟫.
Definition 11. A Pre-Differential Structure is a Left Summability Structure (D, π0, π1, σ)
together with, for each X,Y ∈ Obj(C), an operator C(X,Y) → C(DX,DY), also denoted as
D, and such that π0 ◦ Df = f ◦ π0. We define the differential of f as dD(f) := π1 ◦ Df ∈
C(DX,Y). By our assumptions Df = ⟪f ◦ π0,dD(f)⟫.

At this point we do not assume D to be a functor, this will be a consequence of the
Chain Rule and then the equation π0 ◦ Df = f ◦ π0 will be the naturality of π0. We can
already introduce three families of morphisms θ, l and c whose naturality will correspond
to some axioms of differentiation.

Definition 12. For any object X, π0 ◦ π1 ⊞ π1 ◦ π0 and π0 ◦ π0 ⊞ π0 ◦ π1 + π1 ◦ π0.
Thus, we can define θ ∈ C(D2X,DX) as θ := ⟪π0 ◦ π0, π1 ◦ π0 + π0 ◦ π1⟫.
Proof. The additivity of σ ensures that σ ◦ π0 ⊞ σ ◦ π1. That is, (π0 ◦ π0+π1 ◦ π0) ⊞ (π0 ◦
π1 + π1 ◦ π1). By associativity, this implies that ((π0 ◦ π0 + π1 ◦ π0) + π0 ◦ π1) + π1 ◦ π1
is well defined, so (π0 ◦ π0 + π1 ◦ π0) + π0 ◦ π1 is well defined. By associativity again,
π0 ◦ π0 + (π1 ◦ π0 + π0 ◦ π1) is well defined, that is, θ exists.

Definition 13. For any object X, ⟪π0, 0⟫ ⊞ ⟪0, π1⟫. We define l ∈ C(DX,D2X) as l :=
⟪⟪π0, 0⟫, ⟪0, π1⟫⟫.
Proof. By (D-witness), it suffices to prove that σ ◦ ⟪π0, 0⟫ = π0 +0 = π0 and σ ◦ ⟪0, π1⟫ =
0 + π1 = π1 are summable. This is the case by Proposition 1

Definition 14. For any object X, we can define c ∈ C(D2X,D2X) as c := ⟪⟪π0 ◦ π0, π0 ◦
π1⟫, ⟪π1 ◦ π0, π1 ◦ π1⟫⟫.
Proof. By (D-witness), it suffices to show that π0 ◦ π0 + π0 ◦ π1 ⊞ π1 ◦ π0 + π1 ◦ π1.
But π0 ◦ π0 + π0 ◦ π1 = π0 ◦ (π0 + π1) and π1 ◦ π0 + π1 ◦ π1 = π1 ◦ (π0 + π1) by
additivity of π0 and π1. Since π0 ⊞ π1, by left compatibility of addition (Proposition 2)
π0 ◦ (π0 + π1) ⊞ π1 ◦ (π0 + π1) which concludes the proof.

It is probably easier to understand those morphisms by how they operate on witnesses.
This corresponds to Proposition 8 below. The proof is a straightforward computation.

Proposition 8. For any x, u, v, w ∈ C(A,X) such that ⟪⟪x, u⟫, ⟪v, w⟫⟫ is defined,

θ ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫ = ⟪x, u+ v⟫
c ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫ = ⟪⟪x, v⟫, ⟪u,w⟫⟫

l ◦ ⟪x, u⟫ = ⟪⟪x, 0⟫, ⟪0, u⟫⟫
Definition 15. A Differential Structure consists in a Pre-Differential Structure (D, π0, π1, σ)
such that the following axioms hold:

8

(1) (Dproj-lin) dD(π0) = π0 ◦ π1, dD(π1) = π1 ◦ π1;

(2) (Dsum-lin) dD(σ) = σ ◦ π1, dD(0) = 0 (additivity of the derivative operator);

(3) (D-chain) D is a functor (Chain Rule);

(4) (D-add) ι0, θ are natural transformations (additivity of the derivative);

(5) (D-lin) l is a natural transformation (linearity of the derivatives);

(6) (D-Schwarz) c is a natural transformation (Schwarz Rule).

A Coherent Differential Category is a category C equipped with a Differential Structure.

The axiom (Dproj-lin) corresponds to an important structural property of D with re-
gard to the witnesses ⟪_,_⟫. The axiom (Dsum-lin) corresponds to the additivity of the
derivative, that is, (f+g)′ = f ′+g′. The axiom (D-chain) corresponds to the Chain Rule of
the differential calculus. The axiom (D-add) says that u 7→ f ′(x) · u is additive. The axiom
(D-lin) corresponds to the idea that u 7→ f ′(x)·u is not only additive in its second argument,
but also linear. This idea is developed in [4] in the left-additive setting of Cartesian Differ-
ential Categories (see Section 6 for a comparison between Cartesian Differential Categories
and our setting). The same idea can be generalized to our setting, but it would require too
much technical development to be covered in this paper. Finally, the axiom (D-Schwarz)
corresponds to the Schwarz rule of differential calculus, that is, the second derivative f ′′(x)
(a bilinear map) is symmetric. An account of these axioms as properties of dD can be found
in Section 3.

2.2 Linearity
For the rest of this section, C is only assumed to be a category equipped with a Pre-
Differential Structure. Any use of an axiom of Coherent Differential Categories will be
made explicit.

Definition 16 (D-linearity). A morphism f ∈ C(X,Y) is D-linear if the following diagrams
commute.

DX DY

X Y

Df

π1 π1

f

DX DY

X Y

Df

σ σ

f

X

X Y

0
0

f

Remark 2. The first diagram can also be written as dD(f) = f ◦ π1 and means that
Df = ⟪f ◦ π0, f ◦ π1⟫.
Proposition 9. A morphism f is D-linear if and only if it is additive and dD(f) = f ◦ π1
(that is, Df = ⟪f ◦ π0, f ◦ π1⟫).
Proof. Assume that f is D-linear. Then f ◦ 0 = 0 and, by Remark 2, f ◦ π0 ⊞ f ◦
π1 of witness Df . Thus f ◦ π0 + f ◦ π1 := σ ◦ Df = f ◦ σ by the second diagram.
By Proposition 3, f is additive, which concludes the proof since dD(f) = f ◦ π1 is part of
the assumptions. Conversely,

σ ◦ Df = (π0 + π1) ◦ Df

= π0 ◦ Df + π1 ◦ Df by Proposition 2
= f ◦ π0 + f ◦ π1 by assumption
= f ◦ (π0 + π1) = f ◦ σ by additivity of f

9

Moreover, the first and the third diagrams are in the assumption so f is D-linear.

Thus D-linear morphisms are in particular additive. As we will see, our notion of additive
and D-linear morphisms ultimately coincides with that of [4], so this distinction between
additivity and linearity is as relevant as it is in their setting.

Corollary 2. (Dproj-lin) is equivalent to the linearity of π0, π1. (Dsum-lin) is equivalent
to the linearity of σ and 0.

Thanks to (D-chain), (Dproj-lin) and (Dsum-lin), we can show that linear morphisms
are closed under composition, witnesses and sum.

Proposition 10. Assuming (D-chain), the composition of two linear morphisms is linear
and the inverse of a linear isomorphism is linear.

Proof. Easy verification using the functoriality of D.

Proposition 11 (D-linearity and pairing). Assume (D-chain) and (Dproj-lin). Assume
that h0, h1 ∈ C(X,Y) are summable and both D-linear. Then ⟪h0, h1⟫ is D-linear.

Proof. Let us do the diagram involving σ, the other two being very similar. By joint monicity
of the πi’s, it suffices to solve the diagram chase below for i = 0, 1.

DX D2Y DY

DY Y

X DY

D⟪h0,h1⟫

σ

Dhi

(c)

(a)

σ

Dπi (b) πi

σ

⟪h0,h1⟫

hi πi

(a) is a consequence of (D-chain), (b) is a consequence of (Dproj-lin) and (c) is the D-linearity
of hi.

Proposition 12. Assuming (D-chain) and (Dproj-lin), σ is D-linear if and only if for all
h0, h1 : X → Y summable and both D-linear, h0 + h1 is D-linear.

Proof. Assume that h0, h1 are D-linear. By Proposition 11, ⟪h0, h1⟫ is D-linear so h0+h1 =
σ ◦ ⟪h0, h1⟫ is D-linear (D-linearity is closed under composition). Conversely, σ = π0 + π1
and π0, π1 are D-linear so σ is D-linear.

Corollary 3. Assuming (Dproj-lin), (Dsum-lin) and (D-chain), ι0, ι1, c, l, θ are all D-linear.

Proof. All these morphisms are obtained through pairing, sums and composition.

On a side note, by Remark 2 the D-linearity of πi means that Dπi = ⟪πi ◦ π0, πi ◦ π1⟫.
In particular, it implies that c = ⟪Dπ0,Dπ1⟫. This is very useful because the differential of
a pair can then be obtained from the pair of the differentials.

Proposition 13. Assume (Dproj-lin), (D-chain). Let f0, f1 ∈ C(X,Y) such that f0 ⊞ f1.
Then Df0 ⊞ Df1 and ⟪Df0,Df1⟫ = c ◦ D⟪f0, f1⟫.
Proof. πi ◦ c ◦ D⟪f0, f1⟫ = Dπi ◦ D⟪f0, f1⟫ = Dfi.

10

2.3 The Differentiation Monad
Proposition 14. Assuming (D-chain), (Dproj-lin) and (Dsum-lin), the following diagrams
commute.

DX D2X DX

DX

Dι0

idDX
θ

ι0

idDX

D3X D2X

D2X DX

DθX

θDX θX

θX

Proof. By Corollary 3, ι0 is D-linear. Thus by Remark 2, Dι0 = ⟪ι0 ◦ π0, ι0 ◦ π1⟫ =
⟪⟪π0, 0⟫, ⟪π1, 0⟫⟫. Hence θ ◦ Dι0 = ⟪π0, 0 + π1⟫ = ⟪π0, π1⟫ = idDX by Proposition 8. Next
ιDX
0 = ⟪⟪π0, π1⟫, ⟪0, 0⟫⟫ since ⟪π0, π1⟫ = id and ⟪0X,X , 0X,X⟫ = 0DX,DX . By Proposition 8

again, θ ◦ ι0 = ⟪π0, π1 + 0⟫ = ⟪π0, π1⟫ = idDX so the triangles commute.
The square is a direct computation (we use simple juxtaposition for the composition

of projections for the sake of readability). The bottom path can be reduced using left
compatibility of addition (Proposition 2) and additivity of the projections:

θ ◦ θ = ⟪π0π0 ◦ θ, π1π0 ◦ θ + π0π1 ◦ θ⟫
= ⟪π0π0π0, π1π0π0 + π0 ◦ (π1π0 + π0π1)⟫
= ⟪π0π0π0, π1π0π0 + (π0π1π0 + π0π0π1)⟫ .

The upper path can be reduced by D-linearity of θ and left compatibility of sum (Proposi-
tion 2):

θ ◦ Dθ = ⟪π0π0 ◦ Dθ, π1π0 ◦ Dθ + π0π1 ◦ Dθ⟫
= ⟪π0 ◦ θ ◦ π0, π1 ◦ θ ◦ π0 + π0 ◦ θ ◦ π1⟫
= ⟪π0π0π0, (π1π0 + π0π1) ◦ π0 + π0π0π1)⟫
= ⟪π0π0π0, (π1π0π0 + π0π1π0) + π0π0π1)⟫ .

We conclude that those two morphisms are equal, using the associativity of the partial
sum.

Corollary 4. (Dproj-lin), (Dsum-lin), (D-chain), (D-add) imply that (D, ι0, θ) is a monad.

3 Interpreting the axioms as properties of the derivative
In this section, C is only assumed to be a category equipped with a Pre-Differential Struc-
ture (Definition 11). We show that the various axioms of a Coherent Differential Category
correspond to standard rules of the differential calculus, written as properties about dD(f).
The results of this section are only necessary for Section 6 but they also provide some
intuitions on the axioms of Coherent Differentiation.

All of the proofs are similar, and consist in using the joint monicity of π0 and π1 to
reduce the axioms to a set of equations, then show that only one of those equations is non
trivial. In what follows, “linear” always means D-linear.

Proposition 15. D is a functor if and only if dD(id) = π1 and dD(g ◦ f) = dD(g) ◦ ⟪f ◦
π0,d

D(f)⟫.

11

Proof. D is a functor if and only if DidX = idDX and for any g, f , D(g ◦ f) = Dg ◦ Df . By
joint monicity of the πi, Did = id if and only if πi◦Did = πi◦id = πi. But π0◦Did = id◦π0 = π0
by assumptions on Pre-Differential Structures. So Did = id if and only if π1 ◦ Did = π1,
that is, if and only if dD(id) = π1. Similarly, π0 ◦ Dg ◦ Df = g ◦ π0 ◦ Df = g ◦ f ◦ π0 =
π0 ◦ D(g ◦ f) by assumption on Pre-Differential-Structures. So by joint monicity of the πi,
D(g ◦ f) = Dg ◦ Df if and only if π1 ◦ D(g ◦ f) = π1 ◦ Dg ◦ Df . By definition of dD, this
corresponds exactly to the equation dD(g ◦ f) = dD(g) ◦ Df = dD(g) ◦ ⟪f ◦ π0,dD(f)⟫
Proposition 16. Assuming (Dproj-lin), σ is linear if and only if Dσ = Dπ0+Dπ1. Assum-
ing (Dproj-lin) and (D-chain), σ is linear if and only if for any f0, f1 that are summable,
D(f0 + f1) = Df0 +Df1 (recall that Df0 ⊞ Df1 by Proposition 13).

Proof. By linearity of πi, Dπi = ⟪πi ◦ π0, πi ◦ π1⟫ so by Proposition 4, Dπ0 + Dπ1 = ⟪π0 ◦
π0 + π1 ◦ π0, π0 ◦ π1 + π1 ◦ π1⟫ = ⟪(π0 + π1) ◦ π0, (π0 + π1) ◦ π1⟫ = ⟪σ ◦ π0, σ ◦ π1⟫.
But σ is linear if and only if Dσ = ⟪σ ◦ π0, σ ◦ π1⟫ by Proposition 9, that is, if and only if
Dσ = Dπ0 + Dπ1.

For the second part of the lemma, notice that the right statement for f0 = π0 and f1 = π1
is exactly Dσ = Dπ0+Dπ1, so the converse direction holds. For the forward direction, notice
that

D(f0 + f1)

= D(σ ◦ ⟪f0, f1⟫)
= Dσ ◦ D⟪f0, f1⟫ by (D-chain)
= (Dπ0 + Dπ1) ◦ D⟪f0, f1⟫ by assumptions
= Dπ0 ◦ D⟪f0, f1⟫+ Dπ1 ◦ D⟪f0, f1⟫
= Df0 + Df1 by (D-chain)

Corollary 5. Assuming (Dproj-lin) and (D-chain), σ is linear if and only if for any f0, f1
that are summable, dD(f0 + f1) = dD(f0) + dD(f1)

Proof. The linearity of σ is equivalent to D(f0 + f1) = Df0 + Df1 for any f0, f1 summable.
By Proposition 4, this is equivalent to ⟪(f0 + f1) ◦ π0,d

D(f0 + f1)⟫ = ⟪f0 ◦ π0 + f1 ◦
π0,d

D(f0) + dD(f1)⟫. The left compatibility of addition (Proposition 2) ensures that the
first coordinates are always equal. So σ is linear if and only if for all f0 ⊞ f1, dD(f0 + f1) =
dD(f0) + dD(f1).

Proposition 17. The following assertions are equivalent:

(1) ι0 is natural;

(2) For any f ∈ C(X,Y), dDf ◦ ι0 = 0;

(3) For any f ∈ C(X,Y), any object A and x ∈ C(A,X), dDf ◦ ⟪x, 0⟫ = 0.

Proof. (1) ⇔ (2). By joint monicity of the πi, for any f ∈ C(X,Y), Df ◦ ι0 = ι0 ◦ f if
and only if π0 ◦ Df ◦ ι0 = π0 ◦ ι0 ◦ f = f and π1 ◦ Df ◦ ι0 = π1 ◦ ι0 ◦ f = 0. The first
condition always hold by naturality of π0 and definition of ι0. So ι0 is natural if and only if
the second identity holds. This equation is precisely (2).

(2) ⇔ (3). The forward direction is directly obtained by composing the identity of (2)
by x on the right. The reverse is directly obtained by taking applying the equation of (3)
to x = idX .

12

Proposition 18. Assuming (Dproj-lin) and (D-chain), the following assertions are equiv-
alent:

(1) θ is natural;

(2) for any f ∈ C(X,Y), dDf ◦ Dπ0 ⊞ dDf ◦ π0 and dDf ◦ θ = dDf ◦ Dπ0 + dDf ◦ π0;

(3) for any f ∈ C(X,Y), any object A and any x, u, v ∈ C(A,X) that are summable,
dDf ◦ ⟪x, u⟫ ⊞ dDf ◦ ⟪x, v⟫ and

dDf ◦ ⟪x, u+ v⟫ = dDf ◦ ⟪x, u⟫+ dDf ◦ ⟪x, v⟫ .

Proof. (1) ⇔ (2). By joint monicity of the πi, for any f ∈ C(X,Y), Df ◦ θ = θ ◦ D2f if
and only if π0 ◦ Df ◦ θ = π0 ◦ θ ◦ D2f and π1 ◦ Df ◦ θ = π1 ◦ θ ◦ D2f . The equation
π0 ◦ Df ◦ θ = π0 ◦ θ ◦ D2f always holds. Indeed

π0 ◦ Df ◦ θ = f ◦ π0 ◦ θ by naturality of π0
= f ◦ π0 ◦ π0 by definition of θ

π0 ◦ θ ◦ D2f = π0 ◦ π0 ◦ D2f by definition of θ
= f ◦ π0 ◦ π0 by naturality of π0

The left hand side of the equation π1 ◦ Df ◦ θ = π1 ◦ θ ◦ D2f is dD(f) ◦ θ by definition.
The right hand side rewrites as follow.

π1 ◦ θ ◦ D2f

= (π0 ◦ π1 + π1 ◦ π0) ◦ D2f

= π0 ◦ π1 ◦ D2f + π1 ◦ π0 ◦ D2f by Proposition 2

= π1 ◦ Dπ0 ◦ D2f + π1 ◦ π0 ◦ D2f by D-linearity of π0
= π1 ◦ D(π0 ◦ Df) + π1 ◦ π0 ◦ D2f by functoriality of D
= π1 ◦ D(f ◦ π0) + π1 ◦ Df ◦ π0 by naturality of π0
= π1 ◦ Df ◦ Dπ0 + π1 ◦ Df ◦ π0 by functoriality of D

So this second equation under consideration is equivalent to the equation of (2).
(2) ⇔ (3). The forward direction is directly obtained by composing the equation of (2)

with ⟪⟪x, v⟫, ⟪u, 0⟫⟫ on the right. The converse is directly obtained by applying the equation
of (3) to x = π0 ◦ π0, u = π1 ◦ π0 and v = π0 ◦ π1. Indeed, π0 = ⟪π0, π1⟫ ◦ π0 = ⟪π0 ◦
π0, π1 ◦ π0⟫ and, by D-linearity of π0, we have Dπ0 = ⟪π0 ◦ π0, π0 ◦ π1⟫.
Remark 3. Notice that dD(dD(f)) = π1 ◦ D(π1 ◦ Df) = π1 ◦ Dπ1 ◦ D2f = π1 ◦ π1 ◦
D2f assuming (D-chain) and (Dproj-lin). Thus, dD(dD(f)) is nothing more than the last
coordinate of D2f .

Proposition 19. Assuming (Dproj-lin), (D-chain) and the naturality of ι0, the following
assertions are equivalent:

(1) l is natural;

(2) for all morphism f ∈ C(Y,Z) dD(dD(f)) ◦ l = dD(f);

(3) for all morphism f ∈ C(Y,Z), for all morphisms x, u ∈ C(X,Y),

dD(dD(f)) ◦ ⟪⟪x, 0⟫, ⟪0, u⟫⟫ = dD(f) ◦ ⟪x, u⟫ .

13

Proof. By joint monicity of the πi, l is natural if and only if for all f and for all i, j ∈
{0, 1}, πi ◦ πj ◦ D2f ◦ l = πi ◦ πj ◦ l ◦ Df . By Remark 3 (and because π1 ◦ π1 ◦ l = π1),
the equation for i = j = 1 corresponds exactly to the equation dD(dD(f)) ◦ l = dD(f).
Thus, it suffices to show that πi ◦ πj ◦ D2f ◦ l = πi ◦ πj ◦ l ◦ Df always holds when
(i, j) ̸= (1, 1) to conclude that (1) is equivalent to (2).

• Case i = 0, j = 0: π0 ◦ π0 ◦ l ◦ Df = π0 ◦ Df = f ◦ π0 and π0 ◦ π0 ◦ D2f ◦ l = f ◦
π0 ◦ π0 ◦ l = f ◦ π0;

• Case i = 1, j = 0: π0 ◦ π1 ◦ l ◦ Df = 0 ◦ Df = 0 and π1 ◦ π0 ◦ D2f ◦ l = π1 ◦ Df ◦
π0 ◦ l = π1 ◦ Df ◦ ι0 ◦ π0 = π1 ◦ ι0 ◦ f ◦ π0 = 0 thanks to the naturality of ι0;

• Case i = 0, j = 1: π0 ◦ π1 ◦ l ◦ Df = 0 ◦ Df = 0 and π0 ◦ π1 ◦ D2f ◦ l = π1 ◦ Dπ0 ◦
D2f ◦ l = π1 ◦ Df ◦ Dπ0 ◦ l = π1 ◦ Df ◦ ι0 ◦ π0 = π1 ◦ ι0 ◦ f ◦ π0 = 0 thanks to the
naturality of ι0.

Thus (1) and (2) are equivalent.
Next (2) is a particular case of (3) for x = π0 and u = π1. Conversely, assuming (2) we

have that dD(dD(f)) ◦ ⟪⟪x, 0⟫, ⟪0, u⟫⟫ = dD(dD(f)) ◦ l ◦ ⟪x, u⟫ = dD(f) ◦ ⟪x, u⟫.
Proposition 20. Assuming (Dproj-lin) and (D-chain), the following assertions are equiv-
alent:

(1) c is natural;

(2) for all morphism f ∈ C(Y,Z), dD(dD(f)) ◦ c = dD(dD(f));

(3) for all morphism f ∈ C(Y,Z) and x, u, v, w ∈ C(X,Y) that are summable,

dD(dD(f)) ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫
= dD(dD(f)) ◦ ⟪⟪x, v⟫, ⟪u,w⟫⟫

Proof. By joint monicity of the πi, c is natural if and only if for all f and for all i, j ∈
{0, 1}, πi ◦ πj ◦ D2f ◦ c = πi ◦ πj ◦ c ◦ D2f . But πi ◦ πj ◦ c ◦ D2f = πj ◦ πi ◦ D2f . Then,
by Remark 3, the equation for i = j = 1 corresponds exactly to the equation dD(dD(f)) ◦
c = dD(dD(f)). Thus, it suffices to show that πi ◦ πj ◦ D2f ◦ c = πi ◦ πj ◦ c ◦ D2f when
(i, j) ̸= (1, 1) to conclude that (1) is equivalent to (2).

• i = 0, j = 0: π0 ◦ π0 ◦ c ◦ D2f = π0 ◦ π0 ◦ D2f = f ◦ π0 ◦ π0 and π0 ◦ π0 ◦ D2f ◦ c =
f ◦ π0 ◦ π0 ◦ c = f ◦ π0 ◦ π0

• i = 1, j = 0: π1 ◦ π0 ◦ c ◦ D2f = π0 ◦ π1 ◦ D2f = π1 ◦ Dπ0 ◦ D2f = π1 ◦ Df ◦ Dπ0
and π1 ◦ π0 ◦ D2f ◦ c = π1 ◦ Df ◦ π0 ◦ c = π1 ◦ Df ◦ Dπ0

• i = 0, j = 1: π0 ◦ π1 ◦ c ◦ D2f = π1 ◦ π0 ◦ D2f = π1 ◦ Df ◦ π0 and π0 ◦ π1 ◦ D2f ◦
c = π1 ◦ Dπ0 ◦ D2f ◦ c = π1 ◦ Df ◦ Dπ0 ◦ c = π1 ◦ Df ◦ π0.

Thus (1) and (2) are equivalent.
Next, (2) is a particular case of (3) for x = π0 ◦ π0, u = π0 ◦ π1, v = π1 ◦ π0 and

w = π1 ◦ π1. Conversely, if (3) holds then dD(dD(f)) ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫ = dD(dD(f)) ◦ c ◦
⟪⟪x, v⟫, ⟪u,w⟫⟫ = dD(dD(f)) ◦ ⟪⟪x, v⟫, ⟪u,w⟫⟫.

14

4 Compatibility with the cartesian product
We assume in this section that C is cartesian. We also assume that C is equipped with a
Left Summability Structure (D, π0, π1, σ).

Notations 2. We use & for the cartesian product, following the notations of LL. For any
objects Y0, Y1, the projection will be written as pi ∈ C(Y0 & Y1, Yi) and the pairing of
f0 ∈ C(X,Y0) and f1 ∈ C(X,Y1) as ⟨f0, f1⟩7. Finally, the terminal object will be written ⊤
and we write tX the unique morphism of C(X,⊤). Note that the uniqueness of the pairing
in the universal property of the cartesian product can be understood as the joint monicity
of the pi.

4.1 Cartesian product and Summability Structure
Definition 17. The Summability Structure (D, π0, π1, σ) is compatible with the cartesian
product if ⟨0, 0⟩ = 0 and if for all f0, g0 ∈ C(X,Y0) and f1, g1 ∈ C(X,Y1), ⟨f0, f1⟩ ⊞ ⟨g0, g1⟩
if and only if f0 ⊞ g0 and f1 ⊞ g1 and

⟨f0, f1⟩+ ⟨g0, g1⟩ = ⟨f0 + f1, g0 + g1⟩ .

That is, if the sum on pairs is the coordinate-wise sum. Let us break down this definition
in more details.

Proposition 21. The following are equivalent

• p0,p1 are additive;

• ⟨0, 0⟩ = 0 and for all f0, g0 ∈ C(X,Y0) and f1, g1 ∈ C(X,Y1), if ⟨f0, f1⟩ ⊞ ⟨g0, g1⟩ then
f0 ⊞ g0, f1 ⊞ g1 and ⟨f0, f1⟩+ ⟨g0, g1⟩ = ⟨f0 + f1, g0 + g1⟩.

Proof. Assume that p0,p1 are additive. Then pi ◦ 0 = 0 = pi ◦ ⟨0, 0⟩. Thus by joint
monicity, 0 = ⟨0, 0⟩. Furthermore, assume that ⟨f0, f1⟩ ⊞ ⟨g0, g1⟩. Then by additivity of pi,
pi ◦ ⟨f0, f1⟩ = fi and pi ◦ ⟨g0, g1⟩ = gi are summable and fi + gi = pi ◦ (⟨f0, f1⟩+ ⟨g0, g1⟩).
So the joint monicity of the pi implies that ⟨f0, f1⟩+ ⟨g0, g1⟩ = ⟨f0 + f1, g0 + g1⟩.

Conversely, since ⟨0, 0⟩ = 0 we have pi ◦ 0 = pi ◦ ⟨0, 0⟩ = 0. Let f, g ∈ C(X,Y0 & Y1)
that are summable. One can write f = ⟨p0 ◦ f,p1 ◦ f⟩ and g = ⟨p0 ◦ g,p1 ◦ g⟩. Since
f ⊞ g we have pi ◦ f ⊞ pi ◦ g and f + g = ⟨p0 ◦ f + p0 ◦ g,p1 ◦ f + p1 ◦ g⟩. Applying pi

on this equation yields that pi ◦ (f + g) = pi ◦ f + pi ◦ g so pi is additive.

Corollary 6. If p0 and p1 are additive, then for all f0, g0 ∈ C(X0, Y0) and f1, g1 ∈
C(X1, Y1), if f0&f1 ⊞ g0&g1 then f0 ⊞ g0, f1 ⊞ g1 and f0&f1+g0&g1 = (f0+g0)&(f1+g1).

Proof. We simply use the fact that f & g = ⟨f ◦ p0, g ◦ p1⟩ and Proposition 21 together
with the left compatibility of sum with regard to composition (Proposition 2).

We now assume that the projections p0 and p1 are additive. This allows to define a
morphism c& ∈ C(D(X0&X1),DX0&DX1) for any objects X0, X1 as c& := ⟨⟪p0 ◦ π0,p0 ◦
π1⟫, ⟪p1 ◦ π0,p1 ◦ π1⟫⟩. In other words, πi ◦ pj ◦ c& = pj ◦ πi and

c& ◦ ⟪⟨f0, f1⟩, ⟨g0, g1⟩⟫ = ⟨⟪f0, g0⟫, ⟪f1, g1⟫⟩ .
This is very reminiscent of the flip c (it swaps the two middle coordinates), except that
there are no summability conditions associated with the ⟨_,_⟩ pairing.

7We start the indices by 0 in order to stay consistant with the notations of π0 and π1

15

Theorem 4. The following assertions are equivalent

(1) c& is an isomorphism;

(2) π0 & π0 ⊞ π1 & π1;

(3) for any f0, g0 ∈ C(X,Y0), f1, g1 ∈ C(X,Y1), if f0 ⊞ g0 and f1 ⊞ g1 then f0 & f1 ⊞
g0 & g1;

(4) for any f0, g0 ∈ C(X,Y0), f1, g1 ∈ C(X,Y1), if f0 ⊞ g0 and f1 ⊞ g1 then ⟨f0, f1⟩ ⊞
⟨g0, g1⟩

and then ⟪π0 & π0, π1 & π1⟫ = c−1
& .

Proof. (1) ⇒ (2): Assume that c& is an isomorphism, of inverse w. Then πi ◦ pj =
πi ◦ pj ◦ c& ◦ w = pj ◦ πi ◦ w. But pj ◦ (πi & πi) = πi ◦ pj by naturality of pj so
pj ◦ πi ◦ w = pj ◦ (πi &πi). By joint monicity of the pj ’s we have πi ◦ w = (πi &πi). That
is w = ⟪π0 & π0, π1 & π1⟫.

(2) ⇒ (1): Assume that π0 & π0 ⊞ π1 & π1, of witness w. Then, pj ◦ πi ◦ w = pj ◦
(πi & πi) = πi ◦ pj . Hence

pj ◦ πi ◦ w ◦ c& = πi ◦ pj ◦ c& = pj ◦ πi
πi ◦ pj ◦ c& ◦ w = pj ◦ πi ◦ w = πi ◦ pj

By joint monicity of the pj ’s and of the πi’s we get w ◦ c& = idD(X0&X1) and c& ◦ w =
idDX0&DX1

.
(2) ⇒ (3): We have ⟪f0, g0⟫ ∈ C(X,DY0) and ⟪f1, g1⟫ ∈ C(X,DY1). Let w = ⟪π0 &

π0, π1 & π1⟫ ◦ (⟪f0, g0⟫& ⟪f1, g1⟫). We have π0 ◦ w = f0 & f1 and π1 ◦ w = g0 & g1 so that
f0 & f1 ⊞ g0 & g1.

(3) ⇒ (2): (2) is a particular case of case (3).
(3) ⇒ (4): Assume that f0 ⊞ g0 and f1 ⊞ g1. Then by assumption, f0 & f1 ⊞ g0 & g1.

Let w = ⟪f0 & f1, g0 & g1⟫ ◦ ⟨id, id⟩. Then π0 ◦ w = ⟨f0, f1⟩ and π1 ◦ w = ⟨g0, g1⟩ so that
⟨f0, f1⟩ ⊞ ⟨g0, g1⟩.

(4) ⇒ (3): Assume that f0 ⊞ g0 and f1 ⊞ g1. Then f0 ◦ p0 ⊞ g0 ◦ p0 and f1 ◦
p1 ⊞ g1 ◦ p1 by left compatibility wrt. composition (Proposition 2). Hence, by assumption,
⟨f0 ◦ p0, f1 ◦ p1⟩ ⊞ ⟨g0 ◦ p0, g1 ◦ p1⟩. That is f0 & f1 ⊞ g0 & g1.

Corollary 7. A Summability Structure is compatible with the cartesian product if and only
if p0,p1 are additive and c& is an isomorphism.

4.2 Cartesian product and Differential Structure
We now assume that C is a cartesian category with a Pre-Differential Structure (D, π0, π1, σ).

Definition 18. The (Pre-)Differential Structure (D, π0, π1, σ) is compatible with the carte-
sian product if the underlying Summability Structure is compatible with the cartesian prod-
uct, and if p0,p1 are D-linear. A Cartesian Coherent Differential Category (CCDC) is
a Coherent Differential Category with a cartesian product which is compatible with the
Differential Structure.

We assume that C is a CCDC. By D-linearity of p0 and p1, all constructions involving
the cartesian product are D-linear.

16

Proposition 22. If h0 ∈ C(X,Y0) and h1 ∈ C(X,Y1) are D-linear, then ⟨h0, h1⟩ is D-linear.
If f0 ∈ C(X0, Y0) and f1 ∈ C(X1, Y1) are D-linear, then f0 & f1 is D-linear.

Proof. For the first statement we proceed as for Proposition 11 except that the paring as a
summable pair is replaced by the pairing of the cartesian product. The second statement
follows from the first one, because f0 & f1 = ⟨f0 ◦ p0, f1 ◦ p1⟩, the projections are D-linear,
and D-linearity is closed under composition.

For any objects X0, X1, there is a natural transformation ⟨Dp0,Dp1⟩ ∈ C(D(X0 &
X1),DX0 & DX1). By D-linearity of p0 and p1 this natural transformation is equal to
⟨⟪p0 ◦ π0,p0 ◦ π1⟫, ⟪p1 ◦ π0,p1 ◦ π1⟫⟩ = c&. It yields a result similar to Proposition 13.

Proposition 23. For any f0 ∈ C(X,Y0) and f1 ∈ C(X,Y1), ⟨Df0,Df1⟩ = c& ◦ D⟨f0, f1⟩

Proof. pi ◦ c& ◦ D⟨f0, f1⟩ = Dpi ◦ D⟨f0, f1⟩ = Dfi.

4.3 Partial derivatives
One can define from c−1

& two natural transformations

Φ0 = (c&)
−1 ◦ (idDX0

& ι0) ∈ C(DX0 &X1,D(X0 &X1))

Φ1 = (c&)
−1 ◦ (ι0 & idDX1

) ∈ C(X0 & DX1,D(X0 &X1))

Note that c&, (c&)
−1, Φ0 and Φ1 are all D-linear, thanks to Propositions 10 and 22

and Corollary 3.

Proposition 24. Φ0 = ⟪π0 & idX1 , π1 & 0⟫ and Φ1 = ⟪idX0 & π0, 0 & π1⟫
Proof. By Theorem 4, (c&)−1 = ⟪π0 & π0, π1 & π1⟫. and the result follows by a straightfor-
ward computation.

Definition 19 (Partial derivative). If f ∈ C(X0 &X1, Y) one can define D0f := Df ◦ Φ0 ∈
C(DX0 &X1,DY) and D1f := Df ◦ Φ1 ∈ C(X0 & DX1, Y), the partial derivatives of f .

Proposition 25. For any f ∈ C(X0 & X1, Y), π0 ◦ D0f = f ◦ (π0 & id) and π0 ◦ D1f =
f ◦ (id& π0).

Proof. π0 ◦ D0f = π0 ◦ Df ◦ Φ0 = f ◦ π0 ◦ Φ0 = f ◦ (π0& id) by Proposition 24. The proof
for Φ1 is similar.

Proposition 26. The following diagram commutes.

D(X0 & DX1) DX0 & DX1 D(DX0 &X1)

D2(X0 &X1) D2(X0 &X1)

DΦ1

Φ0 Φ1

DΦ0

c

Proof. We use Proposition 24 to compute DΦ1 ◦ Φ0 and DΦ0 ◦ Φ1. Since Φ0 is D-linear,
DΦ0 = ⟪Φ0 ◦ π0,Φ0 ◦ π1⟫ by Remark 2. Thus

DΦ0 ◦ Φ1 = DΦ0 ◦ ⟪idX0
& π0, 0 & π1⟫

= ⟪Φ0 ◦ (idX0 & π0),Φ
0 ◦ (0 & π1)⟫

= ⟪⟪π0 & π0, π1 & 0⟫, ⟪0 & π1, 0 & 0⟫⟫
Similarly, DΦ1 ◦ Φ0 = ⟪⟪π0 & π0, 0 & π1⟫, ⟪π1 & 0, 0 & 0⟫⟫. The commutation results
from Proposition 8.

17

Proposition 27. The following diagram commutes

D(X0 & DX1) DX0 & DX1 D(DX0 &X1)

D2(X0 &X1) D(X0 &X1) D2(X0 &X1)

DΦ1

Φ0 Φ1

c−1
& DΦ0

θ θ

Proof. Thanks to the computation of DΦ0 ◦ Φ1 in the proof of Proposition 26, we know
that θ ◦ DΦ0 ◦ Φ1 = ⟪π0 & π0, π1 & 0 + 0 & π1⟫ = ⟪π0 & π0, π1 & π1⟫ by Corollary 6.
So θ ◦ DΦ0 ◦ Φ1 = (c&)

−1 by Theorem 4. A similar computation yields the result for
θ ◦ DΦ1 ◦ Φ0.

Remark 4. We can check that the natural morphisms Φ0,Φ1 are a strength [8, 9] for the
monad (D, ι0, θ). Then the diagram of Proposition 27 means that this monad is a commu-
tative monad. The diagrams can be checked by hand, but are also a consequence of very
generic properties about strong monads on cartesian categories.

As mentioned in [10] in paragraph 2.3, any monad (M, η, µ) on a cartesian category can
be endowed with the Structure of a colax symmetric monoidal monad8 taking

• n0 := tM⊤ ∈ C(M⊤,⊤)

• n2X1,X2
:= ⟨Mp1,Mp2⟩ ∈ C(M(X1 &X2),MX1 &MX2)

When M = D, n2 = c&. If n2 and n0 are isos, M becomes a (strong) symmetric monoidal
monad. This is what happens here, as c& is a natural isomorphism and we can show that n0
is an isomorphism of inverse ι0 using the join monicity of the πi. But symmetric monoidal
monad are the same as commutative monads as shown in [8, 12], and it turns out that the
strengths induced from the symmetric monoidal structure are exactly Φ0 and Φ1.

The axioms (D-Schwarz) and (D-add) carry to the setting of partial derivatives very
naturally thanks to Propositions 26 and 27 respectively, giving the full fledged Schwarz
and Leibniz rules. The fact that the Leibniz rule is a consequence of the additivity of
the derivative is not surprising, as it is also the case in the usual differential calculus:
f ′(x, y) · (u, v) = f ′(x, y) · (u, 0) + f ′(x, y) · (0, v) = ∂f

∂x (x, y) · u+ ∂f
∂y (x, y) · v.

Proposition 28 (Leibniz rule). Df ◦ c−1
& = θ ◦ D0D1f = θ ◦ D1D0f

Proof. Let us prove that Df ◦ c−1
& = θ ◦ D0D1f .

θ ◦ D0D1f = θ ◦ D(Df ◦ Φ1) ◦ Φ0 by definition

= θ ◦ D2f ◦ DΦ1 ◦ Φ0 by (D-chain)

= Df ◦ θ ◦ DΦ0 ◦ Φ0 by (D-add)

= Df ◦ c−1
& by Proposition 27

The proof of Df ◦ c−1
& = θ ◦ D1D0f is similar.

Proposition 29 (Schwarz rule). D0D1f = c ◦ D1D0f

Proof. very similar to that of Proposition 28, except that it uses the naturality of c included
in (D-Schwarz) instead of the naturality of θ.

8Also called oplax symmetric monoidal monad, or symmetric comonoidal monad, or Hopf monad, see [11]

18

4.4 Generalization to arbitrary finite products
Notations 3. Recall that the existence of arbitrary finite products is equivalent to the
existence of a binary product and a terminal object. In order to stay consistant with the
current notations, we write the finite products starting from 0: X0&· · ·&Xn. We allow empty
products, with the convention that taking n = −1 yields a product X0 & · · ·&X−1 := ⊤.

The constructions above can be extended to arbitrary finite products. On can indeed
define a (symmetric monoidal) natural transformation cn& ∈ C(D(X0 & · · · & Xn),DX0 &
· · · & DXn) inductively by (c&)X := tD⊤ ∈ C(D⊤,⊤), (c0&)X := idDX ∈ C(DX,DX) and
cn+1
& := c& ◦ ⟨cn&, idDXn+1⟩. By associativity of the cartesian product, this definition does

not depend on the actual parenthesizing of X0 & · · ·&Xn.

Notations 4. Let X0, Y0, . . . , Xn, Yn ∈ Obj(C). Let i ∈ J0, nK and let fk ∈ C(Xk, Yk) for
each k ̸= i. Let g ∈ C(Xi, Yi). Let (g; f−i) := f0 & · · ·& fi−1 & g & fi+1 & · · ·& fn in which
we use fi everywhere except at position i where we use g.

Similarly to the binary case, one can then define a strength Φi ∈ C(X0 & · · · & DXi &
· · ·&Xn,D(X0 & · · ·&Xn)) as

Φi := (cn&)
−1 ◦ (idDXi ; (ι0)−i)

Proposition 30. cn& is an isomorphism and (cn&)
−1 = ⟪π0& · · ·&π0, π1& · · ·&π1⟫. Hence,

Φi = ⟪(π0; id−i), (π1; 0−i)⟫.
Proof. The equation on cn& is obtained by unfolding the inductive definition and using The-
orem 4. The equations on the Φi’s follow from this, as in Proposition 24.

Definition 20. For any f ∈ C(X0 & · · ·&Xn, Y) one can define the i-th partial derivative
of f as Dif := Df ◦ Φi ∈ C(X0 & · · ·& DXi & · · ·&Xn,DY).

Proposition 31. π0 ◦ Dif = f ◦ (π0; id−i).

Proof. Same as Proposition 25

Definition 21. For any X ∈ Obj(C) and n ≥ 0, we define θkX ∈ C(Dn+1X,DX) as the
composition of k copies of θ: θ0X = idDX and θk+1

X = θkX ◦ θDkX . We define similarly
πk
i ∈ C(DkX,X).

Note that θk = ⟪πk+1
0 ,

∑k
j=0 π

j
0 ◦ π1 ◦ πk−j

0 ⟫. In other words, the right component of
θk sums over all of the possible combinations of k left projections and one right projection.
One can prove a generalization of Proposition 27 for n ≥ 1,

(cn&)
−1 = θn ◦ DnΦα(n) ◦ · · · ◦ DΦα(1) ◦ Φα(0)

for any α permutation of J0, nK. As in Proposition 28, this generalizes the Leibniz Rule to
the n-ary case.

Proposition 32 (Leibniz, generalized). For any n ≥ 1 and for any α permutation of J0, nK,

Df ◦ (cn&)
−1 = θn ◦ Dα(n) . . .Dα(0)f .

19

4.5 Multilinear morphism
Definition 22. A morphism f ∈ C(X0 & · · · & Xn, Y) is multilinear (and more precisely,
(n + 1)-linear) if for any i ∈ J0, nK, π1 ◦ Dif = f ◦ (π1; id−i). Note that the 1-linear
morphisms are exactly the D-linear ones.

As a sanity check of the notion, we can use the result below together with the Leibniz
rule to show a result similar to the fact that in differential calculus, if Φ is a bilinear map,
then Φ′(x, y) · (u, v) = Φ(x, v) + Φ(u, y).

Lemma 1. For any f ∈ C(X0 & · · ·&Xn, Y) and i, j ∈ J0, nK such that i ̸= j,

Dπ0 ◦ DiDjf = Dif ◦ (π0; id−j)

Proof. This is a direct computation

Dπ0 ◦ DiDjf = Dπ0 ◦ D(Djf) ◦ Φi

= D(π0 ◦ Djf) ◦ Φi by (D-chain)

= D(f ◦ (π0; id−j)) ◦ Φi by Proposition 31

= Df ◦ D(π0; id−j) ◦ Φi by (D-chain)

= Df ◦ Φi ◦ (π0; id−j) Φi natural and i ̸= j

= Dif ◦ (π0; id−j)

Theorem 5. For any f ∈ C(X0 & · · ·&Xn, Y) (n+ 1)-linear,

π0 ◦ Df ◦ (c&)
−1 = f ◦ (π0 & · · ·& π0)

π1 ◦ Df ◦ (c&)
−1 = f ◦ (π1 & π0 & · · ·& π0) + · · ·+ f ◦ (π0 & · · ·& π0 & π1)

Proof. We will write the proof for n = 1. The general case relies on the same arguments.
The first equation is just a direct consequence of the naturality of π0 and Proposition 24.
For the second equation, Proposition 28 ensures that π1 ◦ Df ◦ c−1

& = π1 ◦ θ ◦ D0D1f =
π1 ◦ π0 ◦ D0D1f + π0 ◦ π1 ◦ D0D1f . We can compute those two summands separately.

π1 ◦ π0 ◦ D0D1f = π1 ◦ D1f ◦ (π0 & id) by Proposition 25
= f ◦ (id& π1) ◦ (π0 & π1) by bilinarity of f
= f ◦ (π0 & π1)

π0 ◦ π1 ◦ D0D1f = π1 ◦ Dπ0 ◦ D0D1f by linearity of π0
= π1 ◦ D0f ◦ (id& π0) by Lemma 1
= f ◦ (π1 & id) ◦ (id& π0) by bilinarity of f
= f ◦ (π1 & π0)

Which concludes the proof.

We can expand on the ideas of the proof Lemma 1 to show the following result. This
result is crucial, as it explains how to project on a series of partial derivatives.

20

Proposition 33. Let n ≥ 0, f ∈ C(X0 & · · ·&Xn), d ≥ 0 and i, i1, . . . , id ∈ J0, nK. Then,

Ddπ0 ◦ Did . . .Di1Dif = Did . . .Di1f ◦ (Dhd(i)π0; id−i)

where hd(i) = #{k ∈ J1, dK | ik = i}. Furthermore, if f is (n+ 1)-linear, then

Ddπ1 ◦ Did . . .Di1Dif = Did . . .Di1f ◦ (Dhd(i)π1; id−i)

Proof. By induction on d. The case d = 0 is Proposition 31 for π0, and the definition of
n-linearity for π1. We deal with the inductive step for π0. The inductive step for π1 is dealt
with similarly.

Dd+1π0 ◦ Did+1
. . .Di1Dif

= D(Ddπ0) ◦ D(Did . . .Di1Dif) ◦ Φid+1 by definition

= D(Ddπ0 ◦ Did . . .Di1Dif) ◦ Φid+1 by (D-chain)

= D(Did . . .Di1Dif ◦ (Dhd(i)π0; id−i)) ◦ Φid+1 induction hypothesis

= DDid . . .Di1Dif ◦ D(Dhd(i)π0; id−i) ◦ Φid+1 by (D-chain)

The next step is to use the naturality of Φid+1 :

D(f0 & · · ·& fn) ◦ Φid+1 = (Dfid+1
; f−id+1

)

If id+1 = i, then

D(Dhd(i)π0; id−i) ◦ Φid+1 = Φid+1 ◦ (Dhd(i)+1π0; id−i)

If id+1 ̸= i then
D(Dhd(i)π0; id−i) ◦ Φid+1 = Φid+1 ◦ (Dhd(i)π0; id−i)

In both case,
D(Dhd(i)π0; id−i) ◦ Φid+1 = Φid+1 ◦ (Dhd+1(i)π0; id−i)

Consequently:

Dd+1π0 ◦ Did+1
. . .Di1Dif = DDid . . .Di1Dif ◦ Φid+1 ◦ (Dhd+1(i)π0; id−i)

= Did+1(i)Did . . .Di1Dif ◦ (Dhd+1π0; id−i)

which concludes the proof.

This property instantiated in d = 1 gives a generalization of Lemma 1.

Corollary 8. If f ∈ C(X0 & · · ·&Xn) is (n+ 1)-linear, then for any i, j ∈ J0, nK such that
i ̸= j and for any k ∈ {0, 1},

Dπk ◦ DiDjf = Dif ◦ (πk; id−j)

Dπk ◦ DiDif = Dif ◦ (Dπk; id−i)

We can use this corollary to show that the partial derivative of a (n+1)-linear morphism
is also (n+ 1)-linear.

Theorem 6. If f ∈ C(X0 & · · · & Xn) is (n + 1)-linear, then for any i ∈ J0, nK, Dif is
(n+ 1)-linear.

21

Proof. Let j ∈ J0, nK. The goal is to prove that π1 ◦ DjDif = Dif ◦ (π1; id−j). By joint
monicity of the πk, it suffices to prove that πk ◦ π1 ◦ DjDif = πk ◦ Dif ◦ (π1; id−j) for any
k ∈ {0, 1}. If i ̸= j,

πk ◦ π1 ◦ DjDif = π1 ◦ Dπk ◦ DjDif by D-linearity of π1
= π1 ◦ Djf ◦ (πk; id−i) by Corollary 8
= f ◦ (π1; id−j) ◦ (πk; id−i) since f is (n+ 1)-linear
= f ◦ (πk; id−i) ◦ (π1; id−j) since i ̸= j

= πk ◦ Dif ◦ (π1; id−j) since f is (n+ 1)-linear

The case i = j is very similar

πk ◦ π1 ◦ DiDif = π1 ◦ Dπk ◦ DiDif by D-linearity of π1
= π1 ◦ Dif ◦ (Dπk; id−i) by Corollary 8
= f ◦ (π1; id−i) ◦ (Dπk; id−i) since f is (n+ 1)-linear
= f ◦ (πk; id−i) ◦ (π1; id−i) since πk is D-linear
= πk ◦ Dif ◦ (π1; id−i) since f is (n+ 1)-linear.

Composition with a linear morphism preserves multilinearity. Thus, the Leibniz rule
ensures that if f is multilinear then Df is also multilinear.

Proposition 34. If f ∈ C(X0 & · · · & Xn, Y) is (n + 1)-linear and h ∈ C(Y,Z) is linear,
then h ◦ f is (n+ 1)-linear.

Proof. This follows from a straightforward computation π1 ◦ Di(h ◦ f) = π1 ◦ D(h ◦ f) ◦
Φi = π1 ◦ Dh ◦ Df ◦ Φi = h ◦ π1 ◦ Dif = h ◦ f ◦ (π1; id−i).

Theorem 7. If f ∈ C(X0 & · · · & Xn, Y) is (n + 1)-linear, then Df ◦ (cn&)
−1 ∈ C(DX0 &

· · ·& DXn,DY) is also (n+ 1)-linear.

Proof. By Leibniz (Proposition 32), Df ◦ (cn&)
−1 = θn ◦ Dα(n) . . .Dα(0)f . But the partial

derivatives preserves multilinearity by Theorem 6 and composition by θn on the left preserves
multilinearity by Proposition 34.

5 Models arising as the Kleisli category of the exponen-
tial comonad of a model of LL

The development of section is not necessary for the rest of the paper, but shows that many
examples of Cartesian Coherent Differential Categories arise from models of linear logic.

5.1 Coherent Differentiation in a linear setting
Let L be a category. We write the composition of f ∈ L(X,Y) with g ∈ L(Y,Z) as g f
to stress the intuition that the morphisms of L are linear. We assume that L is a model
of LL, and more precisely a Seely Category in the sense of [13]. The axioms of Seely
Category include the existence of a cartesian product & and a comonad (!, der, dig) on L,
with derX ∈ L(!X,X) and digX ∈ L(!X, !!X). The Kleisli category L! of this comonad is

22

defined by taking the same objects as L and taking L!(X,Y) = L(!X,Y). Composition is
defined in this category as g ◦ f = g !f dig and the identity at X is derX . It is well known
that L! is a cartesian (closed) category, with the same cartesian product & as L.

The goal of this section is to show that Coherent Differentiation as introduced in [2] in
the setting of LL gives L! a CCDC structure.

Theorem 8. Any Differential Structure on a Summable Category L (in the sense of [2])
induces a CCDC structure on L!.

Let us detail first what the assumption means. The category L is said to be summable [2]
if it has a Summability Structure (S, π0, π1, σ) in the sense of the first author. By Theorem 3,
this means that (S, π0, π1, σ) is a Left Summability Structure in the sense of Definition 10
where every morphism is additive and Sf := ⟪f ◦ π0, f ◦ π1⟫. Then, we can define ιi, θ, l
and c as usual9. The difference is that the additivity of every morphism ensures that those
families are natural transformations for the functor S. In particular, (S, ι0, θ) is de facto a
monad. The category L is said to be summable as a cartesian category if ⟨Sp0,Sp1⟩ = c& is
an isomorphism10. Because every morphism of L is additive, this corresponds by Corollary 7
to the fact that the cartesian product is compatible with the Left Summability Structure.

It is well known that there is a faithful functor Der : L → L! which maps X to X
and f ∈ L(X,Y) to f derX ∈ L(!X,Y). This functor induces a Left Summability Struc-
ture (D,Der(π0),Der(π1),Der(σ)) on L! (where DX := SX) compatible with the cartesian
product & of L!. The reason is that Der preserves monicity and additivity, thanks to
the well known fact that Der(h) ◦ f = h f . Finally, the definition of Der ensures that
Der(⟪f0, f1⟫) = ⟪Der(f0),Der(f1⟫. In particular, the families of morphism generated by the
Left Summability Structure (D,Der(π0),Der(π1),Der(σ)) in Definitions 6 and 12 to 14 are
Der(ιi), Der(θ), Der(l) and Der(c) respectively.

Then a Differential Structure on a summable category L consists of a natural transfor-
mation ∂X ∈ L(!SX,S!X) following some axioms called (∂-chain), (∂-local), (∂-lin), (∂-&)
and (∂-Schwarz) (see [2] for the diagrams). The first axiom, (∂-lin), is a compatibility con-
dition of ∂ with regard to dig and der, making ∂ a distributive law between the functor S
and the comonad !_.

Definition 23. A distributive law between a functor F : L → L and the comonad !_
on L is a natural transformation λF ∈ L(!FX,F !X) such that the two following diagrams
commute.

!FX F !X

FX

λF
X

derFX

FderX

!FX F !X

!!FX !F !X F !!X

digFX

λF
X

FdigX

!λF
X λF

!X

A definition of distributive laws can be found in [14], together with the two following
observations (corollary 5.11)11.

Proposition 35. Let F : C → C be an endofunctor. There is a bijection between distributive
laws λF ∈ L(!FX,S!X) and liftings F̂ of F on L!. A lifting F̂ of F is a functor F̂ : L! → L!

such that F̂X = FX and F̂ (Der(h)) = Der(Fh).
9Note that in [2], θ is called τ

10We can show that the condition required in [2] that 0 ∈ L(S⊤,⊤) is an isomorphism always hold, using
the joint monicity of the πi

11These observations are made in the more general setting of 2-categories

23

Proof. Given a distributive law λF ∈ L(!FX,F !X), one can define an extension mapping
X to FX and f ∈ L!(X,Y) to Ff λFX ∈ L!(FX,FY). We can check that it is a functor
using the diagrams of distributive laws, and a lifting12 of F using the naturality of λF .
Conversely, any lifting F̂ of F induces a family λFX = F̂ id!X ∈ L!(!FX,F !X). The two
diagrams of distributive law comes from the functoriality of F̂ and the naturality comes
from the fact that F̂ is an extension of F .

Remark 5. Let F,G : L → L be two functors, with respective lifting F̂ and Ĝ associated
to the distributive laws λF ∈ L(!FX,F !X) and λG ∈ L(!GX,G!X). Then ĜF̂ is a lifting
of GF and the distributive law associated with ĜF̂ is the following natural transformation:
λGF
X = GλFX λGFX ∈ L(!GFX,GF !X).

Proposition 36. Let F,G : L → L be two endofunctors. Assume that F̂ and Ĝ are lifting
of F and G respectively, and let λF and λG be their respective associated distributive law.
Let αX ∈ L(FX,GX) be a natural transformation. Then Der(αX) ∈ L!(F̂X, ĜX) is natural
if and only if the following diagram commutes.

!FX F !X

!GX G!X

λF

!α α

λG

(3)

Proof. straightforward computation.

In the case of differentiation, the axiom (∂-chain) implies that ∂ ∈ C(!SX,S!X) is a
distributive law between the comonad ! and the functor S. This means that S can be lifted
to an endofunctor D on L!. Besides, there is a trivial distributive law id!X ∈ L(!X, !X)
associated to the lifting of the identity functor on L to the identity functor on L!. Finally,
as we saw in Remark 5, there is a distributive law S∂X ∂SX ∈ C(!S2X,S2!X) associated to
D2, the lifting of S2 to L!.

Then (∂-local) consists in an instance of Equation (3) in which F = S, G = Id and
α = π0. This means that Der(π0) ∈ L!(DX,X) is a natural transformation. Thus,
(D,Der(π0),Der(π1),Der(σ)) is a Pre-Differential Structure on L! (in the sense of Defini-
tion 11) and (D-chain) holds. Moreover, since D is a lifting of S, for any h ∈ L(X,Y),
the morphism Der(h) ∈ L!(X,Y) is D-linear. Indeed, Der(π0) ◦ D(Der(h)) = Der(π0) ◦
Der(Sh) = Der(π0 Sh) = Der(hπ0) = Der(h) ◦ Der(π0). As a result, Der(πi),Der(σ),Der(pi)
are all linear so (Dproj-lin), (Dsum-lin) hold and the Pre-Differential Structure is compatible
with the cartesian product.

Furthermore, (∂-lin) consists in two instances of Equation (3) in which α = ι0 ∈
L(SX,X) and α = θ ∈ L(S2X,X) respectively. So (∂-lin) ensures that Der(ι0) and Der(θ)
are natural, this is exactly (D-add). Finally, (∂-Schwarz) consists in an instance of Equa-
tion (3) in which α = c, meaning that Der(c) ∈ L!(S

2X,S2X) is natural. So (∂-Schwarz)
ensures (D-Schwarz). The only lacking axiom is (D-lin) that corresponds to the naturality of
Der(l). Thanks to Proposition 36, it would hold if and only if the diagram below commutes.

!SX S!X

!S2X S!SX S2!X

!l

∂X

l!X

∂SX S∂X

12The terminology extension is also used. We use the term lifting in order to stick to the terminology
of [14]

24

This diagram is not mentioned in [2] but makes perfectly sense in the setting of Coherent
Differentiation in LL and holds in all known LL models of coherent differentiation. The
study of the consequences of this diagram is left for further work.

To conclude, any Differential Structure on L (in the sense of [2]) induces the structure
of a CCDC on L!.

Remark 6. The only remaining axiom is (∂-&) that deals with the Seely isomorphisms
mn ∈ L(!X0 ⊗ . . .⊗!Xn, !(X0 & . . . &Xn)) of the Seely category L. It is possible to define
in LL a notion of multilinearity: given any l ∈ L(X0 ⊗ . . . ⊗ Xn, Y), one can define l̃ ∈
L!(X0&. . .&Xn, Y) as l̃ = l (der⊗. . .⊗der) (mn)−1. Then a morphism in L!(X0&. . .&Xn, Y)

is (n+ 1)-linear (in the sense of LL) if it can be written as h̃ for some h. The axiom (∂-&)
allows to show that any (n+1)-linear morphism in the sense of LL is also (n+1)-linear in the
sense of Definition 22. A proof of this fact can be implicitly found in Theorem 4.26 of [15].
This is a crucial fact, because it shows that what really matters is the (n + 1)-linearity in
terms of CCDC rather than the (n+ 1)-linearity in terms of LL.

Many models of LL have a Differential Structure, such as Coherence Spaces, Non Uniform
Coherence Spaces and Probabilistic Coherence Spaces. Thus, their Kleisli categories are
all CCDCs. This provides a rich variety of examples. We present here the example of
Probabilistic Coherence Spaces.

5.2 The example of Probabilistic Coherence Spaces
A Probabilistic Coherence Space (PCS) is a pair X = (|X|,PX) where |X| is a set and
PX ⊆ (R≥0)

|X| satisfies PX = {x ∈ (R≥0)
|X| | ∀x′ ∈ P ′ ⟨x, x′⟩ :=

∑
a∈|X| xax

′
a ≤ 1} for

some P ′ ⊆ (R≥0)
|X| called a predual of X. To avoid ∞ coefficients it is also assumed that

∀a ∈ |X| 0 < supx′∈P′ x′a < ∞ and then it is easily checked that for all ∀a ∈ |X| 0 <
supx∈PX xa <∞.

A multiset of elements of a set I is a function m : I → N such that the set supp(m) = {i ∈
I | m(i) ̸= 0} is finite. The set Mfin(I) of these multisets is the free commutative monoid
generated by I. We use [i1, . . . , ik] for the m ∈ Mfin(I) such that m(i) = #{j | ij = i}, for
i1, . . . , ik ∈ I.

Given PCSs X and Y , a function f : PX → PY is analytic13 if there is a ma-
trix t ∈ (R≥0)

Mfin(|X|)×|Y | such that, for all x ∈ PX and b ∈ |Y |, one has f(x)b =∑
(m,b)∈Mfin(|X|)×|Y | tm,bx

m where xm =
∏

a∈|X| x
m(a)
a . Thanks to the fact that all the

coefficients in t are finite, it is not difficult to see that they can be recovered from the func-
tion f itself by means of iterated differentiation, see [17]. So an analytic function has exactly
one associated matrix.

The identity function PX → PX is analytic (of matrix t given by tm,a = δm,[a]) and
the composition of two analytic functions is still analytic. We use APcoh for the category
whose objects are PCSs and morphisms are analytic functions. For instance, if 1 is the
PCS ({∗}, [0, 1]) then f1, f2 : [0, 1] → [0, 1] given by f1(x) = 1−

√
1− x2 and f2(x) = ex−1

are in APcoh(1, 1), but f3(x) = 2x − x2 is not because of the negative coefficient. The
(pointwise) sum of two analytic functions PX → PY is always well defined PX → R|Y |

≥0 , but
is not necessarily in APcoh(X,Y) so APcoh is not left-additive14.

If X is a PCS then DX = ({0, 1} × |X|,P(DX) = {z ∈ (R≥0)
{0,1}×|X| | π0(z) + π1(z) ∈

PX}), where πi(z)a = zi,a, is a PCS. Then π0, π1 ∈ APcoh(DX,X) and we have also
13There is also a purely functional characterization of these functions as those which are totally monotone

and Scott continuous, see [16]
14At least for this most natural addition.

25

σ ∈ APcoh(DX,X) given by σ(z) = π0(z) + π1(z). In other words DX is the PCS whose
elements are the pairs (x, u) ∈ PX2 such that x + u ∈ PX. In that way we have equipped
APcoh with a Left Pre-Summability Structure and the associated notion of summability
is the obvious one: f0, f1 ∈ APcoh(X,Y) are summable if their pointwise sum f0 + f1 is
in APcoh(X,Y). It is easily checked that this Left Pre-Summability Structure is a Left
Summability Structure (see Definition 10).

As explained in Section 2.1, differentiation boils down to extending the operation D
to morphisms in such a way that the conditions of Definition 15 is satisfied. Given f ∈
APcoh(X,Y) of matrix t and (x, u) ∈ P(DX) we have

f(x+ u) =
∑

(m,b)∈Mfin(|X|)×|Y |

tm,b(x+ u)m

=
∑

(m,b)∈Mfin(|X|)×|Y |

tm,b

∑
p≤m

(
m

p

)
xm−pup

= f(x) +
∑

a∈supp(m)

(
m

[a]

)
xm−[a]ua + r(x, u)

= f(x) +
∑

a∈supp(m)

m(a)xm−[a]ua + r(x, u)

where we use supp(m) = {a ∈ |X| | m(a) > 0} and
(
m
p

)
=
∏

a∈|X|
(
m(a)
p(a)

)
∈ N when p ≤ m

for the pointwise order. In these expressions the remainder r(x, u) is a power series in x
and u whose all monomials have total degree > 1 in u (such as xaubuc if a, b, c ∈ |X|). In
particular ∥r(x, u)∥ ∈ o(∥u∥) where ∥x∥ = sup{⟨x, x′⟩ | x′ ∈ P ′} ∈ [0, 1] for any predual
P ′ of X (this norm does not depend on the choice of P ′). Using Definition 11 we set
dD(f)(x, u) =

∑
a∈supp(m)m(a)xm−[a]ua and since all coefficients of t are ≥ 0 we have

f(x)+dD(f)(x, u) ≤ f(x+u) for the pointwise order so that Df(x, u) = (f(x),dD(f)(x, u)) ∈
P(DY). We have defined in that way an analytic function Df ∈ APcoh(DX,DY) and it is
easily checked that APcoh is a coherent differential category in the sense of Definition 15.
For the two examples above we get dD(f2)(x, u) = ex−1u and dD(f1)(x, u) = xu/

√
1− x2

which seems to be undefined when x = 1 but is not because then we must have u = 0 and
so dD(f2)(1, 0) = 0.

An analytic f ∈ APcoh(X,Y) is linear if its matrix t satisfies that whenever tm,b ̸=
0, one has m = [a] for some a ∈ |X|. This notion of linearity15 coincides with both
additivity Definition 3 and D-linearity Definition 16.

The category APcoh is Cartesian, with ⊤ = (∅, {0}) and X & Y = ({0} × |X| ∪ {1} ×
|Y |), {z ∈ (R≥0)

{0}×|X|∪{1} | p0(z) ∈ PX and p1(z) ∈ PY } which is easily seen to be a
PCS (pi is defined exactly as πi) such that P(X & Y) = PX × PY up to a trivial bijection.
The projections pi are additive, and c& (see Section 4.1) is an iso: if ((x, u), (y, v)) ∈
P(DX & DY) then ((x, y), (u, v)) ∈ P(D(X & Y)) since (x, y) + (u, v) = (x+ u, y+ v) so the
summability structure is compatible with the Cartesian product by Corollary 7.

An f ∈ APcoh(X0 &X1, Y) is bilinear in X0, X1 if it is linear (or additive) separately
in both inputs, which is equivalent to saying that its matrix t satisfies that if tm,b ̸= 0 then
m = [(0, a0), (1, a1)] with ai ∈ |Xi| for i = 0, 1. Let N = (N, {x ∈ (R≥0)

N |
∑

n∈N xn ≤ 1})
which represents the type of integers in APcoh, then the function h : APcoh(N&N&N,N)
given by h(u, x, y) = u0x + (

∑∞
n=1 un)y is bilinear in N, N & N and can be understood as

15Which arises from the fact that APcoh is the Kleisli category of the comonad “!” on the PCS model of
LL of [17].

26

an ifzero operator. The function k ∈ APcoh(N,N) such that k(x)n = xn+1 is linear and
represents the successor operation.

6 Link with Cartesian Differential Categories
We show in this section that CCDCs are a generalization of Cartesian Differential Cate-
gories [4].

6.1 Cartesian Left Additive Categories
We rely on the presentation of [18] for Left Additive Categories, as it corresponds to a
minimal set of assumptions.

Definition 24. A Left Additive Category is a category such that each hom-set is a com-
mutative monoid, with addition + and zero 0 left compatible with composition, that is
(f + g) ◦ h = f ◦ h+ g ◦ h and 0 ◦ f = 0

Definition 25. A map h is additive if addition is compatible with composition with h on
the left, that is h ◦ (f + g) = h ◦ f +h ◦ g and h ◦ 0 = 0. Note that the identity is additive,
and additive morphisms are closed under addition and composition.

Definition 26. A Cartesian Left Additive Category is a Left Additive Category such that
the projections are additive.

Given any Cartesian Left Additive category C, one can define a Summable Pairing Struc-
ture (Definition 1) (D&,p0,p1,p0 + p1) with D&X = X &X. Then one can check that all
morphisms are summable (the witness of f ⊞ g is ⟨f, g⟩). Moreover, the fact that the
category is left additive ensures that the notion of sum induced by (D&,p0,p1,p0 + p1)
coincides with the native structure of monoid on the homs-et. In particular, a morphism
is additive in the sense of Definition 3 if and only if it is additive in the sense of Defini-
tion 26. Consequently, p0,p1 and p0+p1 are additive. Thus, (D&,p0,p1,p0+p1) is a Left
Pre-Summability Structure. Finally, it is de facto a Left Summability Structure because
(D-witness) trivially holds (everything is summable), and (D-zero), (D-com) hold thanks to
the fact that everything is summable and that (C(X,Y),+, 0) is a commutative monoid.

Conversely, any Left Summability Structure on C of shape (D&,p0,p1, σ) with D&X =
X&X endow each hom-set with a commutative monoid structure and Proposition 2 ensures
that the category is left additive. Then, as above, a morphism is additive in the sense of
Definition 3 if and only if it is additive in the sense of Definition 26. Thus p0,p1 are additive
so the category is Cartesian left additive. Moreover σ = p0 + p1 by Proposition 1 so the
Left Summability Structure induced by the monoid on the hom-set coincides with the Left
Summability Structure we started from. To summarize.

Theorem 9. Let C be a cartesian category. Define D&X = X & X. There is a bijection
between the monoid structures on the hom-set that makes C a Cartesian Left Additive cat-
egory and the Left Summability Structures (D, π0, π1, σ) on C such that D = D&, π0 = p0

and π1 = p1.

Remark 7. Any Left Summability Structure on C of shape (D&,p0,p1, σ) with D&X = X&X
is de facto compatible with the cartesian product. The additivity of p0 and p1 is part of the
axioms of summability, and c& turns out to be equal to c so it is an isomorphism because
it is involutive.

27

6.2 Cartesian Differential Categories
We give the axioms of a Cartesian Differential Category following the alternative formulation
of [5] for convenience. Note that the axiom d(id) = p1 seems to be missing from the axioms
given in [5], although it can be found in the original formulation in [4].

Definition 27. A Cartesian Differential Category is a cartesian Left Additive Category
C equipped with a differential combinator d that maps each morphism f ∈ C(X,Y) to a
morphism d(f) ∈ C(X &X,Y) such that

(1) d(p0) = p0 ◦ p1, d(p1) = p1 ◦ p1;

(2) d(0) = 0 and d(f + g) = d(f) + d(g);

(3) d(id) = π1 and d(g ◦ f) = d(g) ◦ ⟨f ◦ π0,d(f)⟩;

(4) d(f) ◦ ⟨x, 0⟩ = 0 and d(f) ◦ ⟨x, u+ v⟩ = d(f) ◦ ⟨x, u⟩+ d(f) ◦ ⟨x, v⟩;

(5) d(d(f)) ◦ ⟨⟨x, 0⟩, ⟨0, u⟩⟩ = d(f) ◦ ⟨x, u⟩;

(6) d(d(f)) ◦ ⟨⟨x, u⟩, ⟨v, w⟩⟩ = d(df) ◦ ⟨⟨x, v⟩, ⟨u,w⟩⟩.

There is usually another axiom, that states that d(⟨f, g⟩) = ⟨d(f),d(g)⟩. But as observed
in [18], this axiom is a consequence of the linearity of the projections and of the chain rule
so we discard it. Besides, we chose a different ordering of the axioms to stick closer to the
presentation of Cartesian Coherent Differential Categories.

Let C be a left additive category. As stated in Theorem 9, C admits a Summability
Structure (D&,p0,p1,p0+p1) compatible with the cartesian product whose induced notion
of sum coincides with the sum in the hom-set. Then, there is a bijection between Pre-
Differential Structures on top of this Summability Structure and differential combinators in
the sense of Definition 27: we can define D from d as D(f) := ⟨f ◦ p0,d(f)⟩, and we can
define d from D as d := dD.

Besides, we show in Section 3 that there is a one to one correspondence between the
axioms of Coherent Differential Categories concerning D and the axioms of Cartesian Dif-
ferential categories concerning dD = d. The axioms (1) are the same. The correspondence
of (2) is exactly Corollary 5. The correspondence of (3) is exactly Proposition 15. The
correspondence of (4) is exactly Proposition 17 and Proposition 18. The correspondence
of (5) is exactly Proposition 19. Finally, the correspondence of (6) is exactly Proposition 20.

The Differential Structures on top of the Left Summability Structure (D&,p0,p1, σ)
are de facto compatible with the cartesian product, because the linearity of p0 and p1 is
included in (1). To conclude.

Theorem 10. The Cartesian Differential Categories are exactly the Cartesian Coherent
Differential Categories in which DX = X &X, π0 = p0, π1 = p1.

Remark 8. In [4], h is said to be linear if d(h) = h ◦ p1. At first glance, it seems to be a
weaker condition than the one of Definition 16 as h has no reason to be additive. But in
any CCDC, (D-add) ensures that dD(h) = h ◦ π1 is a necessary and sufficient condition to
ensure h is D-linear. Indeed, assume that dD(h) = h ◦ π1. Then h ◦ 0 = h ◦ p1 ◦ ⟪0, 0⟫ =
dD(h) ◦ ⟪0, 0⟫ = 0 by Proposition 17 and h ◦ (f0 + f1) = h ◦ π1 ◦ ⟪0, f0 + f1⟫ = dD(h) ◦
⟪0, f0 + f1⟫ = dD(h) ◦ ⟪0, f0⟫+ dD(h) ◦ ⟪0, f1⟫ by Proposition 18. Hence, h ◦ 0 = dD(h) ◦
⟪0, f0⟫+ dD(h) ◦ ⟪0, f1⟫ = h ◦ π1 ◦ ⟪0, f0⟫+ h ◦ π1 ◦ ⟪0, f1⟫ = h ◦ f0 + h ◦ f1. Thus, h is
additive and dD(h) = h ◦ π1 so h is D-linear.

28

7 A first order Coherent Differential language
Let us briefly introduce a first order language associated to these models. Note that a
development of a whole Coherent Differential PCF can already be found in [15], with a
semantics based on LL Coherent Differentiation, of which our language can be roughly
considered as a fragment. Our main contribution here is that CCDCs provide the tools for
a much more principled and synthetic treatment of the semantics. This tighter connection
between syntax and semantics allows for the development of new ideas, such as a more
systematic treatment of multilinearity.

7.1 Terms
Definition 28. Le B be a set of ground type symbols, ranged over by α, β, . . . For any
α ∈ B and h ∈ N, Dhα is a ground type. General types are inductively defined by

A,B,C := Dhα | A&B .

where h is an arbitrary element of N.

For any type A, we define the type DA inductively on A by DDhα = Dh+1α and D(A&
B) = DA& DB.

Definition 29. Let ϕ, ψ, . . . be function symbols. Each function symbol ϕ is uniquely
assigned a function type of the form A0, . . . , An → B where Ai and B are types. Then,
n+ 1 is called the arity of ϕ, denoted as ar(ϕ).

A function symbol ϕ of type A0, . . . , An → B will be interpreted in section Section 7.2 as
a (n+1)-linear morphisms JϕK ∈ C(JA0K& · · ·& JAnK, JBK) (recall Definition 22). Note that
the types Ai can themselves be products and need not to be ground types. For example, a 2-
linear map in C((A&B)&C,D) can by no means be seen as a 3-linear map in C(A&B&C,D).

Definition 30. Define functions as

f, g, . . . := ϕ | πA
i | pA,B

i | ιAi | θAn

where i ∈ {0, 1}, n ≥ 0, ϕ are function symbols and A,B are types. Each function f has
a function type: πA

0 , π
A
1 have type DA → A, ιA0 , ιA1 have type A → DA, the θAn have type

Dn+1A→ DA and pA,B
0 ,pA,B

1 have types A&B → A and A&B → B respectively. Notice
that projections have arity 1 and not 2. The type attached to the constructors πi, pi, ιi
and θn will always be kept implicit in what follows.

Remark 9. Taking n = −1 allows to write constants.

Definition 31. Let V be a set of variable symbols. The set Λ1 of terms is defined inductively
as follows

t, u, . . . := ⟨t0, t1⟩ | fζ(t0, . . . , tn) | x

where x ∈ V, f are function symbols of arity n+ 1 and ζ ∈ J0, nK∗, the set of finite words16
of elements of J0, nK.

16Such a word represents a successive application of partial derivatives on the multilinear symbol f , more
on this in the semantics section.

29

x : A ∈ Γ (Var)
Γ ⊢ x : A

Γ ⊢ t0 : A Γ ⊢ t1 : B
(Pair)

Γ ⊢ ⟨t0, t1⟩ : A&B

f : A0, . . . , An → B ∀i,Γ ⊢ ti : D|ζ|iAi (App)
Γ ⊢ fζ(t0, . . . , tn) : D|ζ|B

Figure 1: Typing rules

∂(x, y) =

{
x if y = x

ι0(y) otherwise

∂(x, ⟨t0, t1⟩) = ⟨∂(x, t0), ∂(x, t1)⟩
∂(x, fζ(t0, . . . , tn)) = θn(f

ζn···10(∂(x, t0), . . . , ∂(x, tn)))

Figure 2: Differential of a term

Remark 10. Nothing prevents us from adding to this calculus non multilinear function
symbols, assuming that the formal derivatives for the function symbols are also provided.
We focus on multilinear functions though, due to the nature of the basic operations of PCF.
A Coherent Differential PCF would contain a base type nat, two function symbols pred
and succ of type nat → nat, a family of function symbols ifA of type nat, A & A → A
(conditional) and a family of function symbols letA of type nat, (nat → A) → A (call-by-
value on the type of integers). An analysis of the semantics of these symbols in Coherent
Differentiation in the LL setting of [15] or in the example of Section 5.2 indeed shows that
pred and succ should be interpreted as linear morphisms, and that ifA and letA should
be interpreted as 2-linear morphisms. Using the PCF fixpoint operator it is then possible to
write terms whose interpretation is not multilinear. For instance, f1 of Section 5.2 is the
semantics of a term, see [19].

Notations 5. For any word ζ, we write |ζ| for its length, and |ζ|j for the number of
occurrences of the letter j. We will write f for f ϵ, where ϵ is the empty word. Besides,
when ar(f) = 0, a word ζ ∈ J0, 0K∗ can be uniquely seen as an integer (its length |ζ|). We
will then write f (d) for fζ , where d = |ζ|.

We introduce the typing rules in Figure 1. The systematic treatment of multilinear
morphisms allows for a great factorization of the rules. We write f : A0, . . . , An → B if f
has type A0, . . . , An → B.

Given any term t, one can define a term ∂(x, t) by induction on t. The inductive steps
are given in Figure 2.

Proposition 37. If Γ, x : A ⊢ t : B then Γ, x : DA ⊢ ∂(x, t) : DB

Proof. By induction on the typing derivation.

• If the last rule applied is (Var) then the first possibility is that t = x and Γ, x : A ⊢
x : A. But then, ∂(x, x) = x and Γ, x : DA ⊢ x : DA. The second possibility is that
t = y with y ̸= x and Γ ⊢ y : B. But then, ∂(x, y) = ι0(y) and Γ ⊢ ι0(y) : DB. Thus,
Γ, x : DA ⊢ ι0(y) : DB in both cases.

30

• If the last rule applied is (Pair), then t = ⟨t0, t1⟩, t is of type B0&B1, Γ, x : A ⊢ t0 : B0

and Γ, x : A ⊢ t1 : B1. But ∂(x, t) = ⟨∂(x, t0), ∂(x, t1)⟩. By induction hypothesis
Γ, x : DA ⊢ ∂(x, t0) : DB0 and Γ, x : DA ⊢ ∂(x, t1) : DB1. Thus, by applying (Pair),
Γ, x : DA ⊢ ⟨∂(x, t0), ∂(x, t1)⟩ : DB0 & DB1. But DB0 & DB1 = D(B0 & B1) so
Γ, x : DA ⊢ ∂(x, ⟨t0, t1⟩) : D(B0 &B1).

• If the last rule applied is (App) then t = fζ(t0, . . . , tn), f has some type A0, . . . , An →
B, and Γ, x : A ⊢ t : D|ζ|B. Besides, for any i, Γ, x : A ⊢ ti : D

|ζ|iAi. By induction
hypothesis, Γ, x : DA ⊢ ∂(x, ti) : D|ζ|i+1Ai. But |ζn · · · 10|i = |ζ|i + 1 so apply-
ing the (App) rule gives a derivation for Γ, x : DA ⊢ fζn···10(∂(x, t0), . . . , ∂(x, tn)) :
D|ζ|+n+1B. Applying the (App) rule again for f = θn yields a derivation of Γ, x :
DA ⊢ θn(fζn···10(∂(x, t0), . . . , ∂(x, tn))) : D|ζ|+1B, which concludes the proof.

7.2 Semantics
Let C be a CCDC. For the sake of simplicity, we assume that D(X & Y) = DX & DY and
c& = id. Assume that we are given an object JαK for any ground type symbol α. Then one
can interpret any type as an object: JDhαK = DhJαK and JA & BK = JAK & JBK. It follows
by a straightforward induction that JDAK = DJAK. This interpretation extends as usual to
contexts, setting Jx0 : A0, . . . , xn : AnK = JA0K & · · · & JAnK. The semantics of the empty
context is ⊤.

Assume that we are given a (n + 1)-linear morphism JϕK ∈ C(JA0K & · · · & JAnK, JBK)
for any function symbol ϕ : A0, . . . , An → B. Then any function f : A0, . . . , An → B can
be interpreted as a (n + 1)-linear morphism JfK setting JπiK = πi, JιiK = ιi, JθnK = θn (as
defined in Definition 21) and JpiK = pi.

Remark 11. Since c& = id, Dpi = Dpi ◦ (c&)
−1 = Dpi ◦ ⟪π0 & π0, π1 & π1⟫ = ⟪pi ◦

(π0 & π0),pi ◦ (π1 & π1)⟫ = ⟪π0 ◦ pi, π1 ◦ pi⟫ = pi. Besides, ⟨Df0,Df1⟩ = D⟨f0, f1⟩ by
Proposition 23

Theorem 11. For any term t such that Γ ⊢ t : A, we can define JtKΓ ∈ C(JΓK, JAK). This
morphism does not depends on the typing derivation of Γ ⊢ t : A.

Proof. We proceed by induction on the term.

• If t = x then the last typing rule must be (Var). It implies that Γ = Γ0, x : A,Γ1.
Define JxKΓ = p|Γ0| ∈ C(JΓ0K & JAK & JΓ1K, JAK).

• If t = ⟨t0, t1⟩ then the last typing rule must be (Pair), so t is of type A & B, Γ ⊢
t0 : A and Γ ⊢ t1 : B. By induction, one can define Jt0KΓ ∈ C(JΓK, JAK) and Jt1KΓ ∈
C(JΓK, JBK). Then we define J⟨t0, t1⟩KΓ = ⟨Jt0KΓ, Jt1KΓ⟩ ∈ C(JΓK, JA&BK).

• If t = fζ(t0, . . . , tn) with f : A0, . . . , An → B then the last typing rule must be (App).
That is, t must be of type D|ζ|B for some type B and for all i, we have a derivation
of Γ ⊢ ti : D

|ζ|iAi. By induction hypothesis, we can define JtiKΓ ∈ C(JΓK, JD|ζ|iAiK).
But JD|ζ|iAiK = D|ζ|iJAiK and Dζk . . .Dζ1JfK ∈ C(D|ζ|0JA0K& · · ·&D|ζ|nJAnK,D|ζ|JBK).
Thus, we can set Jfζ1···ζk(t0, . . . , tn)KΓ = Dζk . . .Dζ1JfK ◦ ⟨Jt0KΓ, . . . , JtnKΓ⟩.

Notations 6. We will write JxKΓ = px to designate the projection on JΓK to the coordinate
where x appears in Γ.

31

Remark 12. In particular, Jπ(d)
i (t)K = Ddπi ◦ JtK, Jι(d)i (t)K = Ddιi ◦ JtK, Jθ(d)n (t)K = Dd(θn) ◦

JtK. More importantly, Jp(d)
i (t)K = Ddpi ◦ JtK = pi ◦ JtK because of our assumption that c&

is the identity.

Notations 7. For any word ζ = ζ1 · · · ζk in J0, nKk, define Dζ := Dζk . . .Dζ1 . Then for any
f ∈ C(X0 & . . .&Xn, Y), Dζf ∈ C(D|ζ|0X0 & · · ·&D|ζ|nXn,D

|ζ|Y). Note that Dζ·δ = DδDζ .
Then, Proposition 33 can be seen as the property that for any f (n+1)-linear, for any word
δ of length d, Ddπi ◦ DδDjf = Dδf ◦ (D|δ|jπi; id−j)

The main result of this section on the calculus consists in showing that the semantics of
the syntactical derivative operation corresponds to the derivative in the model.

Theorem 12. If Γ, x : A ⊢ t : B then J∂(x, t)KΓ,x:DA = D1JtKΓ,x:A where JtKΓ,x:A is seen as
a morphisms of C(JΓK & JAK, JBK).

Proof. By induction on t.

• If t = x then JtKΓ,x:A = p1 ∈ C(JΓK & JAK, JAK). Then D1p1 = Dp1 ◦ Φ1 = Dp1 ◦
⟪id & π0, 0 & π1⟫ = ⟪p1 ◦ (id & π0),p1 ◦ (0 & π1)⟫ = ⟪π0 ◦ p1, π1 ◦ p1⟫ = p1 using
Proposition 24 and the linearity of p1.

• If t = y ̸= x then JtKΓ,x:A = JyKΓ ◦ p0 = py ◦ p0 ∈ C(JΓK & JAK, JBK). Then
D1(py ◦ p0) = Dpy ◦ Dp0 ◦ Φ1 = Dpy ◦ Dp0 ◦ ⟪id & π0, 0 & π1⟫ = Dpy ◦ ⟪p0 ◦
(id& π0),p0 ◦ (0 & π1)⟫ = Dpy ◦ ⟪p0, 0⟫ = ⟪py ◦ p0, 0⟫ = Jι0(y)K = J∂(x, y)K.

• If t = ⟨t0, t1⟩, then J∂(x, t)K = J⟨∂(x, t0), ∂(x, t1)⟩K = ⟨J∂(x, t0)K, J∂(x, t1)K⟩. By in-
duction hypothesis, J∂(x, t)K = ⟨D1Jt0K,D1Jt1K⟩. But ⟨D1Jt0K,D1Jt1K⟩ = ⟨DJt0K ◦
Φ1,DJt1K ◦ Φ1⟩ = ⟨DJt0K,DJt1K⟩ ◦ Φ1. By Remark 11, this is equal to D⟨Jt0K, Jt1K⟩ ◦
Φ1 = D1⟨Jt0K, Jt1K⟩ = D1JtK.

• If t = fζ(t0, . . . , tn) then ∂(x, t) = θn(f
ζn···10(∂(x, t0), . . . , ∂(x, tn))). Thus, J∂(x, t)K =

θn ◦ Dn···10Dζf ◦ ⟨J∂(x, t0)K, . . . , J∂(x, tn)K⟩ = θn ◦ Dn···10Dζf ◦ ⟨D1Jt0K, . . . ,D1JtnK⟩
by induction hypothesis. But then, the Leibniz rule (Proposition 32) states that
θn ◦ Dn···10Dζf = DDζf . Thus, J∂(x, t)K = DDζf ◦ ⟨DJt0K ◦ Φ1, . . . ,DJtnK ◦ Φ1⟩ =
DDζf ◦ ⟨DJt0K, . . . ,DJtnK⟩ ◦ Φ1 = D(Dζf ◦ ⟨Jt0K, . . . , JtnK⟩) ◦ Φ1 = DJtK ◦ Φ1 = D1JtK.

7.3 Reduction
We introduce in this section a set of reduction rules that deals with the differential content
of the terms. The set of rules is more compact than the one given in [15], but covers all of
the rules concerning the fragment we are looking at.
Remark 13. We could have added a construct t[u/x] for explicit substitutions, with the
typing rule

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ t[u/x] : B
(Cut)

As well as reduction rules that performs the substitution steps (for example, x[u/x] →Λ1 u).
We decided not to do so, as the use of explicit substitutions introduces some subtleties that
will anyway be dealt with in the higher order setting in a more unified approach.

The main difference with the differential lambda-calculus of [20] is the absence of sum,
because we do not want a non deterministic typing rules such as

32

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t+ u : A

But the reduction of a π1 against a θ will introduce sums. Handling sum without the typing
rule above is tricky, because of subject reduction. There will be no guarantee indeed that
if Γ ⊢ t + u : A and t →Λ1

t′ then Γ ⊢ t′ + u : A. For this reason, we chose a conservative
approach, by keeping sums as a formal multi-set on top of the terms.

Definition 32. A term multi-set is a finite multi-set of term.

See Section 5.2 for the notations we use on multisets. We define a reduction →Λ1
from

terms to term multi-sets. The reduction rules are given in Figure 3. Then we define →?
Λ1

as the “reflexive” closure of →Λ1
. That is, t→?

Λ1
L if t→Λ1

L or if L = [t]. It allow to lifts
→Λ1 to a reduction from a term multi-set to a term multi-set in a monadic fashion: if for
all i, ti →?

Λ1
Li, then

[t1, . . . , tn] →M(Λ1)

n∑
i=1

Li

where
∑

is the multi-set union, that is, the pointwise sum of the functions Li : Λ1 → N.

p
(d)
i (⟨t0, t1⟩) →Λ1 [ti]

π
(d)
i (fζjδ(t0, . . . , tn)) →Λ1

[fζδ(t0, . . . , π
(|δ|j)
i (tj), . . . , tn)] where |δ| = d

π
(d)
i (ι

(d)
i (t)) →Λ1

[t]

π
(d)
i (ι

(d)
1−i(t)) →Λ1

[]

π
(d)
0 (θ(d)n (t)) →Λ1 [(π

(d)
0)n+1(t)]

π
(d)
1 (θ(d)n (t)) →Λ1

n∑
k=0

[(π
(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)]

Here, (π(d)
i)n is a notation for n successive applications of π(d)

i .

Figure 3: Reduction rules

Definition 33. A term multi-set [t1, . . . , tn] of type A in context Γ is C-summable if
Jt1KΓ, . . . , JtnKΓ are summable (in the sense of Theorem 2). Then, we define J[t1, . . . , tn]KΓ =
Jt1KΓ + · · ·+ JtnKΓ. Note that [] is always C-summable, and J[]K = 0.

The main point of Coherent Differentiation is that the reduction →Λ1
will always intro-

duce term multi-sets that are C-summable, for any model C.

Theorem 13 (Invariance of semantics under reduction). For any Γ ⊢ t : A, if t →Λ1
L

then L is C-summable and JLKΓ = JtKΓ.

Proof. Let us consider every application of the rule →Λ1 . Note that when a term multi-set
has one element, it is always C-summable and J[t]K = JtK.

Jp(d)
i (⟨t0, t1⟩)K = Ddpi ◦ ⟨Jt0K, Jt1K⟩

= pi ◦ ⟨Jt0K, Jt1K⟩
= JtiK

33

The rule below is the one where most of the differential content appears. Recall that JfK
is assumed to be multilinear, for any function f . It implies that DζJfK is also multilinear
by Theorem 6, so it is possible to apply Proposition 33 on it.

Jπ(d)
i (fζjδ(t0, . . . , tn))K

= Ddπi ◦ DδDjDζJfK ◦ ⟨Jt0K, . . . , JtnK⟩
= DδDζJfK ◦ (D|δ|jπi; id−j) ◦ ⟨Jt0K, . . . , JtnK⟩ by Proposition 33

= DζδJfK ◦ ⟨Jt0K, . . . ,D|δ|jπi ◦ JtjK, . . . , JtnK⟩

= Jfζδ(t0, . . . , π
(|δ|j)
i (tj), . . . , tn)K

The three next rules are rather standard and are consequence of the definition of πi, ιj and
θn.

Jπ(d)
i (ι

(d)
i (t))K = Ddπi ◦ Ddιi ◦ JtK

= Dd(πi ◦ ιi) ◦ JtK by (D-chain)

= Ddid ◦ JtK = JtK by (D-chain)

Jπ(d)
i (ι

(d)
1−i(t))K = Ddπi ◦ Ddι1−i ◦ JtK

= Dd(πi ◦ ι1−i) ◦ JtK by (D-chain)

= Dd0 ◦ JtK = 0 ◦ JtK by (Dsum-lin)
= 0 = J[]K

Jπ(d)
0 (θ(d)n (t))K = Ddπ0 ◦ Ddθn ◦ JtK

= Dd(π0 ◦ θn) ◦ JtK by (D-chain)

= Dd(πn+1
0) ◦ JtK

= (Ddπ0)
n+1 ◦ JtK by (D-chain)

= J(π(d)
0)n+1(t)K

The last rule is where finite multisets of size greater than 1 are introduced. Most line of
equation below should be interpreted as “the sum above is well defined, so the sum below is
well defined and both are equal”.

Jπ(d)
1 (θ(d)n (t))K = Ddπ1 ◦ Ddθn ◦ JtK

= Dd(π1 ◦ θn) ◦ JtK by (D-chain)

=

(
Dd(

n∑
k=0

πk
0 ◦ π1 ◦ πn−k

0)

)
◦ JtK

=

(
n∑

k=0

Dd(πk
0 ◦ π1 ◦ πn−k

0)

)
◦ JtK by (Dsum-lin) and Proposition 16

=

n∑
k=0

Dd(πk
0 ◦ π1 ◦ πn−k

0) ◦ JtK by Proposition 2

34

=

n∑
k=0

(Ddπ0)
k ◦ Ddπ1 ◦ (Ddπ0)

n−k ◦ JtK by (D-chain)

=

n∑
k=0

J(π(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)]K

Thus,
∑n

k=0[(π
(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)] is C-summable of semantics Jπ(d)

1 (θ
(d)
n (t))K

Corollary 9. For any term multi-set Γ ⊢ L : A that is C-summable, if L →M(Λ1) L
′ then

L′ is C-summable and JL′KΓ = JLKΓ.

Proof. Assume that [t1, . . . , tn] is C-summable and that [t1, . . . , tn] →M(Λ1) L. That is,
for any i, ti →?

Λ1
[t1i , . . . , t

ki
i] and L =

∑n
i=1[t

1
i , . . . , t

ki
i]. Then by Theorem 13, for any

i, Jt1i K, . . . , Jt
ki
i K are summable of sum JtiK. By assumption, Jt1K, . . . , JtnK are summable,

that is,
∑k1

j=1Jt
j
1K, . . . ,

∑kn

j=1Jt
j
nK are summable. By Theorem 2, it means that the family

Jt11K, . . . , Jt
k1
1 K, . . . , Jt1nK, . . . , Jtkn

n K is summable of sum

n∑
i=1

ki∑
j=1

Jtji K =
n∑

i=1

JtiK

Thus L is C-summable and JLK = J[t1, . . . , tn]K.

The usage of such terms multi-sets seems to be somewhat non deterministic. But any
multi-set generated by reductions of the calculus can be interpreted as a summable family in
deterministic models such as Probabilistic Coherence Spaces17 or Non Uniform Coherence
Spaces. This determinism of the models allows to prove in [15] a result that roughly state
that whenever a closed term of type integer reduces to a term multi-set C + [ν] (where ν
are the usual integer variables of PCF), then JCK = 0. That is, only one of the branches of
the reduction rule

π
(d)
1 (θ(d)n (t)) →Λ1

n∑
k=0

[(π
(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)]

produces a non empty multiset. The proof relies on the fact that any term of type integer
will be interpreted in APcoh as a dirac distribution δn on N or as the zero distribution,
because the calculus does not feature any form of probabilistic branching. Thus, a term
multiset of type integer is APcoh-summable if and only if there is at most one term in
the multiset whose semantic is not 0. In particular, JνKAPcoh = δν and C + [ν] is APcoh-
summable (by Corollary 9) so JCKAPcoh = 0. Note that a similar proof can be done, using
the semantics of Non Uniform Coherence Spaces instead of Probabilistic Coherence Spaces.
This observation lead to the development of a completely deterministic Krivine Machine,
using a form of memory on the projections path.

Conclusion
We have introduced and studied a general categorical framework for Coherent Differentia-
tion, a new approach to the differential calculus which does not require the ambient category
to be (left-)additive. We have also proposed some basic syntactical constructs accounting
in a term language for these new categorical constructs. These are the foundations for a

17Probabilistic branching is by no mean a form of non determinism

35

principled and systematic approach to the denotational semantics of functional program-
ming languages like (probabilistic) PCF extended with Coherent Differentiation. As shown
in [15] such an extension can perfectly feature deterministic or probabilistic behaviors, in
sharp contrast with the Differential λ-calculus [21] which is inherently non-deterministic.
The next step will be to specialize the present general axiomatization to the case where the
category is cartesian closed.

References
[1] J. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, pp. 1–102, 1987.

[Online]. Available: https://doi.org/10.1016/0304-3975(87)90045-4

[2] T. Ehrhard, “Coherent differentiation,” 2021. [Online]. Available: https://arxiv.org/
abs/2107.05261

[3] J. Rosicky, “Abstract tangent functors,” Diagramme, no. 12, 1984.

[4] R. Blute, R. Cockett, and R. Seely, “Cartesian differential categories,” Theory and
Applications of Categories, vol. 22, pp. 622–672, 01 2009.

[5] R. Cockett and G. Cruttwell, “Differential Structure, Tangent Structure, and SDG,”
Applied Categorical Structures, vol. 22, 04 2014.

[6] M. A. Arbib and E. G. Manes, “Partially additive categories and flow-diagram
semantics,” Journal of Algebra, vol. 62, no. 1, pp. 203–227, 1980. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0021869380902124

[7] P. Hines, “A categorical analogue of the monoid semiring construction,” Mathematical
Structures in Computer Science, vol. 23, no. 1, p. 55–94, 2013.

[8] A. Kock, “Strong functors and monoidal monads,” Archiv der Mathematik, vol. 23, pp.
113–120, 12 1972.

[9] E. Moggi, “Notions of computation and monads,” Information and Computation,
vol. 93, no. 1, pp. 55–92, 1991, selections from 1989 IEEE Symposium on Logic
in Computer Science. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0890540191900524

[10] M. Aguiar, M. Haim, and I. Franco, “Monads on Higher Monoidal Categories,” Applied
Categorical Structures, vol. 26, 06 2018.

[11] I. Moerdijk, “Monads on tensor categories,” Journal of Pure and Applied Algebra, vol.
168, no. 2, pp. 189–208, 2002, category Theory 1999: selected papers, conference held
in Coimbra in honour of the 90th birthday of Saunders Mac Lane. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022404901000962

[12] A. Kock, “Monads on symmetric monoidal closed categories,” Archiv der Mathematik,
vol. 21, pp. 1–10, 01 1970.

[13] P.-A. Melliès, “Categorical semantics of linear logic,” Panoramas et Synthèses, vol. 27,
pp. 1–196, 2009.

36

https://doi.org/10.1016/0304-3975(87)90045-4
https://arxiv.org/abs/2107.05261
https://arxiv.org/abs/2107.05261
https://www.sciencedirect.com/science/article/pii/0021869380902124
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/S0022404901000962

[14] J. Power and H. Watanabe, “Combining a monad and a comonad,” Theoretical
Computer Science, vol. 280, no. 1, pp. 137–162, 2002, coalgebraic Methods
in Computer Science. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S030439750100024X

[15] T. Ehrhard, “A coherent differential PCF,” 2022. [Online]. Available: https:
//arxiv.org/abs/2205.04109

[16] R. Crubillé, “Probabilistic Stable Functions on Discrete Cones are Power Series,” in
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, A. Dawar and E. Grädel, Eds. ACM,
2018, pp. 275–284. [Online]. Available: https://doi.org/10.1145/3209108.3209198

[17] V. Danos and T. Ehrhard, “Probabilistic coherence spaces as a model of higher-order
probabilistic computation,” Information and Computation, vol. 152, no. 1, pp. 111–137,
2011.

[18] J.-S. P. Lemay, “A tangent category alternative to the Faa di Bruno construction ,”
Theory and Applications of Categories, vol. 33, no. 35, pp. 1072–1110, 2018. [Online].
Available: http://www.tac.mta.ca/tac/volumes/33/35/33-35abs.html

[19] T. Ehrhard, “Differentials and distances in probabilistic coherence spaces,”
Logical Methods in Computer Science, vol. 18, no. 3, 2022. [Online]. Available:
https://doi.org/10.46298/lmcs-18(3:2)2022

[20] T. Ehrhard and L. Regnier, “The differential lambda-calculus,” Theoretical
Computer Science, vol. 309, no. 1, pp. 1–41, 2003. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S030439750300392X

[21] ——, “The differential lambda-calculus,” Theoretical Computer Science, vol. 309, no.
1-3, pp. 1–41, 2003.

37

https://www.sciencedirect.com/science/article/pii/S030439750100024X
https://www.sciencedirect.com/science/article/pii/S030439750100024X
https://arxiv.org/abs/2205.04109
https://arxiv.org/abs/2205.04109
https://doi.org/10.1145/3209108.3209198
http://www.tac.mta.ca/tac/volumes/33/35/33-35abs.html
https://doi.org/10.46298/lmcs-18(3:2)2022
https://www.sciencedirect.com/science/article/pii/S030439750300392X

	Introduction
	Summability Structure
	Pre-Summability Structures
	Axioms on the addition
	Comparison with Summability Structures

	Differential
	Differential Structure
	Linearity
	The Differentiation Monad

	Interpreting the axioms as properties of the derivative
	Compatibility with the cartesian product
	Cartesian product and Summability Structure
	Cartesian product and Differential Structure
	Partial derivatives
	Generalization to arbitrary finite products
	Multilinear morphism

	Models arising as the Kleisli category of the exponential comonad of a model of LL
	Coherent Differentiation in a linear setting
	The example of Probabilistic Coherence Spaces

	Link with Cartesian Differential Categories
	Cartesian Left Additive Categories
	Cartesian Differential Categories

	A first order Coherent Differential language
	Terms
	Semantics
	Reduction

