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History (˜1985): Girard

Girard had differential intuitions when developping LL, as explained
in the conclusion of his Linear Logic TCS paper.

He had the intuition of a link between linear head reduction
(Krivine’s machine) and differentiation/Taylor expansion.

But he had no concrete model nor syntactic reduction rules
supporting this intuition.
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History (˜1990): Boudol

Process calculi feature a distinction between replicable and non
replicable resources. For instance in CCS

ā · P | a · Q | R ; P | Q | R

ā · P | !a · Q | R ; P | !a · Q | Q | R

They also feature an intrinsic non-determinism:

ā · P | a · Q1 | a · Q2 | R ; P | Q1 | a · Q2 | R

ā · P | a · Q1 | a · Q2 | R ; P | a · Q1 | Q2 | R
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Boudol designed a lambda-calculus inspired by a translation of the
lambda-calculus into the pi-calculus (an extension of CCS).

Terms are applied to multisets of arguments, each of them is

either to be used only once

or replicable.

example: 〈M〉[N1,N2,N3,N
∞
4 ,N∞5 ]

This is possible thanks to an explicit substitution mechanism,
which is essential to postpone substitution until the moment where
the variable to be substituted occurs in head position.

Does not take non-determinism into account.
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History (˜2000): Kfoury

Very close to Boudol’s ideas

without replicable arguments,

with moreover the idea that resource terms should be used as
approximations of lambda-terms.

He restricts his attention to resource terms appearing as such
approximations (we call them “uniform”).
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History (˜2002): E. and Regnier

Differential LL stems from two concrete models of LL:

Köthe sequence spaces, which can be seen as locally convex
spaces

Finiteness spaces, which can be seen as linearly topologized
vector spaces.

In these models, the morphisms of the Kleisli category of the !
comonad admit differentials.
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SYNTAX
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Differential lambda-calculus

A differential simple term is

a variable x

or an abstraction λx s where x is a variable and s is a simple
term

or an ordinary application (s) u where s is a simple terms and
u is a term

or a differential application Ds · t where s and t are simple
terms.

Terms can be added (linearly combined with some coefficients).
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Typing

Γ ` s : A→ B Γ ` t : A
Γ ` Ds · t : A→ B

Can be iterated

Γ ` s : A→ B Γ ` t1 : A · · · Γ ` tn : A

Γ ` Dns · (t1, . . . , tn) : A→ B

Congruence based on

D2s · (t1, t2) ∼ D2s · (t2, t1)

required for confluence.
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Linear substitution (differentiation)

∂s
∂x · t is s where exactly one occurrence of x has been replaced by
t; this requires turning non-linear occurrences into linear ones (last
case):

∂y

∂x
· t =

{
t if x = y

0 otherwise

∂λy s

∂x
· t = λy

∂s

∂x
· t

∂Du · s
∂x

· t = D

(
∂u

∂x
· t
)
· s + Du ·

(
∂s

∂x
· t
)

∂ (s) u

∂x
· t =

(
∂s

∂x
· t
)

u +

(
Ds ·

(
∂u

∂x
· t
))

u
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Reduction rules

Two reduction rules:

(λx s) u ; s [u/x ]

D(λx s) · t ; λx

(
∂s

∂x
· t
)

The resource term 〈M〉[N1,N2,N3,N
∞
4 ,N∞5 ] would be written(

D3M · (N1,N2,N3)
)

(N4 + N5)

(iterated differential application).
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Differential linear logic

This extension of the lambda-calculus, admits a linear logic
counterpart.

No new connectives

and three new exponential rules, dual to the standard rules of
dereliction, weakening and contraction.

Introduces a new symmetry in LL.

This system is easier to present using interaction nets (Lafont).
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The basic ingredients of DiLL nets

Cells:

` ⊗ ? ? ? ! ! !

Boxes:

r

q

· · ·
q1 qm
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An example of net:

`
!

?

!⊗

p q

We also need to add nets which have the same interface (set of
free ports) and there is a 0 net of each interface. Coefficients (in
any semi-ring) can also be used.

All construction but boxes are linear wrt these constructions.
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Typing

Types, which are LL formulae, can be associated with oriented
wires (reversing the orientation of a wire turns its type A into A⊥).
The following typing constraints must be satisfied:

? ? ? ! ! !⊗

?A ?A ?A

?A ?A

!A

A

!A!A

!A !AA B A

`
A B

A⊗ BA` B

s

· · ·
?An?A1A

?A1 ?An

· · ·

!A
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Logically correct nets

We give an inductive definition of logically correct nets. This also
defines a sequent calculus for DiLL.

(axiom)

p q

A A⊥

r

· · ·
Φ

s

· · ·
ΨA A⊥

(cut)
s

· · ·
Ψ

r

· · ·
Φ

` A,A⊥
` Φ,A ` A⊥,Ψ

` Φ,Ψ
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r

· · ·
Φ

s

· · ·
ΨA B

(tensor)

⊗

s

· · ·
Ψ

r

· · ·
Φ

A⊗ B
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r

· · ·
Φ

s

· · ·
Ψ!A !A

(cocontr)

!

s

· · ·
Ψ

r

· · ·
Φ

!A
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· · ·
A BΦ

r

(par)

`· · ·

A` B

Φ

r

· · ·
?AΦ

r

?A

(contr)

?
· · ·
Φ

?A

r
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· · ·
Φ A

r

(der)

?
· · ·
Φ

?A

r

· · ·
Φ A

r

(coder)

!
· · ·
Φ

!A

r

Thomas Ehrhard Resource lambda-calculus: the differential viewpoint



· · ·
Φ

r

(weak)
?

· · ·
Φ

r

?A

(coweak)
!

!A

· · ·
?A1

r

?An A
(prom)

· · ·
r

?A1
!A

?An

· · ·
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Reduction rules

` ⊗ ;

? !

!

!

?

?

;

? !

!

!

; !?

?

?

;
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? !

!

!

!

!

; +

? ! ; 0 ? ! 0;

? !

?

?

?

?

; +

? ! ;
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?

r r

· · ·

;

· · ·

?

r
? ?

· · ·· · ·

;
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?

r

r r

? ?· · ·

;

· · ·

· · · · · ·
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rr
;

· · ·

s

· · · · · · · · ·

s
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!

! !

? ?!

!

rr rr

; · · ·

· · ·

· · ·

· · ·

r

This is a formalization of the chain rule of Calculus:

(g ◦ f )′(0) · u = g ′(f (0)) · (f ′(0) · u)

This system has good properties: confluence (Tranquilli) and
normalization (Pagani and Tranquilli, Gimenez).
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SEMANTICS
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Finiteness spaces

Differential LL comes from denotational models where objects can
be seen as topological vector spaces.

The simplest of these models is based on finiteness spaces which
can be seen as linearly topological vector spaces (ltvs), a notion
introduced by Lefschetz in 1942.

Scalars are taken in a field k endowed with the discrete topology,
so any field can be used: C, Q, F27. . .
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Definition of an ltvs

Let E be a k-vector space.

A linear topology on E is a topology λ such that there is a filter L
of linear subspaces of E with the following property:

a subset U of E is λ-open iff for any x ∈ U there exists V ∈ L
such that x + V ⊆ U. One says that such a filter L generates the
topology L.

A k-ltvs is a k-vector space equipped with a linear topology.
Observe that E is Hausdorff iff

⋂
L = {0}; from now on we

assume always that this is the case.
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Linear boundedness

Let E be an ltvs and let U be an open linear subspace of E .

Let πU : E → E/U be the canonical projection. ker πU = U is
open, hence πU is continuous if E/U has the discrete topology. So
the quotient topology is the discrete topology.

A subspace B of E is linearly bounded if πU(B) is finite
dimensional, for all linear open subspace or E . In other words, for
any linear open subspace U, there is a finite dimensional subspace
A of E such that B ⊆ U + A.

E is locally linearly bounded if it has a linear open subspace which
is linearly bounded.
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Completeness

Net in E : family (xd)d∈D of elements of E indexed by a directed
set D.

(xd)d∈D converges to x ∈ E if, for any neighborhood U of 0, there
exists d ∈ D such that ∀e ∈ D e ≥ d ⇒ xe − x ∈ U. Because E is
Hausdorff, a net converges to at most one point.

A net (xd)d∈D is Cauchy if, for any neighborhood U of 0, there
exists d ∈ D such that ∀e, e ′ ∈ D e, e ′ ≥ d ⇒ xe − xe′ ∈ U. This
latter statement is equivalent to ∀e ∈ D e ≥ d ⇒ xe − xd ∈ U.

One says that E is complete if any Cauchy net in E converges.
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Hypocontinuous multilinear maps

Let E1, . . . ,En and F be k-ltvs’s.

An n-multilinear function f : E1 × · · · × En → F is hypocontinuous
if

for any i ∈ {1, . . . , n},
any linear open subspace V ⊆ F

and any linearly bounded subspaces B1 ⊆ E1,. . . ,Bi−1 ⊆ Ei−1,
Bi+1 ⊆ Ei+1,. . . ,Bn ⊆ En

there exists an open linear subspace U ⊆ Ei such that
f (B1 × · · · × Bi−1 × U × Bi+1 × · · · × Bn) ⊆ V .

For n = 1, this simply means that f −1(V ) is open, for any linear
open subspace of F (f is continuous).
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Finiteness spaces

Let I be a set. Given F ⊆ P(I ), we define F⊥ ⊆ P(I ) by

F⊥ = {u′ ⊆ I | ∀u ∈ F u ∩ u′ is finite} .

We have F ⊆ G ⇒ G⊥ ⊆ F⊥, F ⊆ F⊥⊥ and therefore
F⊥⊥⊥ = F⊥.
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A finiteness space is a pair X = (|X |,F(X )) where |X | (the web) is
a set and F(X ) ⊆ P(|X |) (the finitary sets) satisfies
F(X ) = F(X )⊥⊥. The following properties follow easily from the
definition

if u ⊆ |X | is finite then u ∈ F(X )

if u, v ∈ F(X ) then u ∪ v ∈ F(X )

if u ⊆ v ∈ F(X ), then u ∈ F(X ).

The k-vector space k〈X 〉 is the set of all families x ∈ k|X | such
that the set Supp(x) = {a ∈ |X | | xa 6= 0} belongs to F(X ).
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Given u′ ∈ F(X )⊥, we define a linear subspace of k〈X 〉 by

V(u′) = {x ∈ k〈X 〉 | Supp(x) ∩ u′ = ∅} .

Remark: ∀u′, v ′ ∈ F(X )⊥ u′ ⊆ v ′ ⇔ V(v ′) ⊆ V(u′).

Hence {V(u′) | u′ ∈ F(X )⊥} is a filter of linear subspaces of k〈X 〉.⋂
u′∈F(X )⊥ V(u′) = {0} (because ∀a ∈ |X | {a} ∈ F(X )⊥), so this

filter defines an Hausdorff linear topology on k〈X 〉: the canonical
topology of k〈X 〉.
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Theorem

For any finiteness space X , the ltvs k〈X 〉 is Cauchy-complete.

(x(d))d∈D a Cauchy net. Let a ∈ |X |. Take u′ = {a} in the
definition of a Cauchy net: there exist xa ∈ k and da ∈ D such
that ∀e ≥ da x(e)a = xa.

One proves that x = (xa)a∈|X | ∈ k〈X 〉

Frome Cauchy condition:
∀u′ ∈ F(X )⊥ ∃d ∈ D ∀e ≥ d ∀a ∈ u′ x(e)a = xa

x ∈ k〈X 〉: let u′ ∈ F(X )⊥, let d ∈ D be such that
∀e ≥ d ∀a ∈ u′ x(e)a = xa. Then Supp(x) ∩ u′ = Supp(x(d)) ∩ u′

is finite, so Supp(x) ∈ F(X )⊥⊥ = F(X ), that is x ∈ k〈X 〉.
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Metrizability?

Theorem

A finiteness space X is metrizable iff there exists a sequence
(u′n)n∈N of elements of F(X )⊥ which is monotone
(n ≤ m⇒ u′n ⊆ u′m) and such that ∀u′ ∈ F(X )⊥ ∃n ∈ N u′ ⊆ u′n.

If this is the case, define

d(x , y) =


0 if x = y

2−n if x 6= y and n is the least integer

such that u′n ∩ Supp(x − y) 6= ∅ .

it is an ultrametric distance: d(x , z) ≤ max(d(x , y), d(y , z)).
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Theorem

The ltvs k〈!?1〉 is not metrizable (!?1 = ((1⇒ 1)⇒ 1)⊥)

Set X = !?1: |X | =Mfin(N) and a subset u for |X | belongs to
F(X ) iff ∃n ∈ N u ⊆Mfin({0, . . . , n}).

Take a monotone sequence (u′n)n∈N of elements of F(X )⊥.

Let n ∈ N, we have {p[n] | p ∈ N} ∈ Mfin(X ) and hence
u′n ∩ {p[n] | p ∈ N} is finite. Therefore we can find a function
f : N→ N such that ∀n ∈ N f (n)[n] /∈ u′n. Let
u′ = {f (n)[n] | n ∈ N}. Then u′ ∈ F(X )⊥ since, for any n ∈ N,
u′ ∩Mfin([0, n]) = {f (i)[i ] | i ∈ [0, n]} is finite. But for all n ∈ N
we have f (n)[n] ∈ u′ \ u′n and so u′ 6⊆ u′n.
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Linearly bounded subspaces

Given u ⊆ |X |, let D(u) = {x ∈ k〈X 〉 | Supp(x) ⊆ u}. This is a
linear subspace of k〈X 〉.

Theorem

A linear subspace B of k〈X 〉 is linearly bounded iff there exists
u ∈ F(X ) such that B ⊆ D(u).

As a consequence, k〈X 〉 is locally linearly bounded iff

∃u ∈ F(X )∃u′ ∈ F(X )⊥ u ∪ u′ = |X | .

Remark : if this property holds, k〈X 〉 is metrizable. Take
u′n = u′ ∪ {a1, . . . , an} where (an) is any enumeration of |X |.
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Tensor product

|X ⊗ Y | = |X | × |Y | and

F(X ⊗ Y ) = {u × v | u ∈ F(X ) and v ∈ F(Y )}⊥⊥

and one can prove that w ∈ F(X ⊗ Y ) iff π1(w) ∈ F(X ) and
π2(w) ∈ F(Y ).

Let τ : k〈X 〉 × k〈Y 〉 → k〈X ⊗ Y 〉 be defined by
τ(x , y) = x ⊗ y = (xayb)(a,b)∈|X⊗Y |. The map τ is bilinear
hypocontinuous and classifies all bilinear hypocontinuous maps on
k〈X 〉 × k〈Y 〉.
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The category Fin(k) of finiteness spaces and linear continuous
maps is symmetric monoidal with this tensor product.

It is an SMCC, with linear function space X ( Y = (X ⊗ Y⊥)
⊥

where X⊥ defined by |X⊥| = |X | and F(X⊥) = F(X )⊥.

Given a matrix M ∈ k〈X ( Y 〉 and a vector x ∈ k〈X 〉, we set

M x =

∑
a∈|X |

Ma,bxa


b∈|Y |

all these sums are finite and the resulting family of scalars is in
k〈X 〉. Such matrices represent linear continuous maps fully and
faithfully.
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k〈X ( Y 〉 is linearly homeomorphic to the ltvs of continuous
linear function k〈X 〉 → k〈Y 〉 endowed with the topology of
“uniform convergence on all linearly bounded subspaces”:
generated by the subspaces

{f ∈ k〈X ( Y 〉 | f (B) ⊆ V }

for B ⊆ k〈X 〉 linearly bounded subspace and V ⊆ k〈Y 〉 linear open
subspace.

The category Fin(k) is ∗-autonomous (⊥ = 1 with |1| = {∗}).
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Additives: product

Given a countable family of finiteness spaces (Xi )i∈I , we set
X =

˘
i∈I Xi by |X | =

⋃
i∈I |Xi | and w ⊆ |X | is in F(X ) if

∀i ∈ I wi = {a ∈ |Xi | | (i , a) ∈ w} ∈ F(Xi )

Then k〈
˘

i∈I Xi 〉 is isomorphic to
∏

i∈I k〈Xi 〉, with the product
topology.

With obvious projections, it is the cartesian product of the family
(Xi )i∈I .
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Additives: coproduct

⊕
i∈I

Xi =

(
¯

i∈I
Xi
⊥

)⊥
so that k〈

⊕
i∈I Xi 〉 ⊆

∏
i∈I k〈XI 〉 is the space of all families (xi )i∈I

such that xi = 0 for all but a finite numbers of i ’s, with the
topology generated by all products

∏
i∈I Vi (Vi linear open in

k〈Xi 〉): much finer than the product topology when I is infinite.

Example: take I = N and Xi = 1, so that k〈Xi 〉 = k. Then
k〈
˘

i∈I Xi 〉 = kN with the product topology and

k〈
⊕

i∈I Xi 〉 = k(N) (all x ∈ kN such that xi = 0 for almost all i)
with the discrete topology.
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Polynomial and analytic maps

Let E and F be ltvs’s.

A map f : E → F is homogeneous polynomial of degree d if there
exists a hypocontinuous d-linear map h : Ed → F such that

∀x ∈ E f (x) = h(x , . . . , x)

And f is polynomial if it is a finite sum of homogeneous
polynomial maps.

Remark : A polynomial map k〈X 〉 → k〈Y 〉 is not necessarily
continuous. It is continuous if k〈X 〉 is locally linearly bounded (but
we have seen that this property does not hold in general: it is
already false for k〈!?1〉).
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Define A(E ,F ) as the Cauchy-completion of the k-vector space of
all polynomial maps E → F with the topology of uniform
convergence on all linearly bounded subspaces: a basic open is

{f ∈ A(E ,F ) | f (B) ⊆ V }

where B ⊆ E is linearly bounded and V ⊆ F is a linear open
subspace.
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Exponentials

Define !X by |!X | =Mfin(|X |) (finite multisets) and

F(!X ) = {Mfin(u) | u ∈ F(X )}⊥⊥ .

Just as for the tensor product, one can prove that U ⊆ |!X |
belongs to F(!X ) iff

⋃
m∈U Supp(m) ∈ F(X ).

Theorem

k〈!X ( Y 〉 is linearly homeomorphic to A(k〈X 〉, k〈Y 〉) (with the
topology of uniform convergence on all linearly bounded
subspaces).
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! is a monoidal comonad on Fin(k) and we have defined in that
way a model off LL, a (new-)Seely category.

In particular we have the following natural transormations

dereliction dX : !X → X with (dX )m,a = δm,[a]

weakening wX : !X → 1 with (wX )m,∗ = δm,[]

contraction cX : !X → !X ⊗ !X with (cX )m,(l ,r) = δm,l+r
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Basic differential structure

We also have the following natural transformations

codereliction dX : X → !X with (dX )a,m = δ[a],m

coweakening wX : 1→ !X with (wX )∗,m = δ[],m

cocontraction cX : !X ⊗ !X → !X with
(cX )(l ,r),m = δl+r ,m

(m
l

)
= δl+r ,m

(m
r

)
where (m

l

)
=
∏
a∈|X |

(
m(a)

l(a)

)
(almost all the factors in that product are equal to 1).
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A model of finite differential LL (ie: differential LL without
promotion) is a ∗-autonomous category C which is additive
(hom-sets have an addition and a 0 and everything is linear wrt to
this structure) and has an operation

X 7→ (!X , cX ,wX , dX , cX ,wX , dX ) where !X is an object of C,
(!X , cX ,wX , cX ,wX ) is a bicommutative bialgebra and a few more
diagrams commute, which correspond to the reduction rules of
DiLL.
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Derivatives and anti-derivatives

We have morphisms ∂X : !X → !X ⊗ X and ∂X : !X ⊗ X → !X
defined by ∂X = (dX ⊗ !X ) ◦ cX and ∂X = cX ◦ (dX ⊗ !X ).

Let f : !X → Y , to be considered as an “intuitionistic” map
X → Y (in finiteness spaces, it is an analytic function
k〈X 〉 → k〈Y 〉).

Then the morphism f ◦ ∂X : !X ⊗ X → Y should be considered as
the derivative (differential, Jacobian. . . ) of f : thanks to monoidal
closeness it can be seen as an intuitionistic morphism
X → (X ( Y ).
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We say that C has anti-derivatives if

JX = Id!X +(∂X ◦ ∂X ) : !X → !X

is an iso and then we set IX = JX
−1.

Remark : in Fin(k), one has

(Id!X +(∂X ◦ ∂X ))l ,r = (1 + #l)δl ,r

and so Fin(k) has anti-derivatives as soon as k is of characteristic
0.
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Intuition

Let f : !X → Y , to be considered as an “intuitionistic” map
X → Y (in finiteness spaces, it is an analytic function
k〈X 〉 → k〈Y 〉).

Then the map f ◦ IX : !X → Y represents the intuitionistic map
g : X → Y defined by

g(x) =

∫ 1

0
f (tx)dt .
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A categorical Poincaré’s Lemma

Given f : !X ⊗ X → Y , when is it the case that f is the differential
of a morphism g : !X → Y ?

A necessary condition is that f ◦ (∂X ⊗ X ) : !X ⊗ X ⊗ X → Y be
symmetric in its two last parameters:

f ◦ (∂X ⊗ X ) ◦ σ2,3 = f ◦ (∂X ⊗ X )

Theorem

If C has anti-derivatives, this condition is sufficient for f to be a
differential.

Take g = f ◦ (IX ⊗ IdX ) ◦ ∂X : !X → Y , that is, intuitively,

g(x) =
∫ 1

0 (f (tx) · x)dt.
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Conclusion

We start from denotational models to develop new syntactic
objects. The problem is then to understand their operational
relevance and possible applications. What do we know about
DiLL?

It has good internal properties (confluence and normalization).

It simplifies and clarifies resource lambda-calculi.

Taylor expansion in the differential lambda-calculus is related
to Krivine’s machine, as suggested by Girard (E., Regnier).

One can represent concurrent processes (solos, π) in DiLL
interaction nets (E., Laurent).

What about anti-derivatives? Can we solve some kind of
differential equations? Could it be a new way to specify
programs/algorithms? Work in progress. . .

Thomas Ehrhard Resource lambda-calculus: the differential viewpoint


