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Abstract
We study a classical version of PCF from a semantic point of view. We define a general notion of
model based on categorical models of Linear Logic, in the spirit of earlier work by Girard, Regnier
and Laurent. We give a concrete example based on the relational model of Linear Logic, that
we present as a non-idempotent intersection type system, and we prove an Adequacy Theorem
using ideas introduced by Krivine. Following Danos and Krivine, we also consider an extension
of this language with a MIX construction introducing a form of must non-determinism; in this
language, a program of type integer can have more than one value (or no value at all, raising an
error). We propose a refinement of the relational model of classical PCF in which programs of
type integer are single valued; this model rejects the MIX syntactical constructs (and the MIX
rule of Linear Logic).
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Introduction

Since the fundamental discovery by Timothy Griffin [7] that the call/cc primitive of the
programming language Scheme can be typed by a non intuitionistic classical tautology (the
Law of Peirce), much work has been dedicated to the study of the computational content of
classical proofs. A particular attention has been devoted to the denotational semantics of
classically extended lambda-calculi. Among the notions of categorical model defined for this
purpose, we can isolate two main concepts.

Models extending the standard categorical setting of CCC’s for interpreting usual λ-calculi
through a CPS translation. In these models of classical λ-calculi, terms are interpreted
in a CCC of negated objects, that is objects of shape ΣP where P is an object of a
cartesian and cocartesian category P where Σ is a distinguished baseable object, see [15]
and its generalization [14] where the category of negated objects is axiomatized. In this
latter paper, it is also shown that Parigot’s λµ-calculus [13] is the internal language of
such categories and completeness of this notion of model for λµ theories is proven in [9],
enforcing further its universality.
Models based on Linear Logic (LL) and polarities. The basic idea of such models is
to divide objects (formulas) in two categories, exchanged by linear negation: negative
objects and positive ones: this is the basic idea of Girard’s LC logical system. The main
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2 Classical PCF

feature of these polarized objects is that each one carries its own structural morphisms
(weakening and contraction). In [5], positive objects are correlation spaces (commutative
⊗-comonoids), and it is crucially used that all such comonoids are coalgebras for the
!_ functor, because, in the considered coherence space model, this exponential is the
free commutative ⊗-comonoid functor. An obvious generalization, implicitly considered
in [11], is to interpret directly positive formulas as !-coalgebras instead of ⊗-comonoids
without making further assumptions on the ! comonad.

As recalled in Section 2.2, all models of the second class can be seen as models of the
first one, but it is not clear that such a presentation is always particularly enlightening. We
rather believe that, depending on the considered concrete model, one presentation might be
more convenient than the other; for example, the classical PCF game model of [8] and the
polarized HO game model of [10] are suitably described using the first notion. In the present
paper, we focus on models for which the second presentation is more convenient.

To define the general interpretation of classical PCF, we assume therefore to be given a
categorical model of classical LL L with a few additional features: an object N for natural
numbers which is the coproduct of ω copies of 1 (the tensor unit) in L as well as a fix-point
operator at each object, in the Kleisli category of !, which is a CCC.

Our classical version of PCF is based on the λµ-calculus described in [1] which features
three kinds of expressions: terms, stacks (or continuation) and commands which are pairings
of terms and stacks. The operational semantics is given as a rewriting system on commands
(it can easily be extended to terms and stacks but we do not do it by lack of space).

Stacks can be duplicated or erased during computations, hence types are interpreted
as !-coalgebras and stacks as coalgebra morphisms. Notice that the interpretation of types
corresponds to the linear negation of the usual PCF interpretation of types: roughly speaking,
we interpret σ ⇒ τ as !(P⊥) ⊗ Q where P and Q are the interpretations of σ and τ (P⊥
is the linear negation of P ). We retrieve the ordinary interpretation simply by taking the
linear negation of this positive translation1.

In particular, the positive interpretation of the ground type of natural numbers has to be
such a coalgebra. Therefore, the most tempting choice, which would be to take JιK = N⊥ , is
not possible (Warning: N is canonically a !-coalgebra, but JιK = N⊥ is not!). So we simply
set JιK = !(N⊥), the free !-coalgebra generated by N⊥ . We do not know if, depending on
the concrete model under consideration, more “economical” choices of !-coalgebras would
have been possible; this is certainly an interesting research direction. We describe the
corresponding interpretation of expressions and state a general soundness theorem: this
interpretation of commands is invariant under reduction (of course this could be extended to
terms and stacks in a setting where the reduction would be extended to these expressions).

Then we consider the simplest example of this situation, where we take for L the category
of sets and relations, which is a well known model of LL. We provide a description of the
interpretation of expressions in this particular model by means of an intersection typing
system, in the spirit of [3, 16]. We then prove an Adequacy Theorem: if a command has a
non-empty interpretation (that is, if it is typable in this intersection typing system) then
its reduction terminates. The proof is based on a standard reducibility method (see [2] for

1 Due to the symmetries of a categorical model of LL, this is more an aesthetic choice of design than
anything else. We could have preferred a negative interpretation, representing stacks as ?-algebras and
using ` instead of ⊗ for interpreting contexts. The two interpretations would have been the same, up
to linear transposition. The positive interpretation is in some sense closer to usual λ-calculus intuitions
because, when interpreting expressions, the context remains on the argument side of morphisms.
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instance). This model accommodates a natural extension of classical PCF by a parallel
composition of commands corresponding to the MIX rule of LL as in [2].

In classical PCF with MIX, a normalizing command without free variables but with
free names of ground type ι can yield an arbitrary amount of unrelated natural numbers
on each of its free names (outputs). Without MIX syntactical constructs such a command
will produce exactly one natural number on exactly one of its outputs. This can be checked
syntactically, but we also build a simple refinement of the relational model of LL which does
not accommodate the MIX rule and gives a direct semantic account of this uniqueness of
values for classical PCF without MIX. This means that this crucial property will remain true
in any extension of classical PCF which can be interpreted in this model.

1 Classical PCF

Types are given by the following BNF syntax: σ := ι | σ ⇒ σ | σ × σ.
The expressions of our language are those of the λµ-calculus [1], extended with fix-points

and primitives for dealing with integers. Let x, y . . . be variables and α, β . . . be names.
Terms t, command c and stacks π are defined as follows (with n ∈ N):

t := x | n | λxσ t | 〈t, t〉 | µασ c | fix xσ t c := t ∗ π
π := α | arg(t) · π | pr1 · π | pr2 · π | succ · π | pred · π | if(t, t) · π

We give now the typing rules, which correspond to a sequent calculus. Γ’s are typing
variable contexts and ∆’s are typing name contexts. We give rules for term typing judgments
Γ ` t : σ | ∆, stack typing judgments Γ | π : σ ` ∆ and command typing judgments Γ ` c | ∆.

Γ, x : σ ` x : σ | ∆ Γ | α : σ ` α : σ,∆
Γ ` t : σ | ∆ Γ | π : σ ` ∆

Γ ` t ∗ π | ∆

Γ ` s : σ | ∆ Γ ` t : τ | ∆
Γ ` 〈s, t〉 : σ × τ | ∆

Γ | π : σ ` ∆
Γ | pr1 · π : σ × τ ` ∆

Γ | π : τ ` ∆
Γ | pr2 · π : σ × τ ` ∆

Γ, x : σ ` t : τ | ∆
Γ ` λxσ t : σ ⇒ τ | ∆

Γ ` t : σ | ∆ Γ | π : τ ` ∆
Γ | arg(t) · π : σ ⇒ τ ` ∆

Γ ` c | α : σ,∆
Γ ` µασ c : σ | ∆

Γ ` n : ι | ∆
Γ | π : ι ` ∆

Γ | succ · π : ι ` ∆
Γ | π : ι ` ∆

Γ | pred · π : ι ` ∆

Γ ` t1 : σ | ∆ Γ ` t2 : σ | ∆ Γ | π : σ ` ∆
Γ | if(t1, t2) · π : ι ` ∆

Γ, x : σ ` t : σ | ∆
Γ ` fix xσ t : σ | ∆

We define a deterministic reduction relation → on processes.

(λxσ s) ∗ arg(t) · π → s [t/x] ∗ π 〈s, t〉 ∗ pr1 · π → s ∗ π 〈s, t〉 ∗ pr2 · π → t ∗ π
(µασ c) ∗ π → c [π/α] (fix xσ t) ∗ π → t [fix xσ t/x] ∗ π n ∗ succ · π → n+ 1 ∗ π
0 ∗ pred · π → 0 ∗ π n+ 1 ∗ pred · π → n ∗ π
0 ∗ if(t1, t2) · π → t1 ∗ π n+ 1 ∗ if(t1, t2) · π → t2 ∗ π

I Proposition 1 (Subject Reduction). Assume that Γ ` c | ∆ and c→ c′. Then Γ ` c′ | ∆.
The proof is a straightforward case analysis involving a Substitution Lemma.

A typical example of classical PCF program is the call/cc operator t = λf (ι⇒σ)⇒ι µαι (f ∗
arg(λxι µβσ (x ∗ α)) · α) which satisfies ` t : ((ι ⇒ σ) ⇒ ι) ⇒ ι | (its type is an instance
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of the well known Peirce classical tautology). When fed with an argument s such that
` s : (ι⇒ σ)⇒ ι | (a functional), t tests whether this functional returns directly a value (and
then t returns that value) or uses its argument (a function) by providing it with a natural
number n, and in that case t returns n. This choice between two options is implemented by
a contraction (the two occurrences of α).

The MIX extension. We consider also an extension of this classical version of PCF where
we add two new constructs: a command err and, given commands c and d, a command c‖d.
A similar extension of an untyped classical calculus has already been considered in [2]. It
is more naturally introduced at the level of commands in the present λµ setting. These
constructions obey the following typing rules

Γ ` err | ∆
Γ ` c | ∆ Γ ` d | ∆

Γ ` (c‖d) | ∆

We then extend the operational semantics of the calculus by adding the following reduction
rules for commands.

err‖c→ c c‖err→ c
c→ c′

c‖d→ c′‖d
d→ d′

c‖d→ c‖d′

The resulting calculus on commands (with the other reduction rules given in Section 1)
clearly satisfies the diamond property, the strongest form of confluence. These constructions
can be extended as term constructions, available at all types. Simply set errσ = µασ err and
(s‖t) = µασ (s ∗ α‖t ∗ α). The term s‖t is as a parallel composition of s and t enriching the
language with a form of must non-determinism. It allows eg. to write 3‖7, a closed term of
type ι, whose value is at the same time 3 and 7.

Almost closed commands. We come back to our initial version of classical PCF, without
the MIX constructs. A name context ∆ = (α1 : τ1, . . . , αk : τk) is ground if τj = ι for each
j. We say that a command c is almost closed if ` c | ∆ for some ground ∆. An almost
closed command is very similar to a closed term of type ι in ordinary PCF. The difference is
twofold: first an almost closed command can have more than one output (one for each name
in the name context), and second its outputs are named, simply to make them usable.

I Proposition 2. Let c be an almost closed and normal command. Then c = n ∗ α for some
n ∈ N and name α.

The proof is a simple case analysis.
So, consider an almost closed command c such that, say, ` c | α1 : ι, . . . , αk : ι. Then

either the → reduction of c does not terminate, or it ends with a normal almost closed
command, which must be of shape n ∗ αi for uniquely determined i ∈ {1, . . . , k} and n ∈ N:
the reduction of c computes the value n and chooses the output on which it is issued.

The notion of almost closed command still makes sense in classical PCF with MIX. The
difference is that normal forms are now MIX compositions of elementary command n ∗ αi.
One can obtain for instance (0 ∗ α1)‖((3 ∗ α2)‖(7 ∗ α1)) whose effect is to produce the value
3 on output α2, values 0 and 7 on output α1 and nothing on the other outputs.

2 Linear logic based denotational semantics

The kind of denotational models we are interested in in this paper are those induced by a
model of LL, in the spirit of Girard’s seminal work [5] further developed eg.. in [11]. We first
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recall the general definition of a model of LL implicit in [4], our main reference here is [12] to
which we also refer for the rich bibliography on this general topic. A model of LL consists of:

A category L.
A symmetric monoidal closed structure (⊗, 1, λ, ρ, α, σ): ⊗ is a functor L2 → L, 1 an
object of L, λX ∈ L(1⊗X,X), ρX ∈ L(X⊗1, X), αX,Y,Z ∈ L((X ⊗ Y )⊗Z,X⊗(Y ⊗ Z))
and σX,Y ∈ L(X ⊗ Y, Y ⊗X) are natural isos satisfying coherence diagrams that we do
not recall here. We use X ( Y for the object of linear morphisms from X to Y , ev
for the evaluation morphism which belongs to L((X ( Y )⊗X,Y ) and cur for the map
L(Z ⊗X,Y )→ L(Z,X ( Y ).
An object ⊥ of L such that ηX = cur(ev σX(⊥,X) ∈ L(X, (X ( ⊥)( ⊥) be an iso for
each object X (one says that L is a ∗-autonomous category); we use X⊥ for X ( ⊥.
The category L is assumed to be cartesian. We use > for the terminal object, & for the
cartesian product and pri for the projections. It follows by ∗-autonomy that L has also
all finite coproducts.
We are also given a comonad !_ : L → L with counit derX ∈ L(!X,X) (called dereliction)
and comultiplication digX ∈ L(!X, !!X) (called digging).
And a strong symmetric monoidal structure for the functor !_, from the symmetric
monoidal category (L,&) to the symmetric monoidal category (L,⊗). This means that
we are given an iso m(0) ∈ L(1, !>) and a natural iso m(2)

X,Y ∈ L(!X⊗ !Y , !(X & Y )) which
satisfy a series of commutations that we do not recall here (they are often called Seely
isos). We also require a coherence condition relating m(2) and dig.

It follows that we can define a lax symmetric monoidal structure for the functor !_ from
the symmetric monoidal category (L,⊗) to itself, that is a natural morphism µ

(n)
X1,...,XN

∈
L(!X1 ⊗ · · · ⊗ !Xn, !(X1 ⊗ · · · ⊗Xn)) satisfying some coherence conditions.

We use ?_ for the “De Morgan dual” of !_: ?X = (!(X⊥))⊥ and similarly for morphisms.
It is a monad on L with unit der′X and multiplication dig′X defined straightforwardly, using
derY and digY .

The Eilenberg-Moore category. It is then standard to define the category L! of !-
coalgebras. An object of this category is a pair P = (P , hP ) where P ∈ Obj(L) and
hP ∈ L(P , !P ) is such that derP hP = Id and digP hP = !hP hP .

Given two such coalgebras P and Q, an element of L!(P,Q) is an f ∈ L(P ,Q) such that
hQ f = !f hP . Identities and composition are defined in the obvious way. The functor !_ can
then be seen as a functor from L to L!: this functor maps X to the coalgebra (!X, digX)
and a morphism f ∈ L(X,Y ) to the coalgebra morphism !f ∈ L!((!X, digX), (!Y, digY )). It
is right adjoint to the forgetful functor U : L! → L which maps a !-coalgebra P to P and a
morphism f to itself. Given f ∈ L(P ,X) (where X is an object of L and P an object of L!),
we use f ! for the corresponding element of L!(P, !X), called generalized promotion of f .

The object 1 of L induces an object of L!, still denoted as 1, namely (1, µ(0)).
Given two objects P andQ of L!, we can define an object P⊗Q of L! setting P ⊗Q = P⊗Q

and hP⊗Q = µ
(2)
P,Q (hP ⊗ hQ).

Any object P of L! can be equipped with a canonical structure of commutative comonoid.
This means that we can define a morphism wP ∈ L!(P, 1) and a morphism cP ∈ L!(P, P ⊗P )
which satisfy the commutations of Figure 1. One can check a stronger property, namely
that 1 is the terminal object of L! and that P ⊗Q (equipped with projections defined in the
obvious way using wQ and wP ) is the cartesian product of P and Q in L!; the proof consists
of rather long computations, see [12].
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P P ⊗ P

1⊗ P

P P ⊗ P (P ⊗ P )⊗ P

P ⊗ P P ⊗ (P ⊗ P )

P P ⊗ P

P ⊗ P

cP

wP ⊗ P
λP
−1

cP cP ⊗ P

cP αP,P,P

P ⊗ cP

cP

σP,PcP

Figure 1 Comonoid properties of a coalgebra

1⊗ !X ⊗ !X 1⊗X ⊗ 1

N⊗ !X ⊗ !X X

1⊗ !X ⊗ !X 1⊗ 1⊗X

N⊗ !X ⊗ !X X

1⊗ derX ⊗w!X

0⊗ !X ⊗ !X ϕ

if

1⊗ w!X ⊗ derX

n+ 1⊗ !X ⊗ !X ψ

if

Figure 2 Categorical properties of the conditional

It is also important to notice that, if the family (Pi)i∈I of objects of L! is such that the
family (Pi)i∈I admits a coproduct (

⊕
i∈I Pi, (ini)i∈I) in L, then it admits a coproduct in L!.

This coproduct P =
⊕

i∈I Pi is defined as P =
⊕

i∈I Pi, with a structure map hP defined by
the fact that, for each i ∈ I, hP ini = !ini hPi .

Object of natural numbers and conditional. We assume also that in L, the family
of objects (Xn)n∈N such that Xn = 1 for each n, has a coproduct N. For each n ∈ N,
we use n for the nth injection n ∈ L(1,N). Using the obvious iso between N and 1 ⊕ N,
we define two morphisms succ, pred ∈ L(N,N) such that succn = n+ 1, pred 0 = 0 and
predn+ 1 = n. Let X be an object of L. Let if0 ∈ L(1 ⊗ !X ⊗ !X,X) be defined as the

following composition in L: 1⊗ !X ⊗ !X 1⊗X ⊗ 1 X,
1⊗ derX ⊗w!X ϕ

where ϕ is the
obvious iso. Let if+ ∈ L(N⊗!X⊗!X,X) be defined as the following composition of morphisms

in L: N⊗ !X ⊗ !X 1⊗ 1⊗X X,
wN⊗w!X ⊗ derX ψ

where ψ is the obvious iso. Observe
that we use the fact that N has a canonical structure of !-coalgebra (as a sum of coalgebras)
inducing the weakening morphism wN. It is the only place where this property is used. Using
these two morphisms, the iso between N and 1⊕N and the fact that ⊗ commutes with sums
(because it is a left adjoint), we define a morphism if ∈ L(N⊗ !X ⊗ !X,X) such that the two
diagrams of Figure 2 commute.

Fix-point operators. For any object X, we assume to be given a morphism fixX ∈
L(!(!X ( X), X) such that the following diagram commutes in L:

!(!X ( X) !(!X ( X)⊗ !(!X ( X) (!X ( X)⊗ !X

X

c!X der!X(X ⊗ fix!
X

evfixX

MIX in Linear Logic The categorical setting introduced so far allows to interpret the
MIX-free version of classical PCF. In order to interpret the MIX extension of Section 1, it
suffices to assume that ⊥ is equipped with a structure of commutative ⊗-monoid (this is an
additional structure of the model). If we think of ⊥ as an object of scalars, which is a natural
intuition since ⊥ is the dualizing object, this means that these scalars have a multiplication,
a natural intuition again if we have linear algebra in mind. We use mix0 ∈ L(1,⊥) for the
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unit of this monoid and mix2 ∈ L(⊥⊗⊥,⊥) for its multiplication. When this structure is
added, we say that L is a model of LL with MIX.

2.1 Interpreting classical PCF
The semantics of a type σ is an object JσK of L!. We set JιK = !(N⊥), Jσ ⇒ τK = !(JσK⊥)⊗
JτK and Jσ × τK = JσK ⊕ JτK. So JιK⊥ = ?N, which will be the target object for the
interpretation of terms of type ι. Let Γ = (x1 : σ1, . . . , xn : σn) be a variable context
and ∆ = (α1 : τ1, . . . , αk; τk) be a name context, then we define two objects of L! by
JΓK = !(Jσ1K

⊥) ⊗ · · · ⊗ !(JσnK⊥) and J∆K = Jτ1K ⊗ · · · ⊗ JτkK. With any term t such that
Γ ` t : σ | ∆, we associate JtKΓ,∆ ∈ L(JΓK ⊗ J∆K, JσK⊥), with any command c such that
Γ ` c | ∆ we associate JcKΓ,∆ ∈ L(JΓK⊗ J∆K,⊥) and with any stack π such that Γ | π : σ ` ∆
we associate JπKΓ,∆ ∈ L!(JΓK⊗ J∆K, JσK). This latter has to be a coalgebra morphism because
stacks must be duplicable and discardable (think of the reduction rule (µα c) ∗ π → c [π/α]).

We give now the interpretation of expressions, starting with terms. In these definitions,
the symbol ϕ stands for an iso which can be deduced from the context. The interpretation
of a variable JxKΓ,x:σ,∆ is defined as the following composition of morphisms:

JΓK⊗ !(JσK⊥)⊗ J∆K 1⊗ JσK⊥ ⊗ 1 JσK⊥
wJΓK⊗ derJσK⊥ ⊗wJ∆K ϕ

Let n ∈ N, remember that n ∈ L(1,N) so that ?n ∈ L(?1, ?N). We define JnKΓ,∆ as the
following composition of morphisms in L:

JΓK⊗ J∆K 1 ?1 ?N
ϕ (wJΓK⊗wJ∆K) d′1 ?n

Assume next that Γ, x : σ ` t : τ | ∆ so that we have JtKΓ,x:σ,∆ ϕ ∈ L(JΓK ⊗ J∆K ⊗
!(JσK⊥), JτK⊥). We set Jλxσ tKΓ,∆ = cur(JtKΓ,x:σ,∆ ϕ) ∈ L(JΓK ⊗ J∆K, !(JσK⊥) ( JτK⊥) and
we have !(JσK⊥)( JτK⊥ = (!(JσK⊥)⊗ JτK)⊥ = Jσ ⇒ τK⊥ up to canonical isos.

Assume that Γ ` s : σ | ∆ and Γ ` t : τ | ∆ so that we have JsKΓ,∆ ∈ L(JΓK ⊗
J∆K, JσK⊥) and JtKΓ,∆ ∈ L(JΓK ⊗ J∆K, JτK⊥). So we set J〈s, t〉KΓ,∆ = 〈JsKΓ,∆, JtKΓ,∆〉 ∈
L(JΓK⊗J∆K, JσK⊥ & JτK⊥) which has the prescribed codomain since JσK⊥ & JτK⊥ = Jσ × τK⊥ .

Assume that Γ ` c | α : σ,∆ so that we have JcKΓ,α:σ,∆ ϕ ∈ L(JΓK⊗ J∆K⊗ JσK,⊥). Then
we set Jµασ cKΓ,∆ = cur(JcKΓ,α:σ,∆ ϕ) ∈ L(JΓK⊗ J∆K, JσK⊥).

Assume that Γ, x : σ ` t : σ | ∆ so that we have JtKΓ,x:σ,∆ ϕ ∈ L(JΓK⊗J∆K⊗!(JσK⊥), JσK⊥).
We set Jfix xσ tKΓ,∆ = fixJσK⊥ curJtKΓ,x:σ,∆ ϕ ∈ L(JΓK⊗ J∆K, JσK⊥).

Concerning commands, assume that Γ ` t : σ | ∆ and that Γ | π : σ ` ∆ so that we
have JtKΓ,∆ ∈ L(JΓK ⊗ J∆K, JσK⊥) and JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JσK) and therefore JπKΓ,∆ ∈
L(JΓK⊗ J∆K, JσK). We define Jt ∗ πKΓ,∆ as the following composition of morphisms in L

JΓK⊗ J∆K JΓK⊗ J∆K⊗ JΓK⊗ J∆K JσK⊥ ⊗ JσK ⊥
cJΓK⊗J∆K JtK⊗ JπK ev

Let us come now to stacks. The morphism JαKΓ,α:σ,∆ is defined as the following composi-
tion of morphisms in L!

JΓK⊗ JσK⊗ J∆K 1⊗ JσK⊗ 1 JσK
wJΓK⊗JσK⊗ wJ∆K ϕ



8 Classical PCF

Remember that we have defined succ, pred ∈ L(N,N), so that we have !(succ⊥), !(pred⊥) ∈
L!(!(N⊥), !(N⊥)). Assume that Γ | π : ι ` ∆ so that JπKΓ,∆ ∈ L!(JΓK⊗ J∆K, JιK), and we set
Jsucc · πKΓ,∆ = !(succ⊥) JπKΓ,∆ and Jpred · πKΓ,∆ = !(pred⊥) JπKΓ,∆; both morphisms belong
to L!(JΓK⊗ J∆K, JιK).

Remember also that, for any object X of L, we have defined if ∈ L(N ⊗ !X ⊗ !X,X).
Using ∗-autonomy and isos induced by the monoidal structure of L, we can canonically
turn this morphism into if ′ ∈ L(X⊥ ⊗ !X ⊗ !X,N⊥). Assume that X = P⊥ where P is
an object of L!. Then we can set If = if ′! ∈ L!(P ⊗ !(P⊥) ⊗ !(P⊥), !(N⊥)). Assume that
Γ | π : σ ` ∆ and Γ ` ti : σ | ∆ for i = 1, 2. Then we have JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JσK)
and Jt1K!

Γ,∆, Jt2K
!
Γ,∆ ∈ L!(JΓK⊗ J∆K, !JσK⊥), and we define Jif(t1, t2, π)KΓ,∆ as the following

composition of morphisms in L!, using a ternary version of the contraction morphism

JΓK⊗ J∆K (JΓK⊗ J∆K)⊗3 JσK⊗ !(JσK⊥)⊗ !(JσK⊥) !(N⊥)
c(3)
JΓK⊗J∆K JπK⊗ Jt1K! ⊗ Jt2K! If

Assume that Γ ` π : τ | ∆ and that Γ ` t : σ | ∆ so that JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JτK)
and JtK!

Γ,∆ ∈ L!(JΓK ⊗ J∆K, !(JσK⊥)), we set Jarg(t) · πKΓ,∆ = (JtK!
Γ,∆ ⊗ JπKΓ,∆) cJΓK⊗J∆K ∈

L!(JΓK⊗ J∆K, Jσ ⇒ τK).
Assume last that Γ | π : σ ` ∆ so that JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JσK) and we can set

Jpr1 · πK = in1 JπKΓ,∆ ∈ L!(JΓK⊗ J∆K, JσK⊕ JτK) and Jpr2 · πK is defined similarly.
Assume now that L is a model of LL with MIX, see Section 2. Here is the interpretation

of the MIX constructs of Section 1. If c = err, with Γ ` err | ∆, then JcKΓ,∆ = mix0 wJΓK⊗J∆K.
If c = c1‖c2 with Γ ` ci | ∆ for i = 1, 2, we set JcKΓ,∆ = mix2 (Jc1K⊗ Jc2K) cJΓK⊗J∆K.

I Theorem 3 (Soundness). Assume that Γ ` c | ∆ and that c→ c′. Then JcKΓ,∆ = Jc′KΓ,∆.

2.2 A continuation category
We recall briefly the connection between this LL-based approach and the Lafont-Reus-
Streicher (LRS) [15] approach of continuation categories, see [11] for more details2. Let
P = L!, we have seen that P is a cocartesian and cartesian category, with ⊕ as coproduct
and ⊗ as product. As object of responses, we take Σ = !⊥. Let P and Q be objects of
P. Then we have P(P ⊗Q,Σ) = L!(P ⊗Q, !⊥) ' L(P ⊗Q,⊥) because !_ is right adjoint
to U. Hence P(P ⊗Q,Σ) ' L(P ,Q⊥) ' L!(P, !(Q⊥)) by the same adjunction. So setting
ΣQ = !(Q⊥) we have P(P ⊗Q,Σ) ' P(P,ΣQ). Hence Σ is a baseable object of P.

The category ΣP of negated objects has the same objects as P , and ΣP(P,Q) = P(ΣP ,ΣQ).
It is a cartesian closed category with product P × Q = P ⊕ Q and object of morphisms
P ⇒ Q = ΣP ⊗Q as easily checked, using the fact that Σ is baseable. In the LRS setting,
interpretation of types is done in P, setting Jσ ⇒ τK = ΣJσK ⊗ JτK and, given contexts
Γ = (x1 : σ1, . . . , xn : σn) and ∆ = (α1 : τ1, . . . , αk : τk), a term t such that Γ ` t : σ | ∆ is
interpreted as JtKΓ,∆ ∈ P(ΣJσ1K×· · ·×ΣJσnK× Jτ1K×· · ·× JτkK,ΣJσK), a command c such that
Γ ` c | ∆ is interpreted as JcKΓ,∆ ∈ P(ΣJσ1K×· · ·×ΣJσnK× Jτ1K×· · ·× JτkK,Σ) and a stack π
such that Γ | π : τ ` ∆ is interpreted as JπKΓ,∆ ∈ P(ΣJσ1K×· · ·×ΣJσnK×Jτ1K×· · ·×JτkK, JτK)
and it is easily checked again that this interpretation is exactly the same as the one described
above, up to the identification of P(P, !X) with L(P ,X).

2 This paper establishes the correspondence with Selinger control categories [14] which are equivalent to
continuation categories. They use therefore a negative translation whereas we use a positive one.
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3 Relational semantics

In this most simple and canonical interpretation of LL, L is the category Rel whose
objects are sets3 and where Rel(X,Y ) = P(X × Y ), composition being defined as the
usual composition of relations. We recall that the tensor unit is 1 = {∗} (arbitrary one-
point set), that X ⊗ Y = X × Y with tensor product of morphisms defined accordingly,
that X ( Y = X × Y (and evaluation defined in the obvious way), that ⊥ = 1 so that
X⊥ = X up to canonical iso. This category is countably cartesian, with cartesian product˘
i∈I Xi =

⋃
i∈I({i} × Xi) (disjoint union) and projections defined in the obvious way

(pri = {((i, a), a) | a ∈ Xi}). It is cocartesian with coproducts defined exactly as products
and injections given by ini = {(a, (i, a)) | a ∈ Xi}. It has an exponential functor defined on
objects by !X =Mfin(X), the set of all finite multisets4 of elements of X. On morphisms, this
functor is defined by !f = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ f for each i}. Dereliction
(counit) is given by derX = {([a], a) | a ∈ X} and digging (comultiplication) is given by
digX = {(m1 + · · ·+mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ !X}. The symmetric monoidality isos
are given by m(0) = {(∗, [])} and

m(2)
X,Y = {(([a1, . . . , an], [b1, . . . , bk]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bk)]) |

a1, . . . , an ∈ X and b1, . . . , bk ∈ Y }

Let P = (P , hP ) be an object of Rel! and X be an object of Rel. Given f ∈
Rel(P ,X), the generalized promotion f ! ∈ Rel!(P, !X) is given by f ! = {(b, [a1, . . . , an]) |
∃b1, . . . , bn ∈ P (b, [b1, . . . , bn]) ∈ hP and (bi, ai) ∈ f for each i}. The n-ary contraction
c(n)
P ∈ Rel!(P, P⊗n) is given by c(n)

P = {(a, (a1, . . . , an)) | (a, [a1, . . . , an]) ∈ hP }. In particu-
lar (0-ary case) we have wP = {(a, ∗) | (a, []) ∈ hP }. The next easy lemma is essential for
computing the interpretation of expressions, using eg. the formalism of Section 3.1.

I Lemma 4. Let P1 and P2 be objects of Rel!. One has ((a, b), [(a1, b1), . . . , (an, bn)]) ∈
hP1⊗P2 iff (a, [a1, . . . , an]) ∈ hP1 and (b, [b1, . . . , bn]) ∈ hP2 . And, given l ∈ {1, 2}, one has
((l, a), [b1, . . . , bn]) ∈ hP1⊕P2 iff, for each i = 1, . . . , n, one has bi = (l, ai) for some ai, and
moreover (a, [a1, . . . , an]) ∈ hPl .

For each set X, we can define a fix-point operator as a least fix-point wrt. morphism
inclusion as follows: fixX = {(m1 + · · ·+mk + [([a1, . . . , ak], a)], a) | ∀i (mi, ai) ∈ fixX}.

The object of natural numbers is the set N, the morphisms succ and pred are given by
succ = {(n, n+1) | n ∈ N}, pred = {(0, 0}∪{(n+1, n) | n ∈ N}. When X = P⊥ where P is an
object of Rel!, the corresponding coalgebra morphism IfX ∈ Rel!(P⊗!P⊥⊗!P⊥ , !N⊥) is given
by IfX = {(a, [a1, . . . , ak], [ak+1, . . . , al], [n1, . . . , nl]) | n1 = · · · = nk = 0 and nk+1, . . . , nl 6=
0 and (a, [a1, . . . , al]) ∈ hP }. This model of LL is also a model of MIX. It suffices to take
mix0 = {(∗, ∗)} and mix2 = {((∗, ∗), ∗)))} and these morphisms define clearly a structure of
commutative ⊗-monoid on ⊥.

So a typing variable context Γ = (x1 : σ1, . . . , xn : σn) is interpreted as a set of
tuples (m1, . . . ,mn) where mi ∈ Mfin(JσiK) for each i, a typing name context ∆ = (α1 :
τ1, . . . , αk : τk) is interpreted as a set of tuples (a1, . . . , ak) where aj ∈ JτjK for each j.

3 All sets can be assumed to be at most countable, this is a very reasonable assumption which is preserved
by all the constructions that we introduce.

4 We use [a1, . . . , ak] for the multiset whose elements are a1, . . . , an, taking multiplicities into account
and we use m+m′ for the disjoint union of the multiset m and m′ which is a natural notation since
multisets are N-valued functions. Similarly if k ∈ N and m is a multiset, km = m+ · · ·+m (k times).
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With these notations for Γ and ∆, if Γ ` M : τ | ∆ then JMKΓ,∆ is a set of tuples
(m1, . . . ,mn, a1, . . . , ak, a) where a ∈ JτK, if Γ | π : σ ` ∆ then JπKΓ,∆ is a set of tuples
(m1, . . . ,mn, a1, . . . , ak, a) where a ∈ JσK, and if Γ ` c | ∆ then JcKΓ,∆ is a set of tuples
(m1, . . . ,mn, a1, . . . , ak). In all cases mi ∈Mfin(JσiK) and aj ∈ JτjK for each i and j.

3.1 Interpretation as a type deduction system
We introduce a typing system extending the one of [16] for representing the relational
denotational semantics described above. A semantic variable context is a sequence Φ = (x1 :
m1 : σ1, . . . , xn : mn : σn) where mi ∈ !JσiK⊥ for each i and variables are pairwise distinct.
A semantic name context is a sequence Ψ = (α1 : a1 : τ1, . . . , αk : ak : τk) where ai ∈ JτiK for
each i and the names are pairwise distinct. We also define the underlying typing contexts
u(Φ) = (x1 : σ1, . . . , xn : σn) and u(Ψ) = (α1 : τ1, . . . , αk : τk) as well as the underlying
tuples 〈Φ〉 = (m1, . . . ,mn) and 〈Ψ〉 = (a1, . . . , ak). We extend multiset addition to tuples of
multisets componentwise.

One has 〈Φ〉 ∈ Ju(Φ)K and similarly for Ψ. Given a variable context Γ = (x1 : σ1, . . . , xn :
σn) one defines the corresponding zero semantic context 0Γ = (x1 : [] : σ1, . . . , xn : [] : σn).

We define now this typing system. Its main property (proven by an easy induction on
expressions) is that Φ ` t : a : σ | Ψ iff (〈Φ〉, 〈Ψ〉, a) ∈ JtKu(Φ),u(Ψ) and Φ | π : a : σ ` Ψ
iff (〈Φ〉, 〈Ψ〉, a) ∈ JπKu(Φ),u(Ψ), and also Φ ` c | Ψ iff (〈Φ〉, 〈Ψ〉) ∈ JcKu(Φ),u(Ψ). Here are the
axioms and deduction rules:

0Γ, x : [a] : σ ` x : a : σ | Ψ 0Γ | α : a : σ ` α : a : σ,Ψ

if (〈Ψ〉, 0Ju(Ψ)K) ∈ hJu(Ψ)K.

Φ1 ` t : a : σ | Ψ1 Φ2 | π : a : σ ` Ψ2

Φ ` t ∗ π | Ψ

if u(Φi) = u(Φ) and u(Ψi) = u(Ψ) for i = 1, 2, 〈Φ〉 = 〈Φ1〉+ 〈Φ2〉 and (〈Ψ〉, [〈Ψ1〉, 〈Ψ2〉]) ∈
hJ∆K.

Φ, x : m : σ ` t : b : τ | Ψ
Φ ` λxσ t : (m, b) : σ ⇒ τ | Ψ

Φ ` s : a : σ | Ψ u(Φ) ` t : τ | u(Ψ)
Φ ` 〈s, t〉 : (1, a) : σ × τ | Ψ

u(Φ) ` s : σ | u(Ψ) Φ ` t : b : σ | Ψ
Φ ` 〈s, t〉 : (2, b) : σ × τ | Ψ

Φ0 | π : b : τ ` Ψ0 (Φi ` t : ai : σ | Ψi)ki=1
Φ | arg(t) · π : ([a1, . . . , ak], b) : σ ⇒ τ ` Ψ

Φ0, x : [a1, . . . , ak] : σ ` t : a : σ | Ψ0 (Φi ` fix xσ t : ai : σ | Ψi)ki=1
Φ ` fix xσ t : a : σ | Ψ

if u(Φi) = u(Φ), u(Ψi) = u(Ψ) for each i = 0, . . . , k, 〈Φ〉 = 〈Φ0〉 + · · · + 〈Φk〉 and
(〈Ψ〉, [〈Ψ0〉, . . . , 〈Ψk〉]) ∈ hJu(Ψ)K, for the two last deduction rules.

Φ | π : a : σ ` Ψ
Φ | pr1 · π : (1, a) : σ × τ ` Ψ

Φ | π : b : τ ` Ψ
Φ | pr2 · π : (2, b) : σ × τ ` Ψ

Φ ` c | α : a : σ,Ψ
Φ ` µασ c : a : σ | Ψ

(〈Ψ〉, 0Ju(Ψ)K) ∈ hJu(Ψ)K n ∈ N
0Γ ` n : n : ι | Ψ

Φ | π : [n1 + 1, . . . , nk + 1] : ι ` Ψ
Φ | succ · π : [n1, . . . , nk] : ι ` Ψ

Φ | π : k[0] + [n1, . . . , nl] : ι ` Ψ
Φ | pred · π : k[0] + [n1 + 1, . . . , nl + 1] : ι ` Ψ
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Φ0 | π : a : σ ` Ψ0 (Φi ` t1 : ai : σ | Ψi)ki=1 (Φi ` t2 : ai : σ | Ψi)li=k+1

Φ | if(t1, t2) · π : ι : k[0] + [n1 + 1, . . . , nl−k + 1] ` Ψ

if (a, [a1, . . . , al]) ∈ hJσK, u(Φi) = u(Φ), u(Ψi) = u(Ψ) for each i, 〈Φ〉 = 〈Φ0〉+ · · ·+ 〈Φl〉 and
(〈Ψ〉, [〈Ψ0〉, . . . , 〈Ψl〉]) ∈ hJu(Ψ)K. For classical PCF with MIX, we add the rules:

(〈Ψ〉, 0Ju(Ψ)K) ∈ hJu(Ψ)K

0Γ ` err | Ψ
Φ1 ` c1 | Ψ1 Φ2 ` c2 | Ψ2

Φ ` c1‖c2 | Ψ

if u(Φi) = u(Φ), u(Ψi) = u(Ψ) for i = 1, 2, 〈Φ〉 = 〈Φ1〉+〈Φ2〉 and (〈Ψ〉, [〈Ψ1〉, 〈Ψ2〉]) ∈ hJu(Ψ)K.

4 Adequacy

Our goal here is to prove that, in the full calculus (including the MIX constructions), if
an almost closed command has a non-empty relational semantics, then its →-reduction
terminates. In other words, an almost closed command typable in the semantic typing system
is →-normalizing. Let N be the set of all →-normalizing almost closed commands.

Let us say that a term t (resp. a stack π) is almost closed of type σ if ` t : σ | ∆
(resp. | π : σ ` ∆) for some ground name context ∆ (that is, for any ground name context
where all free names appear). Observe that if t and π are an almost closed term and an
almost closed stack of the same type, then t ∗ π is an almost closed command.

By induction on σ, we define, for each a ∈ JσK, a set ‖a‖σ of almost closed stacks of
type σ. We use the notation |a|σ for the set of all almost closed terms t of type σ such that
t ∗ π ∈ N for all π ∈ ‖a‖σ. Given a1, . . . , an ∈ JσK, we set |[a1, . . . , an]|σ =

⋂n
i=1 |ai|σ.

The most important part of the definition is the base case: given m = [n1, . . . , nk] ∈
JιK = !(N⊥), we define ‖m‖ι as the set of all almost closed stacks π of type ι such that
∀i ∈ {1, . . . , k} ni ∗ π ∈ N . This set contains all names (considered of type ι) and hence is
never empty.

The inductive step follows the general pattern of classical reducibility. Let σ and τ be
types, let a1, . . . , an ∈ JσK and b ∈ JτK. We set

‖([a1, . . . , an], b)‖σ⇒τ =
{

arg(t) · π | t ∈ |[a1, . . . , an]|σ and π ∈ ‖b‖τ
}

Let a ∈ JσK, we set ‖(1, a)‖σ×τ = {pr1 · π | π ∈ ‖a‖σ} and ‖(2, b)‖σ×τ is defined similarly
for b ∈ JτK.

I Theorem 5 (Adequacy). Let Φ = (x1 : m1 : σ1, . . . , xn : mn : σn) and Ψ = (α1 : a1 :
τ1, . . . , αk : ak : τk) be semantic contexts. Let σ be a type, t be a term, c be a command and
π be a stack such that

Φ ` t : a : σ | Ψ
resp. Φ ` c | Ψ,
resp. Φ | π : a : σ ` Ψ.

Then, for all t1 ∈ |m1|σ1 ,. . . , tn ∈ |mn|σn and all π1 ∈ ‖a1‖τ1 ,. . . , πk ∈ ‖ak‖τk , one has
t [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ |a|σ
resp. c [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ N ,
resp. π [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ ‖a‖σ.

So, if an almost closed command c has a non-empty interpretation, it normalizes for the→-
reduction to a uniquely defined normal almost closed command which can easily be retrieved
from the semantics of c. For instance if c satisfies ` c | ∆ where ∆ = (α1 : ι, α2 : ι, α3 : ι),
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and if we have ` c | α1 : [0, 7] : ι, α2 : [3] : ι, α3 : [] : ι, then c normalizes by Theorem 8.
Its normal form c0 satisfies ` c0 | α1 : ι, α2 : ι, α3 : ι by Proposition 1 and hence must be
of shape (n1

1 ∗ α1)‖ · · · ‖(nl11 ∗ α1)‖(n1
2 ∗ α2)‖ · · · ‖(nl22 ∗ α2)‖(n1

3 ∗ α3)‖ · · · ‖(nl33 ∗ α3) up to
associativity and commutativity of ‖, by the final considerations of Section 1. By definition of
the interpretation, Jc0K(),∆ = {([n1

1, . . . , n
l1
1 ], [n1

2, . . . , n
l2
2 ], [n1

3, . . . , n
l3
3 ])}. But by Theorem 3

we have JcK(),∆ = Jc0K(),∆ and hence we must have l1 = 2, l2 = 1, l3 = 0, n1
1 = 0, n2

1 = 7 (or
conversely) and n2

1 = 3. This adequacy property entails that denotational equivalence of
terms implies their observational equivalence (to be suitably defined)5.

The considerations above show that the interpretation of an almost closed command
contains at most one element. This can also be proved purely semantically, endowing the
relational semantics with a binary coherence relation.

If c does not contain MIX constructs, we know that it will reduce to a normal command
of shape n ∗ α, but the model does not reflect this property that we proved syntactically
in Section 1. We introduce now a light refinement of the relational model which takes this
uniqueness of values property into account, and therefore rejects the MIX constructs.

5 A semantic account of uniqueness of values

This model originates from the observation made independently by several authors6 at an
early stage of the development of LL that, in a multiplicative proof-net, there is a simple
relation between the number of ⊗ and of `.

A weighted set is a pair X = (|X|, γX) where |X| is a set and γX : |X| → Z is a function.
If we think of a as a proof tree in (constant-free) multiplicative LL (MLL) with only one
conclusion (the root of the tree), then γX(a) = p − t where p is the number of ` and t is
the number of ⊗ binary connectives occurring in a. If such a multiplicative proof tree can
be sequentialized into a sequent calculus proof in MLL, then p − t = 1, see eg. [6], pages
250-251 (the converse is not true). This intuition explains the next definitions. One sets
C(X) = {x ⊆ |X| | ∀a ∈ x γX(a) = 1}.

Let RelW be the category of weighted sets and such that RelW(X,Y ) = {t ⊆ |X|×|Y | |
∀(a, b) ∈ t γX(a) = γY (b)}. Then IdX = {(a, a) | a ∈ |X|} ∈ RelW(X,X) and the relational
composition of two morphisms is a morphism, so RelW is a category.

One defines the weighted set 1 by |1| = {∗} (a singleton) and γ1(∗) = 1. Given
two weighted sets X1 and X2, one defines X1 ⊗ X2 by |X1 ⊗X2| = |X1| × |X2| and
γX1⊗X2(a1, a2) = γX1(a1) + γX2(a2) − 1. Given ti ∈ RelW(Xi, Yi) for i = 1, 2, one
defines t1 ⊗ t2 as in Rel, then it is clear that t1 ⊗ t2 ∈ RelW(X1 ⊗X2, Y1 ⊗ Y2) and that
this operation is a functor. Moreover, the usual bijections |1⊗X| → |X|, |X ⊗ 1| → |X|
and |(X1 ⊗X2)⊗X3| → |X1 ⊗ (X2 ⊗X3)| are isos in RelW. Indeed we have γ1⊗X(∗, a) =
1 + γX(a)− 1 = γX(a) and γ(X1⊗X2)⊗X3((a1, a2), a3) = γX1(a1) + γX2(a2) + γX3(a3)− 2 =
γX1⊗(X2⊗X3)(a1, (a2, a3)).

In that way, we have equipped RelW with a structure of symmetric monoidal category.
We check that it is closed. Given two weighted sets X and Y , let X ( Y = (|X|×|Y |, γX(Y )
and γX(Y (a, b) = γY (b)− γX(a) + 1. Observe that C(X ( Y ) = RelW(X,Y ).

Then ev = {(((a, b), a), b) | a ∈ |X| and b ∈ |Y |} belongs to RelW((X ( Y ) ⊗ X,Y ).
Indeed we have γ(X(Y )⊗X((a, b), a) = γY (b)− γX(a) + 1 + γX(a)− 1 = γY (b).

5 The converse implication (full abstraction) is far from being true.
6 At least: Girard, Danos and Regnier, Métayer, Fleury and Rétoré, Guerrini. . .
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Let Z be another weighted set and let ((c, a), b) ∈ |(Z ⊗X)( Y |. Then we have
γ(Z⊗X)(Y ((c, a), b) = γY (b)−(γZ(c)+γX(a)−1)+1 = γY (b)−γZ(c)−γX(a)+2. On the other
hand we have γZ((X(Y )(c, (a, b)) = (γY (b)−γX(a)+1)−γZ(c)+1 = γY (b)−γZ(c)−γX(a)+2
and therefore, given t ∈ RelW(Z ⊗ X,Y ), we have cur(t) = {(c, (a, b)) | ((c, a), b) ∈ t} ∈
RelW(Z,X ( Y ). This shows that RelW is closed.

Let ⊥ = ({∗}, γ⊥) with γ⊥(∗) = −1. Then we have γX(⊥(a, ∗) = −1 − γX(a) + 1 =
−γX(a). It follows that the canonical morphism ηX ∈ RelW(X, (X ( ⊥)( ⊥) given by
ηX = cur(ev σX,X(⊥) (where σ is the symmetry natural iso associated with the symmetric
monoidal closed structure of RelW) is an iso in RelW. This shows that, equipped with ⊥
as dualizing object, the symmetric monoidal closed category RelW is *-autonomous.

The co-tensor product, called par, is the operation defined by X ` Y = (X⊥ ⊗ Y ⊥)⊥
and is characterized by |X ` Y | = |X| × |Y | and γX`Y (a, b) = γX(a) + γY (b) + 1.

Let X⊥ = (|X|,−γX). Then X⊥ is naturally isomorphic to X ( ⊥ and defines a
strictly involutive functor RelW → RelWop. Its action on morphisms is contraposition:
t⊥ = {(b, a) | (a, b) ∈ t} ∈ RelW(Y ⊥ , X⊥) for any t ∈ RelW(X,Y ).

The category RelW is cartesian and cocartesian. Given a family (Xi)i∈I of objects,
let X = &i∈I Xi be defined by |X| =

⋃
i∈I{i} × |Xi| and γX(i, a) = γXi(a). Let pri =

{((i, a), a) | a ∈ |Xi|} ∈ RelW(X,Xi). Then (X, (pri)i∈I) is a cartesian product of the
family (Xi)i∈I . The coproduct is defined in a completely similar way. Observe that the
product of the empty family (the terminal object) is > = (∅, ∅), which is also the initial
object of RelW.

Let !X = (Mfin(|X|), γ!X) where

γ!X([a1, . . . , an]) = γX⊗n(a1, . . . , an) = −n+ 1 +
n∑
i=1

γX(ai) = 1 +
n∑
i=1

(γX(ai)− 1) .

Given t ∈ RelW(X,Y ), it is clear that !t ∈ RelW(!X, !Y ) where !t is defined as in Rel.
So !_ is a functor RelW→ RelW. We equip this functor with a structure of comonad.

For each object X, let derX = {([a], a) | a ∈ |X|}. Since γ!X([a]) = γX(a), we have
derX ∈ RelW(!X,X). The naturality of derX is obvious (it already holds in Rel).

One defines also digX = {(m1 + · · ·+mk, [mi, . . . ,mk]) | k ∈ N and ∀imi ∈Mfin(|X|)}.
Let m1, . . . ,mk ∈Mfin(|X|), and let us write mi = [ai1, . . . , aiki ]. We have

γ!!X([m1, . . . ,mk]) = 1 +
k∑
i=1

(γ!X(mi)− 1) = 1 +
k∑
i=1

(1 +
( ki∑
j=1

γX(aij)− 1
)
− 1)

= γ!X(m1 + · · ·+mk)

and therefore digX ∈ RelW(!X, !!X). One proves easily that (!X, derX , digX) defines a
comonad (the definition of this structure is the same as in Rel).

To conclude that RelW is a model of LL, we check that the standard Seely isos of Rel
are morphisms in RelW. The 0-ary iso is m(0) = {(∗, [])} and belongs to RelW(1, !>) since
γ!>([]) = 1. The binary version is m(2)

X,Y = {(([a1, . . . , an], [b1, . . . , bp]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bp)]) |
∀i ai ∈ |X| and ∀j bj ∈ |Y |} and we prove that m(2)

X,Y ∈ RelW(!X ⊗ !Y , !(X & Y )): indeed,
with the notations of this definition, we have

γ!X⊗!Y ([a1, . . . , an], [b1, . . . , bp]) = 1 +
n∑
i=1

(γX(ai)− 1) + 1 +
p∑
j=1

(γY (bj)− 1)− 1

= 1 +
n∑
i=1

(γX(ai)− 1) +
p∑
j=1

(γY (bj)− 1) = γ!(X&Y )([(1, a1), . . . , (1, an), (2, b1), . . . , (2, bp)]))
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This ends the description of the purely logical structures of the model.
The object N of natural numbers (in the sense of Section 2) is the coproduct of ω copies

of 1, so |N| = N and γN(n) = 1 for each n ∈ N. The morphisms succ, pred and if as defined in
Section 3 in the category Rel are also morphisms in RelW simply because they are defined
using the universal property of N. Last, for any object X of RelW, the fix-point operator
fix|X| as defined in Section 3 is also a morphism !(!X ( X)→ X in RelW.

So RelW is a model of classical PCF in the sense of Section 2.1. Let JσKw be the
interpretation of the type σ in the category RelW!, we have |JσKw| = JσK and hJσKw = hJσK

(as relations). If e is an expression typable in contexts Γ, ∆, we denote with JeKw
Γ,∆ the

interpretation of e in RelW (if e is a command or a term) or in RelW! (if e is a stack).
I Proposition 6. For any expression of classical PCF e typable in contexts Γ and ∆, one has
JeKw

Γ,∆ = JeKΓ,∆ (as relations).
This is due to the fact that the basic LL constructs are interpreted by the same relations in
both models.

Rejection of MIX and uniqueness of values. Observe that mix0 = {(∗, ∗)} ∈ Rel(1,⊥)
and mix2 = {((∗, ∗), ∗)} ∈ Rel(⊥ ⊗ ⊥,⊥) are not morphisms in RelW: for mix0, this is
due to the fact that γ1(∗) = 1 and γ⊥(∗) = −1 and for mix2, this is due to the fact that
γ⊥⊗⊥(∗, ∗) = −3.

Let ∆ = (α1 : ι, . . . , αk : ι) be a ground name context. Then an almost closed command
c such that ` c | ∆ has interpretation JcK(),∆ ∈ RelW(JιKw ⊗ · · · ⊗ JιKw,⊥), that is JcK(),∆ ∈
RelW(1, ?N` · · ·`?N). Let m1, . . . ,mk ∈ |?N|, then we have γ?N`···`?N(m1, . . . ,mk) =
γ?N (m1)+· · ·+γ?N (mk)+k−1 = 2(#m1)−1+· · ·+2(#mk)−1+k−1 = 2(#m1+· · ·+#mk)−1.
So any element (m1, . . . ,mk) of JcK(),∆ must satisfy 2(#m1 + · · ·+ #mk)− 1 = 1, that is
#m1 + · · ·+ #mk = 1. Hence there must exist i ∈ {1, . . . , k} such that #mi = 1 and mj = []
for j 6= i. We retrieve semantically the fact that c is single valued.

Conclusion

We have developed a semantic investigation of classical PCF, presented in Herbelin’s very
pleasant λµ format. We have recalled the general LL semantic framework for this calculus,
based on Girard’s categorical semantics of LC, and its connection with Lafont-Reus-Streicher
continuation categories. We have outlined a simple adequacy proof for the relational model
and proposed a model which enforces uniqueness of values, rejecting the extension of classical
PCF by a parallel composition construct based on the MIX rule of LL. In a longer version
of this paper, we shall show that the Eilenberg-Moore category of the Scott semantics of
LL admits a very simple description. The relational model of LL is also deeply related with
useful extensions of LL (systems with bounded complexity, differential LL etc) which could
suggest interesting extensions of classical PCF. For these reasons, we think that the LL-based
semantics of classical PCF is worth being further studied.
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6 Appendix: proof of the Adequacy Theorem

I Lemma 7. Let m,m′ ∈ !(JσK⊥), one has |m + m′|σ ⊆ |m|σ. Let a, a1, . . . , an ∈ JσK be
such that (a, [a1, . . . , an]) ∈ hJσK. Then ‖a‖σ ⊆ ‖ai‖σ for each i.

Proof. The first statement results directly from the definition, and the second one is proved
by a simple induction on types. �

I Theorem 8. Let Φ = (x1 : m1 : σ1, . . . , xn : mn : σn) and Ψ = (α1 : a1 : τ1, . . . , αk : ak :
τk) be semantic contexts. Assume that
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Φ ` t : a : σ | Ψ
resp. Φ ` c | Ψ,
resp. Φ | π : a : σ ` Ψ.

Then, for all t1 ∈ |m1|σ1 ,. . . , tn ∈ |mn|σn and all π1 ∈ ‖a1‖τ1 ,. . . , πk ∈ ‖ak‖τk , one has
t′ = t [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ |a|σ

resp. c′ = c [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ N ,
resp. π′ = π [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ ‖a‖σ.

Proof. By induction on the semantic typing derivations for t, c or π. If e is an expression
(term, command or stack), we use e′ for the expression e [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk].

If t = xi, we must have σi = σ, mi = [a] and since t′ = ti, we conclude straightforwardly
that t′ ∈ |a|σ.

Assume that t = λxτ s, σ = (τ ⇒ ϕ) and a = (m, b) and the premise of the last rule of
the typing derivation for t is Φ, x : m, τ ` s : b : Ψ |. We must prove that t′ ∗ π ∈ N for
all π ∈ ‖(m, b)‖σ⇒τ . But such a π is of shape π = arg(u) · ρ with u ∈ |m|σ and ρ ∈ ‖b‖τ .
So we have t′ ∗ π → s′ [u/x] ∗ ρ. By inductive hypothesis, we have s′ [u/x] ∈ |b|τ and hence
s′ [u/x] ∗ ρ ∈ N from which it follows that t′ ∗ π ∈ N as required.

Assume that σ = σ1 × σ2, t = 〈s1, s2〉 and a = (1, b1) with Φ ` s1 : b1 : σ1 | Ψ. We must
prove that t′ = 〈s′1, s′2〉 ∈ |(1, b1)|σ1×σ2 . So let π ∈ ‖(1, b1)‖σ1×σ2 , this means that π = pr1 · ρ
for some ρ ∈ ‖b1‖σ1 . We have t′ ∗ π → s′1 ∗ ρ ∈ N by inductive hypothesis. The case where
a = (2, b2) is similar.

Assume that t = µασ c so that the premise of the last rule of the last rule of the typing
derivation is Φ ` c | α : a : σ,Ψ. We must show that t′ ∗ π ∈ N for all π ∈ ‖a‖σ. But
t′ ∗ π → c′ [π/α] ∈ N by inductive hypothesis and the expected conclusion follows.

Assume t = fix xσ s so that there are a1, . . . , al such that the premises of the last rule of
the typing derivation are Φ0, x : [a1, . . . , al] : σ ` s : a : σ | Ψ0 and Φi ` t : ai : σ | Ψi for
i = 1, . . . , l. Moreover, we have 〈Φ〉 =

∑l
i=0〈Φi〉 and (〈Ψ〉, [〈Ψi〉 | i = 0, . . . , l]) ∈ hJu(Ψ)K. Let

π ∈ ‖a‖σ, we must prove that t′ ∗ π ∈ N . Let us write Φi = (x1 : mi
1 : σ1, . . . , xn : mi

n : σn)
and Ψi : (α1 : ai1 : τ1, . . . , αk : aik : τk) so that, with the notations of the statement of the
Theorem, we have mj =

∑l
i=1m

i
j for j = 1, . . . , n and we have (ar, [air | i = 0, . . . , l]) ∈ hJτrK

for r = 1, . . . , k. By Lemma 7, we can therefore apply the inductive hypothesis and we get
s′ [t′/x] ∈ |a|σ. Let π ∈ ‖a‖σ we have s′ [t′/x] ∗ π ∈ N and it follows that t′ ∗ π ∈ N since
t′ ∗ π → s′ [t′/x] ∗ π.

Assume that c = t∗π so that the premises of the last rule of the typing derivation are Φ1 |
π : a : σ ` Ψ1 and Φ2 | t : a : σ ` Ψ2 with 〈Φ〉 = 〈Φ1〉+ 〈Φ2〉 and (〈Ψ〉, 〈Ψ1〉, 〈Ψ1〉) ∈ hJu(Ψ)K.
As before, using Lemma 7 we can apply the inductive hypothesis which yields t′ ∈ |a|σ and
π′ ∈ ‖a‖σ. Therefore c′ ∈ N as required.

Assume that c = c1‖c2 so that the premises of the last rule of the typing derivation are
Φi ` ci | Ψi for i = 1, 2 with 〈Φ〉 = 〈Φ1〉+ 〈Φ2〉 and (〈Ψ〉, 〈Ψ1〉, 〈Ψ1〉) ∈ hJu(Ψ)K. As before,
using Lemma 7 we can apply the inductive hypothesis which yields c′i ∈ N for i = 1, 2 and
hence c′ = c′1‖c′2 ∈ N .

If c = err, there is nothing to prove since c′ = c ∈ N .
Assume that π = arg(t) · ρ with premises of the last rule of the typing derivation

Φ0 | ρ : b : ϕ ` Ψ0 and Φi ` t : ai : τ | Ψi for i = 1, . . . , l with 〈Φ〉 =
∑l
i=0〈Φi〉 and

(〈Ψ〉, [〈Ψi〉 | i = 0, . . . , l]) ∈ hJu(Ψ)K. As before, using Lemma 7 we can apply the inductive
hypothesis which yields ρ′ ∈ ‖b‖τ and t′ ∈ |[a1, . . . , al]|σ. It follows that π′ = arg(t′) · ρ′ ∈
‖([a1, . . . , al], b)‖σ⇒τ as expected.
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Assume that π = pr1 · ρ with premise for the last rule of the typing derivation Φ | ρ : a :
σ ` Ψ and conclusion Φ | π : (1, a) : σ × τ ` Ψ. By inductive hypothesis we have ρ′ ∈ ‖a‖σ
and hence π ∈ ‖(1, a)‖σ×τ by definition of that set. The case π = pr2 · ρ is of course similar.

Assume that π = succ · ρ with premises of the last rule of the typing derivation Φ | ρ :
[p1 + 1, . . . , pl + 1] : ι ` Ψ. By inductive hypothesis we have ρ′ ∈ ‖[p1 + 1, . . . , pl + 1]‖ι, that
is pi + 1 ∗ ρ′ ∈ N for i = 1, . . . , l. It follows that pi ∗ succ · ρ′ ∈ N for i = 1, . . . , l as expected.
The case where π = pred · ρ is similar.

Assume last that π = if(t1, t2) · ρ and that the premises of the last rule of the typing
derivation are Φ0 | ρ : a : σ ` Ψ0, Φi ` t1 : ai : σ | Ψi for i = 1, . . . , l and Φi ` t2 :
ai : σ | Ψi for i = l + 1, . . . , r, with (a, [a1, . . . , ar]) ∈ hJσK. The conclusion of that rule is
Φ | π : [p1, . . . , pr] : ι ` Ψ where p1, . . . , pl are natural numbers such that p1 = · · · = pl = 0
and pl+1, . . . , pr 6= 0, 〈Φ〉 =

∑r
i=0〈Φi〉 and (〈Ψ〉, [〈Ψi〉 | i = 0, . . . , r]) ∈ hJu(Ψ)K. As before,

using Lemma 7 we can apply the inductive hypothesis which yields ∀i ∈ {1, . . . , l} t′1 ∈ |ai|σ,
∀i ∈ {l+ 1, . . . , r} t′2 ∈ |ai|σ and ρ′ ∈ ‖a‖σ. We must prove that if(t′1, t′2) ·ρ′ ∈ ‖[p1, . . . , pr]‖ι.
This results from the fact that pi ∗ if(t′1, t′2) ·ρ′ → t′1 ∗ρ′ for i ≤ l and pi ∗ if(t′1, t′2) ·ρ′ → t′2 ∗ρ′
for i > l, and from the fact that ρ′ ∈ ‖ai‖σ for each i, by inductive hypothesis and by
Lemma 7. �
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