Coherent Differentiation

Thomas Ehrhard
IRIF, CNRS and Université de Paris

November 28, 2021

Intro: differentiation and addition

We have learned at school

$$
f^{\prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f(x)}{\varepsilon}
$$

And later
$f: E \rightarrow F$ (where E and F are, say, Banach spaces)
is differentiable at $x \in E$ if

$$
f(x+u)=f(x)+(I \cdot u)+o(\|u\|)
$$

where $I: E \rightarrow F$ linear bounded.
And then $I \in \mathcal{L}(E, F)$ is uniquely defined: $I=f^{\prime}(x)$ is the differential (Jacobian etc) of f at x.

Because $I \cdot u \in o(\|u\|) \Rightarrow I=0$ when $I \in \mathcal{L}(E, F)$.

Leibniz rule

Take $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ (sufficiently regular) and define

$$
\begin{aligned}
g: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto f(x, x)
\end{aligned}
$$

Then

$$
\frac{d g(x)}{d x}=\frac{\partial f\left(x_{1}, x\right)}{\partial x_{1}}(x)+\frac{\partial f\left(x, x_{2}\right)}{\partial x_{2}}(x)
$$

This generalizes the usual Leibniz rule $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$, $(u v)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(k)} v^{(n-k)}$ etc.

Differentiation is inherently related to addition.

In the Differential λ-calculus we have a differential application

$$
\frac{\Gamma \vdash M: A \Rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash \mathrm{D} M \cdot N: A \Rightarrow B}
$$

and a differential substitution defined by induction on M, such that if $\Gamma, x: A \vdash M: B$ and $\Gamma \vdash N: A$ then

$$
\left\ulcorner, x: A \vdash \frac{\partial M}{\partial x} \cdot N: B\right.
$$

Differential reduction:

$$
\mathrm{D}\left(\lambda x^{A} M\right) \cdot N \rightarrow \lambda x^{A}\left(\frac{\partial M}{\partial x} \cdot N\right)
$$

where $\frac{\partial M}{\partial x} \cdot N$ is defined by induction on M.

The most important case in the definition of $\frac{\partial M}{\partial x} \cdot N$ is when $M=(P) Q:$

$$
\frac{\partial(P) Q}{\partial x} \cdot N=\left(\frac{\partial P}{\partial x} \cdot N\right) Q+\left(\mathrm{D} P \cdot\left(\frac{\partial Q}{\partial x} \cdot N\right)\right) Q
$$

which combines

- the Leibniz Rule because x can occur in P and in Q
- and the Chain Rule because of the application (imagine x occurs only in Q).

Reduction rule:

$$
\mathrm{D}\left(\lambda x^{A} M\right) \cdot N \rightarrow \lambda x^{A}\left(\frac{\partial M}{\partial x} \cdot N\right)
$$

so to have subject reduction it seems that we need

$$
\frac{\Gamma \vdash M_{0}: A \quad \Gamma \vdash M_{1}: A}{\Gamma \vdash M_{0}+M_{1}: A}
$$

allowing to add any two terms of the same type.

Consequence: non-determinism

If we have for instance a type o of booleans with

$$
\overline{\Gamma \vdash \mathbf{t}: 0} \quad \overline{\Gamma \vdash \mathbf{f}: 0}
$$

then we must accept $\mathbf{t}+\mathbf{f}$ as a valid term, with

$$
\Gamma \vdash \mathbf{t}+\mathbf{f}: o
$$

meaning that the language is essentially non-deterministic.

In the semantics

So far, the categorical models \mathbf{C} of the differential λ-calculus were (left-)additive categories.

Given $f, g \in \mathbf{C}(A, B)$, there is a morphism $f+g \in \mathbf{C}(A, B)$.
$\rightsquigarrow \mathbf{C}$ is enriched over commutative monoids.

Coherent Differentiation

This is not a fatality!

Fact

Of course addition is required, but there is a (categorical, and then syntactical) way of controlling it, without giving up determinism.

The possibility of such a theory appears in ...

... probabilistic coherence spaces (PCS)

A PCS is a pair $X=(|X|, \mathrm{P} X)$ where $|X|$ is a set and $P X \subseteq\left(\mathbb{R}_{\geq 0}\right)^{|X|}$ satisfying some closure properties.

- PX is convex,
- downwards closed,
- closed under lubs of monotonic ω-chains
-+ a technical condition to avoid ∞ coeffs.
They are a model of (probabilistic) λ-calculi, LL etc, but not of their differential extensions by lack of additivity.

Derivatives in PCSs

In the associated category Pcoh $_{1}, 1$ is an object such that $|1|=\{*\}, \mathrm{P} 1=[0,1]$ and a morphism $f \in \operatorname{Pcoh}_{!}(1,1)$ is a power series defining a function $[0,1] \rightarrow[0,1]$:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { with } \quad \forall n a_{n} \in \mathbb{R}_{\geq 0} \text { and } \sum_{n=0}^{\infty} a_{n} \leq 1
$$

so that $f^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$ has no reason to be a function $[0,1] \rightarrow[0,1]$.

Example

$f(x)=1-\sqrt{1-x}$, then $f^{\prime}(x)=1 /(2 \sqrt{1-x})$ is unbounded on $[x, 1)$.

However
Fact
If $x, u \in[0,1]$ and $x+u \in[0,1]$ then we have

$$
f(x)+f^{\prime}(x) u \leq f(x+u) \in[0,1]
$$

because this sum is the beginning of the Taylor expansion which holds in this model:

$$
f(x+u)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) u^{n}
$$

and all coefficients are ≥ 0. For any $f \in \operatorname{Pcoh}_{!}(X, Y)$.

In a PCS, some sums are allowed. . .

Convex combinations: if $x, y \in \mathrm{P} X$ then $\frac{1}{3} x+\frac{2}{3} y \in \mathrm{P} X$.
Some non convex sums are also possible, for instance in the cartesian product $X \& Y$, we have

$$
(x, 0)+(0, y)=(x, y) \in \mathrm{P}(X \& Y)=\mathrm{P} X \times \mathrm{P} Y
$$

if $x \in P X$ and $y \in P Y$.
Other non convex allowed sums come from differentiation:

$$
f(x)+f^{\prime}(x) \cdot u \in \mathrm{PY}
$$

if $x, u \in \mathrm{P} X$ are such that $x+y \in \mathrm{P} X$ and $f: \mathrm{P} X \rightarrow \mathrm{P} Y$ is an "analytic function", that is a morphism $X \rightarrow Y$ in the Kleisli category Pcoh!.

... and some sums are forbidden!

For instance

$$
P(1 \oplus 1)=\left\{\left(x_{0}, x_{1}\right) \in \mathbb{R}_{\geq 0} \mid x_{0}+x_{1} \leq 1\right\}
$$

in this object of booleans,

$$
\mathbf{t}=(1,0), \mathbf{f}=(0,1) \in \mathrm{P}(1 \oplus 1) \quad \text { and } \quad \mathbf{t}+\mathbf{f} \notin \mathrm{P}(1 \oplus 1) .
$$

or simply $1 \in[0,1]$ and $1+1 \notin[0,1]$.

Fundamental observation

There is a functor $\mathbf{S}:$ Pcoh $\rightarrow \mathbf{P c o h}$ which maps an object X to an object $\mathbf{S} X$ such that

$$
\mathrm{P}(\mathbf{S} X)=\left\{(x, u) \in \mathrm{P} X^{2} \mid x+u \in \mathrm{P} X\right\} .
$$

For instance $\mathrm{P}(\mathbf{S} 1)=\{(x, u) \in[0,1] \mid x+u \leq 1\}$.
We base our axiomatization on the existence of such a functor.

Summable categories

Definition (pre-summable category)

A pre-summable category is a tuple

$$
\left(\mathcal{L}, \mathbf{S}, \pi_{0}, \pi_{1}, \sigma\right)
$$

Where

- \mathcal{L} is a category enriched over pointed sets (and the distinguished morphism is always denoted 0);
- $\mathbf{S}: \mathcal{L} \rightarrow \mathcal{L}$ is a functor which preserves the enrichment ($\mathbf{S} 0=0$);
- and $\pi_{0}, \pi_{1}, \sigma: \mathbf{S} X \rightarrow X$ are natural transformations such that π_{0} and π_{1} are jointly monic.

If $f_{0}, f_{1} \in \mathcal{L}(X, \mathbf{S} Y)$ satisfy $\pi_{j} f_{0}=\pi_{j} f_{1}$ for $j=0,1$ then $f_{0}=f_{1}$.

Intuition

- $\mathbf{S} X$ is the objects of pairs $\left(x_{0}, x_{1}\right) \in X \times X$ such that $x_{0}+x_{1}$ is well defined and $\in X$;
- $\pi_{j}: \mathbf{S} X \rightarrow X$ are the projections, $\pi_{j}\left(x_{0}, x_{1}\right)=x_{j}$;
- and $\sigma: \mathbf{S} X \rightarrow X$ maps $\left(x_{0}, x_{1}\right)$ to $x_{0}+x_{1}$.

Some terminology

We assume to have such a structure $\left(\mathcal{L}, \mathbf{S}, \pi_{0}, \pi_{1}, \sigma\right)$

Definition (summability, witness, sum)

We say that $f_{0}, f_{1} \in \mathcal{L}(X, Y)$ are summable if there is $h \in \mathcal{L}(X, \mathbf{S} Y)$ such that $\pi_{j} h=f_{j}$ for $j=0,1$.
Fact: when such an h exists it is unique (π_{0}, π_{1} are jointly monic), we set $\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}=h$, it is the witness of summability of f_{0} and f_{1}.
And then we set $f_{0}+f_{1}=\sigma\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}$, the sum of f_{0} and f_{1}.

Some simple observations

- π_{0}, π_{1} are summable with $\left\langle\pi_{0}, \pi_{1}\right\rangle_{\mathbf{S}}=\mathrm{Id}_{\mathbf{S} X}$ and $\pi_{0}+\pi_{1}=\sigma$.
- If $f_{0}, f_{1} \in \mathcal{L}(X, Y)$ are summable and $I \in \mathcal{L}(U, X)$ and $r \in \mathcal{L}(Y, V)$ then $r f_{0} I, r f_{1} I$ are summable with

$$
\begin{aligned}
\left\langle r f_{0} I, r f_{1} I\right\rangle_{\mathbf{S}} & =\mathbf{S} r\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}} l \\
r f_{0} I+r f_{1} l & =r\left(f_{0}+f_{1}\right) /
\end{aligned}
$$

by naturality of π_{0}, π_{1} and σ.

Remark (main tool)

Use the fact that π_{0}, π_{1} are jointly monic.
We introduce a few axioms to make this "partial addition" behave as expected.

Commutativity

Axiom (Commutativity)

π_{1}, π_{0} are summable and $\pi_{1}+\pi_{0}=\sigma$.

Fact (consequences)

$\left\langle\pi_{1}, \pi_{0}\right\rangle_{\mathbf{s}} \in \mathcal{L}(\mathbf{S} X, \mathbf{S} X)$ is an involution.
If $f_{0}, f_{1} \in \mathcal{L}(X, Y)$ are summable then f_{1}, f_{0} are summable with $f_{1}+f_{0}=f_{0}+f_{1}$.

Intuitively: $\left\langle\pi_{1}, \pi_{0}\right\rangle_{\mathbf{S}}\left(x_{0}, x_{1}\right)=\left(x_{1}, x_{0}\right)$.

Neutrality

Axiom (Neutrality)

For any $f \in \mathcal{L}(X, Y), f$ and 0 are summable and $f+0=f$.
In particular we have two injections

$$
\iota_{0}=\left\langle\mathrm{Id}_{X}, 0\right\rangle_{\mathbf{s}}, \iota_{1}=\left\langle 0, \mathrm{Id}_{X}\right\rangle_{\mathbf{s}} \in \mathcal{L}(X, \mathbf{S} X)
$$

Intuitively $\iota_{0}(x)=(x, 0)$ and $\iota_{1}(x)=(0, x)$.

Witness

Associativity is more tricky. We split the condition in two pieces.

Axiom (Witness)

Let $f_{i j} \in \mathcal{L}(X, Y)$ for $i, j \in\{0,1\}$ be 4 morphisms such that

- $f_{j 0}, f_{j 1}$ are summable for $j=0,1$
- and $f_{00}+f_{01}, f_{10}+f_{11}$ are summable then $\left\langle f_{00}, f_{01}\right\rangle_{\mathbf{s}},\left\langle f_{10}, f_{11}\right\rangle_{\mathbf{s}}$ are summable.

So there is a witness for this summability:

$$
\left\langle\left\langle f_{00}, f_{01}\right\rangle_{\mathbf{s}},\left\langle f_{10}, f_{11}\right\rangle_{\mathbf{s}}\right\rangle_{\mathbf{s}} \in \mathcal{L}\left(X, \mathbf{S}^{2} Y\right)
$$

The canonical flip

Fact

There is exactly one morphism $\mathrm{c} \in \mathcal{L}\left(\mathbf{S}^{2} X, \mathbf{S}^{2} X\right)$ such that

$$
\begin{gathered}
\forall i, j \in\{0,1\} \quad \pi_{i} \pi_{j} \mathrm{c}=\pi_{j} \pi_{i} \\
\mathrm{c}=\left\langle\left\langle\pi_{0} \pi_{0}, \pi_{0} \pi_{1}\right\rangle_{\mathbf{s}},\left\langle\pi_{1} \pi_{0}, \pi_{0} \pi_{0}\right\rangle_{\mathbf{s}}\right\rangle_{\mathbf{s}}
\end{gathered}
$$

exists by the previous axioms.

Fact

$c^{2}=\operatorname{ld}_{\mathbf{S}^{2} X}$.
Intuitively $\mathrm{c}\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right)=\left(\left(x_{00}, x_{10}\right),\left(x_{01}, x_{11}\right)\right)$.

Associativity

Axiom (Associativity)

The following diagram commutes

Remark (Intuition)

The sum of witnesses is performed componentwise:

$$
\left\langle x_{00}, x_{01}\right\rangle_{\mathbf{s}}+\left\langle x_{10}, x_{11}\right\rangle_{\mathbf{s}}=\left\langle x_{00}+x_{10}, x_{01}+x_{11}\right\rangle_{\mathbf{s}}
$$

Fact (consequence)

If $f_{i j} \in \mathcal{L}(X, Y)$ for $i, j \in\{0,1\}$ are such that

- $f_{j 0}, f_{j 1}$ are summable for $j=0,1$
- and $f_{00}+f_{01}, f_{10}+f_{11}$ are summable
then
- $f_{0 j}, f_{1 j}$ are summable for $j=0,1$
- and $f_{00}+f_{10}, f_{01}+f_{11}$ are summable and $\left(f_{00}+f_{01}\right)+\left(f_{10}+f_{11}\right)=\left(f_{00}+f_{10}\right)+\left(f_{01}+f_{11}\right)$.

Associativity follows taking $f_{10}=0$.

Partially additive category

The category \mathcal{L} becomes a partially additive category in the sense of partial monoids.

Remark

Partially additive categories do not suffice for our goal: the functor S will be crucial for differentiation!

\mathbf{S} is a monad

We have already $\zeta=\iota_{0}=\left\langle\operatorname{ld}_{X}, 0\right\rangle_{\mathbf{s}} \in \mathcal{L}(X, \mathbf{S} X)$.
Using the axioms we also have $\theta=\left\langle\pi_{0} \pi_{0}, \pi_{1} \pi_{0}+\pi_{0} \pi_{1}\right\rangle_{\mathbf{s}} \in \mathcal{L}\left(\mathbf{S}^{2} X, \mathbf{S} X\right)$.

Fact

$(\mathbf{S}, \zeta, \theta)$ is a monad on \mathcal{L}.
Intuitively

$$
\begin{aligned}
\theta_{X}: \mathbf{S}^{2} X & \rightarrow \mathbf{S} X \\
\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right) & \mapsto\left(x_{00}, x_{10}+x_{01}\right)
\end{aligned}
$$

Notice that we forget x_{11}.

When \mathcal{L} is an SMC

Distributivity

In all the situations we have in mind, \mathcal{L} is a symmetric monoidal category with tensor product \otimes and tensor unit 1 .

In that case one expects \otimes to distribute over + , when defined.
This requires an additional

Axiom (Distributivity)

$0 \otimes g=0$ and
if f_{0}, f_{1} are summable then

- $f_{0} \otimes g, f_{1} \otimes g$ are summable
- and $f_{0} \otimes g+f_{1} \otimes g=\left(f_{0}+f_{1}\right) \otimes g$.

Strength

In particular $\pi_{0} \otimes \mathbf{I d}_{Y}, \pi_{1} \otimes \mathbf{I d}_{Y} \in \mathcal{L}(\mathbf{S} X \otimes Y, X \otimes Y)$ are summable so we have strengths

$$
\begin{aligned}
& \varphi_{X, Y}^{0}=\left\langle\pi_{0} \otimes \mathrm{Id}_{Y}, \pi_{1} \otimes \mathrm{Id}_{Y}\right\rangle_{\mathbf{s}} \in \mathcal{L}(\mathbf{S} X \otimes Y, \mathbf{S}(X \otimes Y)) \\
& \varphi_{X, Y}^{1}=\left\langle\mathrm{Id}_{X} \otimes \pi_{0}, \mathrm{Id}_{X} \otimes \pi_{1}\right\rangle_{\mathbf{s}} \in \mathcal{L}(X \otimes \mathbf{S} Y, \mathbf{S}(X \otimes Y))
\end{aligned}
$$

turn \mathbf{S} into a commutative monad.
Intuitively

$$
\begin{aligned}
& \varphi_{X, Y}^{0}\left(\left(x_{0}, x_{1}\right) \otimes y\right)=\left(x_{0} \otimes y, x_{1} \otimes y\right) \\
& \varphi_{X, Y}^{1}\left(x \otimes\left(y_{0}, y_{1}\right)\right)=\left(x \otimes y_{0}, x \otimes y_{1}\right)
\end{aligned}
$$

Commutativity of the monad

We have actually something stronger:

$$
\begin{aligned}
& \mathbf{S} X \otimes \mathbf{S} Y \xrightarrow{\varphi_{X, \mathbf{S Y}}^{0}} \mathbf{S}(X \otimes \mathbf{S} Y) \xrightarrow{\mathbf{S} \varphi_{X, Y}^{1}} \mathbf{S}^{2}(X \otimes Y) \\
& \varphi_{\mathbf{S} X, Y}^{1} \downarrow \\
& \mathbf{S}(\mathbf{S} X \otimes Y) \xrightarrow{{ }^{c_{X \otimes Y}}} \\
& \mathbf{S}_{\varphi_{X, Y}^{0}} \\
& \mathbf{S}^{2}(X \otimes Y)
\end{aligned}
$$

Intuitively

$$
\begin{aligned}
& \left(x_{0}, x_{1}\right) \otimes\left(y_{0}, y_{1}\right) \mapsto\left(\left(x_{0} \otimes y_{0}, x_{0} \otimes y_{1}\right),\left(x_{1} \otimes y_{0}, x_{1} \otimes y_{1}\right)\right) \\
& \left(x_{0}, x_{1}\right) \otimes\left(y_{0}, y_{1}\right) \mapsto\left(\left(x_{0} \otimes y_{0}, x_{1} \otimes y_{0}\right),\left(x_{0} \otimes y_{1}, x_{1} \otimes y_{1}\right)\right)
\end{aligned}
$$

Induced symmetric monoidal structure

We then have

Intuitively

$$
\mathrm{L}_{X, Y}:\left(\left(x_{0}, x_{1}\right) \otimes\left(y_{0}, y_{1}\right)\right) \mapsto\left(x_{0} \otimes y_{0}, x_{0} \otimes y_{1}+x_{1} \otimes y_{0}\right)
$$

Differential structure

As in differential LL, we consider differentiation as a structure of the exponential.

So we assume moreover that

- \mathcal{L} is cartesian (T : terminal object, $X_{0} \& X_{1}$: product, $\mathrm{pr}_{i} \in \mathcal{L}\left(X_{0} \& X_{1}, X_{i}\right),\left\langle f_{0}, f_{1}\right\rangle \in \mathcal{L}\left(Y, X_{0} \& X_{1}\right)$ if $\left.f_{i} \in \mathcal{L}\left(Y, X_{0}\right)\right)$.
- \mathcal{L} is equipped with a resource modality (!, der, $\operatorname{dig}, \mathrm{m}^{0}, \mathrm{~m}^{2}$)

$$
\begin{aligned}
& \operatorname{der}_{X} \in \mathcal{L}(!X, X) \operatorname{dig}_{X} \in \mathcal{L}(!X,!!X) \quad \text { comonad structure } \\
& \mathrm{m}^{0} \in \mathcal{L}(1,!\top) \mathrm{m}_{X, Y}^{2} \in \mathcal{L}(!X \otimes!Y,!(X \& Y)) \\
& \text { Seely isos, strong sym. monoidality }
\end{aligned}
$$

Preservation of products

We need a further property about \mathbf{S}.

Axiom (Product)

The functor \mathbf{S} preserves cartesian products, more precisely:

$$
\left\langle\mathbf{S p r}_{0}, \mathbf{S p r}_{1}\right\rangle \in \mathcal{L}\left(\mathbf{S}\left(X_{0} \& X_{1}\right), \mathbf{S} X_{0} \& \mathbf{S} X_{1}\right)
$$

is an iso.
This holds in all the LL-based examples we have in mind, because in these examples \mathbf{S} is a right adjoint.

The differentiation operator

In this setting (resource category with a summability structure), a differential structure is a natural transformation

$$
\partial_{X} \in \mathcal{L}(!\mathbf{S} X, \mathbf{S}!X)
$$

satisfying some properties.

Remark (main idea)

Given $f \in \mathcal{L}_{!}(X, Y)$, this will allow to define

$$
\mathbf{D} f=(\mathbf{S} f) \partial_{X} \in \mathcal{L}_{!}(\mathbf{S} X, \mathbf{S} Y)
$$

which will (intuitively) be the map $(x, u) \mapsto\left(f(x), f^{\prime}(x) \cdot u\right)$.
We list the conditions to be satisfied by ∂_{X}

Second derivative: intuition

Let $f \in \mathcal{L}_{!}(X, Y)$, we have $\mathbf{D} f \in \mathcal{L}(\mathbf{D} X, \mathbf{D} Y)$

$$
\mathbf{D} f(x, u)=\left(f(x), \frac{f(x)}{d x} \cdot u\right)
$$

We can apply \mathbf{D} to $\mathbf{D} f$, we get

$$
\mathbf{D}^{2} f((x, u),(y, v))=\left(\mathbf{D} f(x, u), \frac{d \mathbf{D} f(x, u)}{d(x, u)} \cdot(y, v)\right)
$$

Remember $\mathbf{D} f(x, u)=\left(f(x), f^{\prime}(x) \cdot u\right)$.
By standard rules of calculus:

$$
\begin{aligned}
\frac{d \mathbf{D} f(x, u)}{d(x, u)} \cdot(y, v) & =\frac{\partial \mathbf{D} f(x, u)}{\partial x} \cdot y+\frac{\partial \mathbf{D} f(x, u)}{\partial u} \cdot v \\
\frac{\partial \mathbf{D} f(x, u)}{\partial x} \cdot y & =\frac{\partial}{\partial x}\left(f(x), f^{\prime}(x) \cdot u\right) \cdot y \\
& =\left(f^{\prime}(x) \cdot y, f^{\prime \prime}(x) \cdot(u, y)\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \mathbf{D} f(x, u)}{\partial u} \cdot v & =\frac{\partial}{\partial u}\left(f(x), f^{\prime}(x) \cdot u\right) \cdot v \\
& =\left(0, f^{\prime}(x) \cdot v\right)
\end{aligned}
$$

Finally we have, intuitively

$$
\begin{aligned}
\mathbf{D}^{2} f((x, u),(y, v))= & \left(\left(f(x), f^{\prime}(x) \cdot u\right),\right. \\
& \left(f^{\prime}(x) \cdot y, f^{\prime \prime}(x) \cdot(u, y)+f^{\prime}(x) \cdot v\right)
\end{aligned}
$$

Notice that in the first 3 components, we have only 1st order derivatives.

Distributive law

Axiom (Chain Rule + Linearity)

∂ is a distributive law between the monad \mathbf{S} and the comonad !_ in the following sense.

$!!\mathbf{S} X \xrightarrow{!\partial x}!\mathbf{S}!X \xrightarrow{\partial!x} \mathbf{S}!!X$

$!\mathbf{S}^{2} X \xrightarrow{\partial \mathbf{s} X} \mathbf{S}!\mathbf{S} X \xrightarrow{\mathbf{S} \partial x} \mathbf{S}^{2}!X$

See John Power and Hiroshi Watanabe, Combining a monad and a comonad, TCS 2002 for this kind of dist. law.

Intuition for the dist. law

The first two diagrams allow to define a functor

$$
\begin{aligned}
\mathbf{D}: \mathcal{L}_{!} & \rightarrow \mathcal{L}_{!} \\
X & \mapsto \mathbf{S} X \\
(f:!X \rightarrow Y) & \mapsto\left((\mathbf{S} f) \partial_{X}:!\mathbf{S} X \rightarrow \mathbf{S} Y\right)
\end{aligned}
$$

Intuitively, and in probabilistic coherence spaces for instance:

- $f \in \mathcal{L}_{!}(X, Y)$ means that f is an analytic function $X \rightarrow Y$
- $\mathbf{D} f \in \mathbf{P c o h}_{!}(X, Y)$ is the $(x, u) \mapsto\left(f(x), f^{\prime}(x) \cdot u\right)$
so this functoriality means that the chain rule holds.
And that the differential of a linear morphism is the morphism itself: $\mathbf{D}\left(f \operatorname{der}_{X}\right)=(\mathbf{S} f) \operatorname{der}_{\mathbf{S}} X$ for $f \in \mathcal{L}(X, Y)$.

The two next diagrams allow to lift the monad $(\mathbf{S}, \zeta, \theta)$ to \mathcal{L}_{1}. For $\theta_{X} \in \mathcal{L}_{!}\left(\mathbf{S}^{2} X, \mathbf{S} Y\right)=\mathcal{L}\left(!\mathbf{S}^{2} X, \mathbf{S} Y\right)$: we take $\theta_{X} \operatorname{der}_{X}$.

These diagrams allow to prove that θ is a natural transformation on $\mathcal{L}_{!}$. If $f \in \mathcal{L}!(X, Y)$:

And similarly ζ is natural in $\mathcal{L}_{!}$.

Intuition: linearity of the differential

Remember:

$$
\begin{aligned}
& \theta_{X}\left(\left(x_{0}, u_{0}\right),\left(x_{1}, u_{1}\right)\right)=\left(x_{0}, u_{0}+x_{1}\right) \\
& \mathbf{D}^{2} f\left(\left(x_{0}, u_{0}\right),\left(x_{1}, u_{1}\right)\right)=\left(\left(f\left(x_{0}\right), f^{\prime}\left(x_{0}\right) \cdot u_{0}\right),\right. \\
&\left(f^{\prime}\left(x_{0}\right) \cdot x_{1}, f^{\prime \prime}\left(x_{0}\right) \cdot\left(u_{0}, x_{1}\right)+f^{\prime}\left(x_{0}\right) \cdot u_{1}\right)
\end{aligned}
$$

The commutation means:

$$
\mathbf{D} f\left(x_{0}, u_{0}+x_{1}\right)=\left(f\left(x_{0}\right), f^{\prime}\left(x_{0}\right) \cdot u_{0}+f^{\prime}\left(x_{0}\right) \cdot x_{1}\right)
$$

that is $f^{\prime}\left(x_{0}\right) \cdot\left(u_{0}+x_{1}\right)=f^{\prime}\left(x_{0}\right) \cdot u_{0}+f^{\prime}\left(x_{0}\right) \cdot x_{1}$.
Naturality of ζ in $\mathcal{L}!$: $f^{\prime}(x) \cdot 0=0$.

Locality

To represent one of the differential situation we are interested in, this distributive law has to satisfy additional axioms: Locality, Leibniz and Schwarz.

Axiom (Locality)

Only for π_{0}, not for π_{1} !

Intuition

Again we use π_{0} for $\pi_{0} \operatorname{der}_{X} \in \mathcal{L}_{!}(\mathbf{D} X, X)$.
The diagram means that π_{0} is natural in $\mathcal{L}!$. If $f \in \mathcal{L}_{!}(X, Y)$:

This corresponds to the intuition that

$$
\mathbf{D} f(x, u)=\left(f(x), f^{\prime}(x) \cdot u\right)
$$

Remark

$\pi_{1} \in \mathcal{L}_{!}(\mathbf{D} X, X)$ also exists but is fundamentally not natural in $\mathcal{L}!$ (of course π_{1} is natural in \mathcal{L}).

Leibniz

Is expressed as a "monoidality" condition (to simplify we assume $\mathbf{S}(X \& Y)=\mathbf{S} X \& \mathbf{S} Y)$

Axiom (Leibniz)

$$
\begin{aligned}
& \quad!\mathbf{S} X \otimes!\mathbf{S} Y \xrightarrow{\partial_{X} \otimes \partial_{Y}} \mathbf{S}!X \otimes \mathbf{S}!Y \xrightarrow{\text { L!X,IY}} \mathbf{S}(!X \otimes!Y) \\
& \mathbf{m}_{\mathbf{S} X, \mathbf{S} Y}^{2} \downarrow \\
& !\mathbf{S}(X \& Y) \xrightarrow[\partial_{X \& Y}]{\mid \mathbf{S m}_{X, Y}^{2}}
\end{aligned}
$$

+ a "0-ary version".

Intuition

Given $f \in \mathcal{L}_{!}(X \& Y, Z)$, this commutation gives us an expression for $\mathbf{D} f$ in terms of the two differentials ∂_{X} and ∂_{Y}.

Given $((x, y),(u, v)) \in \mathbf{S}(X \& Y)$, that is, $(x, u) \in \mathbf{S} X$ and $(y, v) \in \mathbf{S} Y$,

$$
\frac{d f(x, y)}{d(x, y)} \cdot(u, v)=\frac{\partial f(x, y)}{\partial x} \cdot u+\frac{\partial f(x, y)}{\partial y} \cdot v
$$

In the diagram, + is implemented by $L_{!~} X,!Y$.

Schwarz

Axiom (Schwarz)

$$
\begin{aligned}
& \stackrel{\mathbf{S}^{2} X}{ } \xrightarrow{\partial_{\mathbf{s} X}} \mathbf{S}!\mathbf{S} X \xrightarrow{\mathbf{s} \partial_{X}} \mathbf{S}^{2}!X \\
& !\mathrm{c}_{X} \mid \\
& \mathbf{S}^{2} X \xrightarrow{\partial_{\mathbf{s} X} \mid X} \mathbf{S}!\mathbf{S} X \xrightarrow{\mathbf{s} \partial_{x}} \mathbf{S}^{2}!X
\end{aligned}
$$

If $f \in \mathcal{L}_{!}(X, Y)$ then

$$
\mathbf{D}^{2} f=\left(\mathbf{S}^{2} f\right)\left(\mathbf{S} \partial_{x}\right) \partial_{\mathbf{s} x}
$$

so this diagram means that c is natural in \mathcal{L}_{L} :

where we use also c_{X} for c_{X} der $_{\mathrm{S}^{2} X}$.

Intuition

Remember that

$$
\begin{aligned}
\mathrm{c}_{X}\left(\left(x_{0}, u_{0}\right),\left(x_{1}, u_{1}\right)\right)= & \left(\left(x_{0}, x_{1}\right),\left(u_{0}, u_{1}\right)\right) \\
\mathbf{D}^{2} f\left(\left(x_{0}, u_{0}\right),\left(x_{1}, u_{1}\right)\right)= & \left(\left(f\left(x_{0}\right), f^{\prime}\left(x_{0}\right) \cdot u_{0}\right),\right. \\
& \left(f^{\prime}\left(x_{0}\right) \cdot x_{1}, f^{\prime \prime}\left(x_{0}\right) \cdot\left(u_{0}, x_{1}\right)+f^{\prime}\left(x_{0}\right) \cdot u_{1}\right)
\end{aligned}
$$

so this naturality means that

$$
\begin{aligned}
& \mathbf{D}^{2} f\left(\left(x_{0}, x_{1}\right),\left(u_{0}, u_{1}\right)\right)=\left(\left(f\left(x_{0}\right), f^{\prime}\left(x_{0}\right) \cdot x_{1}\right),\right. \\
& \\
& \quad\left(f^{\prime}\left(x_{0}\right) \cdot u_{0}, f^{\prime \prime}\left(x_{0}\right) \cdot\left(u_{0}, x_{1}\right)+f^{\prime}\left(x_{0}\right) \cdot u_{1}\right) \\
& \begin{array}{l}
\left(\left(f\left(x_{0}\right), f^{\prime}\left(x_{0}\right) \cdot x_{1}\right),\left(f^{\prime}\left(x_{0}\right) \cdot u_{0}, f^{\prime \prime}\left(x_{0}\right) \cdot\left(x_{1}, u_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot u_{1}\right)\right. \\
\quad=\left(\left(f\left(x_{0}\right), f^{\prime}\left(x_{0}\right) \cdot x_{1}\right),\left(f^{\prime}\left(x_{0}\right) \cdot u_{0}, f^{\prime \prime}\left(x_{0}\right) \cdot\left(u_{0}, x_{1}\right)+f^{\prime}\left(x_{0}\right) \cdot u_{1}\right)\right.
\end{array}
\end{aligned}
$$

So taking $u_{1}=0$ we get

$$
f^{\prime \prime}\left(x_{0}\right) \cdot\left(x_{1}, u_{0}\right)=f^{\prime \prime}\left(x_{0}\right) \cdot\left(u_{0}, x_{1}\right)
$$

which is the crucial property that the second derivative is a symmetric bilinear function, often called Schwarz lemma.

Coherent Differentiation (II)

Thomas Ehrhard
IRIF, CNRS and Université de Paris

November 28, 2021

Short recap

Summability structure

- \mathcal{L} is a category with 0 -morphisms
- $\mathbf{S}: \mathcal{L} \rightarrow \mathcal{L}$ is a 0 -preserving functor
- $\pi_{0}, \pi_{1}, \sigma: \mathbf{S} X \rightarrow X$ are natural transformations
- π_{0}, π_{1} are jointly monic
- $f_{0}, f_{1} \in \mathcal{L}(X, Y)$ are summable if there is $\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}} \in \mathcal{L}(X, \mathbf{S} Y)$ with $\pi_{i}\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}=f_{i}$, and then $f_{0}+f_{1}=\sigma\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}$.
+ axioms to turn $\mathcal{L}(X, Y)$ into a partial commutative monoid.
In particular $\mathrm{c} \in \mathcal{L}\left(\mathbf{S}^{2} X, \mathbf{S}^{2} X\right)$ the standard flip with
$\pi_{i} \pi_{j} \mathrm{c}=\pi_{j} \pi_{i}$.
\mathbf{S} inherits a monad structure $(\mathbf{S}, \zeta, \theta)$.

Differentiation

\mathcal{L} is assumed to be a resource category (cartesian SMC with a resource comonad aka. exponential, with Seely strong monoidality).

The differential structure is a natural transformation $\partial_{X} \in \mathcal{L}(!\mathbf{S} X, \mathbf{S}!X)$ which satisfies some futher commutations:

- it is a distributive law between the monad \mathbf{S} and the comonad !.: Chain Rule and Linearity (of the derivative)
- Locality
- Leibniz
- Schwarz.

Then one defines the Differentiation Functor $\mathbf{D}: \mathcal{L}_{!} \rightarrow \mathcal{L}_{!}$by $\mathbf{D} X=\mathbf{S} X$ and if $f \in \mathcal{L}_{!}(X, Y)=\mathcal{L}_{!}(!X, Y)$ then
$\mathbf{D} f=(\mathbf{S} f) \partial_{X} \in \mathcal{L}_{!}(\mathbf{D} X, \mathbf{D} Y)$.

Canonical structure

A special, very common, case

We assume that \mathcal{L} is monoidal closed (convenient though not strictly necessary) so that the functor

$$
-\otimes I
$$

where $\mathrm{I}=1 \& 1$, has a right adjoint \mathbf{S}_{I}.

$$
\begin{aligned}
\mathbf{S}_{\mathbf{I}} X & =(\mathrm{I} \multimap X) \\
\mathbf{S}_{\mathbf{I}} f & =(\mathrm{I} \multimap f) \in \mathcal{L}(\mathrm{I} \multimap X, \mathrm{I} \multimap Y)
\end{aligned}
$$

for $f \in \mathcal{L}(X, Y)$.

Remark

We still assume that \mathcal{L} has zero-morphisms.

Two natural questions

Remark

In (probabilistic) coherence spaces, \mathbf{S} is defined exactly in that way.

- When does this definition give rise to a summability structure?
- What does the differential structure boil down to in this setting?

We have three morphisms

$$
\begin{aligned}
\bar{\pi}_{0} & =\langle\mathrm{Id}, 0\rangle \in \mathcal{L}(1, \mathrm{I}) \\
\bar{\pi}_{1} & =\langle 0, \mathrm{Id}\rangle \in \mathcal{L}(1, \mathrm{I}) \\
\Delta & =\langle\mathrm{Id}, \mathrm{Id}\rangle \in \mathcal{L}(\mathrm{I}, \mathrm{I})
\end{aligned}
$$

which induce natural transformations $\pi_{0}, \pi_{1}, \sigma \in \mathcal{L}\left(\mathbf{S}_{\mid} X, X\right)$ by "precomposition".

For instance π_{0} is

$$
(\mathrm{I} \multimap X) \xrightarrow{\sim}(\mathrm{I} \multimap X) \otimes 1 \xrightarrow{\mathrm{Id} \otimes \pi_{0}}(\mathrm{I} \multimap X) \otimes \mathrm{I} \xrightarrow{\mathrm{ev}} X
$$

Summability as a property

Definition

\mathcal{L} is canonically summable if $\left(\mathbf{S}_{\mathbf{I}}, \pi_{0}, \pi_{1}, \sigma\right)$ defined in that way are a summability structure.

Remark (a property of \mathcal{L}, not a structure)

This is a property of \mathcal{L}, not an additional structure on \mathcal{L}.
In particular we need $\bar{\pi}_{0}, \bar{\pi}_{1}$ to be jointly epic.

What do summability and sums become?

Remember that $\mathcal{L}(X, Y) \simeq \mathcal{L}(1, X \multimap Y)$.

Fact

$x_{0}, x_{1} \in \mathcal{L}(1, X)$ are summable if there is $h \in \mathcal{L}(I, X)$ such that

$$
x_{i}=h \bar{\pi}_{i}
$$

and then $x_{0}+x_{1}=h \Delta \in \mathcal{L}(1, X)$.

Canonical Witness Axiom

If $f_{0}, f_{1} \in \mathcal{L}(\mathrm{I}, X)$ are such that $f_{0} \Delta, f_{1} \Delta \in \mathcal{L}(\mathrm{I}, X)$ are summable, then so are f_{0}, f_{1}. That is, up to $\mathcal{L}(I, X) \simeq \mathcal{L}(1, I \multimap X)$:
if $f_{0}, f_{1}, f \in \mathcal{L}(I, X)$ are such that

$$
f_{i} \Delta=f \bar{\pi}_{i} \text { for } i=0,1
$$

then there is $h \in \mathcal{L}(\mathbf{I} \otimes \mathbf{I}, X)$ such that

$$
f_{i} \lambda=h\left(\bar{\pi}_{i} \otimes \mathbf{I}\right) \in \mathcal{L}(1 \otimes \mathbf{I}, X)
$$

where λ is the can. isom. $1 \otimes I \rightarrow \mathbf{I}$.

Remark

Then $f \rho=h(I \otimes \Delta)$. Because $\bar{\pi}_{0}, \bar{\pi}_{1}$ are jointly epic.

If $\bar{\pi}_{0}, \bar{\pi}_{1}$ are jointly epic, then $\left(\mathbf{S}_{\mathbf{I}}, \pi_{0}, \pi_{1}, \sigma\right)$ (as defined above) is a summability structure on \mathcal{L} iff the Canonical Witness Axiom holds.

I is a commutative comonoid

Thanks to the axioms we can define

$$
\widetilde{L} \in \mathcal{L}(I, I \otimes I)
$$

uniquely characterized by

$$
\tilde{\mathrm{L}} \bar{\pi}_{0}=\bar{\pi}_{0} \otimes \bar{\pi}_{0} \text { and } \tilde{\mathrm{L}} \bar{\pi}_{1}=\bar{\pi}_{0} \otimes \bar{\pi}_{1}+\bar{\pi}_{1} \otimes \bar{\pi}_{0}
$$

Fact

$\left(\mathrm{I}, \mathrm{pr}_{0} \in \mathcal{L}(\mathrm{I}, 1), \widetilde{\mathrm{L}}\right)$ is a commutative comonoid in \mathcal{L}.
$\mathrm{pr}_{0} \in \mathcal{L}(\mathrm{I}=(1 \& 1), 1)$ is the first projection.

The commutative monad structure of $\mathbf{S}_{\text {। }}$

We have seen that $\mathbf{S}_{\boldsymbol{I}}$ has a structure of commutative monad.

Fact

The monad $\left(\mathbf{S}_{\mathbf{I}}, \zeta, \theta\right)$ is induced by the commutative comonoid structure ($\mathrm{pr}_{0}, \mathrm{~L}$) of I .

For instance $\theta=\operatorname{cur} f:(I \multimap(I \multimap X)) \rightarrow(I \multimap X)$ where f is

$$
\begin{gathered}
(I \multimap(I \multimap X)) \otimes I \xrightarrow{\mathrm{Id} \otimes \tilde{\mathrm{~L}}}(\mathrm{I} \multimap(\mathrm{I} \multimap X)) \otimes \mathrm{I} \otimes \mathrm{I} \\
\underset{\substack{\text { ev } \otimes \mathrm{ld} \\
\text { ev }}}{ }(\mathrm{I} \multimap X) \otimes \mathrm{I}
\end{gathered}
$$

Differentiation as a !-coalgebra (canonical case)

!_ and its coalgebras

We assume that \mathcal{L} is a cartesian resource category (cartesian product \& exponential comonad !_, Seely isos etc).

A !-coalgebra structure on $X \in \mathcal{L}$ is a $d \in \mathcal{L}(X,!X)$ such that

These colgebras form the Eilenberg-Moore category $\mathcal{L}!$ where

$\mathcal{L}^{!}$is cartesian

Due to the fact that \mathcal{L} is a resource category $(\otimes, \&$, Seely isos $)$:

Fact

$\mathcal{L}^{!}$is cartesian, with terminal object

$$
\left(1, \mu^{0}: 1 \rightarrow!1\right)
$$

and the cartesian product of $\left(P_{0}, d_{0}\right),\left(P_{1}, d_{1}\right) \in \mathcal{L}^{!}$is
$\left(P_{0} \otimes P_{1}, \mu^{2}\left(d_{0} \otimes d_{1}\right)\right)$

$$
P_{0} \otimes P_{1} \xrightarrow{d_{0} \otimes d_{1}}!P_{0} \otimes!P_{1} \xrightarrow{\mu^{2}}!\left(P_{0} \otimes P_{1}\right)
$$

Projection $\mathrm{pr}_{0}^{\otimes}$ (and similarly for $\mathrm{pr}_{1}^{\otimes}$):

$$
P_{0} \otimes P_{1} \xrightarrow{d_{0} \otimes d_{1}}!P_{0} \otimes!P_{1} \xrightarrow{\operatorname{der}_{P_{0}} \otimes!0} P_{0} \otimes!T \simeq P_{0}
$$

Uses the lax symmetric monoidality structure $\left(\mu^{0}, \mu^{2}\right)$ of !..

Chain Rule and coalgebra

Fact

There is a bijective correspondence between

- the !-coalgebra structures on I
- and the distributive laws between \mathbf{S}_{I} and !_ in the sense of the Chain Rule:

Coalgebra \rightsquigarrow Chain Rule

Suppose we are given $\delta \in \mathcal{L}(I,!!)$, then for any object X we can define $\partial_{X}=\operatorname{cur} f \in \mathcal{L}\left(!\mathbf{S}_{\mid} X=!(I \multimap X), \mathbf{S}_{!}!X=(I \multimap!X)\right)$ where f is

$$
!(\mathrm{I} \multimap X) \otimes \mathrm{I} \xrightarrow{\mathrm{Id} \otimes \delta}!(\mathrm{I} \multimap X) \otimes!\mathrm{I} \xrightarrow{\mu^{2}}!((\mathrm{I} \multimap X) \otimes \mathrm{I}) \xrightarrow{\text { lev }}!X
$$

$\mu_{X, Y}^{2} \in \mathcal{L}(!X \otimes!Y,!(X \otimes Y))$ is the lax-monoidality structure of !wrt. \otimes.

Chain Rule \rightsquigarrow Coalgebra

Conversely assume we are given $\partial_{X} \in \mathcal{L}\left(!\mathbf{S}_{\mid} X, \mathbf{S}_{\mid}!X\right)$ for each $X \in \mathcal{L}$, we have in particular, taking $X=\mathrm{I}$:

$$
\begin{aligned}
I \xrightarrow{\lambda_{1}^{-1}} 1 \otimes I \xrightarrow{\mu^{0} \otimes \mathrm{ld}} & \left.!1 \otimes I \xrightarrow{\partial_{\mathrm{I}}^{2} \otimes \mathrm{ld}} \text { (cur } \lambda_{\mathrm{l}}\right) \otimes \mathrm{ld}
\end{aligned}(\mathrm{I} \multimap \mathrm{I}) \otimes \mathrm{I}
$$

where $\mu^{0} \in \mathcal{L}(1,!1)$ is the "unit" of the lax-monoidality and $\lambda_{I} \in \mathcal{L}(1 \otimes I, I)$ (the canonical iso).

A natural question

So assume we are given a coalgebra structure $\delta \in \mathcal{L}(I,!I)$.
What conditions must satisfy δ for ensuring that the corresponding distributive law $\left(\partial_{X}\right)_{X \in \mathcal{L}}$ satisfies the additional conditions

- Linearity (second part of the dist. law)
- Local
- Leibniz
- Schwarz?

The answer is surprisingly simple.

Linearity and Leibniz

Linearity and Leibniz boil down to

that is

$$
\begin{aligned}
& \operatorname{pr}_{0} \in \mathcal{L}^{!}((\mathrm{I}, \delta), \overbrace{\left(1, \mu^{0}\right)}^{\text {term. obj. }}) \\
& \widetilde{\mathrm{L}} \in \mathcal{L}^{!}((\mathrm{I}, \delta), \underbrace{(\mathrm{I}, \delta) \otimes(\mathrm{I}, \delta)}_{\text {cart. prod. }})
\end{aligned}
$$

comonoid from the coalgebra

This means that we have

because $\mathcal{L}^{!}$is cartesian.

Remark

As a consequence, a canonically summable resource category where ! - is the free exponential (roughly speaking, a Lafont category which is canonically summable) has exactly one differential structure (in our sense).

Related to a result of Blute, Cockett, Lemay and Seely (in additive resource categories).

Locality corresponds to

that is $\iota_{0} \in \mathcal{L}^{!}\left(\left(1, \mu^{0}\right),(I, \delta)\right)$.
And Schwarz straightforwardly holds.

Remark: the Kleisli category of $\mathbf{S}_{\text {। }}$

It turns out to be exactly the same thing as the category $\mathcal{L}[(I, \delta)]$ of free comodules of the coalgebra (I, δ).

Theorem (Girard)

If \mathcal{L} is a model of $L L$ then $\mathcal{L}[(1, \delta)]$ is a model of $L L$. Very likely conjecture: it is also a summable differential model of LL.

The objects of $\mathcal{L}[(I, \delta)]$ are those of \mathcal{L}.
$f \in \mathcal{L}[(I, \delta)](X, Y)$ if $f=\left(f_{0}, f_{1}\right) \in \mathcal{L}(X, Y)$ is a summable pair of morphisms. Composition:

$$
\left(g_{0}, g_{1}\right)\left(f_{0}, f_{1}\right)=\left(g_{0} f_{0}, g_{0} f_{1}+g_{1} f_{0}\right)
$$

Intuition: " $g_{1} f_{1}=0$ ", $\mathcal{L}[(I, \delta)]$ is a kind of infinitesimal extension of \mathcal{L}.

To summarize

In the canonical case, for a closed resource category \mathcal{L} :
(1) summability boils down to the Canonical Witness Axiom about $\mathrm{I}=1 \& 1$ (+ the fact that $\bar{\pi}_{0}, \bar{\pi}_{1}$ are jointly epic);
(2) and the differential structure boils down to a coalgebra structure on I
such that the morphisms $\mathrm{pr}_{0} \in \mathcal{L}(\mathrm{I}, 1), \iota_{0} \in \mathcal{L}(1, \mathrm{I})$ and $\widetilde{L} \in \mathcal{L}(I, I \otimes I)$ are coalgebra morphisms.

Remember that these 3 morphisms arise from the summability assumptions.

Concrete instance I: Coherence Spaces

A coherence space is

$$
E=\left(|E|, \frown_{E}\right)
$$

where $|E|$ is a set and Ξ_{E} is a binary symmetric and reflexive relation on $|E|$.

The domain of cliques:

$$
\mathrm{Cl}(E)=\left\{x \subseteq|E| \mid \forall a, a^{\prime} \in x a \frown_{E} a^{\prime}\right\}
$$

ordered by \subseteq.

Morphisms

- $|E \multimap F|=|E| \times|F|$
- $(a, b) \frown_{E \multimap F}\left(a^{\prime}, b^{\prime}\right)$ if

$$
a \frown_{E} a^{\prime} \Rightarrow\left(b \frown_{F} b^{\prime} \text { and } b=b^{\prime} \Rightarrow a=a^{\prime}\right)
$$

And then
$\operatorname{Coh}(E, F)=\mathrm{Cl}(E \multimap F)$

Some notations for Coh

- Identity: $\operatorname{Id}_{E}=\{(a, a)|a \in| E \mid\}$
- Composition: if $s \in \operatorname{Coh}(E, F)$ and $t \in \operatorname{Coh}(F, G)$ then

$$
\begin{aligned}
t s & =\{(a, c) \in|E| \times|G||\exists b \in| F \mid(a, b) \in s \text { and }(b, c) \in t\} \\
& \in \operatorname{Coh}(E, G)
\end{aligned}
$$

- Application to a clique: if $s \in \operatorname{Coh}(E, F)$ and $x \in \operatorname{Cl}(E)$ then $s \cdot x=\{b \in|F| \mid a \in x$ and $(a, b) \in s\} \in \mathrm{Cl}(F)$.

Coh is cartesian

- Terminal object $T=(\emptyset, \emptyset)$.
- Cartesian product $\left|E_{0} \& E_{1}\right|=\{0\} \times\left|E_{0}\right| \cup\{1\} \times\left|E_{1}\right|$ $(i, a) \frown_{E_{0} \& E_{1}}(j, b)$ if $i=j \Rightarrow a \frown_{E_{i}} b$.
- The projections are

$$
\mathrm{pr}_{i}=\left\{((i, a), a) \mid i \in\{0,1\} \text { and } a \in\left|E_{i}\right|\right\} \in \operatorname{Coh}\left(E_{0} \& E_{1}, E_{i}\right) .
$$

If $t_{i} \in \operatorname{Coh}\left(F, E_{i}\right)$ then

$$
\begin{aligned}
\left\langle t_{0}, t_{1}\right\rangle= & \left\{(b,(i, a)) \mid i \in\{0,1\} \text { and }(b, a) \in t_{i}\right\} \\
& \in \mathbf{C o h}\left(F, E_{0} \& E_{1}\right)
\end{aligned}
$$

Remark

$\mathrm{CI}(\top)=\{\emptyset\}$ and $\mathrm{Cl}\left(E_{0}\right) \times \mathrm{Cl}\left(E_{1}\right) \simeq \mathrm{CI}\left(E_{0} \& E_{1}\right)$ by

$$
\left(x_{0}, x_{1}\right) \mapsto\{0\} \times x_{0} \cup\{1\} \times x_{1}
$$

Coh is monoidal closed

- Unit $1=(\{*\},=)$.
- Tensor product $\left|E_{0} \otimes E_{1}\right|=\left|E_{0}\right| \times\left|E_{1}\right|$ and $\left(a_{0}, a_{1}\right) \frown_{E_{0} \otimes E_{1}}\left(a_{0}^{\prime}, a_{1}^{\prime}\right)$ if $a_{i} \frown_{E_{i}} a_{i}^{\prime}$ for $i=0,1$.
- If $t_{i} \in \operatorname{Coh}\left(E_{i}, F_{i}\right)$ for $i=0,1$ then

$$
\begin{aligned}
t_{0} \otimes t_{1}= & \left\{\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right)\right) \mid\left(a_{i}, b_{i}\right) \in t_{i} \text { for } i=0,1\right\} \\
& \in \mathbf{C o h}\left(E_{0} \otimes E_{1}, F_{0} \otimes F_{1}\right) .
\end{aligned}
$$

Monoidal closedness:
$\operatorname{Coh}(G \otimes E, F) \simeq \operatorname{Coh}(G, E \multimap F)$.

Coh as a resource category

- $|!E|=$ the set of all finite multisets $m=\left[a_{1}, \ldots, a_{n}\right]$ with $a_{i} \in|E|$ and $\forall i, j a_{i} \frown_{E} a_{j}$. It is a uniform exponential.
- $m \frown_{!E} m^{\prime}$ if $\forall a \in m, a^{\prime} \in m^{\prime} m \frown_{E} m^{\prime}$.
- And it $t \in \operatorname{Coh}(E, F)$ then

$$
\begin{aligned}
!t= & \left\{\left(\left[a_{1}, \ldots, a_{n}\right],\left[b_{1}, \ldots, b_{n}\right]\right) \mid\right. \\
& n \in \mathbb{N},\left[a_{1}, \ldots, a_{n}\right] \in|!E| \\
& \left.\quad \text { and }\left(a_{i}, b_{i}\right) \in t \text { for } i=1, \ldots, n\right\} \\
& \in \operatorname{Coh}(!E,!F) .
\end{aligned}
$$

Remark

This is the free exponential. There is another one where $|!E|$ is made of sets instead of multisets; it is not compatible with the differential structure.

Coh is canonically summable

- Coh has 0-morphisms: $0=\emptyset \in \operatorname{Coh}(E, F)$.
- $I=1 \& 1$ so that $|I|=\{0,1\}$ and $0 \frown_{I}$.
- The injections $\bar{\pi}_{i}=\{(*, i)\} \in \mathbf{C o h}(1, \mathrm{I})$ are jointly epic.

Remark

$s \in \operatorname{Coh}(1, E)$ is fully determined by the pair

$$
s \cdot\{0\}, s \cdot\{1\} \in \mathrm{Cl}(E)
$$

such that

$$
s \cdot\{0\} \cap s \cdot\{1\}=\emptyset .
$$

The Can. Witness Axiom holds in Coh

Let $t_{0}, t_{1}, t \in \mathbf{C o h}(I, E)$ such that

$$
t_{i} \Delta=t \bar{\pi}_{i} \text { for } i=0,1
$$

This means $t_{i} \cdot\{0,1\}=t \cdot\{i\}$ for $i=0,1$. That is:

$$
t_{0} \cdot\{0,1\} \cup t_{1} \cdot\{0,1\} \in \mathrm{Cl}(E) \text { and } t_{0} \cdot\{0,1\} \cap t_{1} \cdot\{0,1\}=\emptyset .
$$

Then let $s=\left\{((i, j), a) \mid(i, a) \in t_{j}\right\} \subseteq|I \otimes I \multimap E|$, we have

$$
s \in \operatorname{Coh}(I \otimes I, E)
$$

The functor $\mathbf{S}_{\mathbf{I}}: \mathbf{C o h} \rightarrow \mathbf{C o h}$ is given by

$$
\mathbf{S}_{\mathbf{l}} E=(I \multimap E)
$$

so that $\left|\mathbf{S}_{\mid} E\right|=\{0,1\} \times|E|$ with

$$
(i, a) \frown_{\mathbf{S}_{1} E}\left(i^{\prime}, a^{\prime}\right) \text { if } a \frown_{E} a^{\prime} \text { and } i \neq i^{\prime} \Rightarrow a \neq a^{\prime}
$$

Hence
$\mathrm{Cl}\left(\mathbf{S}_{\mid} E\right) \simeq\left\{\left(x_{0}, x_{1}\right) \in \mathrm{Cl}(E)^{2} \mid x_{0} \cup x_{1} \in \mathrm{Cl}(E)\right.$ and $\left.x_{0} \cap x_{1}=\emptyset\right\}$.

Remark

Two cliques x_{0}, x_{1} of E are summable if $x_{0} \cup x_{1} \in \mathrm{Cl}(E)$ and $x_{0} \cap x_{1}=\emptyset$. In that case we use $x_{0}+x_{1}$ for $x_{0} \cup x_{1}$.

The commutative comonoid structure of I is given by

$$
\begin{aligned}
\mathrm{pr}_{0} & =\{(0, *)\} \in \mathbf{C o h}(\mathrm{I}, 1) \\
\widetilde{\mathrm{L}} & =\{(0,(0,0)),(1,(1,0)),(1,(0,1))\} \in \mathbf{C o h}(\mathrm{I}, \mathrm{I} \otimes \mathrm{I}) .
\end{aligned}
$$

Remember it induces the monad structure $\zeta_{E} \in \mathbf{C o h}\left(E, \mathbf{S}_{\mathbf{I}} E\right)$ and $\theta_{E} \in \mathbf{C o h}\left(\mathbf{S}_{1}^{2} E, \mathbf{S}_{\mathbf{I}} E\right)$.

As expected

$$
\begin{aligned}
\theta_{E}: \mathbf{S}_{1}^{2} E & \rightarrow \mathbf{S}_{\mathbf{I}} E \\
\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right) & \mapsto\left(x_{00}, x_{10}+x_{01}\right)
\end{aligned}
$$

up to
$\mathrm{Cl}\left(\mathbf{S}_{\mathrm{I}}^{2} E\right) \simeq\left\{\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right) \mid x_{00}+x_{01}+x_{10}+x_{11} \in \mathrm{Cl}(E)\right\}$.

The differential structure of Coh

We define $\delta \subseteq|I \multimap!| \mid:$

$$
\delta=\{(0, n[0]) \mid n \in \mathbb{N}\} \cup\{(1, n[0]+[1]) \mid n \in \mathbb{N}\}
$$

where $n[a]=[\overbrace{a, \ldots, a}^{n \times}]$. It is easy to check that $\delta \in \operatorname{Coh}(I,!I)$.

δ is a coalgebra

The main thing to check is

that is, given $i \in\{0,1\}$ and $M \in \mathcal{M}_{\text {fin }}\left(\mathcal{M}_{\mathrm{fin}}(\{0,1\})\right)$,

$$
(i, M) \in!\delta \delta \Leftrightarrow(i, M) \in \operatorname{dig}_{\jmath} \delta
$$

where $\operatorname{dig}_{E}=\left\{\left(m,\left[m_{1}, \ldots, m_{k}\right]\right) \in|!E| \times|!!E| \mid m=m_{1}+\cdots+m_{k}\right\}$.

main case

The main case is when $i=1$.
$(1, M) \in!\delta \delta$ means $\exists k \in \mathbb{N}$ such that

$$
(k[0]+[1], M) \in!\delta
$$

that is:

$$
\begin{gathered}
M=\left[m_{1}, \ldots, m_{k+1}\right] \text { with }\left(0, m_{i}\right) \in \delta \text { for } i=1, \ldots k \\
\text { and }\left(1, m_{k+1}\right) \in \delta
\end{gathered}
$$

that is: $\exists k \in \mathbb{N} \exists n_{1}, \ldots, n_{k+1} \in \mathbb{N}$

$$
M=\left[n_{1}[0], \ldots, n_{k}[0], n_{k+1}[0]+[1]\right]
$$

And $(1, M) \in \operatorname{dig}$, δ means $\exists k \in \mathbb{N}$ such that

$$
(k[0]+[1], M) \in \operatorname{dig}_{1}
$$

that is:

$$
M=\left[m_{1}, \ldots, m_{l}\right] \text { with } m_{1}+\cdots+m_{l}=k[0]+[1]
$$

that is: $\exists l \in \mathbb{N}^{+} \exists n_{1}, \ldots, n_{I} \in \mathbb{N}$

$$
M=\left[n_{1}[0], \ldots, n_{l-1}[0], n_{l}[0]+[1]\right]
$$

The diagram commutes!

The differential distributive law

Remember that δ induces a distributive law $\partial_{E}=\operatorname{cur} u \in \mathbf{C o h}\left(!\mathbf{S}_{\mid} E, \mathbf{S}_{\mid}!E\right)$ where

$$
u:!(I \multimap E) \otimes I \rightarrow!E
$$

is

$$
!(I \multimap E) \otimes I \xrightarrow{\mathrm{Id} \otimes \delta}!(I \multimap E) \otimes!I \xrightarrow{\mu^{2}}!((I \multimap E) \otimes I) \xrightarrow{\text { lev }}!E
$$

Notice that $\mu_{E, F}^{2} \in \mathbf{C o h}(!E \otimes!F,!(E \otimes F))$ is

$$
\begin{aligned}
\mu_{E, F}^{2}=\{ & \left(\left(\left[a_{1}, \ldots, a_{n}\right],\left[b_{1}, \ldots, b_{n}\right]\right),\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right]\right) \mid \\
& \left.n \in \mathbb{N},\left[a_{1}, \ldots, a_{n}\right] \in|!E| \text { and }\left[b_{1}, \ldots, b_{n}\right] \in|!F|\right\}
\end{aligned}
$$

$$
!(I \multimap E) \otimes!I \xrightarrow{\mu^{2}}!((I \multimap E) \otimes I) \xrightarrow{\text { lev }}!E
$$

is

$$
\begin{aligned}
& \left\{\left(\left(\left[\left(i_{1}, a_{1}\right), \ldots,\left(i_{k}, a_{k}\right)\right],\left[i_{1}, \ldots, i_{k}\right]\right),\left[a_{1}, \ldots, a_{k}\right]\right) \mid\right. \\
& \left.\quad k \in \mathbb{N}, i_{1}, \ldots, i_{k} \in\{0,1\} \text { and }\left[\left(i_{1}, a_{1}\right), \ldots,\left(i_{k}, a_{k}\right)\right] \in|!(I \multimap E)|\right\}
\end{aligned}
$$

and $\left[\left(i_{1}, a_{1}\right), \ldots,\left(i_{k}, a_{k}\right)\right] \in|!(I \multimap E)|$ means that

$$
\forall j, j^{\prime} a_{j} \frown_{E} a_{j^{\prime}} \text { and } j \neq j^{\prime} \Rightarrow a_{j} \neq a_{j^{\prime}}
$$

$$
!(I \multimap E) \otimes I \xrightarrow{I \mathrm{~d} \otimes \delta}!(I \multimap E) \otimes!I
$$

is

$$
\begin{aligned}
& \{((p, 0),(p, n[0])) \mid n \in \mathbb{N}, p \in \mathrm{Cl}(\mathrm{I} \multimap E)\} \\
& \quad \cup\{((p, 1),(p, n[0]+[1])) \mid n \in \mathbb{N}, p \in \mathrm{Cl}(\mathrm{I} \multimap E)\}
\end{aligned}
$$

so $u=$

$$
!(I \multimap E) \otimes I \xrightarrow{\mathrm{Id} \otimes \delta}!(I \multimap E) \otimes!\mid \xrightarrow{\mu^{2}}!((I \multimap E) \otimes I) \xrightarrow{!\mathrm{ev}}!E
$$

is

$$
\begin{aligned}
& u=\{ \left(\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right)\right], 0\right),\left[a_{1}, \ldots, a_{k}\right]\right) \mid \\
&\left.\quad k \in \mathbb{N} \text { and }\left[a_{1}, \ldots, a_{k}\right] \in|!E|\right\} \\
& \cup\left\{\left(\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right),\left(1, a_{k+1}\right)\right], 1\right),\left[a_{1}, \ldots, a_{k+1}\right]\right) \mid\right.
\end{aligned}
$$

$$
\left.k \in \mathbb{N} \text { and }\left[a_{1}, \ldots, a_{k+1}\right] \in|!E| \text { and } a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}\right\}
$$

Expression of ∂_{E}

$$
\begin{aligned}
& \partial_{E}=\{ \left(\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right)\right],\left(0,\left[a_{1}, \ldots, a_{k}\right]\right) \mid\right.\right. \\
&\left.k \in \mathbb{N} \text { and }\left[a_{1}, \ldots, a_{k}\right] \in|!E|\right\} \\
& \cup\left\{\left(\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right),\left(1, a_{k+1}\right)\right],\left(1,\left[a_{1}, \ldots, a_{k+1}\right]\right) \mid\right.\right.\right. \\
&\left.k \in \mathbb{N} \text { and }\left[a_{1}, \ldots, a_{k+1}\right] \in|!E| \text { and } a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}\right\}
\end{aligned}
$$

$\in \operatorname{Coh}(!(I \multimap E), I \multimap!E)$.

The Kleisli category Coh

Object: those of Coh and $\operatorname{Coh}_{!}(E, F)=\operatorname{Coh}(!E, F)$. $s \in \mathbf{C o h}_{!}(E, F)$ induces a stable function

$$
\begin{aligned}
\widehat{s}: \mathrm{Cl}(E) & \rightarrow \mathrm{Cl}(F) \\
x & \mapsto\left\{b \in|F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x)(m, b) \in s\right\}
\end{aligned}
$$

Remark

Different s's can induce the same stable function: \widehat{s} forgets about the multiplicities in multisets.

If $s_{1}=\{([a], b)\}$ and $s_{2}=\{([a, a], b)\}$ then $\widehat{s_{1}}=\widehat{s_{2}}$.

Differentiation on Coh

Given $t \in \operatorname{Coh}_{!}(E, F)=\mathbf{C o h}(!E, F)$, remember that

$$
\mathbf{D} t=(\mathbf{S} t) \partial_{E} \in \mathbf{C o h}\left(!\mathbf{S}_{\mid} E=(I \multimap E), \mathbf{S}_{\mid}!E=(I \multimap!F)\right)
$$

Notice that

$$
\mathbf{S} t=\{((i, m),(i, b)) \mid i \in\{0,1\} \text { and }(m, b) \in t\}
$$

So

$$
\begin{aligned}
& \mathbf{D} t=\{ \left.\left.\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right)\right],(0, b)\right) \mid\left(\left[a_{1}, \ldots, a_{k}\right], b\right) \in t\right)\right\} \\
& \cup\left\{\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right),\left(1, a_{k+1}\right)\right],(1, b)\right) \mid\right. \\
&\left.\left.\left(\left[a_{1}, \ldots, a_{k}, a_{k+1}\right], b\right) \in t\right) \text { and } a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}\right\}
\end{aligned}
$$

The stable derivative

Remember that

$$
\mathrm{Cl}\left(\mathbf{S}_{\mid} E\right) \simeq\{(x, u) \mid x \cup u \in \mathrm{Cl}(E) \text { and } x \cap u=\emptyset\}
$$

In that way we get the stable function

$$
\begin{aligned}
\widehat{\mathbf{D} t}: \mathrm{Cl}\left(\mathbf{S}_{\mathbf{I}} E\right) & \rightarrow \mathrm{Cl}\left(\mathbf{S}_{\mathbf{I}} F\right) \\
(x, u) & \mapsto\left(\widehat{t}(x), t^{\prime}(x) \cdot u\right)
\end{aligned}
$$

where

$$
t^{\prime}(x) \cdot u=\left\{b \in|F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x), a \in u(m+[a], b) \in t\right\}
$$

Remark

If $t_{i}=\{(i[a], a)\}$ for $i=1,2$ we get

$$
\begin{aligned}
t_{1}^{\prime}(\emptyset) \cdot\{a\} & =\{a\} \\
t_{2}^{\prime}(\emptyset) \cdot\{a\} & =\emptyset
\end{aligned}
$$

whereas $\widehat{t_{1}}=\widehat{t_{2}}$. The derivative is not associated with the stable function itself.

In some sense this derivative "does not see mutiplicities". This can be remedied using non-uniform coherence spaces.

Coherent Differentiation (III)

Thomas Ehrhard
IRIF, CNRS and Université de Paris

November 28, 2021

The joint "epicness" axiom is necessary

Remember that we required \mathcal{L} to satisfy the following.
The morphisms $\bar{\pi}_{0}, \bar{\pi}_{1}: 1 \rightarrow \mathrm{I}=1 \& 1$ are jointly epic, that is: if $f_{0}, f_{1}: I \rightarrow X$ satisfy

$$
f_{0} \bar{\pi}_{i}=f_{1} \bar{\pi}_{i} \quad \text { for } \quad i=0,1
$$

then $f_{0}=f_{1}$.
This is not always true.

The category of pointed sets

Pointed set: a set X together with a distinguished $0_{X} \in X$.
Morphisms: functions $f: X \rightarrow Y$ s.t. $f\left(0_{X}\right)=0_{Y}$.
This category is cartesian:
$X \& Y=X \times Y$ with $0_{X \& Y}=\left(0_{X}, 0_{Y}\right)$.
And monoidal closed

$$
X \otimes Y=\left\{(x, y) \in X \times Y \mid x=0_{X} \Leftrightarrow y=0_{Y}\right\}
$$

and $0_{X \otimes Y}=\left(0_{X}, 0_{Y}\right)$ (smash product). The \otimes-unit is $1=\left\{*, 0_{1}\right\}$.

Remark

It is even a resource category: set $!X=\{(0,0)\} \cup\{1\} \times X$, and $0_{!~} X=(0,0)$.

Then the injections $\bar{\pi}_{0}, \bar{\pi}_{1}: 1 \rightarrow \mathrm{I}=1 \& 1$ are given by

$$
\begin{array}{ll}
\bar{\pi}_{0}\left(0_{1}\right)=\left(0_{1}, 0_{1}\right) & \bar{\pi}_{0}(*)=\left(*, 0_{1}\right) \\
\bar{\pi}_{1}\left(0_{1}\right)=\left(0_{1}, 0_{1}\right) & \bar{\pi}_{1}(*)=\left(0_{1}, *\right)
\end{array}
$$

If $f, g: 1 \& 1 \rightarrow Y$ satisfy $f \bar{\pi}_{i}=g \bar{\pi}_{i}$ for $i=0,1$ we can still have $f(*, *) \neq g(*, *)$.

The CWA is necessary

Canonical Witness Axiom

Reminder

Joint epicness of $\bar{\pi}_{0}, \bar{\pi}_{1}$ and CWA are the only conditions we need in the canonical case to get a summability structure.

If $f_{0}, f_{1} \in \mathcal{L}(\mathrm{I}, X)$ are such that $f_{0} \Delta, f_{1} \Delta \in \mathcal{L}(\mathrm{I}, X)$ are summable, then so are f_{0}, f_{1}. That is, up to $\mathcal{L}(I, X) \simeq \mathcal{L}(1, I \multimap X)$:
if $f_{0}, f_{1}, f \in \mathcal{L}(I, X)$ are such that

$$
f_{i} \Delta=f \bar{\pi}_{i}: 1 \rightarrow X \text { for } i=0,1
$$

then there is $h \in \mathcal{L}(\mathrm{I} \otimes \mathrm{I}, X)$ such that

$$
f_{i} \lambda=h\left(\bar{\pi}_{i} \otimes \mathrm{I}\right) \in \mathcal{L}(1 \otimes \mathrm{I}, X)
$$

where λ is the can. isom. $1 \otimes I \rightarrow I$.

Normed vector spaces

The CWA doe not always hold.
Let \mathcal{N} be the category

- whose objects are the finite-dimensional \mathbb{R}-vector spaces V equipped with a norm $\|-\| v$
- and a morphism $f: V \rightarrow W$ is a linear map such that $\forall v \in V\|f(v)\|_{w} \leq\|v\|_{V}$, that is $\|f\| \leq 1$,
where

$$
\|f\|=\sup _{\|v\|_{v} \leq 1}\|f(v)\| w
$$

\mathcal{N} is cartesian with $\|(u, v)\| v \& W=\max (\|u\|,\|v\|)$ for $(u, v) \in V \& W=V \times W$.
\mathcal{N} is an SMCC with $\|v \otimes w\| v \otimes W=\|v\|\|w\|$ for $v \in V$ and $w \in W$.

The unit of \otimes is $1=\mathbb{R}$ with $\|r\|=|r|$.
$V \multimap W$ is the space of all linear maps $V \rightarrow W$ with the norm $\|f\|_{V \rightarrow W}=\|f\|$ already defined.

Joint epicness axiom holds in \mathcal{N}.
Then the functor $\mathbf{S}_{\mathrm{I}} V$ (induced by I) is given by
$\mathrm{S}_{\mathbf{I}} V=(I \multimap V)=V \times V$ and

$$
\|(u, v)\| \mathbf{s}_{\mathbf{l}} v=\sup _{a, b \in[-1,1]}\|a u+b v\| v
$$

So $u, v \in V$ are summable if $\forall a, b \in[-1,1] \quad\|a u+b v\| v \leq 1$. In \mathbb{R} :

- $-1 / 2$ and $1 / 2$ are summable since $\|(-1 / 2,1 / 2)\|_{\mathbf{s}_{\mathbf{I}} \mathbb{R}}=1$
- $-1 / 2+1 / 2=0$ and 1 are summable
- but $1 / 2$ and 1 are not summable.
\rightsquigarrow the CWA does not hold in \mathcal{N}.

Remark

CWA expresses not only associativity of (partial) + but also some form of positivity of the elements of $\mathcal{L}(X, Y)$.

Recap of the differential structure

Assume that \mathcal{L} is a canonically summable resource category, that is:

- $\bar{\pi}_{0}, \bar{\pi}_{1} \in \mathcal{L}(1, I=1 \& 1)$ are jointly epic
- and the CWA holds.

Remember that I has a commutative comonoid structure given by

$$
\mathrm{pr}_{0}: \mathrm{I} \rightarrow 1 \quad \tilde{\mathrm{~L}}: \mathrm{I} \rightarrow \mathrm{I} \otimes \mathrm{I}
$$

with

$$
\widetilde{\mathrm{L}} \bar{\pi}_{0}=\bar{\pi}_{0} \otimes \bar{\pi}_{0} \quad \widetilde{\mathrm{~L}} \bar{\pi}_{1}=\bar{\pi}_{0} \otimes \bar{\pi}_{1}+\bar{\pi}_{1} \otimes \bar{\pi}_{0}
$$

Remember that + is just a notation for a composition with $\Delta=\left\langle\mathrm{Id}_{1}, \mathrm{Id}_{1}\right\rangle: 1 \rightarrow \mathrm{I}$.

Differential structure

In this setting, a differential structure is a !-coalgebra structure $\delta \in \mathcal{L}(I,!I)$ such that

- $\mathrm{pr}_{0} \in \mathcal{L}^{!}\left((\mathrm{I}, \delta),\left(1, \mu^{0}\right)\right)$
- $\widetilde{\mathrm{L}} \in \mathcal{L}^{!}\left((\mathrm{I}, \delta),(\mathrm{I}, \delta) \otimes(\mathrm{I}, \delta)=\left(\mathrm{I} \otimes \mathrm{I}, \mu^{2}(\delta \otimes \delta)\right)\right)$
- $\bar{\pi}_{0} \in \mathcal{L}^{!}\left(\left(1, \mu^{0}\right),(I, \delta)\right)$.

Theorem

If \mathcal{L} is a Lafont resource category which is canonically summable, then \mathcal{L} has exactly one differential structure. Idea: δ is uniquely determined by $\left(\mathrm{pr}_{0}, \widetilde{\mathrm{~L}}\right)$.

Lafont resource category: for each $X \in \mathcal{L},!X$ is the free commutative comonoid "cogenerated" by X.

Coherence spaces

A coherence space is

$$
E=\left(|E|, \frown_{E}\right)
$$

where $|E|$ is a set and Ξ_{E} is a binary symmetric and reflexive relation on $|E|$.

The domain of cliques:

$$
\mathrm{Cl}(E)=\left\{x \subseteq|E|\left|\forall a, a^{\prime} \in\right| E \mid a \frown_{E} a^{\prime}\right\}
$$

ordered by \subseteq, it is a cpo.

Morphisms

- $|E \multimap F|=|E| \times|F|$
- $(a, b) \frown_{E \multimap F}\left(a^{\prime}, b^{\prime}\right)$ if

$$
a \frown_{E} a^{\prime} \Rightarrow\left(b \frown_{F} b^{\prime} \text { and } b=b^{\prime} \Rightarrow a=a^{\prime}\right)
$$

And then
$\operatorname{Coh}(E, F)=\mathrm{Cl}(E \multimap F)$

Some notations for Coh

- Identity: $\operatorname{Id}_{E}=\{(a, a)|a \in| E \mid\}$
- Composition: if $s \in \operatorname{Coh}(E, F)$ and $t \in \operatorname{Coh}(F, G)$ then

$$
\begin{aligned}
t s & =\{(a, c) \in|E| \times|G||\exists b \in| F \mid(a, b) \in s \text { and }(b, c) \in t\} \\
& \in \operatorname{Coh}(E, G)
\end{aligned}
$$

- Application to a clique: if $s \in \operatorname{Coh}(E, F)$ and $x \in \operatorname{Cl}(E)$ then $s \cdot x=\{b \in|F| \mid a \in x$ and $(a, b) \in s\} \in \mathrm{Cl}(F)$.

Coh is cartesian

- Terminal object $T=(\emptyset, \emptyset)$.
- Cartesian product $\left|E_{0} \& E_{1}\right|=\{0\} \times\left|E_{0}\right| \cup\{1\} \times\left|E_{1}\right|$ $(i, a) \frown_{E_{0} \& E_{1}}(j, b)$ if $i=j \Rightarrow a \frown_{E_{i}} b$.
- The projections are

$$
\mathrm{pr}_{i}=\left\{((i, a), a) \mid i \in\{0,1\} \text { and } a \in\left|E_{i}\right|\right\} \in \operatorname{Coh}\left(E_{0} \& E_{1}, E_{i}\right) .
$$

If $t_{i} \in \operatorname{Coh}\left(F, E_{i}\right)$ then

$$
\begin{aligned}
\left\langle t_{0}, t_{1}\right\rangle= & \left\{(b,(i, a)) \mid i \in\{0,1\} \text { and }(b, a) \in t_{i}\right\} \\
& \in \mathbf{C o h}\left(F, E_{0} \& E_{1}\right)
\end{aligned}
$$

Remark

$\mathrm{CI}(\top)=\{\emptyset\}$ and $\mathrm{Cl}\left(E_{0}\right) \times \mathrm{Cl}\left(E_{1}\right) \simeq \mathrm{CI}\left(E_{0} \& E_{1}\right)$ by

$$
\left(x_{0}, x_{1}\right) \mapsto\{0\} \times x_{0} \cup\{1\} \times x_{1}
$$

Coh is monoidal closed

- Unit $1=(\{*\},=)$.
- Tensor product $\left|E_{0} \otimes E_{1}\right|=\left|E_{0}\right| \times\left|E_{1}\right|$ and $\left(a_{0}, a_{1}\right) \frown_{E_{0} \otimes E_{1}}\left(a_{0}^{\prime}, a_{1}^{\prime}\right)$ if $a_{i} \frown_{E_{i}} a_{i}^{\prime}$ for $i=0,1$.
- If $t_{i} \in \operatorname{Coh}\left(E_{i}, F_{i}\right)$ for $i=0,1$ then

$$
\begin{aligned}
t_{0} \otimes t_{1}= & \left\{\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right)\right) \mid\left(a_{i}, b_{i}\right) \in t_{i} \text { for } i=0,1\right\} \\
& \in \mathbf{C o h}\left(E_{0} \otimes E_{1}, F_{0} \otimes F_{1}\right) .
\end{aligned}
$$

Monoidal closedness:
$\operatorname{Coh}(G \otimes E, F) \simeq \operatorname{Coh}(G, E \multimap F)$.

Coh as a resource category

- $|!E|=$ the set of all finite multisets $m=\left[a_{1}, \ldots, a_{n}\right]$ with $a_{i} \in|E|$ and $\forall i, j a_{i} \frown_{E} a_{j}$. It is a uniform exponential.
- $m \frown_{!E} m^{\prime}$ if $\forall a \in m, a^{\prime} \in m^{\prime} m \frown_{E} m^{\prime}$.
- And it $t \in \operatorname{Coh}(E, F)$ then

$$
\begin{aligned}
!t= & \left\{\left(\left[a_{1}, \ldots, a_{n}\right],\left[b_{1}, \ldots, b_{n}\right]\right) \mid\right. \\
& n \in \mathbb{N},\left[a_{1}, \ldots, a_{n}\right] \in|!E| \\
& \left.\quad \text { and }\left(a_{i}, b_{i}\right) \in t \text { for } i=1, \ldots, n\right\} \\
& \in \operatorname{Coh}(!E,!F) .
\end{aligned}
$$

Remark

This is the free exponential. There is another one where $|!E|$ is made of sets instead of multisets; it is not compatible with the differential structure.

Coh is canonically summable

- Coh has 0 -morphisms: $0=\emptyset \in \operatorname{Coh}(E, F)$.
- $I=1 \& 1$ so that $|I|=\{0,1\}$ and $0 \frown_{I}$.
- The injections $\bar{\pi}_{i}=\{(*, i)\} \in \mathbf{C o h}(1, \mathrm{I})$ are jointly epic.

Remark

$s \in \operatorname{Coh}(I, E)$ is fully determined by the pair

$$
s_{0}=s \cdot\{0\}, s_{1}=s \cdot\{1\} \in \mathrm{Cl}(E)
$$

Moreover, since $0 \frown_{E} 1$ (which means $0 \frown_{E} 1$ and $0 \neq 1$) we have

$$
s_{0} \cup s_{1} \in \mathrm{Cl}(E) \quad \text { and } \quad s_{0} \cap s_{1}=\emptyset
$$

Conversely if $x_{0}, x_{1} \in \mathrm{Cl}(E)$ satisfy $x_{0} \cup x_{1} \in \mathrm{Cl}(E)$ and $x_{0} \cap x_{1}=\emptyset$ then

$$
\left(\{0\} \times x_{0}\right) \cup\left(\{1\} \times x_{1}\right) \in \operatorname{Coh}(I, E)
$$

Summability in Coh

We have seen that:

Fact

$x_{0}, x_{1} \in C /(E)$ are summable in E iff

$$
x_{0} \cup x_{1} \in C /(E) \quad \text { and } \quad x_{0} \cap x_{1}=\emptyset
$$

Remark

Each model of LL has its own notion of summability.

The CWA holds in Coh

Up to iso:

$$
\mathrm{Cl}\left(\mathbf{S}_{\mid} E\right)=\left\{\left(x_{0}, x_{1}\right) \in \mathrm{Cl}(E)^{2} \mid x_{0} \cup x_{1} \in \mathrm{Cl}(E) \text { and } x_{0} \cap x_{1}=\emptyset\right\}
$$

Remark

Up to this iso, we have

$$
\begin{aligned}
\emptyset & =(\emptyset, \emptyset) \\
\left(x_{00}, x_{01}\right) \cup\left(x_{10}, x_{11}\right) & =\left(x_{00} \cup x_{10}, x_{10} \cup x_{11}\right) \\
\left(x_{00}, x_{01}\right) \cap\left(x_{10}, x_{11}\right) & =\left(x_{00} \cap x_{10}, x_{10} \cap x_{11}\right) .
\end{aligned}
$$

Summability in $\mathrm{S}_{\mathrm{I}} E$

So $\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right) \in \mathrm{Cl}\left(\mathbf{S}_{\mid} E\right)$ are summable in $\mathbf{S}_{I} E$ if

$$
\begin{aligned}
& \left(x_{00} \cup x_{10}, x_{10} \cup x_{11}\right) \in \mathrm{Cl}\left(\mathrm{~S}_{1} E\right) \\
& \left(x_{00} \cap x_{10}, x_{10} \cap x_{11}\right)=(\emptyset, \emptyset)
\end{aligned}
$$

That is

$$
\begin{aligned}
& x_{00} \cup x_{10} \cup x_{10} \cup x_{11} \in \mathrm{Cl}(E) \\
& \left(x_{00} \cup x_{10}\right) \cap\left(x_{10} \cup x_{11}\right)=x_{00} \cap x_{10}=x_{10} \cap x_{11}=\emptyset
\end{aligned}
$$

that is $(i, j) \neq\left(i^{\prime}, j^{\prime}\right) \Rightarrow x_{i j} \cap x_{i^{\prime} j^{\prime}}=\emptyset$.

Assume that

- $\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right) \in \operatorname{Cl}\left(\mathbf{S}_{1} E\right)$ and
- $\left(x_{00} \cup x_{01}, x_{10} \cup x_{11}\right) \in \mathrm{Cl}\left(\mathbf{S}_{1} E\right)$.

Then

- $x_{00} \cap x_{01}=x_{10} \cap x_{11}=\emptyset$
- $\left(x_{00} \cup x_{01}\right) \cap\left(x_{10} \cup x_{11}\right)=\emptyset$
- $x_{00} \cup x_{01} \cup x_{10} \cup x_{11} \in \operatorname{Cl}\left(\mathbf{S}_{1} E\right)$
that is
- $x_{00} \cup x_{01} \cup x_{10} \cup x_{11} \in \operatorname{Cl}\left(\mathbf{S}_{1} E\right)$
- $(i, j) \neq\left(i^{\prime}, j^{\prime}\right) \Rightarrow x_{i j} \cap x_{i^{\prime} j^{\prime}}=\emptyset$.
that is $\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right) \in \mathrm{Cl}\left(\mathbf{S}_{I} E\right)$ are summable in $\mathbf{S}_{I} E$.

We already know that Coh has a unique differential structure wrt. !.

The commutative comonoid structure of I is given by

$$
\begin{aligned}
\mathrm{pr}_{0} & =\{(0, *)\} \in \mathbf{C o h}(\mathrm{I}, 1) \\
\widetilde{\mathrm{L}} & =\{(0,(0,0)),(1,(1,0)),(1,(0,1))\} \in \mathbf{C o h}(\mathrm{I}, \mathrm{I} \otimes \mathrm{I}) .
\end{aligned}
$$

Remember it induces the monad structure $\zeta_{E} \in \mathbf{C o h}\left(E, \mathbf{S}_{\mathbf{I}} E\right)$ and $\theta_{E} \in \mathbf{C o h}\left(\mathbf{S}_{1}^{2} E, \mathbf{S}_{I} E\right)$.
As expected for $\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right) \in \mathrm{Cl}\left(\mathbf{S}_{\mathrm{I}}^{2} E\right)$ we have

$$
\theta \cdot\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right)=\left(x_{00}, x_{10}+x_{01}\right) \in \mathrm{Cl}\left(\mathbf{S}_{\mid} E\right)
$$

The differential structure of Coh

We define $\delta \subseteq|I \multimap!| \mid:$

$$
\delta=\{(0, n[0]) \mid n \in \mathbb{N}\} \cup\{(1, n[0]+[1]) \mid n \in \mathbb{N}\}
$$

where $n[a]=[\overbrace{a, \ldots, a}^{n \times}]$.
$\delta \in \mathbf{C o h}(1,!!)$ because

- $m \frown!m^{\prime}$ for all $m, m^{\prime} \in|!| \mid$
- and $n[0] \frown!E n^{\prime}[0]+[1]$ for all $n, n^{\prime} \in \mathbb{N}$.

δ is a coalgebra

The main thing to check is

that is, given $i \in\{0,1\}$ and $M \in \mathcal{M}_{\text {fin }}\left(\mathcal{M}_{\mathrm{fin}}(\{0,1\})\right)$,

$$
(i, M) \in!\delta \delta \Leftrightarrow(i, M) \in \operatorname{dig}_{।} \delta
$$

where $\operatorname{dig}_{E}=\left\{\left(m,\left[m_{1}, \ldots, m_{k}\right]\right) \in|!E| \times|!!E| \mid m=m_{1}+\cdots+m_{k}\right\}$.

main case

The main case is when $i=1$.
$(1, M) \in!\delta \delta$ means $\exists k \in \mathbb{N}$ such that

$$
(k[0]+[1], M) \in!\delta
$$

that is:

$$
\begin{gathered}
M=\left[m_{1}, \ldots, m_{k+1}\right] \text { with }\left(0, m_{i}\right) \in \delta \text { for } i=1, \ldots k \\
\text { and }\left(1, m_{k+1}\right) \in \delta
\end{gathered}
$$

that is: $\exists k \in \mathbb{N} \exists n_{1}, \ldots, n_{k+1} \in \mathbb{N}$

$$
M=\left[n_{1}[0], \ldots, n_{k}[0], n_{k+1}[0]+[1]\right]
$$

And $(1, M) \in \operatorname{dig}$, δ means $\exists k \in \mathbb{N}$ such that

$$
(k[0]+[1], M) \in \operatorname{dig}_{1}
$$

that is:

$$
M=\left[m_{1}, \ldots, m_{l}\right] \text { with } m_{1}+\cdots+m_{l}=k[0]+[1]
$$

that is: $\exists l \in \mathbb{N}^{+} \exists n_{1}, \ldots, n_{I} \in \mathbb{N}$

$$
M=\left[n_{1}[0], \ldots, n_{l-1}[0], n_{l}[0]+[1]\right]
$$

The diagram commutes!

The induced differential dist. law

Remember that δ induces a distributive law $\partial_{E}=\operatorname{cur} u \in \mathbf{C o h}\left(!\mathbf{S}_{\mid} E, \mathbf{S}_{\mid}!E\right)$ where

$$
u:!(I \multimap E) \otimes I \rightarrow!E
$$

is

$$
!(I \multimap E) \otimes I \xrightarrow{\mathrm{Id} \otimes \delta}!(I \multimap E) \otimes!I \xrightarrow{\mu^{2}}!((I \multimap E) \otimes I) \xrightarrow{\text { lev }}!E
$$

Notice that $\mu_{E, F}^{2} \in \mathbf{C o h}(!E \otimes!F,!(E \otimes F))$ is

$$
\begin{aligned}
\mu_{E, F}^{2}=\{ & \left(\left(\left[a_{1}, \ldots, a_{n}\right],\left[b_{1}, \ldots, b_{n}\right]\right),\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right]\right) \mid \\
& \left.n \in \mathbb{N},\left[a_{1}, \ldots, a_{n}\right] \in|!E| \text { and }\left[b_{1}, \ldots, b_{n}\right] \in|!F|\right\}
\end{aligned}
$$

$$
\begin{aligned}
\partial_{E}= & \left\{\left(\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right)\right],\left(0,\left[a_{1}, \ldots, a_{k}\right]\right) \mid\right.\right.\right. \\
& \left.k \in \mathbb{N} \text { and }\left[a_{1}, \ldots, a_{k}\right] \in|!E|\right\} \\
\cup & \left\{\left(\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right),\left(1, a_{k+1}\right)\right],\left(1,\left[a_{1}, \ldots, a_{k+1}\right]\right) \mid\right.\right.\right. \\
& \left.\quad k \in \mathbb{N} \text { and }\left[a_{1}, \ldots, a_{k+1}\right] \in|!E| \text { and } a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}\right\} \\
& \in \operatorname{Coh}(!(I \multimap E), I \multimap!E) .
\end{aligned}
$$

The Kleisli category Coh

Object: those of Coh and $\operatorname{Coh}_{!}(E, F)=\operatorname{Coh}(!E, F)$. $s \in \mathbf{C o h}_{!}(E, F)$ induces a stable function

$$
\begin{aligned}
\widehat{s}: \mathrm{Cl}(E) & \rightarrow \mathrm{Cl}(F) \\
x & \mapsto\left\{b \in|F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x)(m, b) \in s\right\}
\end{aligned}
$$

Remark

Different s's can induce the same stable function: \widehat{s} forgets about the multiplicities in multisets.

If $s_{1}=\{([a], b)\}$ and $s_{2}=\{([a, a], b)\}$ then $\widehat{s_{1}}=\widehat{s_{2}}$.

Differentiation on Coh

Given $t \in \operatorname{Coh}_{!}(E, F)=\mathbf{C o h}(!E, F)$, remember that

$$
\mathbf{D} t=(\mathbf{S} t) \partial_{E} \in \mathbf{C o h}\left(!\mathbf{S}_{\mathbf{I}} E=(I \multimap E), \mathbf{S}_{\mathbf{I}} F=(I \multimap F)\right) .
$$

Notice that

$$
\mathbf{S} t=\{((i, m),(i, b)) \mid i \in\{0,1\} \text { and }(m, b) \in t\}
$$

So for $t \in \mathcal{L}_{!}(E, F)=\mathbf{C o h}(!E \multimap F)$ we have

$$
\begin{aligned}
\mathbf{D} t & \left.=\left\{\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right)\right],(0, b)\right) \mid\left(\left[a_{1}, \ldots, a_{k}\right], b\right) \in t\right)\right\} \\
& \cup\left\{\left(\left[\left(0, a_{1}\right), \ldots,\left(0, a_{k}\right),\left(1, a_{k+1}\right)\right],(1, b)\right) \mid\right. \\
& \left.\left.\left(\left[a_{1}, \ldots, a_{k}, a_{k+1}\right], b\right) \in t\right) \text { and } a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}\right\} \\
& \in \mathcal{L}_{!}\left(\mathbf{S}_{I} E, \mathbf{S}_{I} F\right)=\mathbf{C o h}(!(I \multimap E) \multimap(I \multimap F)) .
\end{aligned}
$$

The stable derivative

Remember that

$$
\mathrm{Cl}\left(\mathbf{S}_{\mid} E\right) \simeq\{(x, u) \mid x \cup u \in \mathrm{Cl}(E) \text { and } x \cap u=\emptyset\} .
$$

In that way we get the stable function

$$
\begin{aligned}
& \widehat{\mathbf{D} t}: \mathrm{Cl}\left(\mathbf{S}_{1} E\right) \rightarrow \mathrm{Cl}\left(\mathbf{S}_{\mathbf{I}} F\right) \\
&(x, u) \mapsto\left(\widehat{t}(x), t^{\prime}(x) \cdot u\right) \\
& t^{\prime}(x) \cdot u=\left\{b \in|F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x), a \in u(m+[\mathrm{a}], b) \in t\right\}
\end{aligned}
$$

Remark

In such an (m, a) we have $a \notin \operatorname{supp}(m)$ since $\operatorname{supp}(m) \subseteq x, a \in u$ and $x \cap u=\emptyset$.

Local coherence space

Given $x \in \mathrm{Cl}(X)$, one defines a coherence space E_{x} by

- $\left|E_{x}\right|=\left\{b \in|E| \mid \forall a \in x a \frown_{E} b\right\}$
- $a \frown_{E_{x}} a^{\prime}$ if $a \frown_{E} a^{\prime}$.

Then for $t \in \operatorname{Coh}(E, F)$ we have

$$
t^{\prime}(x) \in \operatorname{Coh}\left(E_{x}, F_{\hat{t}(x)}\right)
$$

Remark

There is a dependent type intuition: the type of $t^{\prime}(x)$ depends on x.

However this point of view hardly reflects the stability of $t^{\prime}(x)$ wrt. x.

Whereas the compound construction $\mathbf{D} t$ does in a very simple way.

Remark

If $t_{i}=\{(i[a], a)\}$ for $i=1,2$ we get

$$
\begin{aligned}
t_{1}^{\prime}(\emptyset) \cdot\{a\} & =\{a\} \\
t_{2}^{\prime}(\emptyset) \cdot\{a\} & =\emptyset
\end{aligned}
$$

whereas $\widehat{t_{1}}=\widehat{t_{2}}$. The derivative stable function $\widehat{\mathbf{D} t}$ is associated with t and not the stable function \widehat{t}.

In some sense this derivative "does not see mutiplicities". This is due to the uniformity of the exponential. NB: there are non-uniform coherence spaces...

Probabilistic Coherence Spaces

Probabilistic Coherence Spaces (PCS)

$$
X=(|X|, \mathrm{P} X)
$$

- $|X|$ is a set (usually at most countable)
- $P X \subseteq(\mathbb{R} \geq 0)^{|X|}$
- $\forall a \in|X| 0<\sup _{x \in \operatorname{PX}} x_{a}<\infty$
- PX is \downarrow-closed (for the pointwise order)
- PX contains the (pointwise) lub of any increasing ω-sequence in PX
- $x, y \in \mathrm{P} X$ and $\lambda \in[0,1] \Rightarrow \lambda x+(1-\lambda) y \in \mathrm{P} X$

Morphisms

$X \multimap Y$ defined by:

- $|X \multimap Y|=|X| \times|Y|$
- and $t \in\left(\mathbb{R}_{\geq 0}\right)^{|X| \times|Y|}$ is in $\mathrm{P}(X \multimap Y)$ if

$$
\forall x \in \mathrm{P} X \quad t \cdot x \in \mathrm{P} Y
$$

where $t \cdot x=\left(\sum_{a \in|X|} t_{a, b} x_{a}\right)_{b \in|Y|} \in\left(\mathbb{R}_{\geq 0}\right)^{|Y|}$.

Fact

$X \multimap Y$ so defined is a PCS.
$\operatorname{Pcoh}(X, Y)=P(X \multimap Y)$.

Notations

- If $s \in \mathbf{P} \boldsymbol{c o h}(X, Y)$ and $t \in \mathbf{P c o h}(Y, Z)$ then $t s \in \operatorname{Pcoh}(X, Z)$ given by

$$
(t s)_{a, c}=\sum_{b \in|Y|} s_{a, b} t_{b, c}
$$

- $\operatorname{ld}_{X} \in \mathbf{P} \operatorname{coh}(X, X)$ is $\left(\delta_{a, a^{\prime}}\right)_{\left(a, a^{\prime}\right) \in|X \rightarrow X|}$.

This defines a category.

Cartesian product

- Terminal object T such that $|\top|=\emptyset$.
- $\left|X_{0} \& X_{1}\right|=\{0\} \times\left|X_{0}\right| \cup\{1\} \times\left|X_{1}\right|$ so that $\left(\mathbb{R}_{\geq 0}\right)^{\left|X_{0} \& X_{1}\right|} \simeq\left(\mathbb{R}_{\geq 0}\right)^{\left|X_{0}\right|} \times\left(\mathbb{R}_{\geq 0}\right)^{\left|X_{1}\right|}$
- $\mathrm{pr}_{i} \in\left(\mathbb{R}_{\geq 0}\right)^{\left|X_{0} \& X_{1}\right| \times\left|X_{i}\right|}$ given by

$$
\left(\mathrm{pr}_{i}\right)_{(j, a), a^{\prime}}=\delta_{i, j} \delta_{a, a^{\prime}}
$$

- $y \in\left(\mathbb{R}_{\geq 0}\right)^{\left|X_{0} \& X_{1}\right|}$ is in $\mathrm{P}\left(X_{0} \& X_{1}\right)$ if $\mathrm{pr}_{i} \cdot y \in \mathrm{P} X_{i}$ for $i=0,1$.
- If $t_{i} \in \operatorname{Pcoh}\left(Y, X_{i}\right)$ for $i=0,1$ then
$\left\langle t_{0}, t_{1}\right\rangle \in \operatorname{Pcoh}\left(Y, X_{0} \& X_{1}\right)$ is given by $\left\langle t_{0}, t_{1}\right\rangle_{b,(i, a)}=\left(t_{i}\right)_{a, b}$.

Remark

$\mathrm{P}\left(X_{0} \& X_{1}\right) \simeq \mathrm{P} X_{0} \times \mathrm{P} X_{1}$
Up to this iso, the cartesian product is completely standard:

- $\mathrm{pr}_{i} \cdot\left(x_{0}, x_{1}\right)=x_{i}$
- $\left\langle t_{0}, t_{1}\right\rangle \cdot y=\left(t_{0} \cdot y, t_{1} \cdot y\right)$ for $t_{i} \in \operatorname{Pcoh}\left(Y, X_{i}\right)$

Tensor product

Given $x_{i} \in \mathrm{P} X_{i}$ for $i=0,1$, let $x_{0} \otimes x_{1} \in\left(\mathbb{R}_{\geq 0}\right)^{\left|X_{0}\right| \times\left|X_{1}\right|}$ given by

$$
\left(x_{0} \otimes x_{1}\right)_{\left(a_{0}, a_{1}\right)}=x_{0 a_{0}} x_{a_{a_{1}}}
$$

- $\left|X_{0} \otimes X_{1}\right|=\left|X_{0}\right| \times\left|X_{1}\right|$
- $\mathrm{P}\left(X_{0} \otimes X_{1}\right)$ minimal such that $x_{0} \otimes x_{1} \in \mathrm{P}\left(X_{0} \otimes X_{1}\right)$ for all $x_{i} \in \mathrm{P} X_{i}$ for $i=0,1$.

Fact

$\operatorname{Pcoh}(Z \otimes X, Y) \simeq \operatorname{Pcoh}(Z, X \multimap Y)$.

The object I

$1=(\{*\},[0,1])$. Notice that $\mathrm{P}(1 \multimap X) \simeq \mathrm{PX}$
$\mathrm{I}=1 \& 1$ so that $\mathrm{PI}=[0,1] \times[0,1]$
$\bar{\pi}_{0}, \bar{\pi}_{1} \in \mathbf{P} \boldsymbol{c o h}(1, \mathrm{I}) \simeq \mathrm{PI}$, actually $\bar{\pi}_{0}=(1,0)$ and $\bar{\pi}_{1}=(0,1)$.

Fact

$\bar{\pi}_{0}, \bar{\pi}_{1}$ are jointly monic:
by linearity, $t \in \mathbf{P c o h}(\mathrm{I}, X)$ is fully determined by
$t_{0}=t \cdot(1,0) \in \mathrm{P} X$ and $t_{1}=t \cdot(0,1) \in \mathrm{P} X$.
Moreover $t_{0}+t_{1} \in \mathrm{PX}$ since $t_{0}+t_{1}=t \cdot(1,1)$ since $(1,1) \in \mathrm{PI}$.
$\mathrm{P}(\mathrm{I} \multimap X) \simeq\left\{\left(x_{0}, x_{1}\right) \in \mathrm{PX} \mid x_{0}+x_{1} \in \mathrm{P} X\right\}$.

Canonical Witness Axiom

Up to this iso we have

$$
\left(x_{00}, x_{01}\right)+\left(x_{10}, x_{11}\right)=\left(x_{00}+x_{10}, x_{01}+x_{11}\right)
$$

and so

$$
\begin{aligned}
\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right) \in \mathrm{PS}_{1}^{2} X & \Leftrightarrow\left(x_{00}+x_{10}, x_{01}+x_{11}\right) \in \mathrm{P} \mathbf{S}_{\mid} X \\
& \Leftrightarrow x_{00}+x_{10}+x_{01}+x_{11} \in \mathrm{PX} \\
& \Leftrightarrow\left(x_{00}+x_{01}, x_{10}+x_{11}\right) \in \mathrm{PS} \mid
\end{aligned}
$$

and hence the CWA holds.

The induced monad $\mathbf{S}_{\mathbf{I}}: \mathbf{P c o h} \rightarrow \mathbf{P c o h}$ given by $\mathbf{S}_{\mathbf{I}} X=(\mathrm{I} \multimap X)$ behaves exactly as expected:
$\zeta_{x} \in \mathbf{P c o h}\left(X, \mathbf{S}_{1} X\right) \quad \zeta_{X} \cdot x=(x, 0)$
$\theta_{X} \in \mathbf{P} \mathbf{c o h}\left(\mathbf{S}_{1}^{2} X, \mathbf{S}_{I} X\right) \quad \theta_{X} \cdot\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}\right)\right)=\left(x_{00}, x_{10}+x_{01}\right)$

The differentiation coalgebra

It is defined essentially as in Coh, and is a coalgebra for the same reason.

$$
\delta \in\left(\mathbb{R}_{\geq 0}\right)^{|1-0!| \mid}
$$

defined by

$$
\delta_{i, m}= \begin{cases}1 & \text { if } i=0 \text { and } \exists n \in \mathbb{N} m=n[0] \\ 1 & \text { if } i=1 \text { and } \exists n \in \mathbb{N} m=n[0]+[1] \\ 0 & \text { otherwise }\end{cases}
$$

Remark (Surprise)

The case $i=1$ implements the differential, so I expected to have sthg like n as coeff. instead of 1 . But it's not the case!

The exponential functor

- $|!X|=\mathcal{M}_{\text {fin }}(|X|)$ (no uniformity restriction).
- If $x \in \mathrm{P} X$ and $m \in|!X|$ then $x^{m}=\prod_{a \in|X|} x_{a}^{m(a)} \in \mathbb{R}_{\geq 0}$
- $x^{!}=\left(x^{m}\right)_{m \in|!X|}$
- and $\mathrm{P}(!X)$ is minimal such that $\forall x \in \mathrm{P} X x^{!} \in \mathrm{P}(!X)$.

Given $t \in \mathbf{P} \boldsymbol{c o h}(X, Y)$ we need $!t \in \mathbf{P c o h}(!X,!Y)$ such that

$$
\forall x \in \mathrm{PX} \quad!t \cdot x^{!}=(t \cdot x)^{!}
$$

Fact

This determines fully $!t$.

Simple computations give, for $t \in \operatorname{Pcoh}(X, Y) \subseteq\left(\mathbb{R}_{\geq 0}\right)^{|X| \times|Y|}$ and $(m, p) \in|!X \multimap!Y|=\mathcal{M}_{\text {fin }}(!X) \times \mathcal{M}_{\text {fin }}(!Y):$

$$
(!t)_{m, p}=\sum_{r \in L(m, p)}\left[\begin{array}{l}
p \\
r
\end{array}\right] t^{r}
$$

where

$$
\begin{aligned}
L(m, p)= & \left\{r \in \mathcal{M}_{\mathrm{fin}}(|X| \times|Y|) \mid\right. \\
& \left.\sum_{b \in|Y|} r(a, b)=m(a) \text { and } \sum_{a \in|X|} r(a, b)=p(b)\right\}
\end{aligned}
$$

and

$$
\left[\begin{array}{l}
p \\
r
\end{array}\right]=\prod_{b \in|Y|} \frac{p(b)!}{\prod_{a \in|X|} r(a, b)!} \in \mathbb{N}
$$

The evaluation morphism

$$
\mathrm{ev} \in \operatorname{Pcoh}((\mathrm{I} \multimap X) \otimes \mathrm{I}, X) \quad \mathrm{ev}_{((i, a), j), b}=\delta_{a, b} \delta_{i, j}
$$

Then $\operatorname{lev}_{M, m} \neq 0$ implies

$$
\begin{aligned}
M & =\left[\left(\left(0, a_{1}\right), 0\right), \ldots,\left(\left(0, a_{k}\right), 0\right),\left(\left(1, b_{1}\right), 1\right), \ldots,\left(\left(1, b_{n}\right), 1\right)\right]=(I, r) \\
m & =\left[a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right]=I+r
\end{aligned}
$$

Setting $I=\left[a_{1}, \ldots, a_{k}\right]$ and $r=\left[b_{1}, \ldots, b_{n}\right]$. We have

$$
\operatorname{lev}_{M, m}=\binom{I+r}{I}=\prod_{a \in|X|}\binom{I(a)+r(a)}{I(a)}
$$

The differential functor

Remember that $\partial_{X}=\operatorname{cur} f \in \mathcal{L}\left(!\mathbf{S}_{\mid} X, \mathbf{S}_{\mid}!X\right)$ where f is

$$
!(I \multimap X) \otimes I \xrightarrow{\mathrm{Id} \otimes \delta}!(I \multimap X) \otimes!I \xrightarrow{\mu^{2}}!((\mathrm{I} \multimap X) \otimes \mathrm{I}) \xrightarrow{!\mathrm{ev}}!X
$$

Using the above computation of !ev and definition of δ we get

$$
\left(\partial_{X}\right)_{(I, r),(i, m)}= \begin{cases}1 & \text { if } i=0, r=[], m=I \\ m(a) & \text { if } i=1, r=[a], m=I+[a] \\ 0 & \text { otherwise }\end{cases}
$$

A $t \in \operatorname{Pcoh}_{!}(X, Y)=\mathrm{P}(!X \multimap Y)$ is completely characterized by the associated analytic function

$$
\begin{aligned}
\widehat{t}: \mathrm{PX} & \rightarrow \mathrm{PY} \\
& x \mapsto t \cdot x^{!}=\left(\sum_{m \in|!X|} t_{m, b} x^{m}\right)_{b \in|Y|}
\end{aligned}
$$

Then $\mathbf{D} t \in \mathbf{P c o h}_{!}\left(\mathbf{S}_{\mid} X, \mathbf{S}_{\mid} Y\right)$ is characterized by the analytic function (setting $f=\widehat{t}: \mathrm{PX} \rightarrow \mathrm{PY}$)

$$
\begin{aligned}
\widehat{\mathbf{D} t}: \mathrm{P}\left(\mathbf{S}_{\mathbf{I}} X\right) & \rightarrow \mathrm{P}\left(\mathbf{S}_{\mathbf{I}} Y\right) \\
(x, u) & \mapsto\left(f(x), f^{\prime}(x) \cdot u\right)
\end{aligned}
$$

where

$$
f^{\prime}(x) \cdot u=\left(\sum_{a \in|X|}\left(\sum_{I \in|!X|}(m(a)+1) t_{m+[a], b} x^{m}\right) u_{a}\right)_{b \in|Y|}
$$

is just the standard differential of \hat{t}.

Differential as a linear map

Given $x \in \mathrm{P} X$ we define X_{x}, the local PCS at x :

$$
\begin{aligned}
& \left|X_{x}\right|=\left\{a \in|X| \mid \exists \varepsilon>0 x+\varepsilon e_{a} \in \mathrm{PX}\right\} \\
& \mathrm{P} X_{x}=\left\{u \in\left(\mathbb{R}_{\geq 0}\right)^{\left|X_{x}\right|} \mid x+u \in \mathrm{PX}\right\}
\end{aligned}
$$

and then $f^{\prime}(x) \in \mathbf{P} \boldsymbol{\operatorname { c o h }}\left(X_{x}, Y_{f(x)}\right)$ satisfies (for $b \in\left|Y_{f(x)}\right|$)
$\left(f^{\prime}(x) \cdot u\right)_{b}=\left(\frac{d}{d t} f(x+t u)_{b}\right)_{t=0} \quad$ standard Gateaux derivative.
The fact that $\mathbf{D} t \in \mathbf{P c o h}_{!}\left(\mathbf{S}_{\mid} X, \mathbf{S}_{\mid} Y\right)$ also tells us that this derivative is analytic in x.

Strong similarity with Tangent Categories

Mfd: category of smooth manifolds and smooth maps.
There is a tangent bundle functor

$$
\begin{aligned}
\mathbf{T}: \mathbf{M f d} & \rightarrow \mathbf{M f d} \\
X & \mapsto\left\{(x, u) \mid x \in X \text { and } u \in \mathbf{T}_{x} X\right\}
\end{aligned}
$$

$\mathbf{T}_{x} X=$ tangent space at x to X. A vector space.
And if $f \in \operatorname{Mfd}(X, Y)$,

$$
\begin{aligned}
\mathbf{T} f: \mathbf{T} X & \rightarrow \mathbf{T} Y \\
(x, u) & \mapsto\left(f(x), f^{\prime}(x) \cdot u\right)
\end{aligned}
$$

Looks very much like our D functor!

Discrepancies

Is \mathbf{T} a special case of \mathbf{D} ?
Of course not: given $(x, u) \in \mathbf{T} X$, it makes no sense to consider u alone (no 2nd projection $\mathbf{T} X \rightarrow X$) nor to compute $x+u \in X$ in general.

Is \mathbf{D} a special case of \mathbf{T} ?
No, because our "tangent spaces" are only partial commutative monoids whereas $\mathbf{T}_{x} X$ is crucially a commutative monoid.

Remark

More philosophically, our approach is based on \mathbf{S} acting on a "linear" category (a category of algebraic objects, the linear category of a model of LL).

This is typically not the case in the tangent bundle case.

More precisely, in tangent categories (= categorical axiomatization of the tangent bundle functor) we have a natural transformation $p_{X}: \mathbf{T} X \rightarrow X$, intuitively $p_{X}(x, u)=x$.

It is required that there is a pull-back and an addition morphism s

This s is a total addition operation in the fibers of p.

