
CiE 2006

Embedding the π-calculus in differential

interaction nets

Thomas Ehrhard

PPS

Université Denis Diderot and CNRS

Joint work with Olivier Laurent, PPS

02-07-2006

1



A finitary and monadic π-calculus. Names a, b, a1, . . .

• Empty process: ∗

• Restriction: νa · π (a is bound)

• Parallel composition: π1 | π2

• Reception: a(b) · π (b is bound)

• Emission: a〈b〉 · π (b is not bound)

2



Operational semantics: a machine.

• Closure: c = (π, e) where e is a finite function from the free

names of π to names;

• Soup: multiset S = c1 . . . cn of closures;

• State: (S,P) where P is a finite set of names, the private

names of the state [the names in P must be considered as

bound].

A soup is canonical if all its processes start with an input or

output prefix.

3



A machine: reduction rules

• ((∗, e)S,P) ;can (S,P)

• ((π1 | π2, e)S,P) ;can ((π1, e)(π2, e)S,P)

• ((νa · π, e)S,P) ;can ((π, e[a 7→ α])S,P ∪ {α}) with α a fresh

name

• ((a1(b)·π1, e1)(a2〈c〉·π2, e2)S,P) ; ((π1, e1[b 7→ e2(c)])(π2, e2)S,P)

if e1(a1) = e2(a2).

4



It is a simple way of presenting the usual reduction rules and

congruence of the π-calculus (cf. the abstract machine of Amadio

and Curien’s book).



Pure polarized exponential differential logic.

• Positive formulae: ι and !N where N is negative

• Negative formulae: ?P where P is positive

• Equation on formulae: ι = !(ι⊥) [cf. D = D ⇒ D in pure

lambda-calculus]

Set o = ?ι, so that o = ι⊥.

Up to equality of formulae, there are only two formulae in this

logic:

ι (or “+”) and o (or “−”).

5



Pure polarized exponential differential logic: a sequent cal-

culus.

Identity rules:

` o, ι

` Γ, o ` ι,∆

` Γ,∆

Negative rules (structural rules and dereliction):

` Γ

` Γ, o

` Γ, o, o

` Γ, o

` Γ, ι

` Γ, o

6



Pure polarized exponential differential logic: a sequent cal-

culus (cont.)

Positive rules (costructural rules and codereliction):

` ι

` Γ, ι ` ∆, ι

` Γ,∆, ι

` Γ, o

` Γ, ι

Mix rule:

`

` Γ ` ∆

` Γ,∆

7



Differential interaction nets: interaction nets for this logic.

0

−
? 0

−
?

+ 1
1

2

0

−

−

−

?

weakening dereliction contraction

0 01
1

2

0

co-weakening co-contraction

!!!

Arrow convention: the arrows we put on wires correspond to

the typing of all wires by the o (“−”) type.

8



Differential interaction nets: desquentialization.

Any proof of the sequent calculus above can be “desequential-

ized” into a unique interaction net structure with these cells, just

like in MLL.

9



Differential interaction nets: correctness criterion.

Adaptation of the Girard or Danos-Regnier MLL criterion, but

only for acyclicity. Connexity is not required.

Cocontraction is handled like a tensor link, contraction is handled

like a par link.

Fact: a net structure which satisfies the criterion is the de-

sequentialization of a proof of the sequent calculus of the ι/o

logic.

10



Differential interaction nets: structural rewriting rules. Cor-

respond to the fact that each type !A has the structure of a

bialgebra.

! ? ; (multiplicative nothing)

11



Differential interaction nets: structural rewriting rules (cont.)

;! ?

!

!

;?!

?

?

12



Differential interaction nets: structural rewriting rules (cont.)

;! ?

? !

!?

13



Differential interaction nets: structural rewriting rules (cont.)

Structural rules include the Rétoré rules which express the neu-

trality of weakening wrt. contraction, and of coweakening wrt. co-

contraction.

We must also work up to associativity of contraction and cocon-

traction.

Strangely enough, neither commutativity of cocontraction nor

cocommutativity of contraction seem to be necessary for trans-

lating replication-free processes.

14



Differential interaction nets: non-deterministic rewriting

rules.

Describe the behaviour of linearity and differentiation — which

have some kind of duality — wrt. costructural and structural

cells.

! ? ; 0

“Applying a linear function to 0 yields 0.”

; 0! ?

“Derivating a constant function yields 0.”

15



Differential interaction nets: non-deterministic rewriting

rules (cont.)

;

+

! ?

!!
!

!

“Derivating f(x, x) wrt. x yields a sum of two partial derivatives.”

16



Differential interaction nets: non-deterministic rewriting

rules (cont.)

;

? ?+

?!

?

?

“Applying a linear function to a sum yields a sum.”

17



Differential interaction nets: communication rewriting rule

(cont.)

! ? ;

“The value of the derivative of a linear function at any point is

that function.”

18



Broadcast areas.

A family of nets Brn for n = −1,0,1,2, . . . , with 2n+4 free ports.

The most interesting is Br1:

?

! ?

!

! ?

19



Broadcast areas (cont.)

Br−1 is

?

!

and Br0 is

20



Broadcast areas: associativity.

Brn Brm ; Brn+m

using only structural reduction rules.

21



Interpreting processes: principle.

Let π be a process, A a set of names containing all the free

names of π.

Define [π]A, a net with two free ports a+ and a− for each a ∈ A;

if A = {a1, . . . , an}:

[π]A

. . .a1 an

22



Interpreting processes: empty process.

[∗]A is the juxtaposition of nets

Br−1

a

one for each a ∈ A.

23



Interpreting processes: name restriction.

a: a generic element of A, b: a name with b /∈ A. Then [νb · π]A
is

[π]{b}∪A

a

Br−1

b

24



Interpreting processes: parallel composition.

a: a generic element of A, then [π1 | π2]A is

Br1

a

[π1]A

a

a

[π2]A

25



Interpreting processes: reception.

a: a generic element of A, c and d two distinct names, c ∈ A and

d /∈ A. Then [c(d) · π]A is

[π]{d}∪A

c ad

!

!

c

!

26



Interpreting processes: emission.

a: a generic element of A, c and d two distinct names, c ∈ A and

d /∈ A. Then [c〈d〉 · π]A is

[π]A

c da

dc

?
Br1

?

!

27



Interpreting states.

This translation extends easily to states.

Fact: the interpretations of processes and of states are “weakly

correct” nets (that is: they can contain switching cycles, but all

these cycles pass through dereliction or codereliction cells, or:

none of these cycles is oriented, with our arrow convention).

28



Key reductions in process interpretations: prefix/prefix.

The following reductions hold in nets:

;

+

!
! ?

?

! ?

? !

29



Key reduction in process interpretations: prefix/broadcast.

The following reduction (as well as its dual) holds in nets:

;

Br1Br1

!!

!
+

!
!

Br1

!

30



Simulation theorem.

If we interpret a reduction of nets t ; t1 + · · · + tn (where t

and the ti’s are not sums) as the fact that t ; t1,. . . , t ; tn

non-deterministically, then:

(S,P) ; (S′,P ′) ⇒ [(S,P)] ; [(S,P ′)]

where [(S,P)] is the net associated to the state (S,P) of our

machine. This holds in the localized π-calculus.

BUT the converse is false!

31



Example.

The interpretation of a〈b〉 · ∗ reduces to

!

!
?

ab

So the interpretation of νa · (a〈b〉 · ∗ | a(c) · π) reduces to

?

!

!

!

b
! π

a

c

?

assuming that b is not free in π.

32



Example (cont.)

Which reduces to

!

!

b
π

a

c

?

?

and this net corresponds to νa · π[b/c] if we admit that π has no

reception capabilities on chanel c, which is the case if we are in

the localized π-calculus.

33



Example (cont.)

Consider now the interpretation of νa · (a〈b〉 · ∗ | d(e) · a(c) · π′);

this net reduces to

b
?

!

!

d

e
!

?

!

!

a

c
!

?

π

d

34



Taking into account the sequentiality of prefixes of pro-

cesses.

• Impose some sequentiality to differential interaction nets by

forbidding that certain communication reductions occur be-

fore others (like Girard’s jumps in MALL proof nets). Draw-

back: no clean denotational semantics known yet, whereas

standard differential interaction nets have a lot of nice mod-

els.

• Instead of the π-calculus, consider a completely asynchronous

calculus, translate this calculus to differential interaction nets,

and encode the π-calculus in this asynchronous calculus using

process calculi techniques.

35



Related works.

• Berger, Honda, Laurent, Yoshida

• Beffara and Maurel

• Mazza

36


