Coherent Differentiation

Thomas Ehrhard IRIF, CNRS and Université de Paris

November 28, 2021

Intro: differentiation and addition

We have learned at school

$$f'(x) = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

And later

 $f: E \rightarrow F$ (where E and F are, say, Banach spaces) is differentiable at $x \in E$ if

$$f(x + u) = f(x) + (l \cdot u) + o(||u||)$$

where $I : E \to F$ linear bounded. And then $I \in \mathcal{L}(E, F)$ is uniquely defined: I = f'(x) is the differential (Jacobian etc) of f at x.

Because $I \cdot u \in o(||u||) \Rightarrow I = 0$ when $I \in \mathcal{L}(E, F)$.

Leibniz rule

Take $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (sufficiently regular) and define

$$g:\mathbb{R} o\mathbb{R} \ x\mapsto f(x,x)$$

Then

$$\frac{dg(x)}{dx} = \frac{\partial f(x_1, x)}{\partial x_1}(x) + \frac{\partial f(x, x_2)}{\partial x_2}(x)$$

This generalizes the usual Leibniz rule (uv)' = u'v + uv', $(uv)^{(n)} = \sum_{k=0}^{n} {n \choose k} u^{(k)} v^{(n-k)}$ etc.

Differentiation is inherently related to addition.

In the Differential λ -calculus we have a differential application

$$\frac{\Gamma \vdash M : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash DM \cdot N : A \Rightarrow B}$$

and a differential substitution defined by induction on M, such that if $\Gamma, x : A \vdash M : B$ and $\Gamma \vdash N : A$ then

$$\Gamma, x: A \vdash \frac{\partial M}{\partial x} \cdot N : B$$

Differential reduction:

$$\mathsf{D}(\lambda x^{\mathcal{A}} M) \cdot N \to \lambda x^{\mathcal{A}} \left(\frac{\partial M}{\partial x} \cdot N\right)$$

where $\frac{\partial M}{\partial x} \cdot N$ is defined by induction on M.

The most important case in the definition of $\frac{\partial M}{\partial x} \cdot N$ is when M = (P)Q:

$$\frac{\partial(P)Q}{\partial x} \cdot N = \left(\frac{\partial P}{\partial x} \cdot N\right)Q + \left(\mathsf{D}P \cdot \left(\frac{\partial Q}{\partial x} \cdot N\right)\right)Q$$

which combines

- the Leibniz Rule because x can occur in P and in Q
- and the Chain Rule because of the application (imagine x occurs only in Q).

Reduction rule:

$$\mathsf{D}(\lambda x^{\mathcal{A}} M) \cdot N \to \lambda x^{\mathcal{A}} \left(\frac{\partial M}{\partial x} \cdot N\right)$$

so to have subject reduction it seems that we need

$$\frac{\Gamma \vdash M_0 : A \quad \Gamma \vdash M_1 : A}{\Gamma \vdash M_0 + M_1 : A}$$

allowing to add any two terms of the same type.

Consequence: non-determinism

If we have for instance a type o of booleans with

$\overline{\Gamma \vdash \mathbf{t} : o} \qquad \overline{\Gamma \vdash \mathbf{f} : o}$

then we *must* accept $\mathbf{t} + \mathbf{f}$ as a valid term, with

 $\Gamma \vdash \mathbf{t} + \mathbf{f} : o$

meaning that the language is essentially non-deterministic.

In the semantics

So far, the categorical models **C** of the differential λ -calculus were (left-)additive categories.

Given $f, g \in \mathbf{C}(A, B)$, there is a morphism $f + g \in \mathbf{C}(A, B)$.

 \rightsquigarrow C is enriched over commutative monoids.

Coherent Differentiation

This is not a fatality!

Fact

Of course addition is required, but there is a (categorical, and then syntactical) way of controlling it, without giving up determinism.

The possibility of such a theory appears in ...

... probabilistic coherence spaces (PCS)

A PCS is a pair X = (|X|, PX) where |X| is a set and $PX \subseteq (\mathbb{R}_{\geq 0})^{|X|}$ satisfying some closure properties.

- PX is convex,
- downwards closed,
- closed under lubs of monotonic ω -chains
- + a technical condition to avoid ∞ coeffs.

They are a model of (probabilistic) λ -calculi, LL etc, but not of their differential extensions by lack of additivity.

Derivatives in PCSs

In the associated category $\mathbf{Pcoh}_{!}$, 1 is an object such that $|1| = \{*\}$, P1 = [0, 1] and a morphism $f \in \mathbf{Pcoh}_{!}(1, 1)$ is a power series defining a function $[0, 1] \rightarrow [0, 1]$:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 with $\forall n \, a_n \in \mathbb{R}_{\geq 0}$ and $\sum_{n=0}^{\infty} a_n \leq 1$

so that $f'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$ has no reason to be a function $[0,1] \rightarrow [0,1]$.

Example

$$f(x) = 1 - \sqrt{1-x}$$
, then $f'(x) = 1/(2\sqrt{1-x})$ is unbounded on $[x, 1)$.

However

Fact

If $x, u \in [0, 1]$ and $x + u \in [0, 1]$ then we have

$$f(x) + f'(x)u \le f(x+u) \in [0,1]$$

because this sum is the beginning of the Taylor expansion which holds in this model:

$$f(x+u) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) u^n$$

and all coefficients are ≥ 0 . For any $f \in \mathbf{Pcoh}_{!}(X, Y)$.

In a PCS, some sums are allowed...

Convex combinations: if $x, y \in PX$ then $\frac{1}{3}x + \frac{2}{3}y \in PX$.

Some non convex sums are also possible, for instance in the cartesian product X & Y, we have

$$(x,0) + (0,y) = (x,y) \in \mathsf{P}(X \And Y) = \mathsf{P}X \times \mathsf{P}Y$$

if $x \in \mathsf{P}X$ and $y \in \mathsf{P}Y$.

Other non convex allowed sums come from differentiation:

$$f(x) + f'(x) \cdot u \in \mathsf{P}Y$$

if $x, u \in PX$ are such that $x + y \in PX$ and $f : PX \to PY$ is an "analytic function", that is a morphism $X \to Y$ in the Kleisli category **Pcoh**₁.

... and some sums are forbidden!

For instance

$$\mathsf{P}(1 \oplus 1) = \{(x_0, x_1) \in \mathbb{R}_{\geq 0} \mid x_0 + x_1 \leq 1\}$$

in this object of booleans,

$$\mathbf{t}=(1,0), \mathbf{f}=(0,1)\in\mathsf{P}(1\oplus 1) \quad \text{and} \quad \mathbf{t}+\mathbf{f}\notin\mathsf{P}(1\oplus 1)\,.$$

or simply $1 \in [0, 1]$ and $1 + 1 \notin [0, 1]$.

Fundamental observation

There is a functor $S : Pcoh \rightarrow Pcoh$ which maps an object X to an object SX such that

$$P(SX) = \{(x, u) \in PX^2 \mid x + u \in PX\}.$$

For instance $P(S1) = \{(x, u) \in [0, 1] \mid x + u \le 1\}.$

We base our axiomatization on the existence of such a functor.

Summable categories

Definition (pre-summable category)

A pre-summable category is a tuple

 $(\mathcal{L}, \mathbf{S}, \pi_0, \pi_1, \sigma)$

Where

- *L* is a category enriched over pointed sets (and the distinguished morphism is always denoted 0);
- $\mathbf{S}: \mathcal{L} \to \mathcal{L}$ is a functor which preserves the enrichment $(\mathbf{S}0=0);$
- and $\pi_0, \pi_1, \sigma : \mathbf{S}X \to X$ are natural transformations such that π_0 and π_1 are jointly monic.

If $f_0, f_1 \in \mathcal{L}(X, \mathbf{S}Y)$ satisfy $\pi_j f_0 = \pi_j f_1$ for j = 0, 1 then $f_0 = f_1$.

Intuition

- SX is the objects of pairs (x₀, x₁) ∈ X × X such that x₀ + x₁ is well defined and ∈ X;
- $\pi_j : \mathbf{S}X \to X$ are the projections, $\pi_j(x_0, x_1) = x_j$;
- and $\sigma : \mathbf{S}X \to X$ maps (x_0, x_1) to $x_0 + x_1$.

Some terminology

We assume to have such a structure $(\mathcal{L}, \mathbf{S}, \pi_0, \pi_1, \sigma)$

Definition (summability, witness, sum)

We say that $f_0, f_1 \in \mathcal{L}(X, Y)$ are summable if there is $h \in \mathcal{L}(X, \mathbf{S}Y)$ such that π_j $h = f_j$ for j = 0, 1.

Fact: when such an *h* exists it is unique $(\pi_0, \pi_1 \text{ are jointly monic})$, we set $\langle f_0, f_1 \rangle_{\mathbf{S}} = h$, it is the witness of summability of f_0 and f_1 .

And then we set $f_0 + f_1 = \sigma \langle f_0, f_1 \rangle_{S}$, the sum of f_0 and f_1 .

Some simple observations

- π_0, π_1 are summable with $\langle \pi_0, \pi_1 \rangle_{\mathbf{S}} = \mathsf{Id}_{\mathbf{S}X}$ and $\pi_0 + \pi_1 = \sigma$.
- If $f_0, f_1 \in \mathcal{L}(X, Y)$ are summable and $l \in \mathcal{L}(U, X)$ and $r \in \mathcal{L}(Y, V)$ then $r f_0 l, r f_1 l$ are summable with

$$\langle r f_0 l, r f_1 l \rangle_{\mathbf{S}} = \mathbf{S} r \langle f_0, f_1 \rangle_{\mathbf{S}} l$$

 $r f_0 l + r f_1 l = r (f_0 + f_1) l$

by naturality of π_0 , π_1 and σ .

Remark (main tool)

Use the fact that π_0, π_1 are jointly monic.

We introduce a few axioms to make this "partial addition" behave as expected.

Commutativity

Axiom (Commutativity)

 π_1, π_0 are summable and $\pi_1 + \pi_0 = \sigma$.

Fact (consequences)

 $\langle \pi_1, \pi_0 \rangle_{\mathbf{S}} \in \mathcal{L}(\mathbf{S}X, \mathbf{S}X)$ is an involution.

If $f_0, f_1 \in \mathcal{L}(X, Y)$ are summable then f_1, f_0 are summable with $f_1 + f_0 = f_0 + f_1$.

Intuitively: $\langle \pi_1, \pi_0 \rangle_{\mathbf{S}}(x_0, x_1) = (x_1, x_0).$

Neutrality

Axiom (Neutrality)

For any $f \in \mathcal{L}(X, Y)$, f and 0 are summable and f + 0 = f.

In particular we have two injections

$$\iota_0 = \langle \mathsf{Id}_X, 0 \rangle_{\mathsf{S}}, \iota_1 = \langle 0, \mathsf{Id}_X \rangle_{\mathsf{S}} \in \mathcal{L}(X, \mathsf{S}X)$$

Intuitively $\iota_0(x) = (x, 0)$ and $\iota_1(x) = (0, x)$.

Witness

Associativity is more tricky. We split the condition in two pieces.

Axiom (Witness)

Let $f_{ij} \in \mathcal{L}(X, Y)$ for $i, j \in \{0, 1\}$ be 4 morphisms such that

- f_{j0}, f_{j1} are summable for j = 0, 1
- and $f_{00} + f_{01}, f_{10} + f_{11}$ are summable

then $\langle f_{00}, f_{01} \rangle_{\mathbf{S}}, \langle f_{10}, f_{11} \rangle_{\mathbf{S}}$ are summable.

So there is a witness for this summability:

$$\langle\langle f_{00}, f_{01} \rangle_{\mathbf{S}}, \langle f_{10}, f_{11} \rangle_{\mathbf{S}} \rangle_{\mathbf{S}} \in \mathcal{L}(X, \mathbf{S}^2 Y).$$

The canonical flip

Fact

There is exactly one morphism $c \in \mathcal{L}(\boldsymbol{S}^2X, \boldsymbol{S}^2X)$ such that

$$\forall i,j \in \{0,1\} \quad \pi_i \ \pi_j \ \mathsf{c} = \pi_j \ \pi_i \ .$$

$$\mathbf{c} = \langle \langle \pi_0 \ \pi_0, \pi_0 \ \pi_1 \rangle_{\mathbf{S}}, \langle \pi_1 \ \pi_0, \pi_0 \ \pi_0 \rangle_{\mathbf{S}} \rangle_{\mathbf{S}}$$

exists by the previous axioms.

Fact

 $c^2 = \mathsf{Id}_{\mathbf{S}^2 X}.$

Intuitively $c((x_{00}, x_{01}), (x_{10}, x_{11})) = ((x_{00}, x_{10}), (x_{01}, x_{11})).$

Associativity

Axiom (Associativity)

The following diagram commutes

Remark (Intuition)

The sum of witnesses is performed componentwise:

 $\langle x_{00}, x_{01} \rangle_{\mathbf{S}} + \langle x_{10}, x_{11} \rangle_{\mathbf{S}} = \langle x_{00} + x_{10}, x_{01} + x_{11} \rangle_{\mathbf{S}}$

Fact (consequence)

If $f_{ij} \in \mathcal{L}(X, Y)$ for $i, j \in \{0, 1\}$ are such that

- f_{j0}, f_{j1} are summable for j = 0, 1
- and $f_{00} + f_{01}, f_{10} + f_{11}$ are summable

then

- f_{0j}, f_{1j} are summable for j = 0, 1
- and $f_{00} + f_{10}, f_{01} + f_{11}$ are summable

and $(f_{00} + f_{01}) + (f_{10} + f_{11}) = (f_{00} + f_{10}) + (f_{01} + f_{11}).$

Associativity follows taking $f_{10} = 0$.

Partially additive category

The category \mathcal{L} becomes a partially additive category in the sense of partial monoids.

Remark

Partially additive categories do not suffice for our goal: the functor ${\bf S}$ will be crucial for differentiation!

S is a monad

We have already $\zeta = \iota_0 = \langle \mathsf{Id}_X, 0 \rangle_{\mathsf{S}} \in \mathcal{L}(X, \mathsf{S}X).$

Using the axioms we also have $\theta = \langle \pi_0 \ \pi_0, \pi_1 \ \pi_0 + \pi_0 \ \pi_1 \rangle_{\mathbf{S}} \in \mathcal{L}(\mathbf{S}^2 X, \mathbf{S} X).$

Fact

 $(\mathbf{S}, \zeta, \theta)$ is a monad on \mathcal{L} .

Intuitively

$$egin{aligned} & heta_X: \mathbf{S}^2 X o \mathbf{S} X \ & ((x_{00}, x_{01}), (x_{10}, x_{11})) \mapsto (x_{00}, x_{10} + x_{01}) \end{aligned}$$

Notice that we forget x_{11} .

When ${\cal L}$ is an SMC

Distributivity

In all the situations we have in mind, ${\cal L}$ is a symmetric monoidal category with tensor product \otimes and tensor unit 1.

In that case one expects \otimes to distribute over +, when defined. This requires an additional

Axiom (Distributivity)

 $0 \otimes g = 0$ and if f_0, f_1 are summable then

- $f_0 \otimes g, f_1 \otimes g$ are summable
- and $f_0 \otimes g + f_1 \otimes g = (f_0 + f_1) \otimes g$.

Strength

In particular $\pi_0 \otimes Id_Y, \pi_1 \otimes Id_Y \in \mathcal{L}(SX \otimes Y, X \otimes Y)$ are summable so we have strengths

$$\begin{split} \varphi^0_{X,Y} &= \langle \pi_0 \otimes \mathsf{Id}_Y, \pi_1 \otimes \mathsf{Id}_Y \rangle_{\mathsf{S}} \in \mathcal{L}(\mathsf{S}X \otimes Y, \mathsf{S}(X \otimes Y)) \\ \varphi^1_{X,Y} &= \langle \mathsf{Id}_X \otimes \pi_0, \mathsf{Id}_X \otimes \pi_1 \rangle_{\mathsf{S}} \in \mathcal{L}(X \otimes \mathsf{S}Y, \mathsf{S}(X \otimes Y)) \end{split}$$

turn ${\boldsymbol{\mathsf{S}}}$ into a commutative monad.

Intuitively

$$\varphi^{0}_{X,Y}((x_0, x_1) \otimes y) = (x_0 \otimes y, x_1 \otimes y)$$
$$\varphi^{1}_{X,Y}(x \otimes (y_0, y_1)) = (x \otimes y_0, x \otimes y_1)$$

Commutativity of the monad

We have actually something stronger:

Intuitively

 $\begin{aligned} & (x_0, x_1) \otimes (y_0, y_1) \mapsto ((x_0 \otimes y_0, x_0 \otimes y_1), (x_1 \otimes y_0, x_1 \otimes y_1)) \\ & (x_0, x_1) \otimes (y_0, y_1) \mapsto ((x_0 \otimes y_0, x_1 \otimes y_0), (x_0 \otimes y_1, x_1 \otimes y_1)) \end{aligned}$

Induced symmetric monoidal structure

We then have

Intuitively

 $\mathsf{L}_{X,Y}:((x_0,x_1)\otimes(y_0,y_1))\mapsto(x_0\otimes y_0,x_0\otimes y_1+x_1\otimes y_0)$

Differential structure

As in differential LL, we consider differentiation as a structure of the exponential.

So we assume moreover that

- \mathcal{L} is cartesian (\top : terminal object, $X_0 \& X_1$: product, pr_i $\in \mathcal{L}(X_0 \& X_1, X_i)$, $\langle f_0, f_1 \rangle \in \mathcal{L}(Y, X_0 \& X_1)$ if $f_i \in \mathcal{L}(Y, X_0)$).
- \mathcal{L} is equipped with a resource modality (!_, der, dig, m⁰, m²)

$$\begin{split} & \mathsf{der}_X \in \mathcal{L}(!X,X) \quad \mathsf{dig}_X \in \mathcal{L}(!X,!!X) \quad \mathsf{comonad \ structure} \\ & \mathsf{m}^0 \in \mathcal{L}(1,!\top) \quad \mathsf{m}^2_{X,Y} \in \mathcal{L}(!X \otimes !Y,!(X \And Y)) \end{split}$$

Seely isos, strong sym. monoidality

Preservation of products

We need a further property about \mathbf{S} .

Axiom (Product)

The functor **S** preserves cartesian products, more precisely:

$$\left< \mathsf{Spr}_{0}, \mathsf{Spr}_{1}
ight> \in \mathcal{L}(\mathsf{S}\left(X_{0} \And X_{1}
ight), \mathsf{S}X_{0} \And \mathsf{S}X_{1})$$

is an iso.

This holds in all the LL-based examples we have in mind, because in these examples \mathbf{S} is a right adjoint.

The differentiation operator

In this setting (resource category with a summability structure), a *differential structure* is a natural transformation

$$\partial_X \in \mathcal{L}(!\mathbf{S}X, \mathbf{S}!X)$$

satisfying some properties.

Remark (main idea)

Given $f \in \mathcal{L}_!(X, Y)$, this will allow to define

$$\mathsf{D}f = (\mathsf{S}f) \ \partial_X \in \mathcal{L}_!(\mathsf{S}X,\mathsf{S}Y)$$

which will (intuitively) be the map $(x, u) \mapsto (f(x), f'(x) \cdot u)$.

We list the conditions to be satisfied by ∂_X

Second derivative: intuition

Let $f \in \mathcal{L}_!(X, Y)$, we have $\mathbf{D}f \in \mathcal{L}_!(\mathbf{D}X, \mathbf{D}Y)$

$$\mathbf{D}f(x,u) = (f(x), \frac{f(x)}{dx} \cdot u)$$

We can apply \mathbf{D} to $\mathbf{D}f$, we get

$$\mathbf{D}^2 f((x,u),(y,v)) = (\mathbf{D} f(x,u), \frac{d\mathbf{D} f(x,u)}{d(x,u)} \cdot (y,v))$$

Remember $\mathbf{D}f(x, u) = (f(x), f'(x) \cdot u).$

By standard rules of calculus:

$$\frac{d\mathbf{D}f(x,u)}{d(x,u)} \cdot (y,v) = \frac{\partial \mathbf{D}f(x,u)}{\partial x} \cdot y + \frac{\partial \mathbf{D}f(x,u)}{\partial u} \cdot v$$
$$\frac{\partial \mathbf{D}f(x,u)}{\partial x} \cdot y = \frac{\partial}{\partial x}(f(x), f'(x) \cdot u) \cdot y$$
$$= (f'(x) \cdot y, f''(x) \cdot (u,y))$$
$$\frac{\partial \mathbf{D}f(x,u)}{\partial u} \cdot v = \frac{\partial}{\partial u}(f(x), f'(x) \cdot u) \cdot v$$
$$= (0, f'(x) \cdot v)$$

Finally we have, intuitively

$$D^{2}f((x, u), (y, v)) = ((f(x), f'(x) \cdot u), (f'(x) \cdot y, f''(x) \cdot (u, y) + f'(x) \cdot v)$$

Notice that in the first 3 components, we have only 1st order derivatives.

Distributive law

Axiom (Chain Rule + Linearity)

 ∂ is a distributive law between the monad ${\bm S}$ and the comonad $!_{-}$ in the following sense.

See John Power and Hiroshi Watanabe, *Combining a monad and a comonad*, TCS 2002 for this kind of dist. law.

Intuition for the dist. law

The first two diagrams allow to define a functor

$$\begin{array}{c} \mathsf{D}:\mathcal{L}_{!} \to \mathcal{L}_{!} \\ X \mapsto \mathsf{S}X \\ (f: !X \to Y) \mapsto ((\mathsf{S}f) \; \partial_{X}: !\mathsf{S}X \to \mathsf{S}Y) \end{array}$$

Intuitively, and in probabilistic coherence spaces for instance:

- $f \in \mathcal{L}_!(X, Y)$ means that f is an analytic function $X \to Y$
- $\mathbf{D}f \in \mathbf{Pcoh}_!(X, Y)$ is the $(x, u) \mapsto (f(x), f'(x) \cdot u)$

so this functoriality means that the chain rule holds.

And that the differential of a linear morphism is the morphism itself: $\mathbf{D}(f \operatorname{der}_X) = (\mathbf{S}f) \operatorname{der}_{\mathbf{S}X}$ for $f \in \mathcal{L}(X, Y)$.

The two next diagrams allow to lift the monad $(\mathbf{S}, \zeta, \theta)$ to $\mathcal{L}_{!}$. For $\theta_X \in \mathcal{L}_{!}(\mathbf{S}^2 X, \mathbf{S} Y) = \mathcal{L}(!\mathbf{S}^2 X, \mathbf{S} Y)$: we take $\theta_X \operatorname{der}_X$. These diagrams allow to prove that θ is a natural transformation on $\mathcal{L}_{!}$. If $f \in \mathcal{L}_{!}(X, Y)$:

$$\begin{array}{cccc}
\mathbf{D}^{2}X & \xrightarrow{\theta_{X}} & \mathbf{D}X \\
\mathbf{D}^{2}f & & & \downarrow \mathbf{D}f \\
\mathbf{D}^{2}Y & \xrightarrow{\theta_{Y}} & \mathbf{D}Y
\end{array}$$

And similarly ζ is natural in $\mathcal{L}_{!}$.

Intuition: linearity of the differential

Remember:

$$\theta_X((x_0, u_0), (x_1, u_1)) = (x_0, u_0 + x_1)$$

$$\mathbf{D}^2 f((x_0, u_0), (x_1, u_1)) = ((f(x_0), f'(x_0) \cdot u_0), (f'(x_0) \cdot x_1, f''(x_0) \cdot (u_0, x_1) + f'(x_0) \cdot u_1)$$

The commutation means:

$$\mathbf{D}f(x_0, u_0 + x_1) = (f(x_0), f'(x_0) \cdot u_0 + f'(x_0) \cdot x_1)$$

that is $f'(x_0) \cdot (u_0 + x_1) = f'(x_0) \cdot u_0 + f'(x_0) \cdot x_1.$
Naturality of ζ in \mathcal{L}_1 : $f'(x) \cdot 0 = 0.$

Locality

To represent one of the differential situation we are interested in, this distributive law has to satisfy additional axioms: *Locality*, *Leibniz* and *Schwarz*.

Axiom (Locality)

Only for π_0 , not for π_1 !

Intuition

Again we use π_0 for $\pi_0 \operatorname{der}_X \in \mathcal{L}_!(\mathbf{D}X, X)$.

The diagram means that π_0 is natural in $\mathcal{L}_!$. If $f \in \mathcal{L}_!(X, Y)$:

This corresponds to the intuition that

$$\mathbf{D}f(x,u) = (\mathbf{f}(x), f'(x) \cdot u)$$

Remark

 $\pi_1 \in \mathcal{L}_!(\mathbf{D}X, X)$ also exists but is fundamentally not natural in $\mathcal{L}_!$ (of course π_1 is natural in \mathcal{L}).

Leibniz

Is expressed as a "monoidality" condition (to simplify we assume S(X & Y) = SX & SY)

Axiom (Leibniz)

+

$$\begin{array}{ccc} \mathsf{!S}X \otimes \mathsf{!S}Y \xrightarrow{\partial_X \otimes \partial_Y} \mathsf{S}\mathsf{!}X \otimes \mathsf{S}\mathsf{!}Y \xrightarrow{\mathsf{L}_{\mathsf{I}X,\mathsf{I}Y}} \mathsf{S}(\mathsf{!}X \otimes \mathsf{!}Y) \\ & \stackrel{\mathsf{m}^2_{\mathsf{S}X,\mathsf{S}Y}}{& & & \downarrow} & \stackrel{\mathsf{S}\mathfrak{m}^2_{X,Y}}{& & \mathsf{I}\mathsf{S}(X \& Y) \xrightarrow{\partial_{X \& Y}} & & \mathsf{S}\mathsf{!}(X \& Y) \end{array}$$

$$a \text{ "0-ary version".}$$

Intuition

Given $f \in \mathcal{L}_{!}(X \& Y, Z)$, this commutation gives us an expression for **D***f* in terms of the two differentials ∂_X and ∂_Y .

Given
$$((x, y), (u, v)) \in \mathbf{S}(X \And Y)$$
,
that is, $(x, u) \in \mathbf{S}X$ and $(y, v) \in \mathbf{S}Y$,
$$\frac{df(x, y)}{d(x, y)} \cdot (u, v) = \frac{\partial f(x, y)}{\partial x} \cdot u + \frac{\partial f(x, y)}{\partial y} \cdot v$$

In the diagram, + is implemented by $L_{1X,1Y}$.

Schwarz

Axiom (Schwarz)

If $f \in \mathcal{L}_!(X, Y)$ then

$$\mathbf{D}^2 f = (\mathbf{S}^2 f) (\mathbf{S} \,\partial_X) \,\partial_{\mathbf{S}X}$$

so this diagram means that c is natural in $\mathcal{L}_{!}$:

$$\begin{array}{cccc}
\mathbf{D}^{2}X & \xrightarrow{\mathbf{D}^{2}f} & \mathbf{D}^{2}Y \\
 \begin{array}{c} \mathsf{c}_{X} \\
 \end{array} & & \downarrow \mathsf{c}_{Y} \\
 \end{array} \\
\mathbf{D}^{2}X & \xrightarrow{\mathbf{D}^{2}f} & \mathbf{D}^{2}Y \\
\end{array}$$

where we use also c_X for $c_X \operatorname{der}_{\mathbf{S}^2 X}$.

Intuition

Remember that

$$c_X((x_0, u_0), (x_1, u_1)) = ((x_0, x_1), (u_0, u_1))$$

$$D^2 f((x_0, u_0), (x_1, u_1)) = ((f(x_0), f'(x_0) \cdot u_0), (f'(x_0) \cdot x_1, f''(x_0) \cdot (u_0, x_1) + f'(x_0) \cdot u_1)$$

so this naturality means that

$$\mathbf{D}^{2}f((x_{0}, x_{1}), (u_{0}, u_{1})) = ((f(x_{0}), f'(x_{0}) \cdot x_{1}), (f'(x_{0}) \cdot u_{0}, f''(x_{0}) \cdot (u_{0}, x_{1}) + f'(x_{0}) \cdot u_{1})$$

$$((f(x_0), f'(x_0) \cdot x_1), (f'(x_0) \cdot u_0, f''(x_0) \cdot (x_1, u_0) + f'(x_0) \cdot u_1) = ((f(x_0), f'(x_0) \cdot x_1), (f'(x_0) \cdot u_0, f''(x_0) \cdot (u_0, x_1) + f'(x_0) \cdot u_1)$$

So taking $u_1 = 0$ we get

$$f''(x_0) \cdot (x_1, u_0) = f''(x_0) \cdot (u_0, x_1)$$

which is the crucial property that the second derivative is a symmetric bilinear function, often called *Schwarz lemma*.

Coherent Differentiation (II)

Thomas Ehrhard IRIF, CNRS and Université de Paris

November 28, 2021

Short recap

Summability structure

- \mathcal{L} is a category with 0-morphisms
- $\mathbf{S}: \mathcal{L} \to \mathcal{L}$ is a 0-preserving functor
- $\pi_0, \pi_1, \sigma : \mathbf{S}X \to X$ are natural transformations
- π_0, π_1 are jointly monic
- $f_0, f_1 \in \mathcal{L}(X, Y)$ are summable if there is $\langle f_0, f_1 \rangle_{\mathbf{S}} \in \mathcal{L}(X, \mathbf{S}Y)$ with $\pi_i \langle f_0, f_1 \rangle_{\mathbf{S}} = f_i$, and then $f_0 + f_1 = \sigma \langle f_0, f_1 \rangle_{\mathbf{S}}$.

+ axioms to turn $\mathcal{L}(X, Y)$ into a partial commutative monoid.

In particular $c \in \mathcal{L}(S^2X, S^2X)$ the standard flip with $\pi_i \ \pi_j \ c = \pi_j \ \pi_i$.

S inherits a monad structure $(\mathbf{S}, \zeta, \theta)$.

Differentiation

 \mathcal{L} is assumed to be a resource category (cartesian SMC with a resource comonad aka. exponential, with Seely strong monoidality).

The differential structure is a natural transformation $\partial_X \in \mathcal{L}(!\mathbf{S}X, \mathbf{S}!X)$ which satisfies some further commutations:

- it is a distributive law between the monad **S** and the comonad !..: Chain Rule and Linearity (of the derivative)
- Locality
- Leibniz
- Schwarz.

Then one defines the Differentiation Functor $\mathbf{D} : \mathcal{L}_! \to \mathcal{L}_!$ by $\mathbf{D}X = \mathbf{S}X$ and if $f \in \mathcal{L}_!(X, Y) = \mathcal{L}_!(!X, Y)$ then $\mathbf{D}f = (\mathbf{S}f) \ \partial_X \in \mathcal{L}_!(\mathbf{D}X, \mathbf{D}Y).$

Canonical structure

A special, very common, case

We assume that \mathcal{L} is monoidal closed (convenient though not strictly necessary) so that the functor

 $_{-} \otimes |$

where I = 1 & 1, has a right adjoint S_I .

$$\begin{aligned} \mathbf{S}_{\mathsf{I}} X &= (\mathsf{I} \multimap X) \\ \mathbf{S}_{\mathsf{I}} f &= (\mathsf{I} \multimap f) \in \mathcal{L}(\mathsf{I} \multimap X, \mathsf{I} \multimap Y) \end{aligned}$$

for $f \in \mathcal{L}(X, Y)$.

Remark

We still assume that \mathcal{L} has zero-morphisms.

Two natural questions

Remark

In (probabilistic) coherence spaces, \boldsymbol{S} is defined exactly in that way.

- When does this definition give rise to a summability structure?
- What does the differential structure boil down to in this setting?

We have three morphisms

$$egin{aligned} \overline{\pi}_0 &= \langle \mathsf{Id}, \mathsf{0}
angle \in \mathcal{L}(\mathsf{1}, \mathsf{I}) \ \overline{\pi}_1 &= \langle \mathsf{0}, \mathsf{Id}
angle \in \mathcal{L}(\mathsf{1}, \mathsf{I}) \ \Delta &= \langle \mathsf{Id}, \mathsf{Id}
angle \in \mathcal{L}(\mathsf{I}, \mathsf{I}) \end{aligned}$$

which induce natural transformations $\pi_0, \pi_1, \sigma \in \mathcal{L}(\mathbf{S}_{\mathbf{I}}X, X)$ by "precomposition".

For instance π_0 is

$$(\mathsf{I}\multimap X)\stackrel{\sim}{\longrightarrow} (\mathsf{I}\multimap X)\otimes 1\stackrel{\mathsf{Id}\otimes \overline{\pi}_0}{\longrightarrow} (\mathsf{I}\multimap X)\otimes \mathsf{I}\stackrel{\mathsf{ev}}{\longrightarrow} X$$

Summability as a property

Definition

 \mathcal{L} is canonically summable if $(\mathbf{S}_{\mathbf{I}}, \pi_0, \pi_1, \sigma)$ defined in that way are a summability structure.

Remark (a property of \mathcal{L} , not a structure)

This is a property of \mathcal{L} , not an additional structure on \mathcal{L} .

In particular we need $\overline{\pi}_0, \overline{\pi}_1$ to be jointly epic.

What do summability and sums become?

Remember that $\mathcal{L}(X, Y) \simeq \mathcal{L}(1, X \multimap Y)$.

Fact

 $x_0, x_1 \in \mathcal{L}(1,X)$ are summable if there is $h \in \mathcal{L}(\mathsf{I},X)$ such that

 $x_i = h \overline{\pi}_i$

and then $x_0 + x_1 = h \Delta \in \mathcal{L}(1, X)$.

Canonical Witness Axiom

If $f_0, f_1 \in \mathcal{L}(\mathsf{I}, X)$ are such that $f_0 \Delta, f_1 \Delta \in \mathcal{L}(\mathsf{I}, X)$ are summable, then so are f_0, f_1 . That is, up to $\mathcal{L}(\mathsf{I}, X) \simeq \mathcal{L}(\mathsf{1}, \mathsf{I} \multimap X)$:

if $f_0, f_1, f \in \mathcal{L}(\mathsf{I}, X)$ are such that

$$f_i \Delta = f \overline{\pi}_i$$
 for $i = 0, 1$

then there is $h \in \mathcal{L}(I \otimes I, X)$ such that

$$f_i \lambda = h(\overline{\pi}_i \otimes \mathsf{I}) \in \mathcal{L}(1 \otimes \mathsf{I}, X)$$

where λ is the can. isom. $1 \otimes I \rightarrow I$.

Remark

Then $f \rho = h(I \otimes \Delta)$. Because $\overline{\pi}_0, \overline{\pi}_1$ are jointly epic.

Theorem

If $\overline{\pi}_0, \overline{\pi}_1$ are jointly epic, then $(\mathbf{S}_1, \pi_0, \pi_1, \sigma)$ (as defined above) is a summability structure on \mathcal{L} iff the Canonical Witness Axiom holds.

I is a commutative comonoid

Thanks to the axioms we can define

 $\widetilde{L} \in \mathcal{L}(I, I \otimes I)$

uniquely characterized by

$$\widetilde{\mathsf{L}}\,\overline{\pi}_0 = \overline{\pi}_0 \otimes \overline{\pi}_0$$
 and $\widetilde{\mathsf{L}}\,\overline{\pi}_1 = \overline{\pi}_0 \otimes \overline{\pi}_1 + \overline{\pi}_1 \otimes \overline{\pi}_0$

Fact

 $(I, pr_0 \in \mathcal{L}(I, 1), \widetilde{L})$ is a commutative comonoid in \mathcal{L} .

 $\mathsf{pr}_0 \in \mathcal{L}(\mathsf{I} = (1 \And 1), 1)$ is the first projection.

The commutative monad structure of \mathbf{S}_{I}

We have seen that \mathbf{S}_{I} has a structure of commutative monad.

Fact

The monad $(\mathbf{S}_{l}, \zeta, \theta)$ is induced by the commutative comonoid structure (pr_0, \widetilde{L}) of I.

For instance $\theta = \operatorname{cur} f : (\mathsf{I} \multimap (\mathsf{I} \multimap X)) \rightarrow (\mathsf{I} \multimap X)$ where f is

$$(\mathsf{I}\multimap(\mathsf{I}\multimap X))\otimes\mathsf{I}\xrightarrow{\mathsf{Id}\otimes\widetilde{\mathsf{L}}}(\mathsf{I}\multimap(\mathsf{I}\multimap X))\otimes\mathsf{I}\otimes\mathsf{I}$$

$$\downarrow^{\mathsf{ev}\otimes\mathsf{Id}}$$

$$X\xleftarrow{\mathsf{ev}}(\mathsf{I}\multimap X)\otimes\mathsf{I}$$

Differentiation as a !-coalgebra (canonical case)

!_ and its coalgebras

We assume that \mathcal{L} is a cartesian resource category (cartesian product &, exponential comonad !_, Seely isos etc).

A !-coalgebra structure on $X \in \mathcal{L}$ is a $d \in \mathcal{L}(X, !X)$ such that

These colgebras form the Eilenberg-Moore category $\mathcal{L}^!$ where

$$f \in \mathcal{L}^{!}((X,d),(Y,e)) \text{ if } \begin{array}{c} X \xrightarrow{d} !X \\ f \downarrow \qquad \qquad \downarrow !f \quad \text{ in } \mathcal{L}. \\ Y \xrightarrow{e} !Y \end{array}$$

$\mathcal{L}^!$ is cartesian

Due to the fact that \mathcal{L} is a resource category (\otimes , &, Seely isos):

Fact

 $\mathcal{L}^{!}$ is cartesian, with terminal object

$$(1,\mu^0:1
ightarrow !1)$$

and the cartesian product of $(P_0, d_0), (P_1, d_1) \in \mathcal{L}^!$ is $(P_0 \otimes P_1, \mu^2 (d_0 \otimes d_1))$ $P_0 \otimes P_1 \xrightarrow{d_0 \otimes d_1} !P_0 \otimes !P_1 \xrightarrow{\mu^2} !(P_0 \otimes P_1)$ Projection $\operatorname{pr}_0^{\otimes}$ (and similarly for $\operatorname{pr}_1^{\otimes}$):

$$P_0 \otimes P_1 \xrightarrow{d_0 \otimes d_1} !P_0 \otimes !P_1 \xrightarrow{\operatorname{der}_{P_0} \otimes !0} P_0 \otimes !\top \simeq P_0$$

Uses the lax symmetric monoidality structure (μ^0, μ^2) of !_.

Chain Rule and coalgebra

Fact

There is a bijective correspondence between

- the !-coalgebra structures on I
- and the distributive laws between S₁ and !_ in the sense of the Chain Rule:

Coalgebra ~> Chain Rule

Suppose we are given $\delta \in \mathcal{L}(I, !I)$, then for any object X we can define $\partial_X = \operatorname{cur} f \in \mathcal{L}(!\mathbf{S}_I X = !(I \multimap X), \mathbf{S}_I ! X = (I \multimap !X))$ where f is

$$!(\mathsf{I}\multimap X)\otimes\mathsf{I}\xrightarrow{\mathsf{Id}\otimes\delta} !(\mathsf{I}\multimap X)\otimes !\mathsf{I}\xrightarrow{\mu^2} !((\mathsf{I}\multimap X)\otimes\mathsf{I})\xrightarrow{!\mathsf{ev}} !X$$

 $\mu^2_{X,Y} \in \mathcal{L}(!X \otimes !Y, !(X \otimes Y))$ is the lax-monoidality structure of $!_{-}$ wrt. \otimes .

Chain Rule ~> Coalgebra

Conversely assume we are given $\partial_X \in \mathcal{L}(!\mathbf{S}_I X, \mathbf{S}_I ! X)$ for each $X \in \mathcal{L}$, we have in particular, taking X = I:

where $\mu^0 \in \mathcal{L}(1, !1)$ is the "unit" of the lax-monoidality and $\lambda_{\mathsf{I}} \in \mathcal{L}(1 \otimes \mathsf{I}, \mathsf{I})$ (the canonical iso).

A natural question

So assume we are given a coalgebra structure $\delta \in \mathcal{L}(\mathsf{I}, \mathsf{!I})$.

What conditions must satisfy δ for ensuring that the corresponding distributive law $(\partial_X)_{X \in \mathcal{L}}$ satisfies the additional conditions

- Linearity (second part of the dist. law)
- Local
- Leibniz
- Schwarz?

The answer is surprisingly simple.

Linearity and Leibniz

Linearity and Leibniz boil down to

$$\begin{array}{c|c} \mathbf{I} & \stackrel{\delta}{\longrightarrow} & \mathbf{!} \mathbf{I} & \qquad \mathbf{I} & \stackrel{\delta}{\longrightarrow} & \mathbf{!} \mathbf{I} \\ \mathbf{pr}_{0} \downarrow & \downarrow \mathbf{!} \mathbf{pr}_{0} & \qquad \widetilde{\mathbf{L}} \downarrow & \qquad \downarrow \mathbf{!} \widetilde{\mathbf{L}} \\ \mathbf{1} & \stackrel{\mu^{0}}{\longrightarrow} & \mathbf{!} \mathbf{1} & \qquad \mathbf{I} \otimes \mathbf{I} & \stackrel{\delta \otimes \delta}{\longrightarrow} & \mathbf{!} \mathbf{I} \otimes \mathbf{!} \mathbf{I} & \stackrel{\mu^{2}}{\longrightarrow} & \mathbf{!} (\mathbf{I} \otimes \mathbf{I}) \end{array}$$

that is

comonoid from the coalgebra

This means that we have

because $\mathcal{L}^!$ is cartesian.

Remark

As a consequence, a canonically summable resource category where $!_{-}$ is the free exponential (roughly speaking, a Lafont category which is canonically summable) has exactly one differential structure (in our sense).

Related to a result of Blute, Cockett, Lemay and Seely (in additive resource categories).

Locality corresponds to

that is $\iota_0 \in \mathcal{L}^!((1, \mu^0), (\mathsf{I}, \delta)).$

And Schwarz straightforwardly holds.

Remark: the Kleisli category of \mathbf{S}_{I}

It turns out to be exactly the same thing as the category $\mathcal{L}[(I, \delta)]$ of free comodules of the coalgebra (I, δ) .

Theorem (Girard)

If \mathcal{L} is a model of LL then $\mathcal{L}[(1, \delta)]$ is a model of LL. Very likely conjecture: it is also a summable differential model of LL.

The objects of $\mathcal{L}[(I, \delta)]$ are those of \mathcal{L} .

 $f \in \mathcal{L}[(I, \delta)](X, Y)$ if $f = (f_0, f_1) \in \mathcal{L}(X, Y)$ is a summable pair of morphisms. Composition:

$$(g_0,g_1)(f_0,f_1) = (g_0 f_0,g_0 f_1 + g_1 f_0).$$

Intuition: " $g_1 f_1 = 0$ ", $\mathcal{L}[(I, \delta)]$ is a kind of infinitesimal extension of \mathcal{L} .

To summarize

In the canonical case, for a closed resource category \mathcal{L} :

- **1** summability boils down to the Canonical Witness Axiom about I = 1 & 1 (+ the fact that $\overline{\pi}_0, \overline{\pi}_1$ are jointly epic);
- 2 and the differential structure boils down to a coalgebra structure on I

such that the morphisms $\mathsf{pr}_0 \in \mathcal{L}(\mathsf{I},1), \, \iota_0 \in \mathcal{L}(1,\mathsf{I})$ and $\widetilde{\mathsf{L}} \in \mathcal{L}(\mathsf{I},\mathsf{I}\otimes\mathsf{I})$ are coalgebra morphisms.

Remember that these 3 morphisms arise from the summability assumptions.

Concrete instance I: Coherence Spaces

A coherence space is

$$E = (|E|, \bigcirc_E)$$

where |E| is a set and \bigcirc_E is a binary symmetric and reflexive relation on |E|.

The domain of cliques:

$$\mathsf{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in x \ a \rhd_E a' \}$$

ordered by \subseteq .

Morphisms

•
$$|E \multimap F| = |E| \times |F|$$

• $(a, b) \bigcirc_{E \multimap F} (a', b')$ if
 $a \bigcirc_E a' \Rightarrow (b \bigcirc_F b' \text{ and } b = b' \Rightarrow a = a')$

And then

$$Coh(E,F) = Cl(E \multimap F)$$

Some notations for Coh

- Identity: $Id_E = \{(a, a) \mid a \in |E|\}$
- Composition: if $s \in \mathbf{Coh}(E, F)$ and $t \in \mathbf{Coh}(F, G)$ then

 $t s = \{(a, c) \in |E| \times |G| \mid \exists b \in |F| \ (a, b) \in s \text{ and } (b, c) \in t\} \in \mathbf{Coh}(E, G)$

• Application to a clique: if $s \in \mathbf{Coh}(E, F)$ and $x \in Cl(E)$ then $s \cdot x = \{b \in |F| \mid a \in x \text{ and } (a, b) \in s\} \in Cl(F).$

Coh is cartesian

- Terminal object $\top = (\emptyset, \emptyset)$.
- Cartesian product $|E_0 \& E_1| = \{0\} \times |E_0| \cup \{1\} \times |E_1|$ $(i, a) \bigcirc_{E_0 \& E_1} (j, b)$ if $i = j \Rightarrow a \bigcirc_{E_i} b$.
- The projections are

 $pr_i = \{((i, a), a) \mid i \in \{0, 1\} \text{ and } a \in |E_i|\} \in \mathbf{Coh}(E_0 \& E_1, E_i).$

If
$$t_i \in Coh(F, E_i)$$
 then
 $\langle t_0, t_1 \rangle = \{(b, (i, a)) \mid i \in \{0, 1\} \text{ and } (b, a) \in t_i\}$
 $\in Coh(F, E_0 \& E_1).$

Remark

 $\mathsf{Cl}(\top) = \{\emptyset\}$ and $\mathsf{Cl}(E_0) \times \mathsf{Cl}(E_1) \simeq \mathsf{Cl}(E_0 \And E_1)$ by

 $(x_0, x_1) \mapsto \{0\} \times x_0 \cup \{1\} \times x_1$.

Coh is monoidal closed

• Unit
$$1 = (\{*\}, =)$$
.

• Tensor product $|E_0 \otimes E_1| = |E_0| \times |E_1|$ and $(a_0, a_1) \odot_{E_0 \otimes E_1} (a'_0, a'_1)$ if $a_i \odot_{E_i} a'_i$ for i = 0, 1.

• If $t_i \in \mathbf{Coh}(E_i, F_i)$ for i = 0, 1 then

$$t_0 \otimes t_1 = \{((a_0, a_1), (b_0, b_1)) \mid (a_i, b_i) \in t_i \text{ for } i = 0, 1\} \in \mathbf{Coh}(E_0 \otimes E_1, F_0 \otimes F_1).$$

Monoidal closedness:

$$\operatorname{Coh}(G\otimes E,F)\simeq \operatorname{Coh}(G,E\multimap F).$$

Coh as a resource category

- |!E| = the set of all finite multisets $m = [a_1, \ldots, a_n]$ with $a_i \in |E|$ and $\forall i, j \ a_i \bigcirc_E a_j$. It is a uniform exponential.
- $m \bigcirc_{!E} m'$ if $\forall a \in m, a' \in m'$ $m \bigcirc_E m'$.
- And it $t \in \mathbf{Coh}(E, F)$ then

$$\begin{aligned} !t &= \{ ([a_1, \dots, a_n], [b_1, \dots, b_n]) \mid \\ & n \in \mathbb{N}, \ [a_1, \dots, a_n] \in |!E| \\ & \text{and} \ (a_i, b_i) \in t \text{ for } i = 1, \dots, n \} \\ & \in \mathbf{Coh}(!E, !F). \end{aligned}$$

Remark

This is the free exponential. There is another one where |!E| is made of sets instead of multisets; it is not compatible with the differential structure.

Coh is canonically summable

- Coh has 0-morphisms: $0 = \emptyset \in Coh(E, F)$.
- I = 1 & 1 so that $|I| = \{0, 1\}$ and $0 \subset_I 1$.
- The injections $\overline{\pi}_i = \{(*, i)\} \in \mathbf{Coh}(1, \mathsf{I})$ are jointly epic.

Remark

 $s \in \mathbf{Coh}(I, E)$ is fully determined by the pair

$$s \cdot \{0\}, s \cdot \{1\} \in \mathsf{Cl}(E)$$

such that

$$s\cdot\{0\}\cap s\cdot\{1\}=\emptyset.$$

The Can. Witness Axiom holds in Coh

Let $t_0, t_1, t \in \mathbf{Coh}(\mathsf{I}, E)$ such that

 $t_i \Delta = t \overline{\pi}_i$ for i = 0, 1.

This means $t_i \cdot \{0,1\} = t \cdot \{i\}$ for i = 0, 1. That is:

 $t_0 \cdot \{0,1\} \cup t_1 \cdot \{0,1\} \in \mathsf{Cl}(E) \text{ and } t_0 \cdot \{0,1\} \cap t_1 \cdot \{0,1\} = \emptyset.$

Then let $s = \{((i,j),a) \mid (i,a) \in t_j\} \subseteq |I \otimes I \multimap E|$, we have

 $s \in \mathbf{Coh}(I \otimes I, E)$.

The functor $S_I : Coh \rightarrow Coh$ is given by

$$\mathbf{S}_{\mathbf{I}}E = (\mathbf{I} \multimap E)$$

so that $|\mathbf{S}_{\mathsf{I}}E| = \{0,1\} \times |E|$ with

$$(i,a) \circ_{\mathsf{S}_{\mathsf{I}}\mathsf{E}} (i',a')$$
 if $a \circ_{\mathsf{E}} a'$ and $i
eq i' \Rightarrow a
eq a'.$

Hence

$$\mathsf{Cl}(\mathbf{S}_{\mathsf{I}} E) \simeq \{(x_0, x_1) \in \mathsf{Cl}(E)^2 \mid x_0 \cup x_1 \in \mathsf{Cl}(E) \text{ and } x_0 \cap x_1 = \emptyset\}.$$

Remark

Two cliques x_0, x_1 of E are summable if $x_0 \cup x_1 \in Cl(E)$ and $x_0 \cap x_1 = \emptyset$. In that case we use $x_0 + x_1$ for $x_0 \cup x_1$.

The commutative comonoid structure of I is given by

$$\begin{split} & \mathsf{pr}_0 = \{(0,*)\} \in \textbf{Coh}(\mathsf{I},1) \\ & \widetilde{\mathsf{L}} = \{(0,(0,0)), (1,(1,0)), (1,(0,1))\} \in \textbf{Coh}(\mathsf{I},\mathsf{I}\otimes\mathsf{I}) \,. \end{split}$$

Remember it induces the monad structure $\zeta_E \in \mathbf{Coh}(E, \mathbf{S}_{\mathsf{I}}E)$ and $\theta_E \in \mathbf{Coh}(\mathbf{S}_{\mathsf{I}}^2E, \mathbf{S}_{\mathsf{I}}E)$.

As expected

$$egin{aligned} & heta_E: \mathbf{S}^2_{\mathbf{I}}E o \mathbf{S}_{\mathbf{I}}E \ & ((x_{00},x_{01}),(x_{10},x_{11})) \mapsto (x_{00},x_{10}+x_{01}) \end{aligned}$$

up to

 $Cl(\mathbf{S}_{I}^{2}E) \simeq \{((x_{00}, x_{01}), (x_{10}, x_{11})) \mid x_{00} + x_{01} + x_{10} + x_{11} \in Cl(E)\}.$

The differential structure of **Coh**

We define $\delta \subseteq |\mathbf{I} \multimap !\mathbf{I}|$:

$$\delta = \{(0, n[0]) \mid n \in \mathbb{N}\} \cup \{(1, n[0] + [1]) \mid n \in \mathbb{N}\}$$

where $n[a] = [\overline{a, \ldots, a}]$. It is easy to check that $\delta \in \mathbf{Coh}(\mathsf{I}, \mathsf{!I})$.

δ is a coalgebra

The main thing to check is

that is, given $i \in \{0,1\}$ and $M \in \mathcal{M}_{\operatorname{fin}}(\mathcal{M}_{\operatorname{fin}}(\{0,1\}))$,

$$(i, M) \in !\delta \delta \Leftrightarrow (i, M) \in \mathsf{dig}_{\mathsf{I}} \delta$$

where

 $dig_E = \{(m, [m_1, \dots, m_k]) \in |!E| \times |!!E| \mid m = m_1 + \dots + m_k\}.$

main case

The main case is when i = 1. $(1, M) \in !\delta \delta$ means $\exists k \in \mathbb{N}$ such that $(k[0] + [1], M) \in !\delta$

that is:

$$M = [m_1, \dots, m_{k+1}] \text{ with } (0, m_i) \in \delta \text{ for } i = 1, \dots k$$

and $(1, m_{k+1}) \in \delta$

that is: $\exists k \in \mathbb{N} \exists n_1, \ldots, n_{k+1} \in \mathbb{N}$

 $M = [n_1[0], \ldots, n_k[0], n_{k+1}[0] + [1]]$

And $(1, M) \in {\operatorname{dig}}_{\mathsf{I}} \ \delta$ means $\exists k \in \mathbb{N}$ such that $(k[0] + [1], M) \in {\operatorname{dig}}_{\mathsf{I}}$

that is:

$$M=[m_1,\ldots,m_l]$$
 with $m_1+\cdots+m_l=k[0]+[1]$
that is: $\exists l\in\mathbb{N}^+\exists n_1,\ldots,n_l\in\mathbb{N}$ $M=[n_1[0],\ldots,n_{l-1}[0],n_l[0]+[1]]$

The diagram commutes!

The differential distributive law

Remember that δ induces a distributive law $\partial_E = \operatorname{cur} u \in \operatorname{Coh}(!\mathbf{S}_{\mathsf{I}}E, \mathbf{S}_{\mathsf{I}}!E)$ where

$$u: !(\mathsf{I}\multimap E)\otimes \mathsf{I} \to !E$$

is

$$!(\mathsf{I} \multimap E) \otimes \mathsf{I} \xrightarrow{\mathsf{Id} \otimes \delta} !(\mathsf{I} \multimap E) \otimes !\mathsf{I} \xrightarrow{\mu^2} !((\mathsf{I} \multimap E) \otimes \mathsf{I}) \xrightarrow{!ev} !E$$

Notice that $\mu_{E,F}^2 \in \mathbf{Coh}(!E \otimes !F, !(E \otimes F))$ is

$$\mu_{E,F}^2 = \{ (([a_1, \dots, a_n], [b_1, \dots, b_n]), [(a_1, b_1), \dots, (a_n, b_n)]) \mid n \in \mathbb{N}, [a_1, \dots, a_n] \in |!E| \text{ and } [b_1, \dots, b_n] \in |!F| \}$$

$$\begin{split} & !(\mathsf{I} \multimap E) \otimes !\mathsf{I} \stackrel{\mu^2}{\longrightarrow} !((\mathsf{I} \multimap E) \otimes \mathsf{I}) \stackrel{!\mathsf{ev}}{\longrightarrow} !E\\ & \text{is}\\ & \{(([(i_1, a_1), \dots, (i_k, a_k)], [i_1, \dots, i_k]), [a_1, \dots, a_k]) \mid \\ & k \in \mathbb{N}, i_1, \dots, i_k \in \{0, 1\} \text{ and } [(i_1, a_1), \dots, (i_k, a_k)] \in |!(\mathsf{I} \multimap E)| \}\\ & \text{and } [(i_1, a_1), \dots, (i_k, a_k)] \in |!(\mathsf{I} \multimap E)| \text{ means that}\\ & \forall j, j' \mid a_j \circ_E a_{j'} \text{ and } j \neq j' \Rightarrow a_j \neq a_{j'}. \end{split}$$

$$!(\mathsf{I}\multimap E)\otimes\mathsf{I}\xrightarrow{\mathsf{Id}\otimes\delta} !(\mathsf{I}\multimap E)\otimes !\mathsf{I}$$

is

$$\{ ((p,0), (p,n[0])) \mid n \in \mathbb{N}, \ p \in \mathsf{Cl}(\mathsf{I} \multimap E) \} \\ \cup \{ ((p,1), (p,n[0]+[1])) \mid n \in \mathbb{N}, \ p \in \mathsf{Cl}(\mathsf{I} \multimap E) \}$$

so u =

$$!(I \multimap E) \otimes I \xrightarrow{Id \otimes \delta} !(I \multimap E) \otimes !I \xrightarrow{\mu^2} !((I \multimap E) \otimes I) \xrightarrow{!ev} !E$$
is

$$u = \{ (([(0, a_1), \dots, (0, a_k)], 0), [a_1, \dots, a_k]) \mid k \in \mathbb{N} \text{ and } [a_1, \dots, a_k] \in |!E| \} \cup \{ (([(0, a_1), \dots, (0, a_k), (1, a_{k+1})], 1), [a_1, \dots, a_{k+1}]) \mid k \in \mathbb{N} \text{ and } [a_1, \dots, a_{k+1}] \in |!E| \text{ and } a_{k+1} \notin \{a_1, \dots, a_k\} \}$$

Expression of ∂_E

$$\partial_{E} = \{ (([(0, a_{1}), \dots, (0, a_{k})], (0, [a_{1}, \dots, a_{k}]) \mid k \in \mathbb{N} \text{ and } [a_{1}, \dots, a_{k}] \in |!E| \} \\ \cup \{ (([(0, a_{1}), \dots, (0, a_{k}), (1, a_{k+1})], (1, [a_{1}, \dots, a_{k+1}]) \mid k \in \mathbb{N} \text{ and } [a_{1}, \dots, a_{k+1}] \in |!E| \text{ and } a_{k+1} \notin \{a_{1}, \dots, a_{k}\} \} \\ \in \mathbf{Coh}(!(\mathsf{I} \multimap E), \mathsf{I} \multimap !E) .$$

The Kleisli category Coh!

Object: those of **Coh** and **Coh**_!(E, F) =**Coh**(!E, F). $s \in$ **Coh**_!(E, F) induces a stable function

$$\widehat{s}: \mathsf{Cl}(E) o \mathsf{Cl}(F) \ x \mapsto \{b \in |F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x) \ (m, b) \in s\}$$

Remark

Different s's can induce the same stable function: \hat{s} forgets about the multiplicities in multisets.

If $s_1 = \{([a], b)\}$ and $s_2 = \{([a, a], b)\}$ then $\widehat{s_1} = \widehat{s_2}$.

Differentiation on Coh!

Given $t \in \mathbf{Coh}_{!}(E, F) = \mathbf{Coh}(!E, F)$, remember that $\mathbf{D}t = (\mathbf{S}t) \ \partial_{E} \in \mathbf{Coh}(!\mathbf{S}_{!}E = (\mathbf{I} \multimap E), \mathbf{S}_{!}!E = (\mathbf{I} \multimap !F)).$

Notice that

$${f S}t = \{((i,m),(i,b)) \mid i \in \{0,1\} \text{ and } (m,b) \in t\}.$$

So

$$\begin{aligned} \mathbf{D}t &= \{ ([(0,a_1),\ldots,(0,a_k)],(0,b)) \mid ([a_1,\ldots,a_k],b) \in t) \} \\ &\cup \{ ([(0,a_1),\ldots,(0,a_k),(1,a_{k+1})],(1,b)) \mid \\ &\quad ([a_1,\ldots,a_k,a_{k+1}],b) \in t) \text{ and } a_{k+1} \notin \{a_1,\ldots,a_k\} \} \end{aligned}$$

The stable derivative

Remember that

$$\mathsf{Cl}(\mathbf{S}_{\mathsf{I}} E) \simeq \{(x, u) \mid x \cup u \in \mathsf{Cl}(E) \text{ and } x \cap u = \emptyset\}.$$

In that way we get the stable function

$$\begin{aligned} \widehat{\mathbf{D}t} &: \mathsf{Cl}(\mathbf{S}_{\mathsf{I}}E) \to \mathsf{Cl}(\mathbf{S}_{\mathsf{I}}F) \\ & (x,u) \mapsto (\widehat{t}(x), t'(x) \cdot u) \end{aligned}$$

where

$$t'(x) \cdot u = \{b \in |F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x), a \in u \ (m + [a], b) \in t\}$$

Remark

If $t_i = \{(i[a], a)\}$ for i = 1, 2 we get

 $t'_1(\emptyset) \cdot \{a\} = \{a\}$ $t'_2(\emptyset) \cdot \{a\} = \emptyset$

whereas $\widehat{t_1} = \widehat{t_2}$. The derivative is not associated with the stable function itself.

In some sense this derivative "does not see mutiplicities". This can be remedied using non-uniform coherence spaces.

Coherent Differentiation (III)

Thomas Ehrhard IRIF, CNRS and Université de Paris

November 28, 2021

The joint "epicness" axiom is necessary

Remember that we required $\mathcal L$ to satisfy the following.

The morphisms $\overline{\pi}_0, \overline{\pi}_1: 1 \to I = 1 \& 1$ are jointly epic, that is: if $f_0, f_1: I \to X$ satisfy

$$f_0 \overline{\pi}_i = f_1 \overline{\pi}_i$$
 for $i = 0, 1$

then $f_0 = f_1$.

This is not always true.

The category of pointed sets

Pointed set: a set X together with a distinguished $0_X \in X$.

Morphisms: functions $f : X \to Y$ s.t. $f(0_X) = 0_Y$.

This category is cartesian:

$$X \& Y = X \times Y$$
 with $0_{X \& Y} = (0_X, 0_Y)$.

And monoidal closed

$$X\otimes Y = \{(x,y)\in X imes Y\mid x=0_X \Leftrightarrow y=0_Y\}$$

and $0_{X\otimes Y} = (0_X, 0_Y)$ (smash product). The \otimes -unit is $1 = \{*, 0_1\}$.

Remark

It is even a resource category: set $!X = \{(0,0)\} \cup \{1\} \times X$, and $0_{!X} = (0,0)$.

Then the injections $\overline{\pi}_0, \overline{\pi}_1: 1 \to I = 1 \& 1$ are given by

$$\overline{\pi}_0(0_1) = (0_1, 0_1) \quad \overline{\pi}_0(*) = (*, 0_1) \overline{\pi}_1(0_1) = (0_1, 0_1) \quad \overline{\pi}_1(*) = (0_1, *)$$

If $f, g : 1 \& 1 \to Y$ satisfy $f \overline{\pi}_i = g \overline{\pi}_i$ for i = 0, 1 we can still have $f(*, *) \neq g(*, *)$.

The CWA is necessary

Canonical Witness Axiom

Reminder

Joint epicness of $\overline{\pi}_0, \overline{\pi}_1$ and CWA are the only conditions we need in the canonical case to get a summability structure.

If $f_0, f_1 \in \mathcal{L}(I, X)$ are such that $f_0 \Delta, f_1 \Delta \in \mathcal{L}(I, X)$ are summable, then so are f_0, f_1 . That is, up to $\mathcal{L}(I, X) \simeq \mathcal{L}(1, I \multimap X)$:

if $f_0, f_1, f \in \mathcal{L}(\mathsf{I}, X)$ are such that

$$f_i \Delta = f \overline{\pi}_i : 1 \rightarrow X$$
 for $i = 0, 1$

then there is $h \in \mathcal{L}(I \otimes I, X)$ such that

$$f_i \lambda = h(\overline{\pi}_i \otimes \mathsf{I}) \in \mathcal{L}(1 \otimes \mathsf{I}, X)$$

where λ is the can. isom. $1 \otimes I \rightarrow I$.

Normed vector spaces

The CWA doe not always hold.

Let ${\mathcal N}$ be the category

- whose objects are the finite-dimensional $\mathbb R\text{-vector spaces }V$ equipped with a norm $\|_-\|_V$
- and a morphism $f: V \to W$ is a linear map such that $\forall v \in V ||f(v)||_W \le ||v||_V$, that is $||f|| \le 1$,

where

$$||f|| = \sup_{||v||_V \le 1} ||f(v)||_W.$$

 \mathcal{N} is cartesian with $||(u, v)||_{V\&W} = \max(||u||, ||v||)$ for $(u, v) \in V \& W = V \times W$.

 \mathcal{N} is an SMCC with $||v \otimes w||_{V \otimes W} = ||v|| ||w||$ for $v \in V$ and $w \in W$.

The unit of \otimes is $1 = \mathbb{R}$ with ||r|| = |r|.

 $V \multimap W$ is the space of all linear maps $V \to W$ with the norm $\|f\|_{V \multimap W} = \|f\|$ already defined.

Joint epicness axiom holds in \mathcal{N} .

Then the functor $\mathbf{S}_{I}V$ (induced by I) is given by $\mathbf{S}_{I}V = (I \multimap V) = V \times V$ and

$$||(u, v)||_{\mathbf{S}_{\mathsf{I}}V} = \sup_{a,b\in[-1,1]} ||au + bv||_{V}$$

So $u, v \in V$ are summable if $\forall a, b \in [-1, 1] ||au + bv||_V \le 1$. In \mathbb{R} :

- -1/2 and 1/2 are summable since $\|(-1/2,1/2)\|_{\mathbf{S}_l\mathbb{R}}=1$
- -1/2 + 1/2 = 0 and 1 are summable
- but 1/2 and 1 are not summable.

 \rightsquigarrow the CWA does not hold in $\mathcal{N}.$

Remark

CWA expresses not only associativity of (partial) + but also some form of positivity of the elements of $\mathcal{L}(X, Y)$.

Recap of the differential structure

Assume that $\ensuremath{\mathcal{L}}$ is a canonically summable resource category, that is:

- $\overline{\pi}_0, \overline{\pi}_1 \in \mathcal{L}(1, \mathsf{I}=1 \ \& 1)$ are jointly epic
- and the CWA holds.

Remember that I has a commutative comonoid structure given by

$$\mathsf{pr}_0:\mathsf{I}\to\mathsf{1}\qquad \qquad \widetilde{\mathsf{L}}:\mathsf{I}\to\mathsf{I}\otimes\mathsf{I}$$

with

$$\widetilde{\mathsf{L}}\,\overline{\pi}_0 = \overline{\pi}_0 \otimes \overline{\pi}_0 \qquad \qquad \widetilde{\mathsf{L}}\,\overline{\pi}_1 = \overline{\pi}_0 \otimes \overline{\pi}_1 + \overline{\pi}_1 \otimes \overline{\pi}_0$$

Remember that + is just a notation for a composition with $\Delta=\langle \mathsf{Id}_1,\mathsf{Id}_1\rangle:1\to\mathsf{I}.$

Differential structure

In this setting, a differential structure is a !-coalgebra structure $\delta \in \mathcal{L}(\mathsf{I},\mathsf{!!})$ such that

- $\operatorname{pr}_0 \in \mathcal{L}^!((I, \delta), (1, \mu^0))$
- $\widetilde{\mathsf{L}} \in \mathcal{L}^{!}((\mathsf{I}, \delta), (\mathsf{I}, \delta) \otimes (\mathsf{I}, \delta) = (\mathsf{I} \otimes \mathsf{I}, \mu^{2} (\delta \otimes \delta)))$
- $\overline{\pi}_0 \in \mathcal{L}^!((1, \mu^0), (\mathbf{I}, \delta)).$

Theorem

If \mathcal{L} is a Lafont resource category which is canonically summable, then \mathcal{L} has exactly one differential structure.

Idea: δ is uniquely determined by (pr_0, \widetilde{L}) .

Lafont resource category: for each $X \in \mathcal{L}$, !X is the free commutative comonoid "cogenerated" by X.

Coherence spaces

A coherence space is

$$E = (|E|, \bigcirc_E)$$

where |E| is a set and \bigcirc_E is a binary symmetric and reflexive relation on |E|.

The domain of cliques:

$$\mathsf{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in |E| \ a \rhd_E \ a' \}$$

ordered by \subseteq , it is a cpo.

Morphisms

•
$$|E \multimap F| = |E| \times |F|$$

• $(a, b) \bigcirc_{E \multimap F} (a', b')$ if
 $a \bigcirc_E a' \Rightarrow (b \bigcirc_F b' \text{ and } b = b' \Rightarrow a = a')$

And then

$$Coh(E,F) = Cl(E \multimap F)$$

Some notations for Coh

- Identity: $Id_E = \{(a, a) \mid a \in |E|\}$
- Composition: if $s \in \mathbf{Coh}(E, F)$ and $t \in \mathbf{Coh}(F, G)$ then

 $t s = \{(a, c) \in |E| \times |G| \mid \exists b \in |F| \ (a, b) \in s \text{ and } (b, c) \in t\} \in \mathbf{Coh}(E, G)$

• Application to a clique: if $s \in \mathbf{Coh}(E, F)$ and $x \in Cl(E)$ then $s \cdot x = \{b \in |F| \mid a \in x \text{ and } (a, b) \in s\} \in Cl(F).$

Coh is cartesian

- Terminal object $\top = (\emptyset, \emptyset)$.
- Cartesian product $|E_0 \& E_1| = \{0\} \times |E_0| \cup \{1\} \times |E_1|$ $(i, a) \bigcirc_{E_0 \& E_1} (j, b)$ if $i = j \Rightarrow a \bigcirc_{E_i} b$.
- The projections are

 $pr_i = \{((i, a), a) \mid i \in \{0, 1\} \text{ and } a \in |E_i|\} \in \mathbf{Coh}(E_0 \& E_1, E_i).$

If
$$t_i \in Coh(F, E_i)$$
 then
 $\langle t_0, t_1 \rangle = \{(b, (i, a)) \mid i \in \{0, 1\} \text{ and } (b, a) \in t_i\}$
 $\in Coh(F, E_0 \& E_1).$

Remark

 $\mathsf{Cl}(\top) = \{\emptyset\}$ and $\mathsf{Cl}(E_0) \times \mathsf{Cl}(E_1) \simeq \mathsf{Cl}(E_0 \And E_1)$ by

 $(x_0, x_1) \mapsto \{0\} \times x_0 \cup \{1\} \times x_1$.

Coh is monoidal closed

• Unit
$$1 = (\{*\}, =)$$
.

• Tensor product $|E_0 \otimes E_1| = |E_0| \times |E_1|$ and $(a_0, a_1) \odot_{E_0 \otimes E_1} (a'_0, a'_1)$ if $a_i \odot_{E_i} a'_i$ for i = 0, 1.

• If $t_i \in \mathbf{Coh}(E_i, F_i)$ for i = 0, 1 then

$$t_0 \otimes t_1 = \{((a_0, a_1), (b_0, b_1)) \mid (a_i, b_i) \in t_i \text{ for } i = 0, 1\} \in \mathbf{Coh}(E_0 \otimes E_1, F_0 \otimes F_1).$$

Monoidal closedness:

$$\operatorname{Coh}(G\otimes E,F)\simeq \operatorname{Coh}(G,E\multimap F).$$

Coh as a resource category

- |!E| = the set of all finite multisets $m = [a_1, \ldots, a_n]$ with $a_i \in |E|$ and $\forall i, j \ a_i \bigcirc_E a_j$. It is a uniform exponential.
- $m \bigcirc_{!E} m'$ if $\forall a \in m, a' \in m'$ $m \bigcirc_E m'$.
- And it $t \in \mathbf{Coh}(E, F)$ then

$$\begin{aligned} !t &= \{ ([a_1, \dots, a_n], [b_1, \dots, b_n]) \mid \\ & n \in \mathbb{N}, \ [a_1, \dots, a_n] \in |!E| \\ & \text{and} \ (a_i, b_i) \in t \text{ for } i = 1, \dots, n \} \\ & \in \mathbf{Coh}(!E, !F). \end{aligned}$$

Remark

This is the free exponential. There is another one where |!E| is made of sets instead of multisets; it is not compatible with the differential structure.

Coh is canonically summable

- Coh has 0-morphisms: $0 = \emptyset \in Coh(E, F)$.
- I = 1 & 1 so that $|I| = \{0,1\}$ and 0 \bigcirc_I 1.
- The injections $\overline{\pi}_i = \{(*, i)\} \in \mathbf{Coh}(1, \mathsf{I})$ are jointly epic.

Remark

 $s \in \mathbf{Coh}(I, E)$ is fully determined by the pair

$$s_0 = s \cdot \{0\}, s_1 = s \cdot \{1\} \in Cl(E)$$

Moreover, since $0 \frown_E 1$ (which means $0 \bigcirc_E 1$ and $0 \neq 1$) we have

$$s_0 \cup s_1 \in \mathsf{Cl}(E)$$
 and $s_0 \cap s_1 = \emptyset$

Conversely if $x_0, x_1 \in Cl(E)$ satisfy $x_0 \cup x_1 \in Cl(E)$ and $x_0 \cap x_1 = \emptyset$ then

 $(\{0\} \times x_0) \cup (\{1\} \times x_1) \in \mathbf{Coh}(\mathsf{I}, E)$

Summability in Coh

We have seen that:

Fact $x_0, x_1 \in Cl(E)$ are summable in E iff

$$x_0 \cup x_1 \in Cl(E)$$
 and $x_0 \cap x_1 = \emptyset$.

Remark

Each model of LL has its own notion of summability.

The CWA holds in **Coh**

Up to iso:

$$\mathsf{Cl}(\mathbf{S}_{\mathsf{I}}E) = \{(x_0, x_1) \in \mathsf{Cl}(E)^2 \mid x_0 \cup x_1 \in \mathsf{Cl}(E) \text{ and } x_0 \cap x_1 = \emptyset\}$$

Remark

Up to this iso, we have

$$\begin{split} \emptyset &= (\emptyset, \emptyset) \\ (x_{00}, x_{01}) \cup (x_{10}, x_{11}) &= (x_{00} \cup x_{10}, x_{10} \cup x_{11}) \\ (x_{00}, x_{01}) \cap (x_{10}, x_{11}) &= (x_{00} \cap x_{10}, x_{10} \cap x_{11}) \,. \end{split}$$

Summability in S_1E

So $(x_{00}, x_{01}), (x_{10}, x_{11}) \in Cl(\mathbf{S}_{\mathsf{I}}E)$ are summable in $\mathbf{S}_{\mathsf{I}}E$ if

$$(x_{00} \cup x_{10}, x_{10} \cup x_{11}) \in \mathsf{CI}(\mathbf{S}_{\mathsf{I}}E) (x_{00} \cap x_{10}, x_{10} \cap x_{11}) = (\emptyset, \emptyset)$$

That is

$$\begin{array}{l} x_{00} \cup x_{10} \cup x_{10} \cup x_{11} \in \mathsf{Cl}(E) \\ (x_{00} \cup x_{10}) \cap (x_{10} \cup x_{11}) = x_{00} \cap x_{10} = x_{10} \cap x_{11} = \emptyset \end{array}$$

that is $(i,j) \neq (i',j') \Rightarrow x_{ij} \cap x_{i'j'} = \emptyset.$

Assume that

- $(x_{00}, x_{01}), (x_{10}, x_{11}) \in \mathsf{Cl}(\mathsf{S}_{\mathsf{I}} E)$ and
- $(x_{00} \cup x_{01}, x_{10} \cup x_{11}) \in Cl(\mathbf{S}_{\mathsf{I}}E).$

Then

- $x_{00} \cap x_{01} = x_{10} \cap x_{11} = \emptyset$
- $(x_{00} \cup x_{01}) \cap (x_{10} \cup x_{11}) = \emptyset$
- $x_{00} \cup x_{01} \cup x_{10} \cup x_{11} \in Cl(S_{I}E)$

that is

- $x_{00} \cup x_{01} \cup x_{10} \cup x_{11} \in Cl(S_1E)$
- $(i,j) \neq (i',j') \Rightarrow x_{ij} \cap x_{i'j'} = \emptyset.$

that is $(x_{00}, x_{01}), (x_{10}, x_{11}) \in Cl(\mathbf{S}_{\mathsf{I}}E)$ are summable in $\mathbf{S}_{\mathsf{I}}E$.

We already know that \mathbf{Coh} has a unique differential structure wrt. !.

The commutative comonoid structure of I is given by

$$\begin{split} \mathsf{pr}_0 &= \{(0,*)\} \in \mathbf{Coh}(\mathsf{I},1) \\ &\widetilde{\mathsf{L}} = \{(0,(0,0)), (1,(1,0)), (1,(0,1))\} \in \mathbf{Coh}(\mathsf{I},\mathsf{I}\otimes\mathsf{I}) \,. \end{split}$$

Remember it induces the monad structure $\zeta_E \in \mathbf{Coh}(E, \mathbf{S}_{\mathsf{I}}E)$ and $\theta_E \in \mathbf{Coh}(\mathbf{S}_{\mathsf{I}}^2E, \mathbf{S}_{\mathsf{I}}E)$.

As expected for $((x_{00}, x_{01}), (x_{10}, x_{11})) \in \mathsf{Cl}(\mathbf{S}^2_{\mathsf{I}} E)$ we have

$$\theta \cdot ((x_{00}, x_{01}), (x_{10}, x_{11})) = (x_{00}, x_{10} + x_{01}) \in \mathsf{Cl}(\mathbf{S}_{\mathsf{I}}E)$$

The differential structure of Coh

We define $\delta \subseteq |\mathbf{I} \multimap !\mathbf{I}|$:

 $\delta = \{ (0, n[0]) \mid n \in \mathbb{N} \} \cup \{ (1, n[0] + [1]) \mid n \in \mathbb{N} \}$

where $n[a] = [a, \ldots, a]$.

 $\delta \in \mathbf{Coh}(\mathsf{I}, !\mathsf{I})$ because

- $m \simeq_{!!} m'$ for all $m, m' \in |!!|$
- and $n[0] \frown_{!E} n'[0] + [1]$ for all $n, n' \in \mathbb{N}$.

δ is a coalgebra

The main thing to check is

that is, given $i \in \{0,1\}$ and $M \in \mathcal{M}_{\mathrm{fin}}(\mathcal{M}_{\mathrm{fin}}(\{0,1\}))$,

 $(i, M) \in !\delta \delta \Leftrightarrow (i, M) \in \mathsf{dig}_{\mathsf{I}} \delta$

where

 $dig_E = \{(m, [m_1, \ldots, m_k]) \in |!E| \times |!|E| \mid m = m_1 + \cdots + m_k\}.$

main case

The main case is when i = 1. $(1, M) \in !\delta \delta$ means $\exists k \in \mathbb{N}$ such that $(k[0] + [1], M) \in !\delta$

that is:

$$M = [m_1, \dots, m_{k+1}] \text{ with } (0, m_i) \in \delta \text{ for } i = 1, \dots k$$

and $(1, m_{k+1}) \in \delta$

that is: $\exists k \in \mathbb{N} \exists n_1, \ldots, n_{k+1} \in \mathbb{N}$

 $M = [n_1[0], \ldots, n_k[0], n_{k+1}[0] + [1]]$

And $(1, M) \in \operatorname{dig}_{\mathsf{I}} \delta$ means $\exists k \in \mathbb{N}$ such that $(k[0] + [1], M) \in \operatorname{dig}_{\mathsf{I}}$

that is:

$$M=[m_1,\ldots,m_l]$$
 with $m_1+\cdots+m_l=k[0]+[1]$
that is: $\exists l\in\mathbb{N}^+\exists n_1,\ldots,n_l\in\mathbb{N}$ $M=[n_1[0],\ldots,n_{l-1}[0],n_l[0]+[1]]$

The diagram commutes!

The induced differential dist. law

Remember that δ induces a distributive law $\partial_E = \operatorname{cur} u \in \operatorname{Coh}(!\mathbf{S}_{\mathsf{I}}E, \mathbf{S}_{\mathsf{I}}!E)$ where

$$u: !(I \multimap E) \otimes I \rightarrow !E$$

is

$$!(\mathsf{I} \multimap E) \otimes \mathsf{I} \xrightarrow{\mathsf{Id} \otimes \delta} !(\mathsf{I} \multimap E) \otimes !\mathsf{I} \xrightarrow{\mu^2} !((\mathsf{I} \multimap E) \otimes \mathsf{I}) \xrightarrow{!\mathsf{ev}} !E$$

Notice that $\mu_{E,F}^2 \in \mathbf{Coh}(!E \otimes !F, !(E \otimes F))$ is

$$\mu_{E,F}^2 = \{ (([a_1, \dots, a_n], [b_1, \dots, b_n]), [(a_1, b_1), \dots, (a_n, b_n)]) \mid n \in \mathbb{N}, [a_1, \dots, a_n] \in |!E| \text{ and } [b_1, \dots, b_n] \in |!F| \}$$

$$\partial_{E} = \{ (([(0, a_{1}), \dots, (0, a_{k})], (0, [a_{1}, \dots, a_{k}]) \mid k \in \mathbb{N} \text{ and } [a_{1}, \dots, a_{k}] \in |!E| \} \\ \cup \{ (([(0, a_{1}), \dots, (0, a_{k}), (1, a_{k+1})], (1, [a_{1}, \dots, a_{k+1}]) \mid k \in \mathbb{N} \text{ and } [a_{1}, \dots, a_{k+1}] \in |!E| \text{ and } a_{k+1} \notin \{a_{1}, \dots, a_{k}\} \} \\ \in \mathbf{Coh}(!(I \multimap E), I \multimap !E) .$$

The Kleisli category Coh!

Object: those of **Coh** and **Coh**_!(E, F) =**Coh**(!E, F). $s \in$ **Coh**_!(E, F) induces a stable function

$$\widehat{s}: \mathsf{Cl}(E) o \mathsf{Cl}(F) \ x \mapsto \{b \in |F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x) \ (m, b) \in s\}$$

Remark

Different s's can induce the same stable function: \hat{s} forgets about the multiplicities in multisets.

If $s_1 = \{([a], b)\}$ and $s_2 = \{([a, a], b)\}$ then $\widehat{s_1} = \widehat{s_2}$.

Differentiation on Coh!

Given
$$t \in \mathbf{Coh}_{!}(E, F) = \mathbf{Coh}(!E, F)$$
, remember that
 $\mathbf{D}t = (\mathbf{S}t) \ \partial_{E} \in \mathbf{Coh}(!\mathbf{S}_{|}E = (\mathbf{I} \multimap E), \mathbf{S}_{|}F = (\mathbf{I} \multimap F)).$

Notice that

$$\mathbf{S}t = \{((i, m), (i, b)) \mid i \in \{0, 1\} \text{ and } (m, b) \in t\}.$$

So for
$$t \in \mathcal{L}_{!}(E, F) = \mathbf{Coh}(!E \multimap F)$$
 we have

$$\mathbf{D}t = \{([(0, a_{1}), \dots, (0, a_{k})], (0, b)) \mid ([a_{1}, \dots, a_{k}], b) \in t)\}$$

$$\cup \{([(0, a_{1}), \dots, (0, a_{k}), (1, a_{k+1})], (1, b)) \mid ([a_{1}, \dots, a_{k}, a_{k+1}], b) \in t) \text{ and } a_{k+1} \notin \{a_{1}, \dots, a_{k}\}\}$$

$$\in \mathcal{L}_{!}(\mathbf{S}_{!}E, \mathbf{S}_{!}F) = \mathbf{Coh}(!(I \multimap E) \multimap (I \multimap F)).$$

The stable derivative

Remember that

$$\mathsf{Cl}(\mathbf{S}_{\mathsf{I}}E) \simeq \{(x, u) \mid x \cup u \in \mathsf{Cl}(E) \text{ and } x \cap u = \emptyset\}.$$

In that way we get the stable function

$$\widehat{\mathbf{D}t}: \mathsf{Cl}(\mathbf{S}_{\mathsf{I}}E) o \mathsf{Cl}(\mathbf{S}_{\mathsf{I}}F) \ (x,u) \mapsto (\widehat{t}(x),t'(x) \cdot u)$$

 $t'(x) \cdot u = \{b \in |F| \mid \exists m \in \mathcal{M}_{\mathrm{fin}}(x), \ a \in u \ (m + [a], b) \in t\}$

Remark

In such an (m, a) we have $a \notin \operatorname{supp}(m)$ since $\operatorname{supp}(m) \subseteq x$, $a \in u$ and $x \cap u = \emptyset$.

Local coherence space

Given $x \in Cl(X)$, one defines a coherence space E_x by

•
$$|E_x| = \{b \in |E| \mid \forall a \in x \ a \frown_E b\}$$

•
$$a \circ_{E_x} a'$$
 if $a \circ_E a'$.

Then for $t \in \mathbf{Coh}(E, F)$ we have

$$t'(x) \in \mathbf{Coh}(E_x, F_{\widehat{t}(x)})$$

Remark

There is a dependent type intuition: the type of t'(x) depends on x.

However this point of view hardly reflects the stability of t'(x) wrt. x.

Whereas the compound construction Dt does in a very simple way.

Remark

If $t_i = \{(i[a], a)\}$ for i = 1, 2 we get

 $t'_1(\emptyset) \cdot \{a\} = \{a\}$ $t'_2(\emptyset) \cdot \{a\} = \emptyset$

whereas $\hat{t}_1 = \hat{t}_2$. The derivative stable function $\widehat{\mathbf{D}t}$ is associated with t and not the stable function \hat{t} .

In some sense this derivative "does not see mutiplicities". This is due to the uniformity of the exponential. NB: there are non-uniform coherence spaces...

Probabilistic Coherence Spaces

Probabilistic Coherence Spaces (PCS)

$$X = (|X|, \mathsf{P}X)$$

- |X| is a set (usually at most countable)
- P $X \subseteq (\mathbb{R}_{\geq 0})^{|X|}$
- $\forall a \in |X| \ 0 < \sup_{x \in \mathsf{P}X} x_a < \infty$
- PX is ↓-closed (for the pointwise order)
- PX contains the (pointwise) lub of any increasing ω-sequence in PX
- $x, y \in \mathsf{P}X$ and $\lambda \in [0, 1] \Rightarrow \lambda x + (1 \lambda)y \in \mathsf{P}X$

Morphisms

$$X \multimap Y \text{ defined by:}$$
• $|X \multimap Y| = |X| \times |Y|$
• and $t \in (\mathbb{R}_{\geq 0})^{|X| \times |Y|}$ is in $P(X \multimap Y)$ if
 $\forall x \in PX \quad t \cdot x \in PY$
where $t \cdot x = (\sum_{a \in |X|} t_{a,b} x_a)_{b \in |Y|} \in (\mathbb{R}_{\geq 0})^{|Y|}$.
Eact

 $X \multimap Y$ so defined is a PCS.

$$\mathsf{Pcoh}(X,Y) = \mathsf{P}(X \multimap Y).$$

Notations

• If $s \in \mathbf{Pcoh}(X, Y)$ and $t \in \mathbf{Pcoh}(Y, Z)$ then $t s \in \mathbf{Pcoh}(X, Z)$ given by

$$(t s)_{a,c} = \sum_{b \in |Y|} s_{a,b} t_{b,c}$$

• $Id_X \in Pcoh(X, X)$ is $(\delta_{a,a'})_{(a,a')\in |X\multimap X|}$. This defines a category.

Cartesian product

- Terminal object \top such that $|\top| = \emptyset$.
- $|X_0 \& X_1| = \{0\} \times |X_0| \cup \{1\} \times |X_1|$ so that $(\mathbb{R}_{\geq 0})^{|X_0 \& X_1|} \simeq (\mathbb{R}_{\geq 0})^{|X_0|} \times (\mathbb{R}_{\geq 0})^{|X_1|}$

•
$$\mathsf{pr}_i \in (\mathbb{R}_{\geq 0})^{|X_0 \& X_1| imes |X_i|}$$
 given by

$$(\mathrm{pr}_i)_{(j,a),a'} = \delta_{i,j}\delta_{a,a'}$$

- $y \in (\mathbb{R}_{\geq 0})^{|X_0 \& X_1|}$ is in $P(X_0 \& X_1)$ if $pr_i \cdot y \in PX_i$ for i = 0, 1.
- If $t_i \in \mathbf{Pcoh}(Y, X_i)$ for i = 0, 1 then $\langle t_0, t_1 \rangle \in \mathbf{Pcoh}(Y, X_0 \& X_1)$ is given by $\langle t_0, t_1 \rangle_{b,(i,a)} = (t_i)_{a,b}$.

Remark

 $\mathsf{P}(X_0 \And X_1) \simeq \mathsf{P}X_0 \times \mathsf{P}X_1$

Up to this iso, the cartesian product is completely standard:

•
$$\operatorname{pr}_i \cdot (x_0, x_1) = x_i$$

•
$$\langle t_0, t_1 \rangle \cdot y = (t_0 \cdot y, t_1 \cdot y)$$
 for $t_i \in \mathbf{Pcoh}(Y, X_i)$

Tensor product

Given $x_i \in \mathsf{P}X_i$ for i = 0, 1, let $x_0 \otimes x_1 \in (\mathbb{R}_{\geq 0})^{|X_0| \times |X_1|}$ given by

$$(x_0 \otimes x_1)_{(a_0,a_1)} = x_{0a_0} x_{1a_1}$$

•
$$|X_0 \otimes X_1| = |X_0| \times |X_1|$$

• $P(X_0 \otimes X_1)$ minimal such that $x_0 \otimes x_1 \in P(X_0 \otimes X_1)$ for all $x_i \in PX_i$ for i = 0, 1.

Fact

$$\mathsf{Pcoh}(Z \otimes X, Y) \simeq \mathsf{Pcoh}(Z, X \multimap Y).$$

The object I

$$1 = (\{*\}, [0, 1])$$
. Notice that $P(1 \multimap X) \simeq PX$

$$\mathsf{I}=1$$
 & 1 so that $\mathsf{PI}=[0,1]\times[0,1]$

 $\overline{\pi}_0, \overline{\pi}_1 \in \mathbf{Pcoh}(1, \mathsf{I}) \simeq \mathsf{PI}$, actually $\overline{\pi}_0 = (1, 0)$ and $\overline{\pi}_1 = (0, 1)$.

Fact

$\overline{\pi}_0, \overline{\pi}_1$ are jointly monic:

by linearity, $t \in \mathsf{Pcoh}(I, X)$ is fully determined by $t_0 = t \cdot (1, 0) \in \mathsf{P}X$ and $t_1 = t \cdot (0, 1) \in \mathsf{P}X$. Moreover $t_0 + t_1 \in \mathsf{P}X$ since $t_0 + t_1 = t \cdot (1, 1)$ since $(1, 1) \in \mathsf{PI}$.

 $\mathsf{P}(\mathsf{I}\multimap X)\simeq\{(x_0,x_1)\in\mathsf{P}X\mid x_0+x_1\in\mathsf{P}X\}.$

Canonical Witness Axiom

Up to this iso we have

$$(x_{00}, x_{01}) + (x_{10}, x_{11}) = (x_{00} + x_{10}, x_{01} + x_{11})$$

and so

$$((x_{00}, x_{01}), (x_{10}, x_{11})) \in \mathsf{PS}_{\mathsf{I}}^{2}X \Leftrightarrow (x_{00} + x_{10}, x_{01} + x_{11}) \in \mathsf{PS}_{\mathsf{I}}X \\ \Leftrightarrow x_{00} + x_{10} + x_{01} + x_{11} \in \mathsf{PX} \\ \Leftrightarrow (x_{00} + x_{01}, x_{10} + x_{11}) \in \mathsf{PS}_{\mathsf{I}}X$$

and hence the CWA holds.

The induced monad $S_I : Pcoh \rightarrow Pcoh$ given by $S_I X = (I \multimap X)$ behaves exactly as expected:

 $\begin{aligned} \zeta_X \in \mathbf{Pcoh}(X, \mathbf{S}_{\mathsf{I}}X) & \zeta_X \cdot x = (x, 0) \\ \theta_X \in \mathbf{Pcoh}(\mathbf{S}_{\mathsf{I}}^2X, \mathbf{S}_{\mathsf{I}}X) & \theta_X \cdot ((x_{00}, x_{01}), (x_{10}, x_{11})) = (x_{00}, x_{10} + x_{01}) \end{aligned}$

The differentiation coalgebra

It is defined essentially as in **Coh**, and is a coalgebra for the same reason.

$$\delta \in (\mathbb{R}_{\geq 0})^{|\mathbf{I} - \circ \mathbf{I}||}$$

defined by

$$\delta_{i,m} = \begin{cases} 1 & \text{if } i = 0 \text{ and } \exists n \in \mathbb{N} \ m = n[0] \\ 1 & \text{if } i = 1 \text{ and } \exists n \in \mathbb{N} \ m = n[0] + [1] \\ 0 & \text{otherwise} \end{cases}$$

Remark (Surprise)

The case i = 1 implements the differential, so I expected to have sthg like *n* as coeff. instead of 1. But it's not the case!

The exponential functor

- $|X| = \mathcal{M}_{\text{fin}}(|X|)$ (no uniformity restriction).
- If $x \in \mathsf{P}X$ and $m \in |!X|$ then $x^m = \prod_{a \in |X|} x_a^{m(a)} \in \mathbb{R}_{\geq 0}$
- $x^! = (x^m)_{m \in |!X|}$
- and P(!X) is minimal such that $\forall x \in PX \ x^! \in P(!X)$.

Given $t \in \mathbf{Pcoh}(X, Y)$ we need $!t \in \mathbf{Pcoh}(!X, !Y)$ such that

$$\forall x \in \mathsf{P}X \quad !t \cdot x^! = (t \cdot x)^!$$

Fact

This determines fully !t.

Simple computations give, for $t \in \mathbf{Pcoh}(X, Y) \subseteq (\mathbb{R}_{\geq 0})^{|X| \times |Y|}$ and $(m, p) \in |!X \multimap !Y| = \mathcal{M}_{\mathrm{fin}}(!X) \times \mathcal{M}_{\mathrm{fin}}(!Y)$:

$$(!t)_{m,p} = \sum_{r \in L(m,p)} \begin{bmatrix} p \\ r \end{bmatrix} t'$$

where

$$L(m,p) = \{r \in \mathcal{M}_{\operatorname{fin}}(|X| \times |Y|) \mid \sum_{b \in |Y|} r(a,b) = m(a) \text{ and } \sum_{a \in |X|} r(a,b) = p(b)\}$$

and

$$\begin{bmatrix} p \\ r \end{bmatrix} = \prod_{b \in |Y|} \frac{p(b)!}{\prod_{a \in |X|} r(a, b)!} \in \mathbb{N}$$

The evaluation morphism

$$\mathsf{ev} \in \mathsf{Pcoh}((\mathsf{I} \multimap X) \otimes \mathsf{I}, X) \quad \mathsf{ev}_{((i, \mathsf{a}), j), b} = \delta_{\mathsf{a}, b} \delta_{i, j}$$

Then $ev_{M,m} \neq 0$ implies

$$M = [((0, a_1), 0), \dots, ((0, a_k), 0), ((1, b_1), 1), \dots, ((1, b_n), 1)] = (I, r)$$

$$m = [a_1, \dots, a_k, b_1, \dots, b_n] = I + r$$

Setting $I = [a_1, \ldots, a_k]$ and $r = [b_1, \ldots, b_n]$. We have

$$\operatorname{lev}_{M,m} = \binom{l+r}{l} = \prod_{a \in |X|} \binom{l(a)+r(a)}{l(a)}$$

The differential functor

Remember that $\partial_X = \operatorname{cur} f \in \mathcal{L}(!\mathbf{S}_{\mathsf{I}}X, \mathbf{S}_{\mathsf{I}}!X)$ where f is

$$!(\mathsf{I}\multimap X)\otimes\mathsf{I}\xrightarrow{\mathsf{Id}\otimes\delta}!(\mathsf{I}\multimap X)\otimes !\mathsf{I}\xrightarrow{\mu^2}!((\mathsf{I}\multimap X)\otimes\mathsf{I})\xrightarrow{!\mathrm{ev}}!X$$

Using the above computation of !ev and definition of δ we get

$$(\partial_X)_{(l,r),(i,m)} = \begin{cases} 1 & \text{if } i = 0, \ r = [], \ m = l \\ m(a) & \text{if } i = 1, \ r = [a], \ m = l + [a] \\ 0 & \text{otherwise.} \end{cases}$$

A $t \in \mathbf{Pcoh}_{!}(X, Y) = P(!X \multimap Y)$ is completely characterized by the associated analytic function

î

$$T: \mathsf{P}X \to \mathsf{P}Y$$
$$x \mapsto t \cdot x^{!} = \left(\sum_{m \in |!X|} t_{m,b} x^{m}\right)_{b \in |Y|}$$

Then $\mathbf{D}t \in \mathbf{Pcoh}_{!}(\mathbf{S}_{!}X, \mathbf{S}_{!}Y)$ is characterized by the analytic function (setting $f = \hat{t} : \mathsf{P}X \to \mathsf{P}Y$)

$$\widehat{\mathsf{D}t}:\mathsf{P}(\mathsf{S}_{\mathsf{I}}X) o\mathsf{P}(\mathsf{S}_{\mathsf{I}}Y)\ (x,u)\mapsto (f(x),f'(x)\cdot u)$$

where

$$f'(x) \cdot u = \left(\sum_{a \in |X|} \left(\sum_{l \in |X|} (m(a) + 1)t_{m+[a],b} x^m\right) u_a\right)_{b \in |Y|}$$

is just the standard differential of \hat{t} .

Differential as a linear map

Given $x \in PX$ we define X_x , the local PCS at x:

$$|X_x| = \{ a \in |X| \mid \exists \varepsilon > 0 \ x + \varepsilon e_a \in \mathsf{P}X \}$$
$$\mathsf{P}X_x = \{ u \in (\mathbb{R}_{\geq 0})^{|X_x|} \mid x + u \in \mathsf{P}X \}$$

and then $f'(x) \in \mathbf{Pcoh}(X_x, Y_{f(x)})$ satisfies (for $b \in |Y_{f(x)}|$)

$$(f'(x) \cdot u)_b = \left(\frac{d}{dt}f(x+tu)_b\right)_{t=0}$$
 standard Gateaux derivative.

The fact that $\mathbf{D}t \in \mathbf{Pcoh}_{!}(\mathbf{S}_{!}X, \mathbf{S}_{!}Y)$ also tells us that this derivative is analytic in x.

Strong similarity with Tangent Categories

Mfd: category of smooth manifolds and smooth maps. There is a *tangent bundle* functor

 $\mathbf{T} : \mathbf{Mfd} \to \mathbf{Mfd}$ $X \mapsto \{(x, u) \mid x \in X \text{ and } u \in \mathbf{T}_x X\}$ $\mathbf{T}_x X = \text{tangent space at } x \text{ to } X. \text{ A vector space.}$ And if $f \in \mathbf{Mfd}(X, Y)$,

 $\mathsf{T}f:\mathsf{T}X o\mathsf{T}Y$ $(x,u)\mapsto (f(x),f'(x)\cdot u)$

Looks very much like our **D** functor!

Discrepancies

Is **T** a special case of **D**?

Of course not: given $(x, u) \in TX$, it makes no sense to consider u alone (no 2nd projection $TX \to X$) nor to compute $x + u \in X$ in general.

Is **D** a special case of **T**?

No, because our "tangent spaces" are only partial commutative monoids whereas $\mathbf{T}_{\mathbf{x}}X$ is crucially a commutative monoid.

Remark

More philosophically, our approach is based on \mathbf{S} acting on a "linear" category (a category of algebraic objects, the linear category of a model of LL).

This is typically not the case in the tangent bundle case.

More precisely, in *tangent categories* (= categorical axiomatization of the tangent bundle functor) we have a natural transformation $p_X : \mathbf{T}X \to X$, intuitively $p_X(x, u) = x$.

It is required that there is a pull-back and an addition morphism s

This s is a total addition operation in the fibers of p.