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Abstract

We show that the category of convenient vector spaces in the sense of Frölicher
and Kriegl is a differential category. Differential categories were introduced by Blute,
Cockett and Seely as the categorical models of the differential linear logic of Ehrhard
and Regnier. Indeed we claim that this category fully captures the intuition of this
logic.

It was already evident in the monograph of Frölicher and Kriegl that the category of
convenient vector spaces has remarkable structure. We here give much of that structure
a logical interpretation. For example, this category supports a comonad for which the
coKleisli category is the category of smooth maps on convenient vector spaces. We
show this comonad models the exponential modality of linear logic.

Furthermore, we show that the logical system suggests new structure. In particu-
lar, we demonstrate the existence of a codereliction map. Such a map allows for the
differentiation of arbitrary maps by simple precomposition.

1 Introduction

Differential linear logic was introduced by Ehrhard and Regnier [5, 6] in order to describe
the differentiation of higher order functionals from a syntactic or logical perspective. There
are models of this logic [3, 4] with sufficient analytical structure to demonstrate that the
formalism does indeed capture differentiation. But there were no models directly connected
to differential geometry, which is of course where differentiation is of the highest significance.
The purpose of this paper is to demonstrate that the convenient vector spaces of Frölicher
and Kriegl [9] constitute a model of this logic.

The question of how to differentiate functions into and out of function spaces has a
significant history. For instance, the importance of such structures is fundamental in the
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classical theory of variational calculus, see e.g. [7]. It is also a notoriously difficult question.
This can be seen by considering the category of smooth manifolds and smooth functions
between them. While products evidently exist in this category, there is no way to make
the set of functions between two manifolds into a manifold. Category theory provides an
appropriate framework for the analysis of function spaces, through the notion of cartesian
closed categories; in particular we note that the category of smooth manifolds is not cartesian
closed.

In the categorical approach to modelling logics, one typically starts with a logic presented
as a sequent calculus. One then arranges equivalence classes of proofs into a category. If
the equivalence relation is chosen wisely, the resulting category will be a free category with
structure. For example, the conjunction-implication fragment of intuitionistic logic yields
the free cartesian closed category; the tensor-implication fragment of intuitionistic linear
logic yields the free symmetric monoidal closed category. Then a general model is defined as
a structure preserving functor from the free category. In both these cases, the implication
connective is modelled as a function space, i.e. the right adjoint to product. Any attempt to
model the differential linear logic should be a category where morphisms are smooth maps
for some notion of smoothness. Then, to model logical implication, the category must also
be closed. This is how we will capture functional differentiation.

More precisely, a significant question raised by the work of Ehrhard and Regnier is to
write down the appropriate notion of categorical model of differential linear logic. This was
undertaken by Blute, Cockett and Seely in [2]. There, a notion of differential category is
defined and several examples are given in addition to the usual one made from the syntax
of the logic.

In this paper, we focus on the category of convenient vector spaces and bounded linear
maps, and demonstrate that it is a differential category. Indeed, this category has a number
of remarkable properties. It is symmetric monoidal closed, complete and cocomplete. But
most significantly, it is equipped with a comonad, for which the resulting coKleisli category
is the category of smooth maps, in an appropriate sense. It is already remarkable that the
very structure of linear logic [10] appears in this category, but furthermore it is a model of
the much newer theory of differential linear logic.

After describing the category of convenient spaces, we demonstrate that it is a model
of intuitionistic linear logic, and that the coKleisli category corresponding to the model of
the exponential modality (the comonad) is the category of smooth maps. We construct a
differential operator on smooth maps, and show that it is a model of the differential inference
rule of differential linear logic, i.e. a differential category.

One of the most surprising aspects of this approach to differentiation is the decomposition
of the smooth maps from X to Y into a space of linear maps from !X to Y , where !X is the
exponential of X. In fact, in the convenient setting, !X is a space of distributions. It is the
convenient vector space obtained by taking the Mackey closure of the linear space generated
by the Dirac distributions. From this perspective, differentiation is given by precomposition
with a special map called codereliction. This may seem unusual from the functional analysis
perspective, but is very natural from the linear logic viewpoint.
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We note that much of the structure we describe here can be found scattered in the
literature [9, 11, 12, 13], but we believe the presentation here sheds new light on both the
categorical and logical structures.

Acknowledgements: The first author would like to thank NSERC for its financial support.
The authors would like to especially thank Phil Scott for his helpful contributions.

2 Convenient vector spaces

In this section, we present the category of convenient spaces. They can be seen either as
topological or bornological vector spaces, with the two structures satisfying a compatibility.
We give a brief review of ideas related to bornology, but assume the reader is familiar with
locally convex spaces. See [12] for this.

For the significance of bornology and an analysis of convergence properties, see [11]. A
set is bornological if, roughly speaking, it is equipped with a notion of boundedness.

Definition 2.1 A set X is bornological if equipped with a bornology, i.e. a set of subsets
BX , called bounded, such that:

• all singletons are in BX ;

• BX is downward closed with respect to inclusion;

• BX is closed under finite unions.

A map between bornological spaces is bornological if it takes bounded sets to bounded sets.
The resulting category will be denoted Born.

Theorem 2.2 The category Born is cartesian closed.

Proof. (Sketch [9, §1.2]) The product bornology is defined to be the coarsest bornology
such that the projections are bornological. So a subset of X × Y is bounded if and only if
its two projections are bornological.

The closedness follows from definition of the bornology on X ⇒ Y as the set of bornolog-
ical functions. A subset B ⊆ X ⇒ Y is bounded if and only if B(A) is bounded in Y , for
all A bounded in X. 2

As this bornology will arise in a number of different contexts, we will denote X ⇒ Y by
Born(X, Y ). We note that the above product construction works for products of arbitrary
cardinality.

Definition 2.3 A convex bornological vector space is a vector space E equipped with a
bornology such that

1. B is closed under the convex hull operation.
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2. If B ∈ B, then −B ∈ B and 2B ∈ B.

The last condition ensures that addition and scalar multiplication are bornological maps,
when the reals are given the usual bornology. A map of convex bornological vector spaces is
just a linear, bonological map. We thus get a category that we denote CBS.

As described in [9, 12, 11], the topology and bornology of a convenient vector space are
related by an adjunction, which we now describe.

Let E be a locally convex space. Say that B ⊆ E is bounded if it is absorbed by every
neighborhood of 0, that is to say if U is a neighborhood of 0, then there exists a positive
real number λ such that B ⊆ λU . This is called the von Neumann bornology associated to
E. We will denote the corresponding convex bornological space by βE.

On the other hand, let E be a convex bornological space. Define a topology on E by
saying that its associated topology is the finest locally convex topology compatible with the
original bornology. We will denote by γE the vector space E endowed with this topology.
More concretely, one says that the bornivorous disks form a neighborhood basis at 0. A disk
is a subset A which is both convex and satisfies that λA ⊆ A, for all λ with |λ| ≤ 1. A disk
A is said to be bornivorous when for every bounded subsets B of E, there is λ 6= 0 such that
λB ⊆ A.

Theorem 2.4 (See Thm 2.1.10 of [9]) The functor β : LCS → CBS is right adjoint to the
functor γ : CBS → LCS. Moreover, if E is a CBS and F a LCS, then LCS(γE, F ) =
CBS(E, βF ).

Definition 2.5 A convex bornological space E is topological if E = βγE. A locally convex
space E is bornological if E = γβE.

Let V be a vector space and V ′ a subspace of its dual space V ∗. Then one can associate
a bornology to V by saying that U ⊆ V is bounded if and only if it is scalarly bounded, i.e.
`(U) is bounded in the reals, for all ` in V ′. It follows from Lemma 2.1.23 of [9] that such
bornologies are topological. Thus to specify a topological bornology, it suffices to specify
such a V ′. We will take advantage of this frequently in what follows.

Let tCBS denote the full subcategory of topological convex bornological vector spaces and
bornological linear maps, and let bLCS denote the category of bornological locally convex
spaces and continuous linear maps. We note immediately:

Corollary 2.6 The categories tCBS and bLCS are isomorphic.

The tCBS’s that we are interested in have the desirable further properties of separation
and completion. We begin with the easiest of the two notions.

Definition 2.7 A bornological space is separated if E ′ separates points, that is for any
x 6= 0 ∈ E, there is l ∈ E ′ such that l(x) 6= 0.
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One can verify a number of equivalent definitions as done in [9], page 53. For example, E is
separated if and only if the singleton {0} is the only linear subspace which is bounded.

Bornological completeness is a different and weaker notion than topological completeness,
so we give some details.

Definition 2.8 Let E be a bornological space. A net (xγ)γ∈Γ is Mackey-Cauchy if there
exists a bounded subset B and a net (µγ,γ′)γ,γ′∈Γ,Γ′ of real numbers converging to 0 such that

xγ − xγ′ ∈ µγ,γ′B.

Contrary to what generally happens in locally convex spaces, here the convergence of Mackey-
Cauchy nets is equivalent to the convergence of Mackey-Cauchy sequences.

Definition 2.9 • A bornological space is Mackey-complete if every Mackey-Cauchy net
converges

• A convenient vector space (CVS) is a Mackey-complete, separated, topological convex
bornological vector space.

• The category of convenient vector spaces and bornological linear maps is denoted Con.

Later we will be considering a category of convenient vector spaces and smooth maps. It
will be important to distinguish the two.

We note that Kriegl and Michor in [13] denote the concept of Mackey completeness as c∞-
completeness and define a convenient vector space as a c∞-complete locally convex space. If
one takes the bornological maps between these as morphisms, then the result is an equivalent
category.

We note that the category of convenient vector spaces is closed under several crucial
operations. The following is easy to check:

Theorem 2.10 (See Theorem 2.6.5, [9], and Theorem 2.15 of [13])

• Assuming that Ej is convenient for all j ∈ J , then
∏

j∈J Ej is convenient with respect
to the product bornology, with J an arbitrary indexing set.

• If E is convenient, then so is Born(X,E) where X is an arbitrary bornological set.

There is a standard notion of Mackey-Cauchy completion and separation. These provide
an adjunction in the usual way.

Theorem 2.11 (See Section 2.6 of [9]) By the process of separation and completion, we
obtain a functor

ω : tCBS→ Con

which is left adjoint to the inclusion.

5



3 Monoidal structure

Theorem 3.1 The category Con is symmetric monoidal closed.

The fact that Con is a symmetric monoidal closed category is proved in the Section 3.8
of [9]. Roughly, it stems from the cartesian closedness of the category of bornological spaces
and bornological maps [11]. In this paragraph, we briefly describe the main steps of the
construction.

Let E and F be CVS. We define a bornology on their algebraic tensor product by speci-
fying its dual space. Define

(E ⊗ F )′ = {h : E ⊗ F → R | ĥ : E × F → R is bornological}

where ĥ refers to the associated bilinear map, and to be bornological means with respect to
the product bornology.

Now, the tensor product E ⊗ F in Con is the Mackey closure of the algebraic tensor
product equipped with this bornology. Evidently, the tensor unit will be the base field
I = R. Let Con(E,F ) denote the space of bornological linear maps. We endow it with the
bornology induced by the dual space defined by:

Con(E,F )′ = {h : Con(E,F )→ R | If U is equibounded, then h(U) is bounded}.

where a subset U of linear maps from E to F is equibounded if and only if for every bounded
subset B of E, U(B) = {f(x) | f ∈ U, x ∈ B} is bounded in F.

It follows from the cartesian closedness of the category of bornological spaces that there
is an isomorphism

LBorn(E1;E2, F ) ∼= LBorn(E1, LBorn(E2, F ))

where LBorn(E1;E2, F ) is the space of multilinear, bornological maps and LBorn(E,F ) is
the space of linear, bornological maps. Now, the algebraic tensor product, equipped with
the above bornology, classifies bornological multilinear maps. Therefore, the above structure
makes Con a symmetric monoidal closed category.

4 Smooth curves and maps

4.1 Smooth curves

Let E be a convenient vector space.
The notion of a smooth curve into a locally convex space E is straightforward. One

simply has a curve c : R→ E and defines its derivative by:

c′(t) = lim
s→0

c(t+ s)− c(t)
s

.

Note that this limit is simply the limit in the underlying topological space of E. Then, we
define a curve to be smooth if all iterated derivatives exist. We denote the set of smooth
curves in E by CE. We note:
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Theorem 4.1 (See 2.14 of [13]) Suppose E is convenient. Then:

If c : R→ E is a curve such that `◦ c is smooth for every bornological linear map
` : F → R, then c is itself smooth.

In order to endow CE with a convenient structure, we introduce the notion of difference
quotients which is the key idea behind the theory of finite difference methods, as described
in [15]. Let R<i> ⊆ Ri+1 consist of those i+ 1-tuples with no two elements equal. It inherits
its bornological structure from Ri+1. Given any function f : R → E with E a vector space,
we recursively define maps

δif : R<i> → E,

by saying δ0f = f , and then the prescription:

δif(t0, t1, . . . , ti) =
i

t0 − ti
[ δi−1f(t0, t1, . . . , ti−1)− δi−1f(t1, . . . , ti) ].

For example,

δ1f(t0, t1) =
1

t0 − t1
[ f(t0)− f(t1) ].

Notice that the extension of this map along the missing diagonal would be the derivative
of f . There are similar interpretations of the higher-order formulas. So these difference
formulas provide approximations to derivatives.

Lemma 4.2 (See 1.3.22 of [9]) Let c : R→ E be a function. Then c is a smooth curve if
and only if for all natural numbers i, δic is a bornological map.

By Lemma 4.2, the above described difference quotients define an infinite family of maps:

δi : CE → LBorn(R<i>, E)

Definition 4.3 Say that U ⊆ CE is bounded if and only if its image δi(U) is bounded for
every natural number i.

Theorem 4.4 (See 3.7 of [13]) This structure makes CE a convenient vector space.

4.2 Smooth maps

We are then left with the question of how to define smoothness of a function between two
locally convex spaces.

Definition 4.5 A function f : E → F is smooth if f(CE) ⊆ CF . Let C∞(E,F ) denote the
set of smooth functions from E to F .

We note the obvious fact that CE = C∞(R, E), as seen by considering id : R → R as a
smooth curve.
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Lemma 4.6 (See 2.11 of [13]) A linear map between convenient vector spaces is smooth
if and only if it is bornological.

Let C∞ denote the category of convenient vector spaces and smooth maps. Note that the
preceding lemma implies the existence of the forgetful functor U : Con → C∞ which is the
identity on objects and maps.

One of the crucial results of [9] and [13] is that C∞ is a cartesian closed category. In fact,
this category is the coKleisli category of a model of intuitionistic linear logic, from which the
above follows. But this is hardly an enlightening proof! We first give a convenient vector
space structure on C∞(E,F ).

Now, let E and F be convenient vector spaces. If c : R→ E is a smooth curve, we get a
map c∗ : C∞(E,F )→ CF by precomposing.

Definition 4.7 Say that U ⊆ C∞(E,F ) is bounded if and only if its image c∗(U) is bounded
in CF for every smooth curve in CE.

The space C∞(E,F ) has a natural interpretation as a projective limit:

Lemma 4.8 (See [13], p. 30) The space C∞(E,F ) is the projective limit of spaces CF ,
one for each c ∈ CE. Equivalently, it consists of the Mackey-closed linear subspace of

C∞(E,F ) ⊆
∏
c∈CE

CF

consisting of all {fc}c∈CE such that fc ◦ g = fc ◦ g for every g ∈ C∞(R,R).

As C∞(E,F ) is equivalent to a Mackey-closed subspace of a convenient vector space, we
have:

Corollary 4.9 The above structure makes C∞(E,F ) a convenient vector space.

As another consequence of the above Lemma, we get a characterization of smooth curves
in C∞(E,F ):

Corollary 4.10 A curve f : R → C∞(E,F ) is smooth if and only if t 7→ c∗(f(t)) : R → F
is smooth for all smooth curves c in CE.

Theorem 4.11 (See Theorem 3.12 of [13]) The category C∞ is cartesian closed.

As usual, having a cartesian closed category gives us an enormous amount of structure to
work with, as will be seen in what follows.
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5 Convenient vector spaces as a differential category

5.1 Differential categories

Differential categories were introduced as the categorical models of differential linear logic.
We assume a symmetric, monoidal closed category with biproducts1. The biproducts induce
an additive structure on Hom-sets, which is necessary for the equations described below.
We also assume the existence of a symmetric monoidal comonad called the exponential and
denoted ! . Such a functor has structure maps of the following form:

ρ : ! → ! ! , ε : ! → id, ϕ : !A⊗ !B → ! (A⊗B), ϕ : I → ! I

satisfying a standard set of properties. See [16] for an excellent overview of the topic. In the
presence of biproducts, the functor ! determines a bialgebra modality, i.e. for each object
A, the object !A naturally has the structure of a bialgebra:

∆: !A→ !A⊗ !A, e : !A→ I,

∇ : !A⊗ !A→ !A, ν : I → !A.

The bialgebra structure on !A is obtained via the exponential isomorphism:

! (A⊕B) ∼= !A⊗ !B

Then, for example, the comultiplication is obtained by applying the functor ! to the biprod-
uct map A→ A⊕ A, and then composing with the above isomorphism.

To model the remaining differential structure, we need to have a deriving transformation,
i.e. a natural transformation of the form:

dA : A⊗ !A −→ !A

satisfying equations corresponding to the standard rules of calculus:

• The derivative of a constant is 0.

• Leibniz rule.

• The derivative of a linear function is a constant.

• Chain rule.

In fact, it suffices to have a natural transformation called codereliction [6, 2]:

coderA : A −→ !A,

satisfying certain equations which are analogues of the above listed equations:

1Actually, weaker axioms suffice [2].
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[dC.1] coder; e = 0,

[dC.2] coder; ∆ = coder ⊗ ν + ν ⊗ coder,

[dC.3] coder; ε = 1,

[dC.4] (coder ⊗ 1);∇; ρ = (coder ⊗∆); ((∇; coder)⊗ ρ));∇.

As shown by Fiore [8] these equations are equivalent to the diagrams below:

1. Strength

A⊗ !B
coderA⊗1 //

1⊗εA ))RRRRRRRRRRRRRR !A⊗ !B
φ // ! (A⊗B)

A⊗B
coderA⊗B

55kkkkkkkkkkkkkk

2. Comonad

!A
ε

��7777777

A

coderA

CC������

1
// A

A

'
��

coderA // !A
ρ // ! !A

A⊗ I
coderA⊗ν

// !A⊗ !A
coder⊗ρ

// ! !A⊗ ! !A

∇

OO

We can finally recover the deriving transformation from the codereliction:

dA : A⊗ !A
coder⊗1−−−−−→ !A⊗ !A

∇−−−−→ !A.

Thanks to the conditions satisfied by the codereliction, we deduce the rules of the deriving
transformation: the strength condition entails that the derivative of a constant is zero and
the Leibniz rule; the first comonad condition induces the linearity rule; and the second the
chain rule.

5.2 The exponential structure of convenient vector spaces

In the category of convenient vector spaces, the comonad described in Theorem 5.1.1 of [9]
precisely demonstrates the relationship between linear maps and smooth maps which was
envisioned by the differential linear logic.

We begin by noting that if E is a convenient vector space and x ∈ E, there is a canonical
morphism of the form δx : C∞(E,R) → R, defined by δx(f) = f(x). This is of course the
Dirac delta distribution.

Lemma 5.1 The Dirac distribution map δ : E → C∞(E,R)′ is smooth.

Proof. First, we show the map is well-defined. It is easy to see that δx is linear for every
x ∈ E. Let us check it is bornological. Let U be a bounded subset of C∞(E,R), that is c∗(U)
is bounded in R for every smooth curve c ∈ CE. In particular, δx(U) = U(x) = const∗x(U) is
bounded. Here, constx is the constant curve at x.

Now, let c and f be smooth curves into E and C∞(E,R) respectively. The map t 7→
δc(t)f(t) = f(t)(c(t)) is smooth. Thus, by cartesian closedness, δ is smooth. 2
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Definition 5.2 The exponential modality !E is the Mackey-closure of the linear span of
the set δ(E) in C∞(E,R)′. It obtains its bornology as a subspace of C∞(E,R)′.

In general, !E is smaller than C∞(E,R)′, but in the case where E is finite-dimensional,
the two coincide; this is the content of Corollary 5.1.8 of [9]. Furthermore, in this case,
the elements of !E correspond to the distributions of compact support, as demonstrated in
Proposition 5.1.5 of [9]. See also Théorème XXV, p.89 of [17].

Proposition 5.3 Endowed with the bornological linear maps φI : I → ! I defined by φI(1) =
δ1 and φ : !E⊗ !F → ! (E⊗F ) defined by φ(δx⊗δy) = δx⊗y, the endofunctor ! is symmetric
monoidal.

We will now demonstrate that this determines a comonad on Con.

Theorem 5.4 [See [9], Theorem 5.1.1] We have the following canonical adjunction:

C∞(E,UF ) ∼= Con( !E,F )

Proof. We establish the bijection, leaving the straightforward calculation of naturality to
the reader. So let ϕ : !E → F be a bornological linear map. Define a smooth map from E
to F by ϕ̂(e) = ϕ(δe). Note that ϕ̂ is smooth because it is the composite of ϕ and δ; ϕ is
smooth since it is bornological and linear.

Conversely, suppose f : E → F is a smooth map. Define a linear map f̃ : !E → F by
defining f̃(δe) = f(e), and then extending linearly. Let us show that f̃ is bornological. Let U
be bounded in the linear span of δ(E). The image f̃(U) is equal to U({f}) which is bounded
as the image of a singleton set.

We can then extend f to the Mackey completion of the span of δ(E) through the functor
ω. We get a bounded linear function f̄ : !E → F .

It is clear that this determines a bijection and hence an adjunction. 2

We now describe the structure that comes out of this adjunction:

• The counit is the linear map ε : !E → E, defined by ε(δx) = x, and then extending
linearly and applying the adjunction ω.

• The unit is the smooth map ι : E → !E, defined by ι(x) = δx.

• The associated comonad has comultiplication ρ : !E → ! !E given by ρ(δx) = δδx .

Proposition 5.5 The category Con has finite biproducts which are compatible with the
monoidal structure:

! (E ⊕ F ) ∼= !E ⊗ !F
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Proof (See Lemma 5.2.4 of [9]) . The existence of finite biproducts is straightforward,
as in the usual vector space setting.

The trick, as usual, is to verify that ! (E × F ) satisfies the universal property of the
tensor product.

First we note that there is a bilinear map m : !E × !F → ! (E × F ). Consider the
smooth map ιE×F : E×F → ! (E×F ). By cartesian closedness, we get a smooth map E →
C∞(F, ! (E×F )), which extends to a linear map !E → C∞(F, ! (E×F )) ∼= L( !F, ! (E×F )).
The transpose is the desired bilinear map. It satisfies m ◦ (ιE × ιF ) = ιE×F . Note that the
map m is in fact determined by this equation, since !E is the Mackey closure of the linear
span of the image of ιE. In particular, we have

! σ ◦mE,F ◦ σ = mF,E

where σ is the symmetry.
We check that m satisfies the appropriate universality. Assume f : !E × !F → G is a

bornological bilinear map. Let us show that f is smooth. Let (c1, c2) : R → !E × !F be a
smooth curve. We want to show that t 7→ f(c1(t), c2(t)) is a smooth curve into G. Thanks
to Theorem 4.1, it is sufficient to show that for every linear bornological functional l over G,
the real function l ◦ f ◦ (c1, c2) : R→ R is smooth.

Now, notice that, from simple calculations of difference quotients, we get

δ1(l ◦ f ◦ (c1, c2)) = l ◦ f ◦ (δ1(c1), c2) + l ◦ f ◦ (c1, δ
1(c2))

and hence δ1(l ◦ f ◦ (c1, c2)) is bornological. More generally, every difference quotient of
l ◦ f ◦ (c1, c2) is bornological. From Lemma 4.2, we get that it is smooth. Then, in turn,
f ◦ (ι × ι) is smooth. By Theorem 5.4, f lifts to a linear map f̄ : ! (E × F ) → G. By
definition, f̄ ◦ δ(x1,x2) = f(x1, x2). Hence f factors through m and f̄ .

Therefore, the universal property is satisfied by ! (E × F ) which is hence isomorphic to
!E ⊗ !F . 2

Theorem 5.6 The category Con is a model of intuitionistic linear logic.

From the biproduct structure we deduce the bialgebra structure:

• ∆: !E → !E ⊗ !E is ∆(δx) = δx ⊗ δx, and then extending linearly and using the
functor ω to extend to the completion.

• e : !E → I is e(δx) = 1.

• ∇ : !E ⊗ !E → !E is ∇(δx ⊗ δy) = δx+y.

• ν : I → !E is ν(1) = δ0.

Thus it remains to establish a codereliction map of the form:

coder : E → !E
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Theorem 5.7 The category Con is a differential category, with codereliction given by

coder(v) = lim
t→0

δtv − δ0

t

The first part of the proof, that is coder is a bornological linear map from E to !E, is
an adaptation of the proof by Michor and Kriegl of Theorem 5.8 below. Notice that this
theorem follows from this simplest proof and from the theory of differential category.

Proof. Let us first recall that δ is smooth, hence t 7→ δtv is a smooth curve and the limit
is well defined. We now prove that coder : E → !E is smooth. Let c be a smooth curve

in CE. Then, for any real t, c∗(coder)(t) = lims→0
δsc(t)−δ0

s
. Consider the smooth map

h : R × R → !E defined by h(s, t) = δsc(t). Its partial derivative at 0 with respect to
the second argument is smooth and gives us ∂2h(t, 0) = c∗(coder)(t). Hence, c∗(coder) is a
smooth curve. And we have proved that coder is smooth.

We now check that the codereliction is linear. It is obviously homogeneous. Then, for
any v, w ∈ E, we consider the smooth map g : R × R → !E, defined by g(t, s) = δtv+sw.
By computation of the derivative of the smooth map t 7→ g(t, t), we get: (t 7→ g(t, t))′(0) =
∂1g(0, 0) + ∂2g(0, 0), that is coder(v + w) = coder(v) + coder(w).

We have proved that coder is linear and smooth, thus it is bornological thanks to
Lemma 4.6. It remains only to check the two codereliction equations:

1. Strength: an element v ⊗ δy ∈ E ⊗ !F is sent to lim
t→0

(δt(v⊗y)−δ0)

t
under both legs of the

diagram.

2. Comonad: the first comonad law follows from the continuity of ε; for the second one,

the clockwise chase of v ∈ E gives us lim
t→0

δδtv−δδ0
t

and the counterclockwise gives us

lim
s,t→0

δ[ st (δtv−δ0)+δ0]−δδ0
s

. To prove the two are equal, it is sufficient to consider the limit

on the diagonal s = t→ 0.

2

Using this codereliction map, we can build a more general differentiation operator by
precomposition:

Consider f : !A→ B then define df : A⊗ !A→ B as the composite:

A⊗ !A
coder⊗1 // !A⊗ !A

∇ // !A
f // B

v⊗δx
� // lim

t→0

δtv−δ0
t
⊗δx � // lim

t→0

δtv+x−δx
t

� // lim
t→0

f(tv+x)−f(x)
t

We then obtain the following result of Kriegl and Michor as a corollary:
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Theorem 5.8 (See [13], Theorem 1.3.18) Let E and F be convenient vector spaces. The
differentiation operator

d : C∞(E,F )→ C∞(E,L(E,F ))

defined as

df(x)(v) = lim
t→0

f(x+ tv)− f(x)

t

is linear and bounded. In particular, this limit exists and is linear in the variable v.

Conversely, if we start with the general differentiation operator, we can recover codere-
liction as the differential at 0 of ι, that is:

coder(v) = dι(0)(v) = lim
t→0

δtv − δ0

t

6 Conclusion

Fundamental to understanding the structure of convenient vector spaces is the duality be-
tween bornology and topology in the definition of convenient vector spaces. Another place
where there is such duality is the notion of a finiteness space, introduced in [4]. But there,
the duality is between bornology and the linear topology of Lefschetz [14]. The advantage
of the present setting is that the topology takes place in the more familiar world of locally
convex spaces. However, it remains an interesting question to work out a similar structure
in the Lefschetz setting. This program was initiated in the thesis of the third author [19].

Evidently, a next fundamental question is the logical/syntactic structure of integration.
One would like an integral linear logic, which would again treat integration as an inference
rule. It should not be a surprise at this point that convenient vector spaces are extremely
well-behaved with respect to integration. The category Con will likely provide an excellent
indicator of the appropriate structure.

One can also ask about other classes of functions beside the smooth ones. Chapter 3
of [13] is devoted to the calculus of holomorphic and real-analytic functions on convenient
vector spaces. It is an important question as to whether there is an analogous comonad to
be found, inducing the category of holomorphic maps as its coKleisli category. Then one can
investigate whether the corresponding logic is in any way changed.

Of course, once one has a good notion of structured vector spaces, it is always a good
question to ask whether one can build manifolds from such spaces. Manifolds based on
convenient vector spaces is the subject of the latter half of [13], and it seems an excellent
idea to view these structures from the logical perspective developed here.

Convenient vector spaces and similar structures are under active consideration today, see
[1, 18]. We hope the logical perspective introduced here gives new insights in this domain.
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[3] T. Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in
Computer Science 12, pp. 579-623, (2002).

[4] T. Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science 15, pp.
615-646, (2005)

[5] T. Ehrhard, L. Regnier. The differential λ-calculus. Theoretical Computer Science 309,
pp. 1-41, (2003).

[6] T. Ehrhard, L. Regnier. Differential interaction nets. Theoretical Computer Science 364,
pp. 166–195, (2006).

[7] I. Gelfand and S. Fomin, Calculus of Variations, Dover Publishing, (2000).

[8] M. Fiore, Differential structure in models of multiplicative biadditive intuitionistic linear
logic. Proceedings of TLCA, pp 163–177, (2007).
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