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Intro: differentiation and addition



We have learned at school

f ′(x) = lim
ε→0

f (x + ε)− f (x)

ε

And later

f : E → F (where E and F are, say, Banach spaces)
is differentiable at x ∈ E if

f (x + u) = f (x) + (l · u) + o(‖u‖)

where l : E → F linear bounded.
And then l ∈ L(E ,F ) is uniquely defined: l = f ′(x) is the
differential (Jacobian etc) of f at x .

Because l · u ∈ o(‖u‖)⇒ l = 0 when l ∈ L(E ,F ).



Leibniz rule

Take f : R× R→ R (sufficiently regular) and define

g : R→ R
x 7→ f (x , x)

Then

dg(x)

dx
=
∂f (x1, x)

∂x1
(x) +

∂f (x , x2)

∂x2
(x)

This generalizes the usual Leibniz rule (uv)′ = u′v + uv ′,
(uv)(n) =

∑n
k=0

(n
k

)
u(k)v (n−k) etc.

Differentiation is inherently related to addition.



In the Differential λ-calculus we have a differential application

Γ ` M : A⇒ B Γ ` N : A

Γ ` DM · N : A⇒ B

and a differential substitution defined by induction on M, such that
if Γ, x : A ` M : B and Γ ` N : A then

Γ, x : A ` ∂M
∂x
· N : B

Differential reduction:

D(λxAM) · N → λxA (
∂M

∂x
· N)

where ∂M
∂x · N is defined by induction on M.



The most important case in the definition of ∂M
∂x · N is when

M = (P)Q:

∂(P)Q

∂x
· N = (

∂P

∂x
· N)Q + (DP · (∂Q

∂x
· N))Q

which combines

• the Leibniz Rule because x can occur in P and in Q

• and the Chain Rule because of the application (imagine x
occurs only in Q).



Reduction rule:

D(λxAM) · N → λxA (
∂M

∂x
· N)

so to have subject reduction it seems that we need

Γ ` M0 : A Γ ` M1 : A

Γ ` M0 + M1 : A

allowing to add any two terms of the same type.



Consequence: non-determinism

If we have for instance a type o of booleans with

Γ ` t : o Γ ` f : o

then we must accept t + f as a valid term, with

Γ ` t + f : o

meaning that the language is essentially non-deterministic.



In the semantics

So far, the categorical models C of the differential λ-calculus were
(left-)additive categories.

Given f , g ∈ C(A,B), there is a morphism f + g ∈ C(A,B).

 C is enriched over commutative monoids.



Coherent Differentiation

This is not a fatality!

Fact

Of course addition is required, but there is a (categorical, and then
syntactical) way of controlling it, without giving up determinism.

The possibility of such a theory appears in . . .



. . . probabilistic coherence spaces (PCS)

A PCS is a pair X = (|X |,PX ) where |X | is a set and
PX ⊆ (R≥0)|X | satisfying some closure properties.

• PX is convex,

• downwards closed,

• closed under lubs of monotonic ω-chains

• + a technical condition to avoid ∞ coeffs.

They are a model of (probabilistic) λ-calculi, LL etc, but not of
their differential extensions by lack of additivity.



Derivatives in PCSs

In the associated category Pcoh!, 1 is an object such that
|1| = {∗}, P1 = [0, 1] and a morphism f ∈ Pcoh!(1, 1) is a power
series defining a function [0, 1]→ [0, 1]:

f (x) =
∞∑
n=0

anx
n with ∀n an ∈ R≥0 and

∞∑
n=0

an ≤ 1

so that f ′(x) =
∑∞

n=0(n + 1)an+1x
n has no reason to be a

function [0, 1]→ [0, 1].

Example

f (x) = 1−
√

1− x , then f ′(x) = 1/(2
√

1− x) is unbounded on
[x , 1).



However

Fact

If x , u ∈ [0, 1] and x + u ∈ [0, 1] then we have

f (x) + f ′(x)u ≤ f (x + u) ∈ [0, 1]

because this sum is the beginning of the Taylor expansion which
holds in this model:

f (x + u) =
∞∑
n=0

1

n!
f (n)(x)un

and all coefficients are ≥ 0. For any f ∈ Pcoh!(X ,Y ).



In a PCS, some sums are allowed. . .

Convex combinations: if x , y ∈ PX then 1
3x + 2

3y ∈ PX .

Some non convex sums are also possible, for instance in the
cartesian product X & Y , we have

(x , 0) + (0, y) = (x , y) ∈ P(X & Y ) = PX × PY

if x ∈ PX and y ∈ PY .

Other non convex allowed sums come from differentiation:

f (x) + f ′(x) · u ∈ PY

if x , u ∈ PX are such that x + y ∈ PX and f : PX → PY is an
“analytic function”, that is a morphism X → Y in the Kleisli
category Pcoh!.



. . . and some sums are forbidden!

For instance

P(1⊕ 1) = {(x0, x1) ∈ R≥0 | x0 + x1 ≤ 1}

in this object of booleans,

t = (1, 0), f = (0, 1) ∈ P(1⊕ 1) and t + f /∈ P(1⊕ 1) .

or simply 1 ∈ [0, 1] and 1 + 1 /∈ [0, 1].



Fundamental observation

There is a functor S : Pcoh→ Pcoh which maps an object X to
an object SX such that

P(SX ) = {(x , u) ∈ PX 2 | x + u ∈ PX} .

For instance P(S1) = {(x , u) ∈ [0, 1] | x + u ≤ 1}.

We base our axiomatization on the existence of such a functor.



Summable categories



Definition (pre-summable category)

A pre-summable category is a tuple

(L,S, π0, π1, σ)

Where

• L is a category enriched over pointed sets (and the
distinguished morphism is always denoted 0);

• S : L → L is a functor which preserves the enrichment
(S0 = 0);

• and π0, π1, σ : SX → X are natural transformations such that
π0 and π1 are jointly monic.

If f0, f1 ∈ L(X ,SY ) satisfy πj f0 = πj f1 for j = 0, 1 then f0 = f1.



Intuition

• SX is the objects of pairs (x0, x1) ∈ X × X such that x0 + x1

is well defined and ∈ X ;

• πj : SX → X are the projections, πj(x0, x1) = xj ;

• and σ : SX → X maps (x0, x1) to x0 + x1.



Some terminology

We assume to have such a structure (L,S, π0, π1, σ)

Definition (summability, witness, sum)

We say that f0, f1 ∈ L(X ,Y ) are summable if there is
h ∈ L(X ,SY ) such that πj h = fj for j = 0, 1.

Fact: when such an h exists it is unique (π0, π1 are jointly monic),
we set 〈f0, f1〉S = h, it is the witness of summability of f0 and f1.

And then we set f0 + f1 = σ 〈f0, f1〉S, the sum of f0 and f1.



Some simple observations

• π0, π1 are summable with 〈π0, π1〉S = IdSX and π0 +π1 = σ.

• If f0, f1 ∈ L(X ,Y ) are summable and l ∈ L(U,X ) and
r ∈ L(Y ,V ) then r f0 l , r f1 l are summable with

〈r f0 l , r f1 l〉S = Sr 〈f0, f1〉S l
r f0 l + r f1 l = r (f0 + f1) l

by naturality of π0, π1 and σ.

Remark (main tool)

Use the fact that π0, π1 are jointly monic.

We introduce a few axioms to make this “partial addition” behave
as expected.



Commutativity

Axiom (Commutativity)

π1, π0 are summable and π1 +π0 = σ.

Fact (consequences)

〈π1, π0〉S ∈ L(SX ,SX ) is an involution.

If f0, f1 ∈ L(X ,Y ) are summable then f1, f0 are summable with
f1 + f0 = f0 + f1.

Intuitively: 〈π1, π0〉S(x0, x1) = (x1, x0).



Neutrality

Axiom (Neutrality)

For any f ∈ L(X ,Y ), f and 0 are summable and f + 0 = f .

In particular we have two injections

ι0 = 〈IdX , 0〉S, ι1 = 〈0, IdX 〉S ∈ L(X ,SX )

Intuitively ι0(x) = (x , 0) and ι1(x) = (0, x).



Witness

Associativity is more tricky. We split the condition in two pieces.

Axiom (Witness)

Let fij ∈ L(X ,Y ) for i , j ∈ {0, 1} be 4 morphisms such that

• fj0, fj1 are summable for j = 0, 1

• and f00 + f01, f10 + f11 are summable

then 〈f00, f01〉S, 〈f10, f11〉S are summable.

So there is a witness for this summability:

〈〈f00, f01〉S, 〈f10, f11〉S〉S ∈ L(X ,S2Y ) .



The canonical flip

Fact

There is exactly one morphism c ∈ L(S2X ,S2X ) such that

∀i , j ∈ {0, 1} πi πj c = πj πi .

c = 〈〈π0 π0, π0 π1〉S, 〈π1 π0, π0 π0〉S〉S
exists by the previous axioms.

Fact

c2 = IdS2X .

Intuitively c((x00, x01), (x10, x11)) = ((x00, x10), (x01, x11)).



Associativity

Axiom (Associativity)

The following diagram commutes

S2X S2X

SX

c

σSX SσX

Remark (Intuition)

The sum of witnesses is performed componentwise:

〈x00, x01〉S + 〈x10, x11〉S = 〈x00 + x10, x01 + x11〉S



Fact (consequence)

If fij ∈ L(X ,Y ) for i , j ∈ {0, 1} are such that

• fj0, fj1 are summable for j = 0, 1

• and f00 + f01, f10 + f11 are summable

then

• f0j , f1j are summable for j = 0, 1

• and f00 + f10, f01 + f11 are summable

and (f00 + f01) + (f10 + f11) = (f00 + f10) + (f01 + f11).

Associativity follows taking f10 = 0.



Partially additive category

The category L becomes a partially additive category in the sense
of partial monoids.

Remark

Partially additive categories do not suffice for our goal: the functor
S will be crucial for differentiation!



S is a monad

We have already ζ = ι0 = 〈IdX , 0〉S ∈ L(X ,SX ).

Using the axioms we also have
θ = 〈π0 π0, π1 π0 +π0 π1〉S ∈ L(S2X ,SX ).

Fact

(S, ζ, θ) is a monad on L.

Intuitively

θX : S2X → SX

((x00, x01), (x10, x11)) 7→ (x00, x10 + x01)

Notice that we forget x11.



When L is an SMC



Distributivity

In all the situations we have in mind, L is a symmetric monoidal
category with tensor product ⊗ and tensor unit 1.

In that case one expects ⊗ to distribute over +, when defined.
This requires an additional

Axiom (Distributivity)

0⊗ g = 0
and
if f0, f1 are summable then

• f0 ⊗ g , f1 ⊗ g are summable

• and f0 ⊗ g + f1 ⊗ g = (f0 + f1)⊗ g .



Strength

In particular π0 ⊗ IdY , π1 ⊗ IdY ∈ L(SX ⊗ Y ,X ⊗ Y ) are
summable so we have strengths

ϕ0
X ,Y = 〈π0 ⊗ IdY , π1 ⊗ IdY 〉S ∈ L(SX ⊗ Y ,S(X ⊗ Y ))

ϕ1
X ,Y = 〈IdX ⊗ π0, IdX ⊗ π1〉S ∈ L(X ⊗ SY ,S(X ⊗ Y ))

turn S into a commutative monad.

Intuitively

ϕ0
X ,Y ((x0, x1)⊗ y) = (x0 ⊗ y , x1 ⊗ y)

ϕ1
X ,Y (x ⊗ (y0, y1)) = (x ⊗ y0, x ⊗ y1)



Commutativity of the monad

We have actually something stronger:

SX ⊗ SY S(X ⊗ SY ) S2(X ⊗ Y )

S(SX ⊗ Y ) S2(X ⊗ Y )

ϕ0
X ,SY

ϕ1
SX ,Y

Sϕ1
X ,Y

cX⊗Y

Sϕ0
X ,Y

Intuitively

(x0, x1)⊗ (y0, y1) 7→ ((x0 ⊗ y0, x0 ⊗ y1), (x1 ⊗ y0, x1 ⊗ y1))

(x0, x1)⊗ (y0, y1) 7→ ((x0 ⊗ y0, x1 ⊗ y0), (x0 ⊗ y1, x1 ⊗ y1))



Induced symmetric monoidal structure

We then have

SX ⊗ SY S(X ⊗ SY ) S2(X ⊗ Y )

S(SX ⊗ Y ) S2(X ⊗ Y )

S(X ⊗ Y )
LX ,Y

ϕ0
X ,SY

ϕ1
SX ,Y

Sϕ1
X ,Y

cX⊗Y

Sϕ0
X ,Y

θ

Intuitively

LX ,Y : ((x0, x1)⊗ (y0, y1)) 7→ (x0 ⊗ y0, x0 ⊗ y1 + x1 ⊗ y0)



Differential structure



As in differential LL, we consider differentiation as a structure of
the exponential.

So we assume moreover that

• L is cartesian (>: terminal object, X0 & X1: product,
pri ∈ L(X0 & X1,Xi ), 〈f0, f1〉 ∈ L(Y ,X0 & X1) if
fi ∈ L(Y ,X0)).

• L is equipped with a resource modality (! , der, dig,m0,m2)

derX ∈ L(!X ,X ) digX ∈ L(!X , !!X ) comonad structure

m0 ∈ L(1, !>) m2
X ,Y ∈ L(!X ⊗ !Y , !(X & Y ))

Seely isos, strong sym. monoidality



Preservation of products

We need a further property about S.

Axiom (Product)

The functor S preserves cartesian products, more precisely:

〈Spr0,Spr1〉 ∈ L(S (X0 & X1) ,SX0 & SX1)

is an iso.

This holds in all the LL-based examples we have in mind, because
in these examples S is a right adjoint.



The differentiation operator

In this setting (resource category with a summability structure), a
differential structure is a natural transformation

∂X ∈ L(!SX ,S!X )

satisfying some properties.

Remark (main idea)

Given f ∈ L!(X ,Y ), this will allow to define

Df = (Sf ) ∂X ∈ L!(SX ,SY )

which will (intuitively) be the map (x , u) 7→ (f (x), f ′(x) · u).

We list the conditions to be satisfied by ∂X



Second derivative: intuition

Let f ∈ L!(X ,Y ), we have Df ∈ L!(DX ,DY )

Df (x , u) = (f (x),
f (x)

dx
· u)

We can apply D to Df , we get

D2f ((x , u), (y , v)) = (Df (x , u),
dDf (x , u)

d(x , u)
· (y , v))



Remember Df (x , u) = (f (x), f ′(x) · u).

By standard rules of calculus:

dDf (x , u)

d(x , u)
· (y , v) =

∂Df (x , u)

∂x
· y +

∂Df (x , u)

∂u
· v

∂Df (x , u)

∂x
· y =

∂

∂x
(f (x), f ′(x) · u) · y

= (f ′(x) · y , f ′′(x) · (u, y))

∂Df (x , u)

∂u
· v =

∂

∂u
(f (x), f ′(x) · u) · v

= (0, f ′(x) · v)



Finally we have, intuitively

D2f ((x , u), (y , v)) = ((f (x), f ′(x) · u),

(f ′(x) · y , f ′′(x) · (u, y) + f ′(x) · v)

Notice that in the first 3 components, we have only 1st order
derivatives.



Distributive law

Axiom (Chain Rule + Linearity)

∂ is a distributive law between the monad S and the comonad ! in
the following sense.

!SX S!X

SX

∂X

derSX
S derX

!SX S!X

!!SX !S!X S!!X

∂X

digSX S digX

!∂X ∂!X

!SX S!X

!X

∂X

ζ!X
!ζX

!SX S!X

!S2X S!SX S2!X

∂X

!θX

∂SX S ∂X

θ!X

See John Power and Hiroshi Watanabe, Combining a monad and a
comonad, TCS 2002 for this kind of dist. law.



Intuition for the dist. law

The first two diagrams allow to define a functor

D : L! → L!

X 7→ SX

(f : !X → Y ) 7→ ((Sf ) ∂X : !SX → SY )

Intuitively, and in probabilistic coherence spaces for instance:

• f ∈ L!(X ,Y ) means that f is an analytic function X → Y

• Df ∈ Pcoh!(X ,Y ) is the (x , u) 7→ (f (x), f ′(x) · u)

so this functoriality means that the chain rule holds.

And that the differential of a linear morphism is the morphism
itself: D(f derX ) = (Sf ) derSX for f ∈ L(X ,Y ).



The two next diagrams allow to lift the monad (S, ζ, θ) to L!.

For θX ∈ L!(S
2X ,SY ) = L(!S2X ,SY ): we take θX derX .

These diagrams allow to prove that θ is a natural transformation
on L!. If f ∈ L!(X ,Y ):

D2X DX

D2Y DY

θX

D2f Df

θY

And similarly ζ is natural in L!.



Intuition: linearity of the differential

Remember:

θX ((x0, u0), (x1, u1)) =(x0, u0 + x1)

D2f ((x0, u0), (x1, u1)) = ((f (x0), f ′(x0) · u0),

(f ′(x0) · x1, f
′′(x0) · (u0, x1) + f ′(x0) · u1)

The commutation means:

Df (x0, u0 + x1) = (f (x0), f ′(x0) · u0 + f ′(x0) · x1)

that is f ′(x0) · (u0 + x1) = f ′(x0) · u0 + f ′(x0) · x1.

Naturality of ζ in L!: f ′(x) · 0 = 0.



Locality

To represent one of the differential situation we are interested in,
this distributive law has to satisfy additional axioms: Locality,
Leibniz and Schwarz.

Axiom (Locality)

!SX S!X

!X

∂X

!π0
π0

Only for π0, not for π1!



Intuition

Again we use π0 for π0 derX ∈ L!(DX ,X ).

The diagram means that π0 is natural in L!. If f ∈ L!(X ,Y ):

DX X

DY Y

π0

Df f

π0

This corresponds to the intuition that

Df (x , u) = (f (x), f ′(x) · u)

Remark

π1 ∈ L!(DX ,X ) also exists but is fundamentally not natural in L!

(of course π1 is natural in L).



Leibniz

Is expressed as a “monoidality” condition (to simplify we assume
S(X & Y ) = SX & SY )

Axiom (Leibniz)

!SX ⊗ !SY S!X ⊗ S!Y S(!X ⊗ !Y )

!S (X & Y ) S!(X & Y )

∂X⊗∂Y

m2
SX ,SY

L!X ,!Y

Sm2
X ,Y

∂X&Y

+ a “0-ary version”.



Intuition

Given f ∈ L!(X & Y ,Z ), this commutation gives us an expression
for Df in terms of the two differentials ∂X and ∂Y .

Given ((x , y), (u, v)) ∈ S(X & Y ),
that is, (x , u) ∈ SX and (y , v) ∈ SY ,

df (x , y)

d(x , y)
· (u, v) =

∂f (x , y)

∂x
· u +

∂f (x , y)

∂y
· v

In the diagram, + is implemented by L!X ,!Y .



Schwarz

Axiom (Schwarz)

!S2X S!SX S2!X

!S2X S!SX S2!X

∂SX

!cX

S∂X

c!X

∂SX S∂X



If f ∈ L!(X ,Y ) then

D2f = (S2f ) (S ∂X ) ∂SX

so this diagram means that c is natural in L!:

D2X D2Y

D2X D2Y

D2f

cX cY

D2f

where we use also cX for cX derS2X .



Intuition

Remember that

cX ((x0, u0), (x1, u1)) = ((x0, x1), (u0, u1))

D2f ((x0, u0), (x1, u1)) = ((f (x0), f ′(x0) · u0),

(f ′(x0) · x1, f
′′(x0) · (u0, x1) + f ′(x0) · u1)

so this naturality means that

D2f ((x0, x1), (u0, u1)) = ((f (x0), f ′(x0) · x1),

(f ′(x0) · u0, f
′′(x0) · (u0, x1) + f ′(x0) · u1)

((f (x0), f ′(x0) · x1), (f ′(x0) · u0, f
′′(x0) · (x1, u0) + f ′(x0) · u1)

= ((f (x0), f ′(x0) · x1), (f ′(x0) · u0, f
′′(x0) · (u0, x1) + f ′(x0) · u1)



So taking u1 = 0 we get

f ′′(x0) · (x1, u0) = f ′′(x0) · (u0, x1)

which is the crucial property that the second derivative is a
symmetric bilinear function, often called Schwarz lemma.
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Short recap



Summability structure

• L is a category with 0-morphisms

• S : L → L is a 0-preserving functor

• π0, π1, σ : SX → X are natural transformations

• π0, π1 are jointly monic

• f0, f1 ∈ L(X ,Y ) are summable if there is 〈f0, f1〉S ∈ L(X ,SY )
with πi 〈f0, f1〉S = fi , and then f0 + f1 = σ 〈f0, f1〉S.

+ axioms to turn L(X ,Y ) into a partial commutative monoid.

In particular c ∈ L(S2X ,S2X ) the standard flip with
πi πj c = πj πi .

S inherits a monad structure (S, ζ, θ).



Differentiation

L is assumed to be a resource category (cartesian SMC with a
resource comonad aka. exponential, with Seely strong monoidality).

The differential structure is a natural transformation
∂X ∈ L(!SX ,S!X ) which satisfies some futher commutations:

• it is a distributive law between the monad S and the comonad
! : Chain Rule and Linearity (of the derivative)

• Locality

• Leibniz

• Schwarz.

Then one defines the Differentiation Functor D : L! → L! by
DX = SX and if f ∈ L!(X ,Y ) = L!(!X ,Y ) then
Df = (Sf ) ∂X ∈ L!(DX ,DY ).



Canonical structure



A special, very common, case

We assume that L is monoidal closed (convenient though not
strictly necessary) so that the functor

⊗ I

where I = 1 & 1, has a right adjoint SI.

SIX = (I( X )

SIf = (I( f ) ∈ L(I( X , I( Y )

for f ∈ L(X ,Y ).

Remark

We still assume that L has zero-morphisms.



Two natural questions

Remark

In (probabilistic) coherence spaces, S is defined exactly in that way.

• When does this definition give rise to a summability structure?

• What does the differential structure boil down to in this
setting?



We have three morphisms

π0 = 〈Id, 0〉 ∈ L(1, I)

π1 = 〈0, Id〉 ∈ L(1, I)

∆ = 〈Id, Id〉 ∈ L(I, I)

which induce natural transformations π0, π1, σ ∈ L(SIX ,X ) by
“precomposition”.

For instance π0 is

(I( X ) (I( X )⊗ 1 (I( X )⊗ I X∼ Id⊗π0 ev



Summability as a property

Definition

L is canonically summable if (SI, π0, π1, σ) defined in that way are
a summability structure.

Remark (a property of L, not a structure)

This is a property of L, not an additional structure on L.

In particular we need π0, π1 to be jointly epic.



What do summability and sums become?

Remember that L(X ,Y ) ' L(1,X ( Y ).

Fact

x0, x1 ∈ L(1,X ) are summable if there is h ∈ L(I,X ) such that

xi = h πi

and then x0 + x1 = h∆ ∈ L(1,X ).



Canonical Witness Axiom

If f0, f1 ∈ L(I,X ) are such that f0 ∆, f1 ∆ ∈ L(I,X ) are summable,
then so are f0, f1. That is, up to L(I,X ) ' L(1, I( X ):

if f0, f1, f ∈ L(I,X ) are such that

fi ∆ = f πi for i = 0, 1

then there is h ∈ L(I⊗ I,X ) such that

fi λ = h (πi ⊗ I) ∈ L(1⊗ I,X )

where λ is the can. isom. 1⊗ I→ I.

Remark

Then f ρ = h (I⊗∆). Because π0, π1 are jointly epic.



Theorem

If π0, π1 are jointly epic, then (SI, π0, π1, σ) (as defined above) is a
summability structure on L iff the Canonical Witness Axiom holds.



I is a commutative comonoid

Thanks to the axioms we can define

L̃ ∈ L(I, I⊗ I)

uniquely characterized by

L̃π0 = π0 ⊗ π0 and L̃π1 = π0 ⊗ π1 + π1 ⊗ π0

Fact

(I, pr0 ∈ L(I, 1), L̃) is a commutative comonoid in L.

pr0 ∈ L(I = (1 & 1) , 1) is the first projection.



The commutative monad structure of SI

We have seen that SI has a structure of commutative monad.

Fact

The monad (SI, ζ, θ) is induced by the commutative comonoid
structure (pr0, L̃) of I.

For instance θ = cur f : (I( (I( X ))→ (I( X ) where f is

(I( (I( X ))⊗ I (I( (I( X ))⊗ I⊗ I

X (I( X )⊗ I

Id⊗L̃

ev⊗Id

ev



Differentiation as a !-coalgebra (canonical case)



! and its coalgebras

We assume that L is a cartesian resource category (cartesian
product &, exponential comonad ! , Seely isos etc).

A !-coalgebra structure on X ∈ L is a d ∈ L(X , !X ) such that

X !X

X

d

Id
derX

X !X

!X !!X

d

d digX

!d

These colgebras form the Eilenberg-Moore category L! where

f ∈ L!((X , d), (Y , e)) if

X !X

Y !Y

d

f !f

e

in L.



L! is cartesian

Due to the fact that L is a resource category (⊗, &, Seely isos):

Fact

L! is cartesian, with terminal object

(1, µ0 : 1→ !1)

and the cartesian product of (P0, d0), (P1, d1) ∈ L! is
(P0 ⊗ P1, µ

2 (d0 ⊗ d1))

P0 ⊗ P1 !P0 ⊗ !P1 !(P0 ⊗ P1)
d0⊗d1 µ2

Projection pr⊗0 (and similarly for pr⊗1 ):

P0 ⊗ P1 !P0 ⊗ !P1 P0 ⊗ !> ' P0
d0⊗d1

derP0
⊗!0

Uses the lax symmetric monoidality structure (µ0, µ2) of ! .



Chain Rule and coalgebra

Fact

There is a bijective correspondence between

• the !-coalgebra structures on I

• and the distributive laws between SI and ! in the sense of the
Chain Rule:

!SX S!X

SX

∂X

derSX
S derX

!SX S!X

!!SX !S!X S!!X

∂X

digSX S digX

!∂X ∂!X



Coalgebra  Chain Rule

Suppose we are given δ ∈ L(I, !I), then for any object X we can
define ∂X = cur f ∈ L(!SIX = !(I( X ),SI!X = (I( !X )) where
f is

!(I( X )⊗ I !(I( X )⊗ !I !((I( X )⊗ I) !X
Id⊗δ µ2

!ev

µ2
X ,Y ∈ L(!X ⊗ !Y , !(X ⊗ Y )) is the lax-monoidality structure of !

wrt. ⊗.



Chain Rule  Coalgebra

Conversely assume we are given ∂X ∈ L(!SIX ,SI!X ) for each
X ∈ L, we have in particular, taking X = I:

I 1⊗ I !1⊗ I !(I( I)⊗ I

(I( !I)⊗ I !I

λI
−1 µ0⊗Id !(cur λI)⊗Id

∂I⊗Id

ev

where µ0 ∈ L(1, !1) is the “unit” of the lax-monoidality and
λI ∈ L(1⊗ I, I) (the canonical iso).



A natural question

So assume we are given a coalgebra structure δ ∈ L(I, !I).

What conditions must satisfy δ for ensuring that the corresponding
distributive law (∂X )X∈L satisfies the additional conditions

• Linearity (second part of the dist. law)

• Local

• Leibniz

• Schwarz?

The answer is surprisingly simple.



Linearity and Leibniz

Linearity and Leibniz boil down to

I !I

1 !1

δ

pr0 !pr0

µ0

I !I

I⊗ I !I⊗ !I !(I⊗ I)

δ

L̃ !L̃

δ⊗δ µ2

that is

pr0 ∈ L!((I, δ),

term. obj.︷ ︸︸ ︷
(1, µ0) )

L̃ ∈ L!((I, δ), (I, δ)⊗ (I, δ)︸ ︷︷ ︸
cart. prod.

)



comonoid from the coalgebra

This means that we have

I !I

1 !>

δ

pr0 !0

(m0)
−1

I !I

I⊗ I !I⊗ !I !(I & I)

δ

L̃ ∆

derI⊗derI (m2)
−1

because L! is cartesian.

Remark

As a consequence, a canonically summable resource category where
! is the free exponential (roughly speaking, a Lafont category
which is canonically summable) has exactly one differential
structure (in our sense).

Related to a result of Blute, Cockett, Lemay and Seely (in additive
resource categories).



Locality corresponds to

I !I

1 !1

δ

µ0

ι0 !ι0

that is ι0 ∈ L!((1, µ0), (I, δ)).

And Schwarz straightforwardly holds.



Remark: the Kleisli category of SI

It turns out to be exactly the same thing as the category L[(I, δ)]
of free comodules of the coalgebra (I, δ).

Theorem (Girard)

If L is a model of LL then L[(I, δ)] is a model of LL. Very likely
conjecture: it is also a summable differential model of LL.

The objects of L[(I, δ)] are those of L.

f ∈ L[(I, δ)](X ,Y ) if f = (f0, f1) ∈ L(X ,Y ) is a summable pair of
morphisms. Composition:

(g0, g1) (f0, f1) = (g0 f0, g0 f1 + g1 f0) .

Intuition: “g1 f1 = 0”, L[(I, δ)] is a kind of infinitesimal extension
of L.



To summarize

In the canonical case, for a closed resource category L:

1 summability boils down to the Canonical Witness Axiom
about I = 1 & 1 (+ the fact that π0, π1 are jointly epic);

2 and the differential structure boils down to a coalgebra
structure on I

such that the morphisms pr0 ∈ L(I, 1), ι0 ∈ L(1, I) and
L̃ ∈ L(I, I⊗ I) are coalgebra morphisms.

Remember that these 3 morphisms arise from the summability
assumptions.



Concrete instance I: Coherence Spaces



A coherence space is

E = (|E |,¨E )

where |E | is a set and ¨E is a binary symmetric and reflexive
relation on |E |.

The domain of cliques:

Cl(E ) = {x ⊆ |E | | ∀a, a′ ∈ x a ¨E a′}

ordered by ⊆.



Morphisms

• |E ( F | = |E | × |F |
• (a, b) ¨E(F (a′, b′) if

a ¨E a′ ⇒ (b ¨F b′ and b = b′ ⇒ a = a′)

And then

Coh(E ,F ) = Cl(E ( F )



Some notations for Coh

• Identity: IdE = {(a, a) | a ∈ |E |}
• Composition: if s ∈ Coh(E ,F ) and t ∈ Coh(F ,G ) then

t s = {(a, c) ∈ |E | × |G | | ∃b ∈ |F | (a, b) ∈ s and (b, c) ∈ t}
∈ Coh(E ,G )

• Application to a clique: if s ∈ Coh(E ,F ) and x ∈ Cl(E ) then
s · x = {b ∈ |F | | a ∈ x and (a, b) ∈ s} ∈ Cl(F ).



Coh is cartesian

• Terminal object > = (∅, ∅).

• Cartesian product |E0 & E1| = {0} × |E0| ∪ {1} × |E1|
(i , a) ¨E0&E1 (j , b) if i = j ⇒ a ¨Ei

b.

• The projections are

pri = {((i , a), a) | i ∈ {0, 1} and a ∈ |Ei |} ∈ Coh(E0 & E1,Ei ) .



If ti ∈ Coh(F ,Ei ) then

〈t0, t1〉 = {(b, (i , a)) | i ∈ {0, 1} and (b, a) ∈ ti}
∈ Coh(F ,E0 & E1) .

Remark

Cl(>) = {∅} and Cl(E0)× Cl(E1) ' Cl(E0 & E1) by

(x0, x1) 7→ {0} × x0 ∪ {1} × x1 .



Coh is monoidal closed

• Unit 1 = ({∗},=).

• Tensor product |E0 ⊗ E1| = |E0| × |E1| and
(a0, a1) ¨E0⊗E1 (a′0, a

′
1) if ai ¨Ei

a′i for i = 0, 1.

• If ti ∈ Coh(Ei ,Fi ) for i = 0, 1 then

t0 ⊗ t1 = {((a0, a1), (b0, b1)) | (ai , bi ) ∈ ti for i = 0, 1}
∈ Coh(E0 ⊗ E1,F0 ⊗ F1) .

Monoidal closedness:

Coh(G ⊗ E ,F ) ' Coh(G ,E ( F ) .



Coh as a resource category

• |!E | = the set of all finite multisets m = [a1, . . . , an] with
ai ∈ |E | and ∀i , j ai ¨E aj . It is a uniform exponential.

• m ¨!E m′ if ∀a ∈ m, a′ ∈ m′ m ¨E m′.

• And it t ∈ Coh(E ,F ) then

!t = {([a1, . . . , an], [b1, . . . , bn]) |
n ∈ N, [a1, . . . , an] ∈ |!E |
and (ai , bi ) ∈ t for i = 1, . . . , n}

∈ Coh(!E , !F ) .

Remark

This is the free exponential. There is another one where |!E | is
made of sets instead of multisets; it is not compatible with the
differential structure.



Coh is canonically summable

• Coh has 0-morphisms: 0 = ∅ ∈ Coh(E ,F ).

• I = 1 & 1 so that |I| = {0, 1} and 0 ¨I 1.

• The injections πi = {(∗, i)} ∈ Coh(1, I) are jointly epic.

Remark

s ∈ Coh(I,E ) is fully determined by the pair

s · {0}, s · {1} ∈ Cl(E )

such that

s · {0} ∩ s · {1} = ∅ .



The Can. Witness Axiom holds in Coh

Let t0, t1, t ∈ Coh(I,E ) such that

ti ∆ = t πi for i = 0, 1 .

This means ti · {0, 1} = t · {i} for i = 0, 1. That is:

t0 · {0, 1} ∪ t1 · {0, 1} ∈ Cl(E ) and t0 · {0, 1} ∩ t1 · {0, 1} = ∅ .

Then let s = {((i , j), a) | (i , a) ∈ tj} ⊆ |I⊗ I( E |, we have

s ∈ Coh(I⊗ I,E ) .



The functor SI : Coh→ Coh is given by

SIE = (I( E )

so that |SIE | = {0, 1} × |E | with

(i , a) ¨SIE (i ′, a′) if a ¨E a′ and i 6= i ′ ⇒ a 6= a′.

Hence

Cl(SIE ) ' {(x0, x1) ∈ Cl(E )2 | x0 ∪ x1 ∈ Cl(E ) and x0 ∩ x1 = ∅} .

Remark

Two cliques x0, x1 of E are summable if x0 ∪ x1 ∈ Cl(E ) and
x0 ∩ x1 = ∅. In that case we use x0 + x1 for x0 ∪ x1.



The commutative comonoid structure of I is given by

pr0 = {(0, ∗)} ∈ Coh(I, 1)

L̃ = {(0, (0, 0)), (1, (1, 0)), (1, (0, 1))} ∈ Coh(I, I⊗ I) .

Remember it induces the monad structure ζE ∈ Coh(E ,SIE ) and
θE ∈ Coh(S2

I E ,SIE ).

As expected

θE : S2
I E → SIE

((x00, x01), (x10, x11)) 7→ (x00, x10 + x01)

up to

Cl(S2
I E ) ' {((x00, x01), (x10, x11)) | x00 + x01 + x10 + x11 ∈ Cl(E )} .



The differential structure of Coh

We define δ ⊆ |I( !I|:

δ = {(0, n[0]) | n ∈ N} ∪ {(1, n[0] + [1]) | n ∈ N}

where n[a] = [

n×︷ ︸︸ ︷
a, . . . , a]. It is easy to check that δ ∈ Coh(I, !I).



δ is a coalgebra

The main thing to check is

I !I

!I !!I

δ

δ !δ

digE

that is, given i ∈ {0, 1} and M ∈Mfin(Mfin({0, 1})),

(i ,M) ∈ !δ δ ⇔ (i ,M) ∈ digI δ

where
digE = {(m, [m1, . . . ,mk ]) ∈ |!E | × |!!E | | m = m1 + · · ·+ mk}.



main case

The main case is when i = 1.

(1,M) ∈ !δ δ means ∃k ∈ N such that

(k[0] + [1],M) ∈ !δ

that is:

M = [m1, . . . ,mk+1] with (0,mi ) ∈ δ for i = 1, . . . k

and (1,mk+1) ∈ δ

that is: ∃k ∈ N ∃n1, . . . , nk+1 ∈ N

M = [n1[0], . . . , nk [0], nk+1[0] + [1]]



And (1,M) ∈ digI δ means ∃k ∈ N such that

(k[0] + [1],M) ∈ digI

that is:

M = [m1, . . . ,ml ] with m1 + · · ·+ ml = k[0] + [1]

that is: ∃l ∈ N+ ∃n1, . . . , nl ∈ N

M = [n1[0], . . . , nl−1[0], nl [0] + [1]]

The diagram commutes!



The differential distributive law

Remember that δ induces a distributive law
∂E = cur u ∈ Coh(!SIE ,SI!E ) where

u : !(I( E )⊗ I→ !E

is

!(I( E )⊗ I !(I( E )⊗ !I !((I( E )⊗ I) !E
Id⊗δ µ2

!ev

Notice that µ2
E ,F ∈ Coh(!E ⊗ !F , !(E ⊗ F )) is

µ2
E ,F = {(([a1, . . . , an], [b1, . . . , bn]), [(a1, b1), . . . , (an, bn)]) |

n ∈ N, [a1, . . . , an] ∈ |!E | and [b1, . . . , bn] ∈ |!F |}



!(I( E )⊗ !I !((I( E )⊗ I) !E
µ2

!ev

is

{(([(i1, a1), . . . , (ik , ak)], [i1, . . . , ik ]), [a1, . . . , ak ]) |
k ∈ N, i1, . . . , ik ∈ {0, 1} and [(i1, a1), . . . , (ik , ak)] ∈ |!(I( E )|}

and [(i1, a1), . . . , (ik , ak)] ∈ |!(I( E )| means that

∀j , j ′ aj ¨E aj ′ and j 6= j ′ ⇒ aj 6= aj ′ .



!(I( E )⊗ I !(I( E )⊗ !I
Id⊗δ

is

{((p, 0), (p, n[0])) | n ∈ N, p ∈ Cl(I( E )}
∪ {((p, 1), (p, n[0] + [1])) | n ∈ N, p ∈ Cl(I( E )}



so u =

!(I( E )⊗ I !(I( E )⊗ !I !((I( E )⊗ I) !E
Id⊗δ µ2

!ev

is

u = {(([(0, a1), . . . , (0, ak)], 0), [a1, . . . , ak ]) |
k ∈ N and [a1, . . . , ak ] ∈ |!E |}

∪ {(([(0, a1), . . . , (0, ak), (1, ak+1)], 1), [a1, . . . , ak+1]) |
k ∈ N and [a1, . . . , ak+1] ∈ |!E | and ak+1 /∈ {a1, . . . , ak}}



Expression of ∂E

∂E = {(([(0, a1), . . . , (0, ak)], (0, [a1, . . . , ak ]) |
k ∈ N and [a1, . . . , ak ] ∈ |!E |}

∪ {(([(0, a1), . . . , (0, ak), (1, ak+1)], (1, [a1, . . . , ak+1]) |
k ∈ N and [a1, . . . , ak+1] ∈ |!E | and ak+1 /∈ {a1, . . . , ak}}

∈ Coh(!(I( E ), I( !E ) .



The Kleisli category Coh!

Object: those of Coh and Coh!(E ,F ) = Coh(!E ,F ).
s ∈ Coh!(E ,F ) induces a stable function

ŝ : Cl(E )→ Cl(F )

x 7→ {b ∈ |F | | ∃m ∈Mfin(x) (m, b) ∈ s}

Remark

Different s’s can induce the same stable function: ŝ forgets about
the multiplicities in multisets.

If s1 = {([a], b)} and s2 = {([a, a], b)} then ŝ1 = ŝ2.



Differentiation on Coh!

Given t ∈ Coh!(E ,F ) = Coh(!E ,F ), remember that

Dt = (St) ∂E ∈ Coh(!SIE = (I( E ),SI!E = (I( !F )) .

Notice that

St = {((i ,m), (i , b)) | i ∈ {0, 1} and (m, b) ∈ t} .



So

Dt = {([(0, a1), . . . , (0, ak)], (0, b)) | ([a1, . . . , ak ], b) ∈ t)}
∪ {([(0, a1), . . . , (0, ak), (1, ak+1)], (1, b)) |

([a1, . . . , ak , ak+1], b) ∈ t) and ak+1 /∈ {a1, . . . , ak}}



The stable derivative

Remember that

Cl(SIE ) ' {(x , u) | x ∪ u ∈ Cl(E ) and x ∩ u = ∅} .

In that way we get the stable function

D̂t : Cl(SIE )→ Cl(SIF )

(x , u) 7→ (t̂(x), t ′(x) · u)

where

t ′(x) · u = {b ∈ |F | | ∃m ∈Mfin(x), a ∈ u (m + [a], b) ∈ t}



Remark

If ti = {(i [a], a)} for i = 1, 2 we get

t ′1(∅) · {a} = {a}
t ′2(∅) · {a} = ∅

whereas t̂1 = t̂2. The derivative is not associated with the stable
function itself.

In some sense this derivative ”does not see mutiplicities”. This can
be remedied using non-uniform coherence spaces.
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The joint “epicness” axiom is necessary



Remember that we required L to satisfy the following.

The morphisms π0, π1 : 1→ I = 1 & 1 are jointly epic, that is: if
f0, f1 : I→ X satisfy

f0 πi = f1 πi for i = 0, 1

then f0 = f1.

This is not always true.



The category of pointed sets

Pointed set: a set X together with a distinguished 0X ∈ X .

Morphisms: functions f : X → Y s.t. f (0X ) = 0Y .

This category is cartesian:
X & Y = X × Y with 0X&Y = (0X , 0Y ).

And monoidal closed

X ⊗ Y = {(x , y) ∈ X × Y | x = 0X ⇔ y = 0Y }

and 0X⊗Y = (0X , 0Y ) (smash product). The ⊗-unit is 1 = {∗, 01}.

Remark

It is even a resource category: set !X = {(0, 0)} ∪ {1} × X , and
0!X = (0, 0).



Then the injections π0, π1 : 1→ I = 1 & 1 are given by

π0(01) = (01, 01) π0(∗) = (∗, 01)

π1(01) = (01, 01) π1(∗) = (01, ∗)

If f , g : 1 & 1→ Y satisfy f πi = g πi for i = 0, 1 we can still have
f (∗, ∗) 6= g(∗, ∗).



The CWA is necessary



Canonical Witness Axiom

Reminder

Joint epicness of π0, π1 and CWA are the only conditions we need
in the canonical case to get a summability structure.

If f0, f1 ∈ L(I,X ) are such that f0 ∆, f1 ∆ ∈ L(I,X ) are summable,
then so are f0, f1. That is, up to L(I,X ) ' L(1, I( X ):

if f0, f1, f ∈ L(I,X ) are such that

fi ∆ = f πi : 1→ X for i = 0, 1

then there is h ∈ L(I⊗ I,X ) such that

fi λ = h (πi ⊗ I) ∈ L(1⊗ I,X )

where λ is the can. isom. 1⊗ I→ I.



Normed vector spaces

The CWA doe not always hold.

Let N be the category

• whose objects are the finite-dimensional R-vector spaces V
equipped with a norm ‖ ‖V
• and a morphism f : V →W is a linear map such that
∀v ∈ V ‖f (v)‖W ≤ ‖v‖V , that is ‖f ‖ ≤ 1,

where

‖f ‖ = sup
‖v‖V≤1

‖f (v)‖W .



N is cartesian with ‖(u, v)‖V&W = max(‖u‖, ‖v‖) for
(u, v) ∈ V & W = V ×W .

N is an SMCC with ‖v ⊗ w‖V⊗W = ‖v‖‖w‖ for v ∈ V and
w ∈W .

The unit of ⊗ is 1 = R with ‖r‖ = |r |.

V (W is the space of all linear maps V →W with the norm
‖f ‖V(W = ‖f ‖ already defined.



Joint epicness axiom holds in N .

Then the functor SIV (induced by I) is given by
SIV = (I( V ) = V × V and

‖(u, v)‖SIV = sup
a,b∈[−1,1]

‖au + bv‖V

So u, v ∈ V are summable if ∀a, b ∈ [−1, 1] ‖au + bv‖V ≤ 1.

In R:

• −1/2 and 1/2 are summable since ‖(−1/2, 1/2)‖SIR = 1

• −1/2 + 1/2 = 0 and 1 are summable

• but 1/2 and 1 are not summable.



 the CWA does not hold in N .

Remark

CWA expresses not only associativity of (partial) + but also some
form of positivity of the elements of L(X ,Y ).



Recap of the differential structure



Assume that L is a canonically summable resource category, that
is:

• π0, π1 ∈ L(1, I = 1 & 1) are jointly epic

• and the CWA holds.

Remember that I has a commutative comonoid structure given by

pr0 : I→ 1 L̃ : I→ I⊗ I

with

L̃π0 = π0 ⊗ π0 L̃π1 = π0 ⊗ π1 + π1 ⊗ π0

Remember that + is just a notation for a composition with
∆ = 〈Id1, Id1〉 : 1→ I.



Differential structure

In this setting, a differential structure is a !-coalgebra structure
δ ∈ L(I, !I) such that

• pr0 ∈ L!((I, δ), (1, µ0))

• L̃ ∈ L!((I, δ), (I, δ)⊗ (I, δ) = (I⊗ I, µ2 (δ ⊗ δ)))

• π0 ∈ L!((1, µ0), (I, δ)).

Theorem

If L is a Lafont resource category which is canonically summable,
then L has exactly one differential structure.

Idea: δ is uniquely determined by (pr0, L̃).

Lafont resource category: for each X ∈ L, !X is the free
commutative comonoid “cogenerated” by X .



Coherence spaces



A coherence space is

E = (|E |,¨E )

where |E | is a set and ¨E is a binary symmetric and reflexive
relation on |E |.

The domain of cliques:

Cl(E ) = {x ⊆ |E | | ∀a, a′ ∈ |E | a ¨E a′}

ordered by ⊆, it is a cpo.



Morphisms

• |E ( F | = |E | × |F |
• (a, b) ¨E(F (a′, b′) if

a ¨E a′ ⇒ (b ¨F b′ and b = b′ ⇒ a = a′)

And then

Coh(E ,F ) = Cl(E ( F )



Some notations for Coh

• Identity: IdE = {(a, a) | a ∈ |E |}
• Composition: if s ∈ Coh(E ,F ) and t ∈ Coh(F ,G ) then

t s = {(a, c) ∈ |E | × |G | | ∃b ∈ |F | (a, b) ∈ s and (b, c) ∈ t}
∈ Coh(E ,G )

• Application to a clique: if s ∈ Coh(E ,F ) and x ∈ Cl(E ) then
s · x = {b ∈ |F | | a ∈ x and (a, b) ∈ s} ∈ Cl(F ).



Coh is cartesian

• Terminal object > = (∅, ∅).

• Cartesian product |E0 & E1| = {0} × |E0| ∪ {1} × |E1|
(i , a) ¨E0&E1 (j , b) if i = j ⇒ a ¨Ei

b.

• The projections are

pri = {((i , a), a) | i ∈ {0, 1} and a ∈ |Ei |} ∈ Coh(E0 & E1,Ei ) .



If ti ∈ Coh(F ,Ei ) then

〈t0, t1〉 = {(b, (i , a)) | i ∈ {0, 1} and (b, a) ∈ ti}
∈ Coh(F ,E0 & E1) .

Remark

Cl(>) = {∅} and Cl(E0)× Cl(E1) ' Cl(E0 & E1) by

(x0, x1) 7→ {0} × x0 ∪ {1} × x1 .



Coh is monoidal closed

• Unit 1 = ({∗},=).

• Tensor product |E0 ⊗ E1| = |E0| × |E1| and
(a0, a1) ¨E0⊗E1 (a′0, a

′
1) if ai ¨Ei

a′i for i = 0, 1.

• If ti ∈ Coh(Ei ,Fi ) for i = 0, 1 then

t0 ⊗ t1 = {((a0, a1), (b0, b1)) | (ai , bi ) ∈ ti for i = 0, 1}
∈ Coh(E0 ⊗ E1,F0 ⊗ F1) .

Monoidal closedness:

Coh(G ⊗ E ,F ) ' Coh(G ,E ( F ) .



Coh as a resource category

• |!E | = the set of all finite multisets m = [a1, . . . , an] with
ai ∈ |E | and ∀i , j ai ¨E aj . It is a uniform exponential.

• m ¨!E m′ if ∀a ∈ m, a′ ∈ m′ m ¨E m′.

• And it t ∈ Coh(E ,F ) then

!t = {([a1, . . . , an], [b1, . . . , bn]) |
n ∈ N, [a1, . . . , an] ∈ |!E |
and (ai , bi ) ∈ t for i = 1, . . . , n}

∈ Coh(!E , !F ) .

Remark

This is the free exponential. There is another one where |!E | is
made of sets instead of multisets; it is not compatible with the
differential structure.



Coh is canonically summable

• Coh has 0-morphisms: 0 = ∅ ∈ Coh(E ,F ).

• I = 1 & 1 so that |I| = {0, 1} and 0 ¨I 1.

• The injections πi = {(∗, i)} ∈ Coh(1, I) are jointly epic.

Remark

s ∈ Coh(I,E ) is fully determined by the pair

s0 = s · {0}, s1 = s · {1} ∈ Cl(E )



Moreover, since 0 ˝E 1 (which means 0 ¨E 1 and 0 6= 1) we have

s0 ∪ s1 ∈ Cl(E ) and s0 ∩ s1 = ∅

Conversely if x0, x1 ∈ Cl(E ) satisfy x0 ∪ x1 ∈ Cl(E ) and x0 ∩ x1 = ∅
then

({0} × x0) ∪ ({1} × x1) ∈ Coh(I,E )



Summability in Coh

We have seen that:

Fact

x0, x1 ∈ Cl(E ) are summable in E iff

x0 ∪ x1 ∈ Cl(E ) and x0 ∩ x1 = ∅ .

Remark

Each model of LL has its own notion of summability.



The CWA holds in Coh

Up to iso:

Cl(SIE ) = {(x0, x1) ∈ Cl(E )2 | x0 ∪ x1 ∈ Cl(E ) and x0 ∩ x1 = ∅}

Remark

Up to this iso, we have

∅ = (∅, ∅)
(x00, x01) ∪ (x10, x11) = (x00 ∪ x10, x10 ∪ x11)

(x00, x01) ∩ (x10, x11) = (x00 ∩ x10, x10 ∩ x11) .



Summability in SIE

So (x00, x01), (x10, x11) ∈ Cl(SIE ) are summable in SIE if

(x00 ∪ x10, x10 ∪ x11) ∈ Cl(SIE )

(x00 ∩ x10, x10 ∩ x11) = (∅, ∅)

That is

x00 ∪ x10 ∪ x10 ∪ x11 ∈ Cl(E )

(x00 ∪ x10) ∩ (x10 ∪ x11) = x00 ∩ x10 = x10 ∩ x11 = ∅

that is (i , j) 6= (i ′, j ′)⇒ xij ∩ xi ′j ′ = ∅.



Assume that

• (x00, x01), (x10, x11) ∈ Cl(SIE ) and

• (x00 ∪ x01, x10 ∪ x11) ∈ Cl(SIE ).

Then

• x00 ∩ x01 = x10 ∩ x11 = ∅
• (x00 ∪ x01) ∩ (x10 ∪ x11) = ∅
• x00 ∪ x01 ∪ x10 ∪ x11 ∈ Cl(SIE )

that is

• x00 ∪ x01 ∪ x10 ∪ x11 ∈ Cl(SIE )

• (i , j) 6= (i ′, j ′)⇒ xij ∩ xi ′j ′ = ∅.
that is (x00, x01), (x10, x11) ∈ Cl(SIE ) are summable in SIE .



We already know that Coh has a unique differential structure
wrt. !.

The commutative comonoid structure of I is given by

pr0 = {(0, ∗)} ∈ Coh(I, 1)

L̃ = {(0, (0, 0)), (1, (1, 0)), (1, (0, 1))} ∈ Coh(I, I⊗ I) .

Remember it induces the monad structure ζE ∈ Coh(E ,SIE ) and
θE ∈ Coh(S2

I E ,SIE ).

As expected for ((x00, x01), (x10, x11)) ∈ Cl(S2
I E ) we have

θ · ((x00, x01), (x10, x11)) = (x00, x10 + x01) ∈ Cl(SIE )



The differential structure of Coh

We define δ ⊆ |I( !I|:

δ = {(0, n[0]) | n ∈ N} ∪ {(1, n[0] + [1]) | n ∈ N}

where n[a] = [

n×︷ ︸︸ ︷
a, . . . , a].

δ ∈ Coh(I, !I) because

• m ¨!I m
′ for all m,m′ ∈ |!I|

• and n[0] ˝!E n′[0] + [1] for all n, n′ ∈ N.



δ is a coalgebra

The main thing to check is

I !I

!I !!I

δ

δ !δ

digI

that is, given i ∈ {0, 1} and M ∈Mfin(Mfin({0, 1})),

(i ,M) ∈ !δ δ ⇔ (i ,M) ∈ digI δ

where
digE = {(m, [m1, . . . ,mk ]) ∈ |!E | × |!!E | | m = m1 + · · ·+ mk}.



main case

The main case is when i = 1.

(1,M) ∈ !δ δ means ∃k ∈ N such that

(k[0] + [1],M) ∈ !δ

that is:

M = [m1, . . . ,mk+1] with (0,mi ) ∈ δ for i = 1, . . . k

and (1,mk+1) ∈ δ

that is: ∃k ∈ N ∃n1, . . . , nk+1 ∈ N

M = [n1[0], . . . , nk [0], nk+1[0] + [1]]



And (1,M) ∈ digI δ means ∃k ∈ N such that

(k[0] + [1],M) ∈ digI

that is:

M = [m1, . . . ,ml ] with m1 + · · ·+ ml = k[0] + [1]

that is: ∃l ∈ N+ ∃n1, . . . , nl ∈ N

M = [n1[0], . . . , nl−1[0], nl [0] + [1]]

The diagram commutes!



The induced differential dist. law

Remember that δ induces a distributive law
∂E = cur u ∈ Coh(!SIE ,SI!E ) where

u : !(I( E )⊗ I→ !E

is

!(I( E )⊗ I !(I( E )⊗ !I !((I( E )⊗ I) !E
Id⊗δ µ2

!ev

Notice that µ2
E ,F ∈ Coh(!E ⊗ !F , !(E ⊗ F )) is

µ2
E ,F = {(([a1, . . . , an], [b1, . . . , bn]), [(a1, b1), . . . , (an, bn)]) |

n ∈ N, [a1, . . . , an] ∈ |!E | and [b1, . . . , bn] ∈ |!F |}



∂E ={(([(0, a1), . . . , (0, ak)], (0, [a1, . . . , ak ]) |
k ∈ N and [a1, . . . , ak ] ∈ |!E |}

∪ {(([(0, a1), . . . , (0, ak), (1, ak+1)], (1, [a1, . . . , ak+1]) |
k ∈ N and [a1, . . . , ak+1] ∈ |!E | and ak+1 /∈ {a1, . . . , ak}}

∈ Coh(!(I( E ), I( !E ) .



The Kleisli category Coh!

Object: those of Coh and Coh!(E ,F ) = Coh(!E ,F ).
s ∈ Coh!(E ,F ) induces a stable function

ŝ : Cl(E )→ Cl(F )

x 7→ {b ∈ |F | | ∃m ∈Mfin(x) (m, b) ∈ s}

Remark

Different s’s can induce the same stable function: ŝ forgets about
the multiplicities in multisets.

If s1 = {([a], b)} and s2 = {([a, a], b)} then ŝ1 = ŝ2.



Differentiation on Coh!

Given t ∈ Coh!(E ,F ) = Coh(!E ,F ), remember that

Dt = (St) ∂E ∈ Coh(!SIE = (I( E ),SIF = (I( F )) .

Notice that

St = {((i ,m), (i , b)) | i ∈ {0, 1} and (m, b) ∈ t} .



So for t ∈ L!(E ,F ) = Coh(!E ( F ) we have

Dt ={([(0, a1), . . . , (0, ak)], (0, b)) | ([a1, . . . , ak ], b) ∈ t)}
∪ {([(0, a1), . . . , (0, ak), (1, ak+1)], (1, b)) |

([a1, . . . , ak , ak+1], b) ∈ t) and ak+1 /∈ {a1, . . . , ak}}
∈L!(SIE ,SIF ) = Coh(!(I( E )( (I( F )) .



The stable derivative

Remember that

Cl(SIE ) ' {(x , u) | x ∪ u ∈ Cl(E ) and x ∩ u = ∅} .

In that way we get the stable function

D̂t : Cl(SIE )→ Cl(SIF )

(x , u) 7→ (t̂(x), t ′(x) · u)

t ′(x) · u = {b ∈ |F | | ∃m ∈Mfin(x), a ∈ u (m + [a], b) ∈ t}

Remark

In such an (m, a) we have a /∈ supp(m) since supp(m) ⊆ x , a ∈ u
and x ∩ u = ∅.



Local coherence space

Given x ∈ Cl(X ), one defines a coherence space Ex by

• |Ex | = {b ∈ |E | | ∀a ∈ x a ˝E b}
• a ¨Ex a

′ if a ¨E a′.

Then for t ∈ Coh(E ,F ) we have

t ′(x) ∈ Coh(Ex ,Ft̂(x))

Remark

There is a dependent type intuition: the type of t ′(x) depends on
x .

However this point of view hardly reflects the stability of t ′(x)
wrt. x .

Whereas the compound construction Dt does in a very simple way.



Remark

If ti = {(i [a], a)} for i = 1, 2 we get

t ′1(∅) · {a} = {a}
t ′2(∅) · {a} = ∅

whereas t̂1 = t̂2. The derivative stable function D̂t is associated
with t and not the stable function t̂.

In some sense this derivative “does not see mutiplicities”. This is
due to the uniformity of the exponential. NB: there are
non-uniform coherence spaces. . .



Probabilistic Coherence Spaces



Probabilistic Coherence Spaces (PCS)

X = (|X |,PX )

• |X | is a set (usually at most countable)

• PX ⊆ (R≥0)|X |

• ∀a ∈ |X | 0 < supx∈PX xa <∞
• PX is ↓-closed (for the pointwise order)

• PX contains the (pointwise) lub of any increasing ω-sequence
in PX

• x , y ∈ PX and λ ∈ [0, 1]⇒ λx + (1− λ)y ∈ PX



Morphisms

X ( Y defined by:

• |X ( Y | = |X | × |Y |
• and t ∈ (R≥0)|X |×|Y | is in P(X ( Y ) if

∀x ∈ PX t · x ∈ PY

where t · x = (
∑

a∈|X | ta,bxa)b∈|Y | ∈ (R≥0)|Y |.

Fact

X ( Y so defined is a PCS.

Pcoh(X ,Y ) = P(X ( Y ) .



Notations

• If s ∈ Pcoh(X ,Y ) and t ∈ Pcoh(Y ,Z ) then
t s ∈ Pcoh(X ,Z ) given by

(t s)a,c =
∑
b∈|Y |

sa,btb,c

• IdX ∈ Pcoh(X ,X ) is (δa,a′)(a,a′)∈|X(X |.

This defines a category.



Cartesian product

• Terminal object > such that |>| = ∅.
• |X0 & X1| = {0} × |X0| ∪ {1} × |X1| so that

(R≥0)|X0&X1| ' (R≥0)|X0| × (R≥0)|X1|

• pri ∈ (R≥0)|X0&X1|×|Xi | given by

(pri )(j ,a),a′ = δi ,jδa,a′

• y ∈ (R≥0)|X0&X1| is in P(X0 & X1) if pri · y ∈ PXi for i = 0, 1.

• If ti ∈ Pcoh(Y ,Xi ) for i = 0, 1 then
〈t0, t1〉 ∈ Pcoh(Y ,X0 & X1) is given by 〈t0, t1〉b,(i ,a) = (ti )a,b.



Remark

P(X0 & X1) ' PX0 × PX1

Up to this iso, the cartesian product is completely standard:

• pri · (x0, x1) = xi
• 〈t0, t1〉 · y = (t0 · y , t1 · y) for ti ∈ Pcoh(Y ,Xi )



Tensor product

Given xi ∈ PXi for i = 0, 1, let x0 ⊗ x1 ∈ (R≥0)|X0|×|X1| given by

(x0 ⊗ x1)(a0,a1) = x0a0
x1a1

• |X0 ⊗ X1| = |X0| × |X1|
• P(X0 ⊗ X1) minimal such that x0 ⊗ x1 ∈ P(X0 ⊗ X1) for all

xi ∈ PXi for i = 0, 1.

Fact

Pcoh(Z ⊗ X ,Y ) ' Pcoh(Z ,X ( Y ).



The object I

1 = ({∗}, [0, 1]). Notice that P(1( X ) ' PX

I = 1 & 1 so that PI = [0, 1]× [0, 1]

π0, π1 ∈ Pcoh(1, I) ' PI, actually π0 = (1, 0) and π1 = (0, 1).

Fact

π0, π1 are jointly monic:

by linearity, t ∈ Pcoh(I,X ) is fully determined by
t0 = t · (1, 0) ∈ PX and t1 = t · (0, 1) ∈ PX .

Moreover t0 + t1 ∈ PX since t0 + t1 = t · (1, 1) since (1, 1) ∈ PI.

P(I( X ) ' {(x0, x1) ∈ PX | x0 + x1 ∈ PX}.



Canonical Witness Axiom

Up to this iso we have

(x00, x01) + (x10, x11) = (x00 + x10, x01 + x11)

and so

((x00, x01), (x10, x11)) ∈ PS2
I X ⇔ (x00 + x10, x01 + x11) ∈ PSIX

⇔ x00 + x10 + x01 + x11 ∈ PX

⇔ (x00 + x01, x10 + x11) ∈ PSIX

and hence the CWA holds.



The induced monad SI : Pcoh→ Pcoh given by SIX = (I( X )
behaves exactly as expected:

ζX ∈ Pcoh(X ,SIX ) ζX · x = (x , 0)

θX ∈ Pcoh(S2
I X ,SIX ) θX · ((x00, x01), (x10, x11)) = (x00, x10 + x01)



The differentiation coalgebra

It is defined essentially as in Coh, and is a coalgebra for the same
reason.

δ ∈ (R≥0)|I(!I|

defined by

δi ,m =


1 if i = 0 and ∃n ∈ N m = n[0]

1 if i = 1 and ∃n ∈ N m = n[0] + [1]

0 otherwise

Remark (Surprise)

The case i = 1 implements the differential, so I expected to have
sthg like n as coeff. instead of 1. But it’s not the case!



The exponential functor

• |!X | =Mfin(|X |) (no uniformity restriction).

• If x ∈ PX and m ∈ |!X | then xm =
∏

a∈|X | x
m(a)
a ∈ R≥0

• x ! = (xm)m∈|!X |

• and P(!X ) is minimal such that ∀x ∈ PX x ! ∈ P(!X ).

Given t ∈ Pcoh(X ,Y ) we need !t ∈ Pcoh(!X , !Y ) such that

∀x ∈ PX !t · x ! = (t · x)!

Fact

This determines fully !t.



Simple computations give, for t ∈ Pcoh(X ,Y ) ⊆ (R≥0)|X |×|Y | and
(m, p) ∈ |!X ( !Y | =Mfin(!X )×Mfin(!Y ):

(!t)m,p =
∑

r∈L(m,p)

[
p

r

]
tr

where

L(m, p) = {r ∈Mfin(|X | × |Y |) |∑
b∈|Y |

r(a, b) = m(a) and
∑
a∈|X |

r(a, b) = p(b)}

and [
p

r

]
=
∏

b∈|Y |

p(b)!∏
a∈|X | r(a, b)!

∈ N



The evaluation morphism

ev ∈ Pcoh((I( X )⊗ I,X ) ev((i ,a),j),b = δa,bδi ,j

Then !evM,m 6= 0 implies

M = [((0, a1), 0), . . . , ((0, ak), 0), ((1, b1), 1), . . . , ((1, bn), 1)] = (l , r)

m = [a1, . . . , ak , b1, . . . , bn] = l + r

Setting l = [a1, . . . , ak ] and r = [b1, . . . , bn]. We have

!evM,m =

(
l + r

l

)
=
∏
a∈|X |

(
l(a) + r(a)

l(a)

)



The differential functor

Remember that ∂X = cur f ∈ L(!SIX ,SI!X ) where f is

!(I( X )⊗ I !(I( X )⊗ !I !((I( X )⊗ I) !X
Id⊗δ µ2

!ev

Using the above computation of !ev and definition of δ we get

(∂X )(l ,r),(i ,m) =


1 if i = 0, r = [ ], m = l

m(a) if i = 1, r = [a], m = l + [a]

0 otherwise.



A t ∈ Pcoh!(X ,Y ) = P(!X ( Y ) is completely characterized by
the associated analytic function

t̂ : PX → PY

x 7→ t · x ! =

 ∑
m∈|!X |

tm,bx
m


b∈|Y |



Then Dt ∈ Pcoh!(SIX ,SIY ) is characterized by the analytic
function (setting f = t̂ : PX → PY )

D̂t : P(SIX )→ P(SIY )

(x , u) 7→ (f (x), f ′(x) · u)

where

f ′(x) · u =

( ∑
a∈|X |

( ∑
l∈|!X |

(m(a) + 1)tm+[a],bx
m
)
ua

)
b∈|Y |

is just the standard differential of t̂.



Differential as a linear map

Given x ∈ PX we define Xx , the local PCS at x :

|Xx | = {a ∈ |X | | ∃ε > 0 x + εea ∈ PX}
PXx = {u ∈ (R≥0)|Xx | | x + u ∈ PX}

and then f ′(x) ∈ Pcoh(Xx ,Yf (x)) satisfies (for b ∈ |Yf (x)|)

(f ′(x) · u)b =

(
d

dt
f (x + tu)b

)
t=0

standard Gateaux derivative.

The fact that Dt ∈ Pcoh!(SIX ,SIY ) also tells us that this
derivative is analytic in x .



Strong similarity with Tangent Categories



Mfd: category of smooth manifolds and smooth maps.

There is a tangent bundle functor

T : Mfd→Mfd

X 7→ {(x , u) | x ∈ X and u ∈ TxX}

TxX = tangent space at x to X . A vector space.

And if f ∈Mfd(X ,Y ),

Tf : TX → TY

(x , u) 7→ (f (x), f ′(x) · u)

Looks very much like our D functor!



Discrepancies

Is T a special case of D?

Of course not: given (x , u) ∈ TX , it makes no sense to consider u
alone (no 2nd projection TX → X ) nor to compute x + u ∈ X in
general.

Is D a special case of T?

No, because our “tangent spaces” are only partial commutative
monoids whereas TxX is crucially a commutative monoid.

Remark

More philosophically, our approach is based on S acting on a
“linear” category (a category of algebraic objects, the linear
category of a model of LL).

This is typically not the case in the tangent bundle case.



More precisely, in tangent categories (= categorical axiomatization
of the tangent bundle functor) we have a natural transformation
pX : TX → X , intuitively pX (x , u) = x .

It is required that there is a pull-back and an addition morphism s

T2X TX

TX TX

X

s

p1 p2

p.b.

pp p

This s is a total addition operation in the fibers of p.
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