
A completeness theorem for symmetric product phase spaces

Thomas Ehrhard
Fédération de Recherche des Unités de Mathématiques de Marseille

CNRS FR 2291
Institut de Mathématiques de Luminy

CNRS UPR 9016
ehrhard@iml.univ-mrs.fr

October 9, 2003

Abstract

In a previous work with Antonio Bucciarelli, we introduced indexed linear logic as a tool
for studying and enlarging the denotational semantics of linear logic. In particular, we showed
how to define new denotational models of linear logic using symmetric product phase models
(truth-value models) of indexed linear logic. We present here a strict extension of indexed linear
logic for which symmetric product phase spaces provide a complete semantics. We study the
connection between this new system and indexed linear logic.
Keywords: linear logic, phase semantics, completeness, denotational semantics.

Introduction

In [BE00, BE01], we have proposed a sequent calculus of indexed linear logic in which each formula
A has a domain d(A), which is a subset of a global infinite set of indexes I. A formula A in this
system is an ordinary formula of linear logic, decorated as follows: the multiplicative constants are
equipped with a subset of I, and the exponentials are equipped with an almost injective function1

from the domain of the sub-formula whose exponential is taken to the domain of the formula
itself (if A is a formula of domain J and u : J → K is almost injective, then !uA and ?uA are
formulae of domain K). So, to such a formula A, it is possible to associate an underlying formula
of ordinary linear logic, denoted by A. The basic idea of indexed linear logic is that a formula
A in this system represents a d(A)-indexed family of elements of |A|, the set associated to the
formula A in the standard denotational semantics of linear logic in the model of sets and relations
(called pure relational model in the sequel). In this particularly simple denotational model, additive
constants are interpreted as the empty set, additive operations are interpreted as the disjoint sum
of sets, multiplicative constants are interpreted as the singleton set, multiplicative operations are
interpreted as the cartesian product of sets, and last, exponentials are interpreted as the operation
which consists in taking the set of all finite multi-subsets of a set. A proof of a formula is then
interpreted as a subset of the set associated to this formula by the semantics. The sequent calculus
of indexed linear logic presented in [BE01] is such that a formula A is provable iff the family of

1That is, a function which preserves finite sets under inverse image

1

elements of |A| associated to A is contained in the interpretation of some proof of A in ordinary
linear logic.

We have developed a phase semantics for this indexed linear logic. A symmetric product phase
space is a pair M = (P I0 ,⊥) where P0 is a commutative monoid which has a zero absorbing element,
and ⊥ is a subset of P I0 (the I-product of P0, endowed with the product monoid structure). This
subset ⊥ must be non-empty and is subject to two closure properties (closure under restrictions,
i.e.: if p ∈ ⊥, then any element of P I0 obtained from p by replacing some components of p by 0
must also belong to ⊥, and symmetry, that is, roughly, closure under the obvious action of the
permutations of I over P I0). Then any partial power monoid P J0 (for J ⊆ I) is naturally endowed
with a structure of symmetric product phase space, and we call local phase space at J induced by
M this phase space. A formula A of indexed linear logic of domain J is interpreted as a fact of
the local phase space at J . We proved a soundness theorem for this semantics: if a formula A
of domain J is provable, its interpretation is true, that is contains the unit of P J0 . We have also
shown how to define a denotational model when a symmetric product phase space is given. One
obtains in that way a denotational model of linear logic where each formula is interpreted as a
set (the web, which is identical to the interpretation of this formula in the pure relational model)
equipped with a notion of coherence taking as values facts of the various local phase spaces2.
Considering a particular symmetric product phase space, we have obtained in that way a quite
surprising non-uniform version of the coherence space semantics of linear logic. This semantics is
described thoroughly in [BE01].

However, for this phase semantics of indexed linear logic, completeness (which would imply
denotational completeness with respect to ordinary linear logic for the derived denotational model)
does not hold, as any symmetric product phase space admits the two following principles, which
are not admissible in indexed linear logic.

• Any formula of empty domain is true, whereas if a formula A is provable in indexed linear
logic, then A is provable in ordinary linear logic. This principle is a partiality principle:
if S is a formula of linear logic and A is a formula of indexed linear logic with A = S
and d(A) = ∅ (actually, there is only one such formula A for a given S), A represents the
completely undefined element of S. Accepting A as provable in a syntax is similar to the
introduction of the symbol Ω in λ-calculus for representing the completely undefined λ-term
(typically in the theory of Böhm trees).

• For any formula A, the formula A (!IdA is valid, whereas in general not provable in indexed
linear logic. This principle is more difficult to understand. It corresponds to the fact that
in many natural denotational models of linear logic, there is a canonical embedding of any
space X into the space !X. This embedding allows to “linearize” any morphism f from X to
Y in the co-Kleisli category3 of the model, by simply pre-composing f with the mentioned
embedding of X into !X: in that way, one extracts from f a “linear component” ϕ : X → Y
(a kind of “derivative at 0” of f), which, by the way, can perfectly be empty, even if f is not.
So it would not make sense to admit this linearization principle without accepting the above
partiality principle.

2This construction presents some similarities with the work of Lamarche [Lam95], see the introductions of [BE00]
and [BE01] for discussions about the possible relations between indexed linear logic and previous works.

3That is, the associated cartesian closed intuitionistic category, through the usual Girard translation of intuition-
istic logic into linear logic.

2

This linearization principle suggests to extend linear logic (or the lambda-calculus) with dif-
ferential primitives, leading e.g. to the differential lambda-calculus developed by the author and
Laurent Regnier ([ER03]). This extension of linear logic is however much more drastic than the
one we consider here for indexed linear logic and in particular, in the differential lambda-calculus,
proofs of the same formula can freely be added. Therefore the two additive connectives & and ⊕
are identified. This possibility of freely adding proofs is essential because, in the differential setting,
we allow derivatives to be evaluated at any point (and not only at 0) in order to compute higher
derivatives, whereas the extension of indexed linear logic under consideration in the present paper
allows differentiation only at 0.

Our aim is to develop an extension of the sequent calculus of indexed linear logic for which
symmetric product phase spaces provide a complete semantics. In order to admit the partiality
and linearization principles, we extend the sequent calculus of indexed linear logic in two directions.
First, we admit as provable the empty sequent of empty domain. This will ensure the provability
of all sequents of empty domain. The second extension consists in modifying the notion of sequent
itself and in slightly simplifying the notion of formula. Remember that the usual unilateral sequents
of linear logic are obtained by juxtaposing formulae separated by “,” signs whose (phase and de-
notational) semantics is the same as the semantics of the “P” connective. We introduce another
operation for building sequents which is unary, and similarly corresponds to the “?u” logical con-
nectives of indexed linear logic. So a sequent will be an expression of the shape `J Au1

1 , . . . , A
un
n

where J is a subset of I, A1,. . . ,An are formulae of indexed of linear logic, and, for each i, ui is
an almost injective function from the domain of Ai to J (Aui

i is just a notation for the formal pair
(Ai, ui)). This new setting allows to express the structural and exponential rules of indexed linear
logic in a more liberal way.

• The structural rules are no more restricted to formulae of the shape ?uA, like in indexed
linear logic. For instance, if A is a formula of empty domain, one is allowed to deduce from
a sequent `J Γ the sequent `J Γ, Au, where u is the empty function from the domain of A
to J . There is a similar way of expressing the contraction rule.

• The promotion rule is no more restricted to contexts of formulae of the shape ?uA, but can
be performed in any context and modifies the exponents of the context.

• Dereliction becomes a rule which allows to replace, in a context, an expression of the from
Au by the formula ?uA, with the identity exponent (a natural convention, that we adopt
systematically, is to write simply B instead of BId when the exponent of B in a context is
the identity).

• Last, the logical rules for the ⊗ and P connectives, as well as the rule for !u (promotion) can
be applied only to formulae having the identity as exponent.

A surprising effect of this extension is that the additive connectives become superfluous: they can
be defined in terms of the multiplicative and exponential connectives. Specifically, if A and B are
formulae of disjoint domains L and R, the formula A & B, of domain L+R, is represented by the
formula !lA⊗ !rB where l and r are the obvious injections of L and R into L+ R. In the present
setting, the so-called “additive contraction” becomes an ordinary structural contraction. As to the
constants, only one, of empty domain, is needed. We denote it by Ω, and the usual constants of
indexed linear logic will be defined in terms of it, using the exponentials.

3

We first show in Section 2 that this new system (called LL+(I) in the present paper) is essentially
equivalent to the extension of the sequent calculus of indexed linear logic LL(I) presented in [BE01]
by axioms corresponding to the logical principles mentioned above.

Then in Section 3 we establish the completeness of symmetric product phase spaces for LL+(I)
(soundness is straightforward). For this purpose, we proceed in the usual way, which consists in
defining a syntactical space and showing that a formula which is true in this particular model is
provable. This is done in two steps: first, one defines a commutative monoid P , and then one defines
a subset ⊥ of P I0 which satisfies the closure conditions mentioned above (P0 is obtained by adding
an absorbing element 0 to P). The construction of this model is similar to Girard’s construction
for proving completeness in [Gir99]; his trick of introducing labels for distinguishing between the
various occurrences of a formula in a context will play a crucial rôle here. The completeness proof
follows a global pattern first introduced in linear logic by Okada ([Oka94, Oka99]) which allows to
obtain moreover a cut elimination theorem for free (this is standard in classical logic and Okada
observed that the same can be done in linear logic).

We consider this completeness result as important because it precisely delimits the expressive
power of the class of symmetric product phase spaces and of the new class of denotational models
of linear logic they give rise to, showing that the denotational incompleteness of this class of models
with respect to linear logic is entirely contained in two principles: partiality and linearization. The
first of these principles is easy to understand whereas the second is much more mysterious, and it
was not obvious a priori that it could be expressed in a logical way, as we shall do introducing the
well-behaved sequent calculus LL+(I). The main still open problem here is to find a non-indexed
system of linear logic which would play with respect to LL+(I) the same rôle as the rôle played by
ordinary linear logic with respect to LL(I).

This paper is concerned only with the purely first-order propositional fragment of linear logic, the
fragment which contains all connectives and constants of linear logic, but no propositional variables
and a fortiori no quantifiers. Dealing in a completely satisfactory manner with propositional
variables would need to extend our approach to second order linear logic, introducing a pure
relational interpretation of that system. Such an extension has been studied by Alexandra Bruasse-
Bac in her PhD dissertation [BB01], leading to a system of second order indexed linear logic whose
properties require further investigations.

Since the material on indexed linear logic needed for understanding the present work is rather
new, we have decided to give a detailed summary of the theory. This is the object of the unusually
long preliminary Section 1. This paper requires from the reader a reasonable knowledge of the
denotational semantics and of the phase space semantics of linear logic. Many good texts on these
topics are available, see for instance [Gir87, Gir95, AC98].

1 A summary of indexed linear logic

In this section, we recall the main ideas, definitions and properties of indexed linear logic and sym-
metric product phase spaces. The material summarized here is presented in full details in [BE01].

1.1 Notations

We first fix some terminology and notations.
If E is a set, we denote by #E its cardinality.

4

If f : E → F is a function, and if E′ ⊆ E, we denote by f |E′ the restriction of f to E′, that we
consider as a function from E′ to F .

If E and F are disjoint sets, we denote by E + F their union. If E and F are not necessarily
disjoint, we also denote by E+F their disjoint sum, which can be for instance defined by E+F =
({1}×E)∪ ({2}×F). If f : E → G and g : F → G are functions, we denote by f + g the function
defined by cases, from E + F to G.

A multi-set over E is a map µ : E → N. The domain of µ is the set of all the elements a of
E such that µ(a) 6= 0. A multi-set is finite if its domain is finite. If α ∈ EJ is a finite family of
elements of E, indexed by a finite set J , we denote by m(α) the multi-set of elements of E defined
by m(α)(a) = #α−1(a) (for each a ∈ E). When α is given explicitly (α = (a1, . . . , an)), one writes
often [a1, . . . , an] instead of m(α). We denote by Mfin(E) the set of all the finite multi-sets whose
support is included in E.

1.2 Linear logic and its pure relational semantics

The fragment of linear logic under consideration is the first order and purely propositional one,
so that we consider no other atomic formulae than the additive and multiplicative constants. The
formulae are built as follows (each construction is given with its dual construction).

• 0 and > are formulae (additive constants).

• If R and S are formulae, so are R⊕ S and R & S (additive connectives).

• 1 and ⊥ are formulae (multiplicative constants).

• If R and S are formulae, so are R⊗ S and R P S (multiplicative connectives).

• If R is a formula, so are !R and ?R (exponential modalities).

The linear negation R⊥ of a formula R is defined by induction on R, by replacing each constant
or connective occurring in R by its dual constant or connective. Girard defined a sequent calculus
for linear logic, the rules of this calculus can be found in many papers on linear logic, see for
instance [Gir95].

In the pure relational denotational semantics of linear logic, one associates to each formula R
of linear logic a set |R|, called the web of R, by induction:

• |0| = |>| = ∅.

• |R⊕ S| = |R & S| = |R|+ |S|, the disjoint sum of |R| and |S|.

• |1| = |⊥| = {∗} where ∗ is arbitrary.

• |R⊗ S| = |R P S| = |R| × |S|.

• |!R| = |?R| = Mfin(|R|).

Then to each proof π of a formula R of linear logic, one associates by induction a subset π∗ of
|R|: the denotational semantics of π. This is explained in the appendix (one will also find there a
reminder of the rules of the sequent calculus of linear logic). Linear logic enjoys the fundamental

5

cut elimination property: there are normalizing reduction rules on proofs for which all normal
proofs are cut-free. The main property of denotational semantics is that it is invariant under these
conversion rules on proofs: if π and ρ are two proofs of the same formula which are equivalent
under these conversion rules, then π∗ = ρ∗. From a categorical viewpoint, this results from the fact
that the category whose objects are sets and whose morphisms are binary relations between sets is
a model of linear logic, and more precisely, a Lafont category in the sense of [Bie95]. This model
is degenerate in the sense that the category of sets and relations is isomorphic to its opposite, and
that this isomorphism commutes to all the categorical operations needed for interpreting linear
logic.

1.3 Indexed linear logic

Due to this degeneracy, the pure relational semantics of linear logic is not informative at all. We
develop a method for endowing the webs associated to formulae with a kind of coherence relation,
generalizing the well known structures of coherence spaces or hypercoherences.

For this purpose, the basic idea is to consider the families of elements of the webs associated
to the formulae of linear logic, aiming at associating to these families a kind of coherence value.
We assume fixed once and for all a set I, which is infinite (and denumerable): all the index sets we
shall consider will be subsets of I. We start from the following observations (J being an arbitrary
subset of I):

• ∅J is non-empty iff J is empty, and then ∅J is a singleton.

• There is a bijective correspondence between (X + Y)J and
∑

L+R=J(X
L × Y R); if L and R

are disjoint sets such that L + R = J , and if α ∈ XL and β ∈ Y R, we denote by α + β the
corresponding element of (X + Y)J .

• {∗}J is always a singleton.

• There is a bijective correspondence between (X × Y)J and XJ × Y J ; if α ∈ XJ and β ∈ Y J ,
we denote by (α, β) the corresponding element of (X × Y)J .

So within the multiplicative-additive fragment of linear logic, we have a bijective correspondence
between the elements of |R|J and the formulae A of the multiplicative additive fragment of indexed
linear logic which satisfy A = R and d(A) = J . We define the formulae of this new system below,
as well as, for each formula A, its underlying formula of linear logic A, its domain d(A) ⊆ I and
the corresponding element 〈A〉 of |A|d(A).

• 0 and > are formulae, and 0 = 0, > = > and d(0) = d(>) = ∅. Both 〈0〉 and 〈>〉 are defined
as the empty family.

• If A and B are formulae, with d(A) ∩ d(B) = ∅, then A ⊕ B and A & B are formulae, and
A⊕B = A ⊕ B, A & B = A & B and d(A⊕B) = d(A & B) = d(A) + d(B). And one sets
〈A⊕B〉 = 〈A & B〉 = 〈A〉+ 〈B〉.

• If J ⊆ I then 1J and ⊥J are formulae with 1J = 1, ⊥J = ⊥ and d(1J) = d(⊥J) = J . Both
families 〈1J〉 and 〈⊥J〉 are the J-indexed family constantly equal to ∗.

6

• If A and B are formulae with d(A) = d(B), then A ⊗ B and A P B are formulae, and
A⊗B = A ⊗ B, A P B = A P B and d(A⊗B) = d(A P B) = d(A) = d(B). And one sets
〈A⊗B〉 = 〈A P B〉 = (〈A〉, 〈B〉).

When exponentials come in, we renounce to this bijective correspondence between families and
formulae of indexed linear logic: a surjective mapping from formulae to families will be sufficient
for our purpose. For defining this mapping we observe that an element ξ of Mfin(X)J can be
described by the following data: a set K, an element α of XK , and a function u : K → J which
is almost injective (we mean by that that u preserve finite sets under inverse image), such that ξj
is the multi-set of all the elements of the family α|u−1(j), taking repetitions into account, in other
words, ξj = m(α|u−1(j)).

Therefore, we extend the syntax of formulae of indexed linear logic as follows: if A is a formula
and if u : d(A) → J is an almost injective function, then !uA as well as ?uA are formulae, !uA = !A,
?uA = ?A and d(!uA) = d(?uA) = J . The corresponding J-indexed families 〈!uA〉 and 〈?uA〉 are
defined by 〈!uA〉j = 〈?uA〉j = m(〈A〉|u−1(j)).

The linear negation A⊥ of a formula A of domain J is the formula of domain J obtained by
applying recursively the usual De Morgan laws between dual connectives, for instance (!uA)⊥ =
?u(A⊥).

For these formulae of indexed linear logic, we have defined a sequent calculus, that we have
called LL(I). A sequent of LL(I) is an expression of the shape `J Γ where J is a subset of I and Γ
is a (possibly empty) sequence (A1, . . . , An) of formulae of LL(I) such that each Ai has domain J
(a sequence Γ of formulae satisfying this condition will sometimes be called a context, and we shall
denote by d(Γ) the common domain of the elements of Γ, when Γ is not empty). Before giving the
rules of this sequent calculus, we need to define the operations of restriction and re-indexing on
formulae.
Restriction. If A is a formula of LL(I) with d(A) = J , and if K ⊆ I, we define the restriction of
A by K, denoted by A|K , which is a formula of LL(I) with domain J ∩K, as follows:

• >|K = > and 0|K = 0.

• ⊥J |K = ⊥J∩K and 1J |K = 1J∩K .

• (A⊗B)|K = A|K⊗B|K , (A P B)|K = A|K P B|K , (A⊕B)|K = A|K⊕B|K and (A & B)|K =
A|K & B|K .

• (!uA)|K = !v(A|u−1(K∩J)) where v : u−1(K ∩ J) → K ∩ J is obtained by restricting u. The
definition of (?uA)|K is similar.

If Γ = (A1, . . . , An) is a context, one defines Γ|K = (A1|K , . . . , An|K) so that again, d(Γ|K) = d(Γ)∩
K. Last, observe that trivially A⊥|K = (A|K)⊥. It is also easily checked that (A|K)|L = A|K∩L
and that 〈A|K〉 is the restriction of the family 〈A〉 to d(A) ∩K.
Re-indexing. When ϕ : J → K is a bijection, one can define, for each formula A of domain J , a
formula ϕ∗A of domain K, as follows:

• ϕ∗> = > and ϕ∗0 = 0 (in that case, J = K = ∅).

• ϕ∗⊥J = ⊥K and ϕ∗1J = 1K .

• ϕ∗(A⊗B) = ϕ∗A⊗ ϕ∗B and ϕ∗(A P B) = ϕ∗A P ϕ∗B.

7

• ϕ∗(A⊕B) = ψ∗A⊕χ∗B where ψ : d(A) → ϕ(d(A)) and χ : d(B) → ϕ(d(B)) are obtained by
restricting ϕ (observe that K = ϕ(d(A))+ϕ(d(B)) as ϕ is bijective). The formula ϕ∗(A & B)
is defined in a similar way.

• ϕ∗(!vA) = !ϕ◦vA and ϕ∗(?vA) = ?ϕ◦vA.

Then one checks easily that 〈ϕ∗A〉 is the element β of |A|K defined by βϕ(j) = 〈A〉j (for each j ∈ J).
We recall now the rules of LL(I).
We have the following axioms:

`J 1J
and

`∅ Γ,>
this latter making sense only under the assumption that Γ is empty, or has empty domain.

Multiplicative rules:
`J Γ

`J Γ,⊥J
`J Γ, A `J ∆, B

`J Γ,∆, A⊗B

`J Γ, A,B

`J Γ, A P B

Additive rules. In the introduction rules for ⊕, observe that B must have an empty domain.

`J Γ, A

`J Γ, A⊕B

`J Γ, A

`J Γ, B ⊕A

Assume that d(A) = L, d(B) = R with L ∩R = ∅, and that d(Γ) = L+R.

`L Γ|L, A `R Γ|R, B

`L+R Γ, A & B

We give now the exponential rules. For A a formula of empty domain, 0J denoting the empty
function from ∅ to J , the weakening rule is the following:

`J Γ

`J Γ, ?0JA

For A a formula of domain K, u an almost injective function from K to J , K1 and K2 two
subsets of K such that K = K1+K2, ui (for i = 1, 2) the almost injective function Ki → J obtained
by restricting u to Ki, the contraction rule is the following:

`J Γ, ?u1(A|K1), ?u2(A|K2)

`J Γ, ?uA

8

Let ϕ : J → K be a bijection. The dereliction rule is the following:

`K Γ, ϕ∗A

`K Γ, ?ϕA

Let (Ai)i=1,...,n be a family of formulae and let Ki be the domain of Ai. Let J be a set and,
for each i = 1, . . . , n, let ui be an almost injective function from Ki to J . Let A be a formula of
domain J and let v : J → L be an almost injective function. The promotion rule is the following:

`J ?u1A1, . . . , ?unAn, A

`L ?v◦u1A1, . . . , ?v◦unAn, !vA

The only structural rule is the exchange rule, which is

`J A1, . . . , An

`J Aσ(1), . . . , Aσ(n)

where σ is any permutation of {1, . . . , n}.
Last, the cut rule:

`J Γ, A `J ∆, A⊥

`J Γ,∆
With respect to the denotational semantics of linear logic presented above, the main property

of LL(I) is the following.

Proposition 1 Let R be a formula of linear logic, let J be a subset of I and let α ∈ |R|J . The
following properties are equivalent.

• There exists a proof π of ` R in linear logic such that α ∈ (π∗)J (that is π∗ contains the
range of α).

• There exists a formula A of LL(I) such that A = R and 〈A〉 = α, and such that the sequent
`J A is provable in LL(I).

• For each formula A of LL(I) such that A = R and 〈A〉 = α, the sequent `J A is provable in
LL(I).

1.4 Symmetric product phase spaces

Remember that phase spaces have been introduced by Girard in [Gir87] for giving a truth-value
semantics to linear logic. As this is standard material, we just recall here the basic definitions and
a few easy properties that we use implicitly in the sequel. A phase space is a pair (Q,⊥) where
Q is a commutative monoid and ⊥ is a subset of Q on which no special requirement is made. If
U ⊆ Q, one defines U⊥ = {p ∈ Q | ∀q ∈ U pq ∈ ⊥}. A fact is a subset U of Q such that U = U⊥⊥

(the inclusion U ⊆ U⊥⊥ always holds, obviously). The following basic properties are useful (U and
V being subsets of Q):

• U ⊆ V ⇒ V ⊥ ⊆ U⊥;

• U⊥⊥⊥ = U⊥;

9

• (U ∪ V)⊥ = U⊥ ∩ V ⊥;

• (UV ⊥⊥)⊥ = (UV)⊥, where UV = {pq | p ∈ U and q ∈ V }.

In particular, U⊥ is always a fact, and for showing that U⊥⊥ ⊆ F (when F is a fact), it suffices to
show that U ⊆ F .

Phase semantics consists in interpreting each formula of linear logic as a fact, to be considered
as a kind of “truth value”. A fact is true when it contains the unit of Q, and indeed one shows that
any provable formula is interpreted in any phase space as a true fact (soundness). Moreover, this
semantics of linear logic is complete (the proof of this uses a particular phase space (Q,⊥) where
Q is the monoid of all contexts of linear logic, and where ⊥ is the set of all provable contexts).

We develop now a phase semantics for indexed linear logic. In that way, through the corre-
spondence above between families and formulae, we shall be able to define a fact-valued notion of
coherence on webs.

Let I(I) be the category whose objects are the subsets of I and whose morphisms are the
injective functions between them.

Given a set E, we denote by FamE the contravariant functor from Set to Set which to J
associates the set of all J-indexed families of elements of E: FamE(J) = EJ and if f : J → K,
FamE(f)(α) = α ◦ f , for any α ∈ EK . In the sequel, we shall only consider the restriction of this
functor to I(I) (a small sub-category of Set), and we shall denote FamE(f) by f∗, according to
a well established tradition. In particular, when K ⊆ J ⊆ I, we denote by πK : EJ → EK the
projection function given by πK = u∗ where u : K → J is the inclusion.

If Q is a monoid, and if we consider QJ (for J ⊆ I) as equipped with its structure of product
monoid induced by the monoid structure of Q, then the functor FamQ becomes a contravariant
functor from the category I(I) to the category of monoids.

A product phase space is a pair (P I0 ,⊥) where P0 is a commutative monoid possessing an
absorbing element 0 and ⊥ ⊆ P I0 is non-empty and satisfies εJ⊥ ⊆ ⊥ for each J ⊆ I (where
εJ ∈ P I0 is defined by (εJ)i = 1 if i ∈ J and (εJ)i = 0 if i /∈ J).

If M = (P I0 ,⊥) is a product phase space, then for any J ⊆ I, we define a product phase space
M(J) = (P J0 ,⊥(J)), where ⊥(J) = πJ(⊥). We denote by 1J the unit of the monoid P J0 and by
FM (J) the set of all facts of the local phase space M(J).

A product phase space (P I0 ,⊥) is symmetric, intuitively, if ⊥ is invariant under all permutations
of I. However, this condition is too weak for our purpose. The precise definition is as follows.

Definition 2 A product phase space (P I0 ,⊥) is symmetric if for any J,K ⊆ I and any bijection
ϕ : J → K, one has ⊥(J) = ϕ∗⊥(K).

One checks easily that this condition is equivalent to the following: for any J ⊆ I, if u, v : J → I are
injections, then u∗⊥ = v∗⊥. When M is symmetric, so are all of the local spaces M(J). Moreover
the local spaces M(J) and M(K) are isomorphic as soon as J and K have the same cardinality.

Lemma 3 Let M = (P I0 ,⊥) be a symmetric product phase space. Let J,K ⊆ I and let u : J → K be
injective. If F ∈ FM (K), then u∗F ∈ FM (J) and u∗(F⊥) = (u∗F)⊥. Moreover, if F,G ∈ FM (K),
then u∗(F ⊗G) = (u∗F)⊗ (u∗G).

The proof is easy, and can be found in [BE01]. This turns the operation J 7→ FM (J) into a
contravariant functor from I(I) to Set.

10

We explain now how the exponentials are interpreted in such a phase space. Let u : J → K be
almost injective. For any commutative monoid Q, there is a functorial covariant way of defining a
monoid morphism u∗ : QJ → QK as follows:

(u∗(p))k =
∏

j∈u−1(k)

pj .

In particular, when ϕ is a bijection, ϕ∗ = (ϕ∗)−1.
If F ∈ FM (J), one sets !uF = (u∗F)⊥⊥ ∈ FM (K) and ?uF = (u∗(F⊥))⊥ ∈ FM (K), two

operations which are obviously De Morgan dual of each other.

Lemma 4 If ϕ : J → K is a bijection and if F ∈ FM (J), then

!ϕF = ?ϕF = ϕ∗F .

The behavior of these operations under injective re-indexing is easy to understand, as soon as
one observes the following simple fact.

Lemma 5 Let Q be a commutative monoid. If the following diagram in Set is a pull-back

K
u - J

6 6

v′ v

K ′ u′ - J ′

where K,J,K ′, J ′ ⊆ I, u is almost injective and v is injective, then v′ is injective and u′ is almost
injective, and moreover, the following diagram is commutative4.

QK
u∗ - QJ

v′∗

?

v∗

?

QK
′ u′∗ - QJ

′

In particular, if Q = P0 and if F ∈ FM (K), then one has

v∗(!uF) = !u′(v′
∗
F) .

The interpretation of a formula A of domain J as a fact A• ∈ FM (J) is based on these logical
constructions on facts, together with the following interpretation for the constants: 0• = >• = {0}
(the only fact of FM (∅)) and ⊥J• = ⊥(J), 1J• = ⊥(J)⊥. If Γ = (A1, . . . , An) is a context of domain
J , it will be interpreted as the element Γ• ∈ FM (J) given by Γ• = A1

•
P · · · P An

•. Then the
soundness theorem is expressed as follows.

4Actually this commutation also holds if v is not injective.

11

Theorem 6 Let M be a symmetric product phase space and Γ be a context of domain J . If the
sequent `J Γ is provable in LL(I), then, in M , one has 1J ∈ A•.

In [BE01], we showed how to associate to any symmetric product phase space M = (P I0 ,⊥) a
categorical denotational model of linear logic C(M) (a new-Seely category, in the sense of [Bie95]).
An object of this category is a pair X = (|X|, X̂) where |X| is a set (the web of X) and X̂ is a
natural transformation from the functor Fam|X| to the functor FM (both considered as contravariant
functors from I(I) to Set). Then a subset x of |X| is an M -clique if 1J ∈ X̂J(α), for any J ⊆ I
and any α ∈ xJ (that is, any J-indexed family α whose range is included in x). As far as the webs
are concerned, the logical constructions on these M -spaces are identical to their analogues in the
category of sets and relations. For a formula R of linear logic, let us denote R∗

M the associated
M -space, we have therefore |R∗

M | = |R|. Moreover, the model C(M) is defined in such a way that,
for any LL(I) formula A,

(̂A∗
M)J(〈A〉) = A•

where J is the domain of A.

2 An extension of indexed linear logic

In any symmetric product phase space M = (P I0 ,⊥), one has A• = {0} for any LL(I)-formula A
such that d(A) = ∅, since {0} is the only fact of the (trivial) local space M(∅), but 1∅ = 0 and
hence 1d(A) ∈ A• as soon as d(A) = ∅. Moreover, if A is any LL(I)-formula, we have (!IdA)• =
(Id∗A•)⊥⊥ = (A•)⊥⊥ = A• and therefore, 1d(A) ∈ (A (!IdA)•.

We define an extension LL+(I) of LL(I) which admits these additional principles. The formulae
of this new system LL+(I) of indexed linear logic are built like those of LL(I) with the following
differences: there is only one additive constant, Ω, there are no additive connectives, and no
multiplicative constants (they will be definable). As in LL(I), each formula A has an underlying
formula of linear logic A and a domain d(A) ⊆ I.

• There is only one constant Ω. Its domain is empty: d(Ω) = ∅.

• If A and B are formulae with d(A) = d(B) = J ⊆ I, then A ⊗ B and A P B are formulae,
with d(A⊗B) = d(A P B) = J .

• If A is a formula with domain d(A) = J ⊆ I and if K ⊆ I and u : J → K is an almost
injective function, then !uA and ?uB are formulae, with d(!uA) = d(?uA) = K.

If A is a formula, A⊥ is the formula defined as usual, using the De Morgan rules extended by the
equation Ω⊥ = Ω. There is nothing special to say about the restriction and re-indexing operations
on these formulae: they are defined like in LL(I), and behave in the same way.

Let J ⊆ I. A context of domain J is a sequence (Au1
1 , . . . , A

un
n) where, for each i = 1, . . . , n,

Ai is a formula and ui : d(Ai) → J is an almost injective function. The expression “Aui
i ” denotes

the formal pair (Ai, ui). A sequent is an expression of the form `J Γ where J ⊆ I and Γ is a
context of domain J . If A is a formula of domain J , the pair AIdJ will be simply written A. If
Γ = (Au1

1 , . . . , A
un
n) is a context of domain J and if u : J → K is an almost injective function, we

define Γu as the context (Au◦u1
1 , . . . , Au◦un

n) of domain K.

12

We give a sequent calculus for these formulae. Our system has only one axiom:

`∅

The multiplicative rules are given by

`J Γ, A `J ∆, B

`J Γ,∆, A⊗B

`J Γ, A,B

`J Γ, A P B

Observe that in the premises of these rules, both occurrences of formulae A and B must have
the identity function as exponent.

We give next the exponential logical rules. Dereliction:

`J Γ, Au

`J Γ, ?uA

as soon as u : d(A) → J is almost injective. Promotion is given by

`J Γ, A

`K Γv, !vA

as soon as v : d(A) = J → K is an almost injective function. Observe that in the premise, A must
have an identity function exponent.

There are four kinds of structural rules: weakening, contraction, re-indexing and exchange.
Weakening is given by

`J Γ

`J Γ, A0J

when d(A) = ∅ (0J denotes the empty function from ∅ to J).
Contraction is given by

`J Γ, (A|L)l, (A|R)r

`J Γ, Al+r

where d(A) = L + R and l : L → J and r : R → J are two almost injective functions and
l + r : L + R → J is the “co-pairing” of l and r, which is almost injective. Our exponential
notations for contexts are motivated by these two rules.

There are two re-indexing structural rules. The first rule allows to globally re-localize a context.
If ϕ : J → K is a bijection, we have the rule

`J Γ

`K Γϕ

The second rule allows to extract a bijective factor from an exponent and will be called factorization
in the sequel. If ϕ is a bijection, then

`J Γ, Au◦ϕ

`J Γ, (ϕ∗A)u

13

Exchange is given by
`J Au1

1 , . . . , A
un
n

`J A
uσ(1)

σ(1) , . . . , A
uσ(n)

σ(n)

where σ is a permutation on {1, . . . , n}.
Last the cut rule is

`K Γ, Au `J ∆, A⊥

`K Γ,∆u

This rule may seem weird because it is not symmetrical, but it is apparently the best version of the
cut rule available in this system. The version with an exponent on both sides would not be sound
in our phase semantics, and, with an identity exponent on both sides, it would be impossible to
eliminate the cut rule in general: consider the case where the last rule on the left is a !-rule and
the last rule on the right is a ?-rule.

Observe that there is no specific rule concerning Ω, and so this formula can only be introduced
by weakening.

We say that two formulae A and B with d(A) = d(B) = J are provably equivalent in LL+(I) if
both sequents `J A⊥, B and `J A,B⊥ are provable in LL+(I).

Lemma 7 Any formula of LL+(I) is provably equivalent to itself.

The proof is by induction on the formula.

Lemma 8 Let A be a formula of LL+(I), let ϕ : J = d(A) → L be bijective and let u : L → R be
almost injective. Then the formulae !u◦ϕA and !uϕ∗A are provably equivalent in LL+(I).

Proof: We check just one of the two directions:

··· π
`J A⊥, A

(Factorization)
`J A⊥, (ϕ∗A)ϕ

−1

(Re-localization)
`L (A⊥)ϕ, ϕ∗A

(Promotion)
`R (A⊥)u◦ϕ, !uϕ∗A

(Dereliction)
`R ?u◦ϕA⊥, !uϕ∗A

where π is a proof whose existence results from Lemma 7.
We explain now in what sense the present system is an extension of LL(I). For this purpose,

we explain first how a formula A of LL(I) can be represented as a formula Ã of LL+(I) satisfying
d(Ã) = d(A). This mapping A 7→ Ã is surjective but clearly not injective.

• >̃ = 0̃ = Ω.

• Ã & B = !lÃ ⊗ !rB̃ and Ã⊕B = ?lÃ P ?rB̃, where A and B are formulae of domain L and
R respectively, with L ∩R = ∅, and l and r are the injections of L and R in L+R.

• 1̃J = !0J Ω and ⊥̃J = ?0J Ω where 0J denotes the empty function from ∅ to J .

14

• Ã P B = Ã P B̃ and Ã⊗B = Ã⊗ B̃.

• ?̃uA = ?uÃ and !̃uA = !uÃ.

When A contains no additive connectives and no multiplicative constants, Ã is simply obtained
by replacing in A all occurrences of > and 0 by Ω.

By the first statement of the next lemma, Ã is always a well-formed formula of LL+(I).

Lemma 9 Let A be a formula of LL(I). One has d(Ã) = d(A) and Ã⊥ = Ã⊥. Let K ⊆ I, then
Ã|K = Ã|K . Let ϕ : d(A) → K be a bijection. If A contains no additive connectives and no
multiplicative constants then the formulae ϕ∗Ã and ϕ̃∗A are identical. In general, they are provably
equivalent in LL+(I).

The only statement which is not completely straightforward is the last one. It is proved by induction
on A and the only interesting cases are when A = B & C and when A = B⊕C. The main tool for
dealing with these cases is Lemma 8.

If Γ is a sequence (A1, . . . , An) of formulae of LL(I), we denote by Γ̃ the sequence (Ã1, . . . , Ãn).
We call LLext(I) the sequent calculus LL(I) extended with the axioms

`∅

called partiality and

`J A⊥, !IdA

(for each LL(I) formula A of domain J) called linearization. This sequent calculus does apparently
not enjoy cut elimination, otherwise there would be no point5 in introducing the new system LL+(I):
we shall show that the systems LLext(I) and LL+(I) are equivalent.

Lemma 10 Let Γ be a context of domain J ⊆ I in LL(I). If the sequent `J Γ is provable in
LLext(I), then the sequent `J Γ̃ is provable in LL+(I).

Proof: It suffices to show that the additional axioms of LLext(I) are provable in LL+(I) and that,
if the sequent `J Γ is provable in LL(I), then the sequent `J Γ̃ is provable in LL+(I).

The partiality axiom of LLext(I) is an axiom of LL+(I). Next, let A be a formula of domain J
of LL+(I), we must show that the sequent `J A⊥, !IdA is provable in LL+(I). By Lemma 7, the
sequent `J A⊥, A is provable. A promotion rule in LL+(I) yields directly `J A⊥, !IdA.

By induction on the proof π of `J Γ in LL(I), we define now a proof π′ of `J Γ̃ in LL+(I).
If π is the proof

`J 1J
then π′ is the proof

`∅
`J Ω0J

`J !0J Ω

5Apart from the fact that proving the Completeness theorem 24 for LLext(I) seems to be an intractable task.

15

If π is the proof

`∅ Γ,>
then π′ is the proof

`∅
======
`∅ Γ̃,Ω

applying several times the weakening rule, as indeed in that case we have d(Γ) = ∅ and thus
d(Γ̃) = ∅.

If π is a tensor or a par rule, the construction of π′ is straightforward.
Assume now that π ends with a left plus rule (the case of a right plus rule is of course similar):

··· ρ
`J Γ, A

`J Γ, A⊕B

then by inductive hypothesis we have a proof ρ′ in LL+(I) of the sequent `J Γ̃, Ã. Applying a
weakening rule, we get `J Γ̃, Ã, B̃0J , since we must have d(B) = ∅ . Two dereliction rules lead to
`J Γ̃, ?IdÃ, ?0J B̃, and then, by a par rule, we get a proof π′ of `J Γ̃, (?IdÃ) P (?0J B̃) as announced.

Assume that π is the proof

··· λ
`L Γ|L, A

··· ρ
`R Γ|R, B

`L+R Γ, A & B

where L and R are two disjoint subsets of I which are respectively the domains of A and B. By
inductive hypothesis, we have a proof λ′ of `L Γ̃|L, Ã. Applying a promotion rule in LL+(I),

we obtain a proof of `L+R Γ̃|L
l
, !lÃ, where l is the inclusion of L into the disjoint union L + R.

Similarly, we obtain a proof of `L+R Γ̃|R
r
, !rB̃ where r is the inclusion of R into L + R. Now

applying a tensor rule, we obtain a proof of the sequent

`L+R Γ̃|L
l
, Γ̃|R

r
, !lÃ⊗ !rB̃

The context Γ is a sequence of formulae (C1, . . . , Cn) of domain L + R, and by Lemma 9, we

have Γ̃|L
l
= ((C̃1|L)l, . . . , (C̃n|L)l) and similarly Γ̃|R

r
= ((C̃1|R)r, . . . , (C̃n|R)r). So applying several

exchange rules and n contraction rules, we get a proof of the sequent `L+R Γ̃, !lÃ⊗ !rB̃ as required.
Assume that π is the proof

··· ρ
`J Γ

`J Γ, ?0JA

where A is a formula of empty domain. By inductive hypothesis, we have a proof in LL+(I) of
`J Γ̃. Applying a weakening rule, we obtain a proof of `J Γ̃, Ã0J , and then by a dereliction rule,
we get a proof of `J Γ̃, ?0J Ã, as required.

16

Assume that π is the proof
···

`J Γ, ?lA|L, ?rA|R
`J Γ, ?l+rA

where L and R are disjoint subsets of I, A is a formula of domain L + R, l is an almost injective
function from L to J and r is an almost injective function from R to J . Then by inductive
hypothesis, the sequent `J Γ̃, ?lÃ|L, ?rÃ|R is provable in LL+(I) (we also apply here Lemma 9).

By Lemma 7, the sequent `L Ã|L, Ã|L
⊥

is provable in LL+(I). Applying a promotion rule, we

obtain a proof of the sequent `J Ã|L
l
, !l(Ã|L

⊥
). Similarly, the sequent `J Ã|R

r
, !r(Ã|R

⊥
) is

provable in LL+(I). So, applying two cut rules (and some exchange rules) in LL+(I), we get a proof

of the sequent `J Γ̃, Ã|L
l
, Ã|R

r
in LL+(I). We conclude, applying a contraction rule, and then a

dereliction rule in LL+(I).
Assume that π is the proof

···
`J Γ, ϕ∗A

`J Γ, ?ϕA

where A is a formula of domain K and ϕ is a bijection from K to J . By inductive hypothesis, the
sequent `J Γ̃, ϕ̃∗A is provable in LL+(I). By Lemma 9 (using a cut rule), the sequent `J Γ̃, ϕ∗Ã
is provable in LL+(I). Applying a re-localization rule, we get a proof of `K Γ̃ϕ

−1
, (ϕ∗Ã)ϕ

−1
. By a

factorization rule, we get a proof of `K Γ̃ϕ
−1
, Ã. Re-localizing again, we obtain a proof of `J Γ̃, Ãϕ

and we conclude applying a dereliction rule in LL+(I).
Assume that π is the proof

···
`J ?u1C1, . . . , ?unCn, A

`K ?v◦u1C1, . . . , ?v◦unCn, !vA

where each ui is an almost injective function from d(Ai) to J and v is an almost injective function
from J to K. Then, by inductive hypothesis, and applying the same kind of cuts as in the case
of a contraction rule above, we obtain a proof in LL+(I) of the sequent `J C̃1

u1
, . . . , C̃n

un
, Ã. We

obtain a proof of `K C̃1
v◦u1

, . . . , C̃n
v◦un

, !vÃ by a promotion rule in LL+(I) and then conclude,
applying n times the dereliction rule.

If π ends with an exchange rule, one concludes straightforwardly, and also if π ends with a cut
rule.

The next lemma is trivial and will be implicitly used in the sequel.

Lemma 11 Let A be a formula of LL(I) which contains no additive connectives and no multiplica-
tive constants.

• If Ã = Ω then A = > or A = 0.

• If Ã is of the shape B′⊗C ′, then A is of the shape A = B⊗C with B̃ = B′ and C̃ = C ′, and
similarly if Ã is of the shape B′ P C ′.

17

• If Ã is of the shape !uB′ then A is of the shape A = !uB with B̃ = B′, and similarly if Ã is
of the shape ?uB′.

Lemma 12 Let Γ be a context of formulae of LL(I) of domain J and let ϕ : J → K be a bijection.
If `J Γ is provable in LL(I) (resp. in LLext(I)), then `K ϕ∗Γ is provable in LL(I) (resp. in
LLext(I)).

Proof: Straightforward induction. Let us just consider the case of the additional linearization
axiom. Let A be a LL(I)-formula of domain J , we must prove the sequent `K (ϕ∗A)⊥, !ϕA.

`K (ϕ∗A)⊥, !Id(ϕ∗A)

··· ρ
`J ϕ−1

∗ϕ∗A
⊥, A

`J ?ϕ−1(ϕ∗A⊥), A

`K ?Id(ϕ∗A⊥), !ϕA

`K (ϕ∗A)⊥, !ϕA

is a proof in LLext(I), where ρ is a proof in LL(I) of `J A⊥, A (the analogue of Lemma 7 holds of
course for LL(I)).

Lemma 13 Let A1,. . . ,An be formulae of LL(I) which contain no additive connectives and no
multiplicative constants, let J be a subset of I and, for each i = 1, . . . , n, let ui be an almost
injective function from d(Ai) to J . If the sequent `J Ã1

u1
, . . . , Ãn

un
is provable in LL+(I), then

the sequent `J ?u1A1, . . . , ?unAn is provable in LLext(I).

Proof: By induction on the proof π in LL+(I) of the sequent `J Ã1
u1
, . . . , Ãn

un
.

If π consists of an axiom `∅ , then n = 0 and we conclude immediately because `∅ is an
axiom of LLext(I).

If π ends with a tensor rule, then, by Lemma 11, π must be of the shape

···
`J B̃1

v1
, . . . , B̃p

vp
, B̃

···
`J C̃1

w1
, . . . , C̃q

wq
, C̃

`J B̃1
v1
, . . . , B̃p

vp
, C̃1

w1
, . . . , C̃q

wq
, B̃ ⊗ C

By inductive hypothesis, the sequent `J ?v1B1, . . . , ?vpBp, ?IdB is provable in LLext(I), and so
(applying a cut rule with a linearization axiom), the sequent `J ?v1B1, . . . , ?vpBp, B is prov-
able in LLext(I), and similarly for the sequent `J ?w1C1, . . . , ?wpCq, C. Therefore, the sequent
`J ?v1B1, . . . , ?vpBp, ?w1C1, . . . , ?wpCq, B ⊗ C is provable in LLext(I), and, applying a dereliction

rule, we obtain that the sequent `J ?v1B1, . . . , ?vpBp, ?w1C1, . . . , ?wpCq, ?Id(B ⊗ C) is provable in
LLext(I), as required.

When π ends with a par rule, one proceeds in a similar way.

18

Assume now that π ends with a promotion rule, so that, by Lemma 11, π must be of the shape

···
`J B̃1

v1
, . . . , B̃p

vp
, B̃

`K B̃1
v◦v1

, . . . , B̃p
v◦vp

, !̃vB

and so, by inductive hypothesis, the sequent `J ?v1B1, . . . , ?vpBp, ?IdB is provable in LLext(I), and
therefore (applying a cut rule with a linearization axiom), the sequent `J ?v1B1, . . . , ?vpBp, B is
provable in LLext(I). We are in position of applying a promotion rule in LL(I), obtaining a proof in
LLext(I) of the sequent `K ?v◦v1B1, . . . , ?v◦vpBp, !vB, and we conclude as above, with a dereliction
rule.

When π ends with a dereliction rule, one concludes straightforwardly.
Assume that π ends with a contraction rule (the case of a weakening rule is similar, and simpler).

Then, by Lemma 9, π is of the shape

···
`J B̃1

v1
, . . . , B̃p

vp
, B̃|L

l
, B̃|R

r

`J B̃1
v1
, . . . , B̃p

vp
, B̃l+r

where B is a formula of LL(I) of domain L+ R and l : L→ J and r : R → J are almost injective
functions. By inductive hypothesis, the sequent `J ?v1B1, . . . , ?vpBp, ?l(B|L), ?r(B|R) is provable
in LLext(I), and one concludes, applying a contraction rule of LL(I).

Assume that π ends with a factorization rule

···
`J B̃1

v1
, . . . , B̃p

vp
, Cv◦ϕ

`J B̃1
v1
, . . . , B̃p

vp
, (ϕ∗C)v

with C a formula of LL+(I) and ϕ∗C = B̃ for a formula B of LL(I) which contains no additive

connectives and no multiplicative constants. Then C = D̃ where D = ϕ−1
∗B, since ϕ̃−1

∗B =
ϕ−1

∗B̃ by our assumption that B contains no additive connectives and no multiplicative constants.
By inductive hypothesis, the sequent `J ?v1B1, . . . , ?vpBp, ?v◦ϕD is provable in LLext(I). But the
sequent `J !v◦ϕ(D⊥), ?v(ϕ∗D) is provable in LL(I) as follows

··· ρ
`d(D) D

⊥, ϕ−1
∗(ϕ∗D)

`d(D) D
⊥, ?ϕ−1ϕ∗D

`J !v◦ϕ(D⊥), ?v(ϕ∗D)

where ρ is the “identity” proof, and so, applying a cut rule, we obtain that the sequent `J
?v1B1, . . . , ?vpBp, ?v(ϕ∗D) is provable in LLext(I), as required.

If π ends with a re-localization rule, one applies Lemma 12. The case where π ends with an
exchange rule is trivial.

19

If π ends with a cut rule, it is of the shape

···
`K B̃1

v1
, . . . , B̃p

vp
, Dv

···
`J C̃1

w1
, . . . , C̃q

wq
, D⊥

`K B̃1
v1
, . . . , B̃p

vp
, C̃1

v◦w1
, . . . , C̃q

v◦wq

where D is a LL+(I) formula of domain J . Let E be any LL(I)-formula which does not contain
additive connectives and satisfies Ẽ = D (it is easy to see that such a formula E exists). Then by
inductive hypothesis, the sequents `K ?v1B1, . . . , ?vpBp, ?vE and `J ?w1C1, . . . , ?wqCq, ?Id(E⊥)
are provable in LLext(I). So, by a cut rule with a linearization axiom of LLext(I), the sequent
`J ?w1C1, . . . , ?wqCq, E

⊥ is provable. We apply a promotion rule, and obtain a proof in LLext(I)
of the sequent `K ?v◦w1C1, . . . , ?v◦wqCq, !v(E⊥) and we conclude with a cut rule in LL(I).

As a corollary of these lemmas, we obtain the following result, which states that the systems
LL+(I) and LLext(I) are equivalent.

Proposition 14 Let A be a LL(I) formula of domain J ⊆ I. The sequent `J A is provable in
LLext(I) iff the sequent `J Ã is provable in LL+(I).

Proof: The “only if” part is just an application of Lemma 10. For the “if” part, consider first the
case where A contains no additive connectives and no multiplicative constants. Then `J ?IdA is
provable in LLext(I) by Lemma 13. With a cut rule on a linearization axiom we obtain that `J A
is provable in LLext(I).

Observe now that, when B and C are LL(I) formulae of disjoint domains L and R, the sequents
`L+R ?lB P ?rC,B⊥ & C⊥ and `L+R !lB ⊗ !rC,B⊥ ⊕ C⊥ are provable in LLext(I), where l : L→
L+R and r : R→ L+R are the injections. The first of these sequents is indeed already provable
in LL(I). We give a proof of the second. The sequent `L B,B⊥ is provable in LL(I), hence also
the sequent `L B,B⊥ ⊕ C|L⊥ since d(C|L) = ∅. Applying a dereliction rule, and then a promotion
rule, we obtain a proof of `L+R !lB, ?l(B⊥ ⊕ C|L⊥) in LL(I). Similarly, we obtain a proof in LL(I)
of `L+R !rC, ?r(B|R⊥ ⊕ C⊥) in LL(I). Applying a tensor rule on these sequents, we obtain a proof
in LL(I) of the sequent `L+R !lB ⊗ !rC, ?l(B⊥ ⊕ C|L⊥), ?r(B|R⊥ ⊕ C⊥). Now a contraction rule
leads to `L+R !lB ⊗ !rC, ?Id(B⊥ ⊕ C⊥) and then a cut rule on a linearization axiom yields a proof
in LLext(I) of the required sequent. One proves similarly in LLext(I) (in LL(I) indeed) the two
sequents `J ?0J 0, 1J and `J ⊥J , !0J>.

To any formula A of domain J of LL(I), we can associate a formula A′ of domain J of LL(I)
which contains no additive connectives and no multiplicative constants, mimicking the translation
A 7→ Ã: (B & C)′ = !lB′ ⊗ !rC ′, 1′J = ?0J 0, (B ⊗ C)′ = B′ ⊗ C ′, (!uB)′ = !uB′, 0′ = 0 and dually
for the other cases. Then, using the observation above, one proves easily, by induction on A, that
the sequent `J A′⊥, A is provable in LLext(I). Moreover, it is clear from the definition of A′ that
Ã′ = Ã.

Let A be a LL(I) formula of domain J , and assume that `J Ã is provable in LL+(I), that
is `J Ã′ is provable in LL+(I). Since A′ contains no additive connectives and no multiplicative
constants, `J A′ is provable in LLext(I). But we have seen that `J A′⊥, A is provable in LLext(I)
and we conclude with a cut rule that `J A is provable in LLext(I).

Until the end of the paper, the only system of indexed linear logic under consideration is LL+(I).
We describe the phase semantics of this system and state a soundness theorem for this semantics.

20

Let M = (P I0 ,⊥) be a symmetric product phase space. To each formula A of domain J ⊆ I, we
associate a fact A• ∈M(J) exactly as we did for LL(I) in Section 1.4. Of course, Ω• is the unique
fact of M(∅). If Γ = (Au1

1 , . . . , A
un
n) is a context of domain J , one defines Γ• = ?u1(A1

•) P · · · P
?un(An•).

Theorem 15 If the sequent `J Γ is provable in LL+(I), then 1J ∈ Γ•.

The proof is completely similar to the soundness proof in [BE01].

3 The completeness theorem

For a formula A of LL+(I), one defines A as the underlying formula of A in linear logic, deciding for
instance that Ω = > (one can also take Ω = 0). For any formula A, one also defines 〈A〉 ∈ |A|d(A),
like in LL(I) (see Section 1.3). Given two formulae A and B, we say that they are denotationally
equivalent, and we write A ∼ B, if d(A) = d(B), A = B, and last, 〈A〉 = 〈B〉. The three next
lemmas immediately result from this definition.

Lemma 16 Let B be a formula. If Ω ∼ B, then B = Ω.

Lemma 17 Let A1 and A2 be two formulae of domain J . Let B be a formula. If A1 ⊗A2 ∼ B,
then B = B1 ⊗ B2 for two formulae B1 and B2 such that Ai ∼ Bi for i = 1, 2. Similarly for
A1 P A2.

Lemma 18 Let A be a formula and let u : d(A) → J be an almost injective function. Let B be
a formula. If !uA ∼ B, then B = !vC where C is a formula, v : d(C) → J is an almost injective
function, and moreover, there exists a bijection ϕ : d(C) → d(A) such that u ◦ϕ = v and ϕ∗C ∼ A.

Proof: B must be of the shape !vC where C is a formula and v : d(C) → J is an almost injective
function. Then we must have A = C. Moreover, we recall that 〈!vC〉j = m(〈C〉|v−1(j)) for each
j ∈ J . So for each j ∈ J , there is a bijection ϕj : v−1(j) → u−1(j) such that, for all k ∈ v−1(j),
one has 〈C〉k = 〈A〉ϕj(k). Then, defining ϕ : d(C) → d(A) by ϕ(k) = ϕv(k)(k), we define a bijection
satisfying the announced conditions.

Let Γ = (Au1
1 , . . . , A

un
n) be a context of domain J and let ∆ = (Bv1

1 , . . . , B
vm
m) be a context of

domain K. We say that Γ and ∆ are denotationally equivalent and write Γ ∼ ∆ if J = K, n = m,
and for i = 1, . . . , n, there is a bijection ϕi : d(Ai) → d(Bi) such that ϕi∗Ai ∼ Bi and vi ◦ ϕi = ui.

Two contexts which are denotationally equivalent differ only by the indexes used in the expo-
nential constructs they contain, but have exactly the same structure. Therefore, they behave in
the same way with respect to (cut-free) provability, and this will be essential in the forthcoming
completeness proof.

Lemma 19 Let Γ′ be a context of domain J and assume that `J Γ′ is cut-free provable. Let ∆ be
a context such that ∆ ∼ Γ′. Then `J ∆ is cut-free provable.

Proof: We proceed by induction on the cut-free proof σ of `J Γ′.
If σ consists just of an axiom, then J = ∅ and ∆ = Γ′ is the empty context.

21

If σ ends with a par rule, then Γ′ = (Γ, A1 P A2) and σ is of the shape

···
`J Γ, A1, A2

`J Γ, A1 P A2

and then ∆ must be of the shape ∆ = (Λ, Bv) with Λ ∼ Γ, and there must exist a bijection ϕ : J →
d(B) such that v ◦ ϕ = IdJ (that is, v = ϕ−1), and ϕ∗(A1 P A2) ∼ B. Therefore, by Lemma 17,
B is of the shape B = B1 P B2 with ϕ∗A1 ∼ B1 and ϕ∗A2 ∼ B2, hence (Γ, A1, A1) ∼ (Λ, Bv

1 , B
v
2)

and so, by inductive hypothesis, the sequent `J Λ, Bv
1 , B

v
2 is cut-free provable. Re-localizing, we

obtain that the sequent `d(B) Λϕ, B1, B2 is cut-free provable. We conclude, applying a par rule
and then a re-localization rule again (with v = ϕ−1 as bijection). The case where σ ends with a
tensor rule is similar.

Assume now that the last rule of σ is a dereliction rule, that is, σ is of the shape

···
`J Γ, Au

`J Γ, ?uA

where u : d(A) → J is an almost injective function. Then ∆ must be of the shape ∆ = (Λ, (?vB)w),
with Λ ∼ Γ, and there must exist a bijection ϕ : J → K (where K denotes the co-domain of v, which
is also the domain of w) such that w ◦ ϕ = IdJ (that is w = ϕ−1) and ?ϕ◦uA ∼ ?vB. Therefore, by
Lemma 18 there is a bijection ψ : d(A) → d(B) such that v◦ψ = ϕ◦u and ψ∗A ∼ B. Then we have
(Λ, Bϕ−1◦v) ∼ (Γ, Au). So by inductive hypothesis, the sequent `J Λ, Bϕ−1◦v is cut-free provable,
and hence so is the sequent `K Λϕ, Bv (re-localization), and then so is `K Λϕ, ?vB (dereliction),
and last, so is `J Λ, (?vB)w (re-localization again).

Assume next that σ is of the shape

···
`J Γ, A

`K Γu, !uA

Then ∆ must be of the shape ∆ = (Λ, (!vB)w), with Λ ∼ Γu, and there must exist a bijection
ϕ : K → L (where L denotes the co-domain of v, which is also the domain of w) such that
w ◦ ϕ = IdK (that is w = ϕ−1) and !ϕ◦uA ∼ !vB. Therefore, by Lemma 18 there is a bijection
ψ : d(A) → d(B) such that v ◦ψ = ϕ◦u and ψ∗A ∼ B. The context Γ is a sequence (Cu1

1 , . . . , Cun
n),

and Λ is a sequence of the same length, Λ = (Dv1
1 , . . . , D

vn
n), and we know that, for i = 1, . . . , n, there

is a bijection θi : d(Ci) → d(Di) such that θi∗Ci ∼ Di and vi ◦ θi = u ◦ ui. Let us set ti = ui ◦ θi−1,
so that vi = u ◦ ti. Then we define a new context Λ′ = (Dt1

1 , . . . , D
tn
n) which satisfies Λ = (Λ′)u and

Λ′ ∼ Γ (since ti ◦ θi = ui). We have therefore (Γ, A) ∼ (Λ′, Bψ−1
) and so, by inductive hypothesis,

the sequent `J Λ′, Bψ−1
is cut-free provable. Hence, so is `d(B) Λ′ψ, B (re-localization), and then

so is `L Λ′v◦ψ, !vB (promotion), and, therefore, so is `K Λ′ϕ−1◦v◦ψ, (!vB)ϕ
−1

(re-localization), but
this latter sequent is identical to `K ∆ since ϕ−1 ◦ v ◦ ψ = u and u ◦ ti = vi.

22

Assume now that σ ends with a contraction rule (the case of a weakening rule is trivial), so σ
is of the shape

···
`J Γ, (A|L)l, (A|R)r

`J Γ, Al+r

Then ∆ must be of the shape ∆ = (Λ, Bu) with Λ ∼ Γ and there is a bijection ϕ : d(A) =
L + R → d(B) such that ϕ∗A ∼ B and u = (l + r) ◦ ϕ−1. Let L′ = ϕ(L) and R′ = ϕ(R), so that
d(B) = L′ + R′ and let λ : L → L′ be the bijection obtained by restricting ϕ, define similarly a
bijection ρ : R→ R′. Last, let l′ : L′ → J and r′ : R′ → J be the restrictions of u to L′ and R′, so
that u = l′ + r′. Then (Λ, (B|L′)l

′
, (B|R′)r

′
) ∼ (Γ, (A|L)l, (A|R)r). Indeed, we have ϕ∗A ∼ B and

therefore (ϕ∗A)|L′ ∼ B|L′ , but it is easily checked (induction on formulae) that (ϕ∗A)|L′ = λ∗(A|L).
Moreover, we have l′ ◦ λ = l. Applying the inductive hypothesis, and then a contraction rule, we
deduce that `J Λ, Bl′+r′ is cut-free provable, as required.

Assume next that σ ends with a re-localization rule

···
`J Γ

`K Γϕ

where ϕ is bijection. Then since ∆ ∼ Γϕ, we have ∆ϕ−1 ∼ Γ and so, by inductive hypothesis, the
sequent `J ∆ϕ−1

is cut-free provable. Applying a re-localization rule, we conclude that the sequent
`K ∆ is cut-free provable.

Assume last that σ ends with a factorization rule (the case of an exchange rule is trivial)

···
`J Γ, Au◦ϕ

`J Γ, (ϕ∗A)u

where ϕ is a bijection d(A) → K. Then ∆ is of the shape ∆ = (Λ, Bv) with Λ ∼ Γ and there
is a bijection ψ : K → d(B) such that ψ∗ϕ∗A ∼ B and v ◦ ψ = u. That is (ψ ◦ ϕ)∗A ∼ B and
v ◦ (ψ ◦ϕ) = u ◦ϕ, and so (Γ, Au◦ϕ) ∼ Λ, Bv. Hence, by inductive hypothesis, `J Λ, Bv is cut-free
provable.

We define now the syntactic commutative monoid P which will be used in our completeness
proof.

Let L be a fixed infinite denumerable set whose elements will be called labels. Let P be the
set of all finite multi-sets of the shape [(l1, R1, a1), . . . , (ln, Rn, an)] where, for each i = 1, . . . , n,
li ∈ L, Ri is a formula of linear logic and ai ∈ |Ri|. We consider P as a commutative monoid (the
free commutative monoid generated by the triples (l, R, a)). We use multiplicative notations for
denoting the operation of this monoid. When A is a formula and l ∈ L, we define 〈A, l〉 ∈ P d(A)

by 〈A, l〉i = (l, A, 〈A〉i) for each i ∈ d(A). If Γ = (Au1
1 , . . . , A

un
n) is a context of domain J and if

λ = (l1, . . . , ln) is a vector of labels of the same length, we define 〈Γ, λ, J〉 ∈ P J as follows (for

23

j ∈ J):

〈Γ, λ, J〉j =
n∏
i=1

(ui∗〈Ai, li〉)j

=
n∏
i=1

∏
s∈d(Ai)
ui(s)=j

(li, Ai, 〈Ai〉s)

The presence of J in 〈Γ, λ, J〉 is usually superfluous, it is useful only when Γ is the empty context,
and in that case, 〈Γ, λ, J〉 is the unity of the monoid P J . So we tend to omit this additional
information.

For J ⊆ I, we denote by AJ the set of all the pairs (Γ, λ) where Γ is a context of domain J and λ
is a sequence of pairwise distinct labels having the same length as Γ. These pairs will be sometimes
called adapted pairs. Before proving the Main lemma 23, we first prove three decomposition lemmas.
It is only in the second of these lemmas that we use the labels and the definition above of an adapted
pair in a crucial way.

Lemma 20 Let J ⊆ I and let p, q ∈ P J . Let (Γ, λ) ∈ AJ , and assume that 〈Γ, λ〉 = pq. Then
there exist ∆ and Λ such that (∆, λ), (Λ, λ) ∈ AJ , 〈∆, λ〉 = p, 〈Λ, λ〉 = q, and, moreover, for any
context Φ of domain J , if the sequent `J ∆,Λ,Φ is cut-free provable, then the sequent `J Γ,Φ is
cut-free provable.

Proof: Writing Γ = (Au1
1 , . . . , A

un
n) and λ = (l1, . . . , ln), we have, for each j ∈ J :

pjqj =
n∏
i=1

∏
s∈d(Ai)
ui(s)=j

(li, Ai, 〈Ai〉s)

Let j ∈ J . For each i = 1, . . . , n, we can write u−1
i (j) as the disjoint union of two sets, u−1

i (j) =
Si,j + Ti,j , in such a way that

pj =
n∏
i=1

∏
s∈Si,j

(li, Ai, 〈Ai〉s)

and

qj =
n∏
i=1

∏
s∈Ti,j

(li, Ai, 〈Ai〉s) .

For each fixed i = 1, . . . , n, the sets Si,j (for j ∈ J) are pairwise disjoint, and we set Si =
∑

j∈J Si,j .
Similarly we set Ti =

∑
j∈J Ti,j . Moreover, for j, j′ ∈ J , Si,j and Ti,j′ are disjoint, so that Si and Ti

are disjoint, and clearly Si+Ti = d(Ai). We define vi : Si → J as the restriction of ui to Si and wi :
Ti → J as the restriction of ui to Ti, so that ui = vi+wi. We define ∆ = ((A1|S1)

v1 , . . . , (An|Sn)vn)
and Λ = ((A1|T1)

w1 , . . . , (An|Tn)wn). Then of course (∆, λ) ∈ AJ and (Λ, λ) ∈ AJ . Moreover, for

24

j ∈ J , we have

〈∆, λ〉j =
n∏
i=1

∏
s∈d(Ai|Si

)

vi(s)=j

(li, Ai, 〈Ai〉s)

=
n∏
i=1

∏
s∈Si

ui(s)=j

(li, Ai, 〈Ai〉s)

= pj

as Si,j = Si∩u−1
i (j). So 〈∆, λ〉 = p and similarly 〈Λ, λ〉 = q. Now let Φ be a context of domain J and

assume that `J ∆,Λ,Φ is cut-free provable. Applying some exchange rules and then n times the
contraction rule (between the occurrence (Ai|Si)

vi in ∆ and the corresponding occurrence (Ai|Ti)
wi

in Λ), we get a cut-free proof of `J Γ,Φ, since Si + Ti = d(Ai) and vi + wi = ui.
The next lemma will be of constant use in the proof of Lemma 23. It uses heavily our particular

definition of P as well as the notion of denotational equivalence and Lemma 19.

Lemma 21 Let J ⊆ I and let p ∈ P J . Let (Γ, λ) ∈ AJ and let A be a formula of domain J .
Let l ∈ L and assume that 〈Γ, λ〉 = p〈A, l〉. Then there exists a context ∆ of domain J such that
(∆, λ) ∈ AJ , 〈∆, λ〉 = p and such that, moreover, if the sequent `J ∆, A is cut-free provable, then
the sequent `J Γ is cut-free provable.

Proof: By Lemma 20, there are two contexts ∆ and Λ such that (∆, λ), (Λ, λ) ∈ AJ , 〈∆, λ〉 = p,
〈Λ, λ〉 = 〈A, l〉 and such that, if `J ∆,Λ is cut-free provable, then so is `J Γ. So we assume that
`J ∆, A is cut-free provable, and show that so is `J ∆,Λ, and this will prove the lemma.

The context Λ can be written Λ = (Bv1
1 , . . . , B

vn
n) where n is the common length of the sequences

Γ and λ = (l1, . . . , ln). For j ∈ J , we have

n∏
i=1

∏
s∈d(Bi)
vi(s)=j

(li, Bi, 〈Bi〉s) = (l, A, 〈A〉j)

and therefore, there is exactly one pair (i(j), s(j)) with i(j) ∈ {1, . . . , n} and s(j) ∈ vi(j)
−1(j),

and for that pair (i(j), s(j)), we have (li(j), Bi(j), 〈Bi(j)〉s(j)) = (l, A, 〈A〉j). But the pair (Γ, λ) is
adapted, so the elements of λ are pairwise distinct6, so the index i(j) does not depend on j, and
we can assume, without loss of generality, that i(j) = 1 for all j ∈ J , and then l1 = l. Now we
have v1−1(j) = {s(j)} for all j ∈ J , so that v1 is a bijection ϕ : d(B1) → J . For i ≥ 2, we have
vi
−1(j) = ∅ for all j ∈ J so that d(Bi) = ∅ and vi is the empty function 0J . Moreover, we clearly

have B1 = A and for each j ∈ J , 〈B1〉ϕ−1(j) = 〈A〉j , so that ϕ∗B1 ∼ A. So by Lemma 19, the
sequent `J ∆, ϕ∗B1 is cut-free provable. Applying a re-localization rule, we get that the sequent
`J ∆ϕ−1

, (ϕ∗B1)ϕ
−1

also is cut-free provable. By a factorization rule, `J ∆ϕ−1
, B1 is cut-free

provable, and so, re-localizing again, the sequent `J ∆, Bϕ
1 is cut-free provable. Applying next

n− 1 weakening rules (and some exchange rules, but we shall not mention them anymore), we get
that the sequent `J ∆,Λ is cut-free provable, as required.

6This is the only place of the completeness proof where we really use the labels, but their rôle is crucial.

25

Lemma 22 Let J,K ⊆ I, let p ∈ P J and let u : J → K be an almost injective function. Let
(Γ, λ) ∈ AK and assume that 〈Γ, λ〉 = u∗p. Then there is a context ∆ such that (∆, λ) ∈ AJ ,
〈∆, λ〉 = p and ∆u = Γ.

Proof: We write Γ = (Au1
1 , . . . , A

un
n) and λ = (l1, . . . , ln). For each k ∈ K, we have

〈Γ, λ〉k =
n∏
i=1

∏
s∈d(Ai)
ui(s)=k

(li, Ai, 〈Ai〉s) =
∏
j∈J

u(j)=k

pj .

Let k be a fixed element of K. For each j ∈ u−1(k) and each i ∈ {1, . . . , n}, we can find a subset
Ski,j of ui−1(k) ⊆ d(Ai) in such a way that:

• for each fixed i ∈ {1, . . . , n}, the sets Ski,j are pairwise disjoint (for j ∈ u−1(k)), and moreover
ui
−1(k) =

∑
j∈u−1(k) S

k
i,j ,

• and pj =
∏n
i=1

∏
s∈Sk

i,j
(li, Ai, 〈Ai〉s) for each j ∈ u−1(k).

Observe also that, when i ∈ {1, . . . , n} is fixed, and when k, k′ ∈ K are distinct, the sets Ski,j and
Sk

′
i,j′ (when j ∈ u−1(k) and j′ ∈ u−1(k′)) are disjoint as they are respectively subsets of ui−1(k) and

ui
−1(k′). Therefore d(Ai) =

∑
j∈J S

u(j)
i,j . We denote by Si,j the index set Su(j)i,j and, for each s ∈

d(Ai), we denote by vi(s) the unique element of J such that s ∈ Si,vi(s) = S
u(vi(s))
i,vi(s)

⊆ ui
−1(u(vi(s))),

defining a function vi : d(Ai) → J which satisfies u ◦ vi = ui and is almost injective.
We define the context ∆ of domain J as ∆ = (Av11 , . . . , A

vn
n). By construction, we have ∆u = Γ

and 〈∆, λ〉 = p. The second equation results from the fact that, for each i ∈ {1, . . . , n} and each
j ∈ J , vi−1(j) = Si,j (by definition of vi, for each s ∈ d(Ai), one has vi(s) = j iff s ∈ Si,j).

Now we are in position of proving the main lemma for establishing completeness. We consider a
particular product phase space, whose underlying monoid is P . The support monoid is P I0 , where
P0 is obtained by adding a zero element to P . But we prefer to consider this product monoid as the
sum

∑
J⊆I P

J with neutral element and product defined in the natural way (through the obvious
bijection between the sets P I0 and

∑
J⊆I P

J). We keep denoting this support monoid by P I0 . The
subset ⊥ of P I0 defining our phase space is described as follows. Let J ⊆ I and let p ∈ P J . We
decide that p ∈ ⊥ if:

for each K ⊆ J and each (Γ, λ) ∈ AK , if 〈Γ, λ〉 = p|K ,
then the sequent `K Γ is cut-free provable.

We first prove that we have defined in that way a symmetric product phase space M = (P I0 ,⊥).
First, ⊥ is not empty, as it contains 0, the unique element of P ∅. Indeed, let (Γ, λ) ∈ A∅ be

such that 〈Γ, λ〉 = 0. So Γ = (Au1
1 , . . . , A

un
n) is a context of empty domain, so each of the formulae

Ai has empty domain (since ui : d(Ai) → ∅), and ui = 0∅ for i = 1, . . . , n. Now the sequent `∅ is
cut-free provable, and so the sequent `∅ Γ is also cut-free provable (apply n times the weakening
rule).

Next we check that ⊥ is closed under restriction. Let J ⊆ I and let p ∈ ⊥∩P J . Let K ⊆ J , we
must prove that p|K ∈ ⊥ ∩ PK . So let L ⊆ K and let (Γ, λ) ∈ PL be such that 〈Γ, λ〉 = (p|K)|L =
p|L. The sequent `L Γ is cut-free provable, since p ∈ ⊥ and L ⊆ J .

26

As to symmetry, we take two subsets J and K of I and a bijection ϕ : J → K, and we must
prove that ϕ∗(⊥(J)) ⊆ ⊥(K). So let L ⊆ J and let p ∈ PL be such that p ∈ ⊥(J), that is, p ∈ ⊥.
Let R ⊆ ϕ(L) and let (Γ, λ) be such that 〈Γ, λ〉 = (ϕ∗p)|R, we have to show that `R Γ is cut-free
provable. Let S = ϕ−1(R) ⊆ L, so that (ϕ∗p)|R = ϕ∗(p|S). Then we have 〈Γϕ−1

, λ〉 = p|S so that
the sequent `S Γϕ

−1
is cut-free provable, since p ∈ ⊥. Now, applying a re-localization rule, we get

that the sequent `R Γ is cut-free provable, as required.
So the pair M = (P I0 ,⊥) defined above is a symmetric product phase space. The next lemma

is the key lemma for proving completeness. Following [Oka94, Oka99], the main idea is to prove an
inclusion and not an equality between the two facts involved, as for proving this inclusion the cut
rule is not needed. In that way, one can derive a cut elimination theorem from the completeness
theorem, combined with the soundness theorem.

Lemma 23 Let J ⊆ I and let A be a formula of domain J . Then, in the model M defined above,
one has A• ⊆ {〈A, l〉 | l ∈ L}⊥, that is A• ⊆

⋂
l∈L {〈A, l〉}

⊥.

Proof: By induction on A. We denote by A◦ the fact {〈A, l〉 | l ∈ L}⊥ of the local phase space
M(J).

Assume A = Ω so that J = ∅. Then both A• and A◦, being facts, must be equal to {0}, the
unique fact of M(∅).

Assume A = B P C, so that d(B) = d(C) = J . We know by inductive hypothesis that B• ⊆ B◦

and C• ⊆ C◦, so that A• ⊆ B◦ P C◦ and so it will be sufficient to prove that B◦ P C◦ ⊆ (B P C)◦.
We have B◦ P C◦ = {〈B, l〉〈C,m〉 | l,m ∈ L}⊥. Let K ⊆ J and let p ∈ PK be such that p ∈ B◦ P
C◦. We want to prove that p ∈ (B P C)◦, so let l ∈ L, and let us show that p〈B P C, l〉 ∈ ⊥.
Let L ⊆ K and let (Γ, λ) ∈ AL be such that 〈Γ, λ〉 = (p〈B P C, l〉)|L = p|L〈B|L P C|L, l〉. By
Lemma 21, there exists ∆ such that (∆, λ) ∈ AL, 〈∆, λ〉 = p|L and such that, if `L ∆, B|L P C|L
is cut-free provable, then `L Γ is cut-free provable. Now let k,m ∈ L be distinct, and distinct
from all the elements of λ. We know that p ∈ {〈B, k〉〈C,m〉}⊥ and hence p|L〈B|L, k〉〈C|L,m〉 ∈
⊥. But from our assumptions about k and m, we have (∆B|LC|L, λkm) ∈ AL, and moreover,
〈∆B|LC|L, λkm〉 = p|L〈B|L, k〉〈C|L,m〉, so that, by definition of ⊥, the sequent `L ∆, B|L, C|L is
cut-free provable. Hence (applying a par rule), the sequent `L ∆, B|L P C|L is cut-free provable.
Hence `L Γ is cut-free provable, as required.

Assume A = B⊗C, so that d(B) = d(C) = J . We know by inductive hypothesis that B• ⊆ B◦

and C• ⊆ C◦, so that A• ⊆ B◦⊗C◦ and so it will be sufficient to prove that B◦⊗C◦ ⊆ (B ⊗ C)◦,
i.e. B◦C◦ ⊆ (B ⊗ C)◦. So let p ∈ B◦ and q ∈ C◦. Without loss of generality, we assume that,
for some K ⊆ J , one has p, q ∈ PK . Let L ⊆ K and let (Γ, λ) ∈ AL be such that 〈Γ, λ〉 =
p|Lq|L〈B|L ⊗ C|L, l〉, we have to show that `L Γ is cut-free provable. By Lemma 21, there exists
Γ′ such that (Γ′, λ) ∈ AL, 〈Γ′, λ〉 = p|Lq|L and, moreover, if `L Γ′, B|L ⊗ C|L is cut-free provable,
so is `L Γ. By Lemma 20, there exist ∆ and Λ such that (∆, λ), (Λ, λ) ∈ AL, 〈∆, λ〉 = p|L,
〈Λ, λ〉 = q|L and moreover, if `L ∆,Λ, B|L ⊗ C|L is cut-free provable, so is `L Γ′, B|L ⊗ C|L. Let
m ∈ L be different from all the elements of λ. We know that p〈B,m〉 ∈ ⊥ since we have taken
p in B◦. But (∆B|L, λm) ∈ AL and 〈∆B|L, λm〉 = (p〈B,m〉)|L since 〈∆, λ〉 = p|L, and hence
`L ∆, B|L is cut-free provable. Similarly, `L Λ, C|L is cut-free provable, so applying a tensor rule,
we get that the sequent `L ∆,Λ, B|L ⊗ C|L is cut-free provable and we conclude that `L Γ is
cut-free provable.

Assume now that A = ?uB with d(B) = K ⊆ I and u : K → J almost injective. Then, as
before, it will be sufficient to show that ?u(B◦) ⊆ (?uB)◦. For any m ∈ L, we have 〈B,m〉 ∈ B◦⊥,

27

so u∗〈B,m〉 ∈ u∗(B◦⊥) and therefore ?u(B◦) ⊆ {u∗〈B,m〉}⊥. Hence it is sufficient to show that,
for any l ∈ L, one has ⋂

m∈L
({u∗〈B,m〉}⊥) ⊆ {〈?uB, l〉}⊥ .

So let L ⊆ J and let p ∈ PL be such that p(u∗〈B,m〉)|L ∈ ⊥ for each m ∈ L. Let l ∈ L, we
show that p〈?uB, l〉 ∈ ⊥. So let R ⊆ L and let (Γ, λ) ∈ AR be such that 〈Γ, λ〉 = p|R〈?uB, l〉|R.
According to Lemma 21, we can find ∆ such that (∆, λ) ∈ AR, 〈∆, λ〉 = p|R and moreover, if
`R ∆, (?uB)|R is cut free provable, so is `R Γ. Now let m ∈ L be different from all the elements
of λ. We know that p(u∗〈B,m〉)|L ∈ ⊥ by our assumption about p. Let S = u−1(R) ⊆ K, and let
v : S → R be the restriction of u to S, so that the diagram

K
u - J

6 6

σ ρ

S
v - R

(where ρ and σ are the inclusions) is a pull-back in Set. Then we have (∆(B|S)v, λm) ∈ AR and
〈∆(B|S)v, λm〉 = 〈∆, λ〉v∗〈B|S ,m〉 = p|R(u∗〈B,m〉)|R by Lemma 5. Therefore `R ∆, (B|S)v is cut-
free provable, and so, applying a dereliction rule, the sequent `R ∆, ?v(B|S) is cut-free provable,
i.e. the sequent `R ∆, (?uB)|R is cut-free provable, and therefore, so is `R Γ, as required.

Assume last that A = !uB with d(B) = K ⊆ I and u : K → J almost injective. Then, as
before, it will be sufficient to show that !u(B◦) ⊆ (!uB)◦. For this, it is enough to show that
u∗(B◦) ⊆ (!uB)◦. Let L ⊆ K and p ∈ B◦ ∩ PL. Then, by definition of u∗ : PK0 → P J0 , we have
u∗p ∈ PR, where R ⊆ J is

R = {j ∈ J | u−1(j) ⊆ L} .

Let S = u−1(R) ⊆ L and let v : S → R be the restriction of u to S, so that the diagram

K
u - J

6 6

σ ρ

S
v - R

(where ρ and σ are the inclusions) is a pull-back in Set, therefore u∗p = (u∗p)|R = v∗(p|S) by
Lemma 5. We must show that v∗(p|S) ∈ (!uB)◦. Let l ∈ L, we have to show that v∗(p|S)〈!uB, l〉 ∈ ⊥.
So let T ⊆ R and let (Γ, λ) ∈ AT be such that 〈Γ, λ〉 = (v∗(p|S)〈!uB, l〉)|T = w∗(p|U)〈!w(B|U), l〉
where U = v−1(T) = u−1(T) ⊆ S and w : U → T is the restriction of u (or of v: these restrictions
are equal). By Lemma 21, there exists ∆ such that (∆, λ) ∈ AT , 〈∆, λ〉 = w∗(p|U) and, if `T
∆, !w(B|U) is cut-free provable, then so is `T Γ. By Lemma 22, there exists Λ such that (Λ, λ) ∈ AU ,
〈Λ, λ〉 = p|U and Λw = ∆. Let m ∈ L be a label not occurring in λ, so that (ΛB|U , λm) ∈ AU and
〈ΛB|U , λm〉 = p|U 〈B,m〉|U ∈ ⊥ since p ∈ B◦. Therefore, `U Λ, B|U is cut-free provable. Applying
a promotion rule, we get that `T Λw, !w(B|U) i.e. `T ∆, !w(B|U) is cut-free provable and hence so
is `T Γ as required.

28

Now we can prove the completeness theorem.

Theorem 24 Let A be a formula of indexed linear logic with domain J ⊆ I. If, in each symmetric
product phase space M = (P I0 ,⊥), one has 1J ∈ A•, then `J A is cut-free provable.

Proof: Take for M the particular symmetric product phase space defined above. By Lemma 23,
we have 1J ∈ A◦. So let l be any element of L. We have 〈A, l〉 ∈ ⊥. Setting Γ = (A) and λ = (l),
we obviously have (Γ, λ) ∈ AJ and 〈Γ, λ〉 = 〈A, l〉 and so, by definition of ⊥, the sequent `J Γ is
cut-free provable.

Combining the completeness and soundness theorems, we derive easily the cut elimination
theorem.

Theorem 25 Let A be a formula of indexed linear logic with domain J ⊆ I. If the sequent `J A
is provable, it is cut-free provable.

Remark: In these two theorems, we can also replace the formula A by an arbitrary context Γ of
domain J . Indeed, the rules for the par and for the interrogation mark connectives being reversible,
if `J ?u1A1 P · · · P ?unAn is cut-free provable, so is `J Au1

1 , . . . , A
un
n .

Remark: This cut elimination theorem does not provide any procedure for “locally” eliminating
the cut rule, in the style of Gentzen cut elimination theorem for LK. It expresses precisely that
the rules given in Section 2, cut rule excluded, are sufficient for proving the formulae which are
true in all models: the system is complete in the sense that there is no point in adding any new
rule to it. In particular, the cut rule we have given in Section 2 is superfluous, as would be any
other deduction rule. For instance, a weaker cut rule (with both A and A⊥ having the identity as
exponent) would be superfluous as well, although it would clearly not give rise to a local elimination
procedure: consider a cut with main formulae of the shape !uA and (!uA)⊥. Nevertheless, it can
be proved that the cut rule we have given admits a local elimination procedure, a result which is
stronger than Theorem 25.

4 Appendix: the interpretation of proofs in the category of sets
and relations

To each proof π of a sequent in first order propositional linear logic ` Φ, we associate a subset of
π∗ of the set |Φ| defined in Section 1.2, by induction on π.
Tensor unit: if the proof π is

` 1
then π∗ = {∗}.
With unit: if the proof π is

` Φ,>
then π∗ = ∅.

29

With: if the proof π is
··· π1

` Ψ, S

··· π2

` Ψ, T

` Ψ, S & T

then π∗ = {(c, (1, a)) | (c, a) ∈ π1
∗)} ∪ {(c, (2, b)) | (c, b) ∈ π2

∗)}.
Left plus: if the proof π is

··· π1

` Ψ, S

` Ψ, S ⊕ T

then π∗ = {(c, (1, a)) | (c, a) ∈ π1
∗)}. And similarly if π ends with a right plus rule.

Par unit: if the proof π is
··· π1

` Ψ

` Ψ,⊥
then π∗ = {(c, ∗) | c ∈ π1

∗}.
Par: if the proof π is

··· π1

` Ψ, S, T

` Ψ, S P T

then π∗ = {(c, (a, b)) | (c, a, b) ∈ π1
∗}.

Tensor: if the proof π is
··· π1

` Ψ, S

··· π2

` Θ, T

` Ψ,Θ, S ⊗ T

then π∗ = {(c, d, (a, b)) | (c, a) ∈ π1
∗) and (d, b) ∈ π2

∗}.
Weakening: if the proof π is

··· π1

` Ψ

` Ψ, ?S

then π∗ = {(c, []) | c ∈ π1
∗}.

Contraction: if the proof π is
··· π1

` Ψ, ?S, ?S

` Ψ, ?S

then π∗ = {(c, x+ y) | (c, x, y) ∈ π1
∗} where x+ y denotes the sum of the multi-sets x and y.

30

Dereliction: if the proof π is
··· π1

` Ψ, S

` Ψ, ?S

then π∗ = {(c, [a]) | (c, a) ∈ π1
∗}.

Promotion: if the proof π is
··· π1

` ?S1, . . . , ?Sk, S

` ?S1, . . . , ?Sk, !S

then π∗ is the set of all k + 1-tuples of the shape (
∑n

j=1 x
1
j , . . . ,

∑n
j=1 x

k
j , [a1, . . . , an]) where

((x1
j , . . . , x

k
j , aj))j=1,...,n is any finite family of elements of π1

∗.
Exchange: if the proof π is

··· π1

` S1, . . . , Sk

` Sσ(1), . . . , Sσ(k)

where σ is a permutation of {1, . . . , k}, then π∗ = {(aσ(1), . . . , aσ(k)) | (a1, . . . , ak) ∈ π1
∗}.

Cut: if the proof π is
··· π1

` Ψ, S

··· π2

` Θ, S⊥

` Ψ,Θ

then π∗ = {(c, d) | ∃a (c, a) ∈ π1
∗ and (d, a) ∈ π2

∗}.

References

[AC98] Roberto Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

[BB01] Alexandra Bruasse-Bac. Logique linéaire indexée du second ordre. Thèse de doctorat,
Université de la Méditerranée, 2001.

[BE00] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics
in multiplicative-additive linear logic. Annals of Pure and Applied Logic, 102(3):247–282,
2000.

[BE01] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational seman-
tics: the exponentials. Annals of Pure and Applied Logic, 109(3):205–241, 2001.

[Bie95] Gavin Bierman. What is a categorical model of intuitionistic linear logic? In Mariangi-
ola Dezani-Ciancaglini and Gordon D. Plotkin, editors, Proceedings of the second Typed
Lambda-Calculi and Applications conference, volume 902 of Lecture Notes in Computer
Science, pages 73–93. Springer-Verlag, 1995.

31

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical
Computer Science, 2003. To appear.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir95] Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-Yves Girard, Yves
Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume 222 of London
Mathematical Society Lecture Note Series. Cambridge University Press, 1995.

[Gir99] Jean-Yves Girard. On denotational completeness. Theoretical Computer Science, 227:249–
273, 1999.

[Lam95] François Lamarche. Generalizing coherent domains and hypercoherences. Electronic Notes
in Theoretical Computer Science, 2, 1995.

[Oka94] Mitsu Okada. Girard’s phase semantics and a higher order cut elimination proof. Unpub-
lished, 1994.

[Oka99] Mitsuhiro Okada. Phase semantic cut-elimination and normalization proofs of first- and
higher-order linear logic. Theoretical Computer Science, 227(1-2):333–396, 1999.

32

