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Abstract. The Dendroidal Process Calculus (DPC) is designed as a new
theory for modeling concurrent and distributed computations and sys-
tems, equipped with a non-sequential and compositional semantics. In
this theory, a parallel composition is parameterized by a graph at the
vertices of which subprocesses are located. Communication is allowed
only between subprocesses related by an edge in this graph. Moreover,
an observational equivalence based on barbs as well as a weak bisimi-
larity equivalence are defined and an adequacy theorem relating these
two notions is proved. DPC is shown to be a conservative extension of
both top-down tree automata and of the process algebra CCS, and to
endow CCS with a non-sequential semantics. The expressiveness of this
theory looks promising to describe and analyze some phenomena arising
in weak memory models and in network security. As an illustration of
potential applications, an associated notion of tree shuffle is introduced
and analyzed.

1 Introduction

There is no need to insist on the importance of tree automata [1] in modern
theoretical and applied computer science: they are pervasive in logic, verification,
rewriting, structured documents handling, constraint solving etc. Tree automata
are similar to usual finite word automata with the difference that they recognize
trees instead of words (sequences of letters). Let Σ be a ranked signature (Σn
is the set of function symbols of arity n). A Σ-tree is just a term written with
the signature Σ. A top-down tree automaton has a finite number of states and
transitions labeled by elements of Σ: a transition labeled by f ∈ Σn has one
source and a sequence of n targets which all are states of the automaton. Thus,
a tree automaton is an extension of a word automaton in the sens that a word
automaton can be seen as a tree automaton over a signature Σ such that Σn is
empty for all n > 1 and Σ0 has a unique distinguished element ∗.

The definition of tree recognition by a top-down tree automaton A is quite
simple: a tree f(t1, . . . , tn) is recognized by A at state X if A has an f -labeled



transition whose source is X and target is (X1, . . . , Xn) and ti is recognized by
A at state Xi for each i = 1, . . . , n.

Automata feature a dualist vision of computation with an essential dichotomy
between programs (automata) and data (words, trees), very much in the spirit of
Turing machines (based on the machine/tape dichotomy). The process algebra
CCS, introduced in the early 1980’s by Milner [2], encompasses this restriction,
extending finite automata with interactive capabilities. In CCS, finite automata
(labeled with letters a, b, . . . ) can typically interact with other automata (labeled
with dual letters a, b, . . . ), as soon as they are combined through a new binary
operation: parallel composition. Much more general interaction scenarios are of
course possible in CCS. This fundamental invention led to very fruitful lines of
research in the theory of concurrent processes and to the introduction of new
process algebra, among which the π-calculus [3] is not the less remarkable, with
many important applications to cryptography, bioinformatics etc.

We propose a new process algebra, called Dendroidal Process Calculus (DPC),
equipped with a non-sequential and compositional semantics. More specifically,
we introduce an “interactive closure” of top-down tree automata which extends
tree automata just as ordinary CCS extends word automata. To achieve this goal,
the natural idea is of course to add a parallel composition operation on processes,
but this requires some care. Indeed, when a prefixed process f · (P1, . . . , Pn) —
after a prefix f ∈ Σn, it is natural to have n subprocesses, and not only one, as
explained in [4] — interacts with a dually prefixed one f ·(Q1, . . . , Qn), we should
remove the prefixes (just as in CCS) and then authorize interaction between
the subprocess Pi with all processes which could communicate with its father
f · (P1, . . . , Pn) as well as with Qi, but not with the Qj’s for j 6= i; neither should
the Pi’s be allowed to communicate with each other in the resulting process. The
same should hold of course for the Qi’s.

For this purpose we have to preserve carefully the distinction between the
various sons of tree nodes, preventing sons which are not at similar positions to
interact. Therefore we were forced to generalize parallel composition: it is now
given as a graph, at the vertices of which subprocesses (which are guarded sums)
are located; the edges of this graph specify which interactions are allowed. In
Section 2, we introduce the syntax of this new process calculus DPC, restricting
ourselves to a fragment where all sums are guarded; indeed, the corresponding
fragment of CCS is known to be sensible and well behaved. Section 2.1 introduces
the operational semantics for DPC by defining a single rewriting rule. This rule
generalizes the a/a reduction of CCS to the case where a can be an n-ary func-
tion symbol and implements the idea of restricted communication capabilities
explained above.

In order to define an operational equivalence on processes, we adapt in Sec-
tion 5 the concept of weak barbed congruence [5, 6] which is a natural way of
saying that two processes behave in the same way, in all possible contexts. As
usual, this notion is quite difficult to handle as it involves a universal quantifica-
tions on contexts, and we thus introduce a notion of weak bisimilarity in Section 6
and prove that two weakly bisimilar processes are weakly barbed congruent in



Section 7. To this end, a labeled transition system on processes is defined, and
the definition of its transitions involves crucially the locations (graph vertices).
The notion of bisimulation itself takes locations carefully into account.

Section 3 shows that tree recognition can be expressed in DPC, using only
the rewriting semantics. Though quite simple, this result uses in an essential
way the restricted communication capabilities of DPC and shows that DPC is a
conservative extension of top-down tree automata. We also argue that DPC is
a conservative extension of CCS by isolating two fragments of DPC which are
isomorphic to guarded CCS, as far as internal reduction is concerned. These frag-
ments are defined by considering DPC processes where all parallel composition
graphs are complete and where symbols have arity 1 (for the first fragment) and
2 (for the second one). As shown in Annex 8.8, the first fragment also coincides
with CCS when weak bisimilarity is considered. It seems clear that we would
get the same when considering barbed congruence instead of weak bisimilarity.
But this is not true for the second fragment: a | b and a · b+ b · a are not weak
barbed congruent when considered as DPC processes in the second fragment (the
equivalence induced on CCS processes in this way is larger than structural con-
gruence however). This strongly suggests that DPC is an interesting candidate
for defining a truly concurrent and interactive semantics of concurrency.

To explore further this idea, we analyze the notion of tree shuffle induced
by DPC. Remember that CCS induces the canonical notion of shuffle of words
as follows: any word u = a1 . . . an can be seen as the CCS process a1 · a2 · · · an
and v is a shuffle of words u1, . . . , uk iff the CCS process u1 | · · · | uk | v reduces
(internally, in several steps) to the empty process. Similarly, any tree u can be
seen as a DPC process. So, given trees u1, . . . , uk and v, what does it mean that
u1 | · · · | uk | v reduces to the empty process in DPC? We prove in Section 4
that this holds exactly when there is a bijection between the internal nodes
of the forest u1, . . . , un and the internal nodes of v, which satisfies mainly an
acyclicity property. If we consider the vertical order of trees as a time order
between elementary actions labeling nodes, this notion of shuffle describes all
possibilities of performing the actions of u1, . . . , un in a parallel way, without
creating cycles in time. We provide examples supporting this intuition. This
condition is very reminiscent of time acyclicity constraints which are crucial in
the formalization of weak memory models generalizing the SC setting [7].

Our results suggest that DPC is a sound and interesting extension of CCS.
The main technical feature of DPC is that processes are located at the vertices of
a graph which describes its internal interactions capabilities. Similar features can
be found in various earlier works of several authors, see for instance [8] where
processes are localized (and can interact when they are located at the same
place) or [9, 10] where processes are graphical objects which evolve by graph
rewriting. The precise connection between DPC and these related formalisms is
not completely clear yet and will be explored in further work.

Most importantly we think that DPC might bring an useful contribution to
the fundamental scientific programme explained in [11], whose main purpose is
to endow process algebras with truly concurrent semantics.



We omit all proofs and some formal details for lack of space, but they can
be found in the Annex.

2 Syntax of processes

We use letters P ,Q, . . . to denote vectors (P1, . . . , Pn), (Q1, . . . , Qn) etc. Let
Loc be a countable set whose elements are called locations denoted with letters
p, q . . . with or without subscripts or superscripts.

Graphs. Let E and F be disjoint sets and let p ∈ E. We set E [F/p] = (E \
{p}) ∪ F . In other words, E [F/p] is the set obtained from E by substituting
the element p with the set F . By a Loc-graph (or simply graph) we mean a pair
G = (|G|,_G), where |G| is a finite subset of Loc and _G is a symmetric and
antireflexive relation on |G|. Let G and H be graphs with |G| ∩ |H| = ∅ and let
p ∈ |G|. We define a graph G [H/p] as follows: |G [H/p]| = |G| [|H|/p] and, given
q, r ∈ |G [H/p]|, we say that q _G[H/p] r if q _G r or q _H r or q _G p and
r ∈ |H| or r _G p and q ∈ |H|.

Processes. We set N+ = N \ {0}. We assume to be given a countable set of
processes variables V, denoted with letters X,Y, . . . Let Σ = (Σn)n∈N be a
signature. For each n ∈ N+, we assume to be given a bijection f 7→ f̄ from Σn
to Σn such that f̄ 6= f and ¯̄f = f for each f ∈ Σn. If f ∈ Σn, we say that f is
a symbol of arity n. In order to build finite trees, we need at least one symbol
of arity 0: we decide to have only one such symbol, denoted as ∗. So we have
Σ0 = {∗}, and ∗ is undefined.

Definition 1. The set of Σ-trees is the smallest set such that, if t1, . . . , tn are
Σ-trees and f ∈ Σn then f(t1, . . . , tn) is a Σ-tree.

In the case n = 0 we must have f = ∗ and the corresponding Σ-tree is ∗() also
simply denoted as ∗ and called the empty tree. A Σ-tree of which all symbols
(but ∗, the last one) have arity 1 is simply a sequence of such symbols, that is,
a word. In that way, our formalism extends the usual presentation of words on
an alphabet. We define the set of DPC processes as follows.

P := X | µX · P | f · (P1, . . . , Pn) | G〈Φ〉 | 0 | P1 + P2 | P \ I

where X ∈ V, f ∈ Σn, G is a finite Loc-graph and Φ is a function from |G| to
processes, and I is a finite subset of Σ. When we want to be specific about the
signature used in a given version of DPC, we use DPC(Σ) to denote this version.

The notion of free and bound variable does not deserve further comments, µ
being of course a binder of process variables. Similarly, process restriction \ I
is a binding operation (names mentioned in I are bound in P \ I).

Definition 2 (α-equivalence for locations). Two processes P and P ′ such
that there exists a bijection ϕ : |P | → |P ′| which is a graph isomorphism (that
is p _P q ⇔ ϕ(p) _P ′ ϕ(q)) and P ′(ϕ(p)) = P (p) for all p ∈ |P | are said to be
externally α-equivalent for locations.



General α-equivalence is defined by extending this relation to sub-processes in
the obvious way. When we consider several processes P1, . . . , Pn at the same
time, we always assume that the sets |P1|, . . . , |Pn| are pairwise disjoint.

If R and P are processes and X ∈ V, then the process R [P/X] is defined
in the obvious way, substituting each occurrence of X in R with P . Of course,
one has as usual to perform α-conversions (for process variables, names and
locations) when needed during substitution.

We define now the notion of canonical process: it is a process where all
sums are guarded. More precisely, we define by mutual induction three classes
of objects: canonical processes, canonical guarded sum and recursive canonical
guarded sum.

Definition 3 (canonical process, (recursive) canonical guarded sum).

– If X ∈ V then X is a canonical process.
– If G is a finite Loc-graph, Φ is a function from |G| to recursive canonical

guarded sums and I is a finite subset of Σ, then G〈Φ〉 \ I is a canonical
process (we identify G〈Φ〉 with G〈Φ〉 \ ∅ so that we also consider G〈Φ〉 as a
canonical process).

– A canonical guarded sum is either 0 or a process of the shape f ·(P1, . . . , Pn)+
S where f ∈ Σn, S is a canonical guarded sum and P1, . . . , Pn are canonical
processes.

– A recursive canonical guarded sum is either a canonical guarded sum or a
process of shape µX · S where S is a recursive canonical guarded sum.

For instance, the processes G〈Φ〉+H〈Ψ〉 and µX ·X are not canonical.

Lemma 1. If R and P are canonical processes then so is R [P/X]. If R is a
recursive canonical guarded sum, then so is R [P/X]. If R is a canonical guarded
sum, then so is R [P/X].

With any recursive canonical guarded sum S, we associate a canonical guarded
sum cs(S) as follows: cs(S) is S if S is a canonical guarded sum and is cs(T [S/X])
if S = µX · T . Using Lemma 1, one sees easily that this function is well defined
and total and that canonical processes are closed under substitution.

All the processes we consider in this paper are canonical.

More notations. We use Proc for the set of all canonical processes. If P = G〈Φ〉\I
is a canonical process, we set |P | = |G|. Also, for p ∈ |P |, we often write P (p)
instead of Φ(p), and we denote as _P the graph relation of G. Last, we use IP
for the set I of symbols.

Given two graphs G and H with disjoint webs, and a subset D of |G| × |H|
we define a graph K = G ⊕D H by |K| = |G| ∪ |H| and, given p, q ∈ |K|, we
stipulate that p _K q if p _G q or p _H q or (p, q) ∈ D or (q, p) ∈ D. If D = ∅
then we set G⊕H = G⊕D H.

Given processes P = G〈Φ〉\I and Q = H〈Ψ〉\J and a relation D ⊆ |P |×|Q|,
we define the process P ⊕D Q as (G⊕DH)〈Φ∪Ψ〉 \ (I ∪ J), assuming the sets I



and J to be disjoint (this is always possible since restriction is a binder). When
D is empty we simply denote this sum as P ⊕Q, and generally, we denote as ⊕P
the sum P1⊕· · ·⊕Pn of the processes P = (P1, . . . , Pn). When D = |P |×|Q|, the
process P⊕DQ will be denoted as P | Q and called the full parallel composition of
P and Q. It corresponds to the standard parallel composition of process algebras,
where all processes can freely interact with each other.

Definition 4. With the same notations as above, if p ∈ |G|, we denote as
P [Q/p] the process G [H/p] 〈Φ′〉 \ (IP ∪ IQ) where Φ′(p′) = Φ(p′) if p′ /∈ |H|
and Φ′(p′) = Ψ(p′) if p′ ∈ |H|, assuming the sets IP and IQ to be disjoint (again
this is possible because restriction is a binding operation).

2.1 Internal reduction

Let P and P ′ be processes. We say that P (internally) reduces to P ′ if there
are p, q ∈ |P | such that p _P q, cs(P (p)) = f · (P1, . . . , Pn) + S, cs(P (q)) =
f · (Q1, . . . , Qn) + T (this implies that n ≥ 1) and P ′ is defined as follows1:
|P ′| = (|P | \ {p, q}) ∪

⋃n
i=1 |Pi| ∪

⋃n
i=1 |Qi| and _P ′ is the least symmetric

relation on |P ′| such that, for any, p′, q′ ∈ |P ′|, one has p′ _P ′ q′ in one of the
following cases:

1. p′ _Pi
q′ or p′ _Qi

q′ for some i = 1, . . . , n
2. p′ ∈ |Pi| and q′ ∈ |Qi| for some i = 1, . . . , n (the same i for both)
3. {p′, q′} 6⊆

⋃n
i=1 |Pi| ∪

⋃n
i=1 |Qi| and λ1(p′) _P λ1(q′)

where λ1 : |P ′| → |P | is the residual function λ1(p′) =


p if p′ ∈

⋃n
i=1 |Pi|

q if p′ ∈
⋃n
i=1 |Qi|

p′ otherwise.
Observe that λ1 is a surjection since n ≥ 1.

We finish the definition of P ′ by saying that P ′(p′) = Pi(p
′) if p′ ∈ |Pi|,

P ′(p′) = Qi(p
′) if p′ ∈ |Qi| (for i = 1, . . . , n) and P ′(p′) = P (p′) if p′ /∈

⋃n
i=1 |Pi|∪⋃n

i=1 |Qi|, and by stipulating that IP ′ = IP ∪ IP1
∪ · · · ∪ IPn

∪ IQ1
∪ · · · ∪ IQn

,
assuming as usual this union to be a disjoint union.

Remark 1. This function λ1 (the “1” stresses that we are considering a single
reduction step) will be essential in the definition of the localized transition system
as it allows to trace the localizations of sub-processes during the reduction.

This crucial definition of internal reduction deserves some explanations. The
process P to be reduced has two subprocesses located at p and q, with dual
prefixes: f · P and f · Q. The fact that p and q are connected in P (that is
p _P q) means that these processes can interact. This interaction consists in
suppressing both prefixes and in replacing the vertex p of the graph G of P by
the graph G1 ⊕ · · · ⊕Gn (where Gi is the graph of Pi) and the vertex q by the

1 We strongly use the implicit hypothesis that, when several processes P1, . . . , Pn are
considered at the same time, the sets |Pi| are pairwise disjoint.



graph H1 ⊕ · · · ⊕Hn (where Hi is the graph of Qi). The connection between p
and q in P is inherited by the vertices of Gi and Hi in P ′, but a process located
on Gi (one of the components of Pi) cannot communicate with a process located
on Hj with j 6= i. The connections between p and other vertices of P , distinct
from q, are also inherited by the vertices of all Gi’s and similarly for the Hi’s.

Notice that in this reduction the restriction sets associated with the canonical
processes Pi and Qi are lifted in outermost position in order to make sure that
the resulting process is canonical.

We denote with → the internal reduction relation and with →∗ its reflexive
and transitive closure. The edge (p, q) of the graph G is called the main edge of
the reduction P → P ′.

a

a

f · (a, a)

f · (a, a)

P

→

a

a

a

a

a

a

P ′

→

a

∗

∗

a

a

a

P ′′

Fig. 1. A simple reduction sequence

Example 1. Let a ∈ Σ1 and f ∈ Σ2. Consider the process2 P = a | a | f · (a, a) |
f · (a, a). Figure 1 shows two reduction steps starting from P .

Example 2. Let f ∈ Σ2, P = µX · f · (X,X) and P = µX · f · (X,X) and let
R = G〈Φ〉 where |G| = {1, 2, 3}, Φ(1) = Φ(2) = P and Φ(3) = P , 1 _G 3 and
2 _G 3. We show in Figure 2 three reduction steps starting from R3.

PP P
• → P

P

P

P

P

•
→ P

P

P

P

P

P P

•

→ P

P

P

P

P

P

P

P

P

Fig. 2. Example of reduction, P = µX · f · (X,X), fired edges labeled by •

2 We write simply “a” instead of a · ∗ · ()
3 To keep the picture simpler, we didn’t put an edge between the two occurrences of P

in R because this edge (and his residuals) would never be used during the reduction
(P cannot interact with P since its only symbol is f).



3 Embedding tree automata and CCS processes in DPC

We will show that DPC is a natural extension of these two formlisms. For CCS,
we exhibit two translations, one respecting its interleaving semantics, and the
other featuring a non-sequential semantics of CCS.

Tree automata in DPC.

Definition 5 (Top-down tree automata). A top-down tree automaton is
a pair A = (Q, T ) where Q is a finite subset of V, whose elements are called
states, and T is a finite set of triples (X, f, (X1, . . . , Xn)) where f ∈ Σn and
X1, . . . , Xn ∈ Q and whose elements are called transitions. The language recog-
nized by A at state X ∈ Q, denoted as L(A,X), is the least set of Σ-trees such
that f(t1, . . . , tn) ∈ L(A,X) as soon as there are X,X1, . . . , Xn ∈ Q such that
(X, f, (X1, . . . , Xn)) ∈ T and ti ∈ L(A,Xi) for i = 1, . . . , n.

We associate a process 〈A〉X with any pair (A,X) where A = (Q, T ) is a
tree automaton and X ∈ Q. More generally we define 〈A〉XX where X is a finite
subset of V (intuitively, X is the set of already defined processes), and then we
set 〈A〉X = 〈A〉∅X .

– If X /∈ X , then 〈A〉XX = µX · S where S is the sum of all prefixed processes

f · (〈A〉X∪{X}X1
, . . . , 〈A〉X∪{X}Xn

) with (X, f, (X1, . . . , Xn)) ∈ T ,

– and if X ∈ X , then 〈A〉XX = X.

This inductive definition is well founded because the parameter X increases
strictly at each inductive step, and remains included in the finite setQ. Moreover,
the invariant that all the free variables of 〈A〉XX belong to X is preserved by the
inductive step, and hence 〈A〉X is closed.

With any Σ-tree t = f(t1, . . . , tn), we associate a process proc(t) by proc(t) =
f ·(proc(t1), . . . , proc(tn)). We also associate with t a dual tree t̄ by t̄ = f̄(t̄1, . . . , t̄n)
for f 6= ∗ and t̄ = ∗() if t = ∗().

Theorem 1. Let A = (Q, T ) be a tree automaton, let X ∈ Q and let t be a
Σ-tree. Then t ∈ L(A,X) iff (〈A〉X | proc(t̄))→∗ P0 where P0 is an idle process.

Sequentially embedding CCS in DPC. We assume here that Σn = ∅ for all n > 1.
Then a Σ-tree is the same thing as a Σ1-word, written a1 . . . ap∗. We restrict our
attention to processes in which all the graphs parameterizing parallel composi-
tions are complete, so that any process is of shape (S1 | · · · | Sp) \ I, where each
Si is a recursive canonical guarded sum µX · (a1 · P1 + · · · + am · Pm): this re-
striction of our process algebra coincides with guarded CCS, with the additional
requirement that all restrictions are pulled outside parallel compositions as much
as possible (this operation on processes is part of Milner’s basic transformations
axiomatized in [12], Chapter 8).

Observe also that, if P is a process in this restricted setting (arities ≤ 1 and
all parallel compositions are complete graphs), and if P → P ′, then P ′ belongs



to the same restriction and the reduction P → P ′ is a standard τ -reduction of
CCS. In that way we see that our process algebra is also a conservative extension
of ordinary guarded CCS.

Through this embedding, DPC is a conservative extension of CCS for the
notion of bisimulation we introduce later, this will be proved in an extended
version of this paper (see also Annex 8.8).

Non-sequentially embedding CCS in DPC. Let Σ be such that Σn = ∅ for all n >
1. So the processes of DPC(Σ) where all graphs are complete can be identified
with CCS processes built on the alphabet Σ1. Let now Σ′ be the signature such
that Σ′n = ∅ if n = 1 or n > 2 and Σ′2 = Σ1 (and Σ′0 = {∗}). Then we define a
translation P 7→ P • from DPC(Σ) to DPC(Σ′) as follows

X• = X (µX · P )
•

= µX · P • ∗ · ()• = ∗ · ()
(a · P )

•
= a · (P •, ∗) (G〈Φ〉)• = G〈Φ•〉 where Φ•(p) = Φ(p)

•

(P1 + P2)
•

= P1
• + P2

• (P \ I)
•

= P • \ I

Observe that this translation maps canonical processes to canonical processes.
We consider it only on processes of DPC(Σ) which are CCS processes, that is,
whose all graphs are complete.

Proposition 1. The map P 7→ P • is injective and is a strong bisimulation with
respect to the internal reduction relation defined in Section 2.1: if P → P ′ then
P • → (P ′)

•
, and, if P • → Q′, then there is a (uniquely defined) CCS process P ′

such that P → P ′ and Q′ = (P ′)
•
.

This translation is just another way to see DPC as a conservative extension of
CCS, as far as internal reduction is concerned. However, we can now define a new
equivalence relation on CCS processes using the barbed congruence ∼= that we
shall define in Section 5: P ∼b Q if P • ∼= Q•. This relation ∼b is a congruence on
CCS processes which does not satisfy Milner’s Expansion Law [12] as illustrated
by the second part of Example 3 of Section 6.

However it is not hard to check that, for instance, (f · (a | b) | f̄) \ {f, f̄} ∼b

((f · a | f̄) | b) \ {f, f̄} which shows that ∼b is a non-trivial congruence on
CCS processes. We think that it endows CCS with an interesting non-sequential
semantics in the spirit of [11, 8], that we want to study in further work.

4 Application: a shuffle of trees

Just as words, trees can be shuffled. There are however several possible definitions
for tree shuffles, all extending the standard shuffle of words (see for instance [13]
and the tree shuffles occurring in the theory of dendroidal sets of Moerdijk and
Weiss). Our formalism suggests a new one that we characterize combinatorially.

Given a set A, we use A∗ for the set of finite sequences of elements of A. This
set is equipped with the usual prefix order: α < β if there exists γ ∈ A∗ \ {〈〉}
such that β = αγ. Assume that A = N+. Given a Σ-tree t, we define the



f

∗ ∗

s0

a

b

∗

s

a′

b′

∗

s′

f

b

a′

∗

a

b′

∗

t

f

b

a′

∗

b′

a

∗

t′

Fig. 3. t is a shuffle of s0, s and s′, while t′ is not (the acyclicity condition is not
satisfied).

domain of t as a set of finite sequences of natural numbers |t|. The definition is
by induction on the size of trees: | ∗ | = {〈〉} and |f(t1, . . . , tn)| = {〈〉} ∪ {iα |
i = 1, . . . , n and α ∈ |ti|}. Given α ∈ |t|, we define the subtree of t located at α:
t/〈〉 = t and f(t1, . . . , tn)/iα = ti/α We use ∂|s| for the set of maximal elements
of |s| (wrt. the prefix order). That is, ∂|s| = {α ∈ |s| | s/α = ∗}. We also use |s|◦
for the set of inner “addresses” in s, that is |s|◦ = |s| \ ∂|s|. Let t be a Σ-tree
and α ∈ |t|◦. Then we define t(α) ∈ Σ \ {∗}, the symbol of t located at address
α: f(t1, . . . , tn)(〈〉) = f and f(t1, . . . , tn)(iα) = ti(α).

Tree shuffles. We are now in position of defining our notion of tree shuffle.

Definition 6. Let s1, . . . , sn (with n ≥ 1) and t be trees. We say that t is a
shuffle of s1, . . . , sn if there is a bijection ϕ :

⋃n
i=1{i} × |si|◦ → |t|◦ satisfying:

1. labeling condition: ∀i ∈ {1, . . . , n} ∀α ∈ |si|◦ t(ϕ(i, α)) = si(α)
2. branching condition: ∀i ∈ {1, . . . , n} ∀l ∈ N+ ∀α, α′ ∈ |si|◦

(αl ≤ α′ and ϕ(i, α) ≤ ϕ(i, α′))⇒ ϕ(i, α)l ≤ ϕ(i, α′).
3. acyclicity condition: the binary relation ≺ϕ defined on |t|◦ as follows has no

cycles: β ≺ϕ β′ if ∃l ∈ N+ β′ = βl or there are i ∈ {1, . . . , n}, l ∈ N+ and
α ∈ |si|◦ such that αl ∈ |si|◦, β = ϕ(i, α) and β′ = ϕ(i, αl).

And we say that ϕ is a witness of t being a shuffle of s1, . . . , sn.

The first condition means that ϕ must respect the symbols attached to the inter-
nal nodes of the trees. The second means that, when ϕ respects the immediate
descendant order, it must also respect the sibling order. The last condition means
that ϕ can break the descendant order, provided it creates no cycles.

Figures 3 and 4 provide examples of tree shuffles and of non tree shuffles. The
tree t′ of Figure 3 is not a shuffle of s0, s and s′ because the (unique possible)
embedding ϕ induces a relation ≺ϕ which has a cycle, namely b ≺ϕ a′ ≺ϕ b′ ≺ϕ
a ≺ϕ b. The tree t′ of Figure 4 is not a shuffle of s1 and s2 because, in s1, b
appears in the left sub-tree spanned by f whereas, in t′, it appears in the right
sub-tree spanned by f . Remember: P is idle if for each p ∈ |P |, P (p) = ∗.

Theorem 2. Let s1, . . . , sn and t be trees. Then t is a shuffle of s1, . . . , sn if
and only if (proc(s1)⊕ · · · ⊕ proc(sn)) | proc(t̄) reduces to an idle process.
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Fig. 4. t is a shuffle of s1 and s2, while t′ is not (b is ill-placed wrt. f , the branching
condition is not satisfied)

5 Observational equivalence

We define now an observational equivalence for DPC, using the concept of barb.

Weak barbed bisimilarity. Let f ∈ Σ and let P be a canonical process. We say
that f is a barb of P , and write P ↓f , if f /∈ IP and there exists p ∈ |P | such
that cs(P (p)) is of shape f · (P1, . . . , Pn) + S.

Definition 7. A relation B ⊆ Proc2 is a weak barbed bisimulation if it is
symmetric and satisfies the following conditions. For any P,Q ∈ Proc such that
P B Q,

– for any P ′ ∈ Proc, if P →∗ P ′, then there exists Q′ ∈ Proc such that
Q→∗ Q′ and P ′ B Q′ (B is a weak reduction bisimulation);

– for any P ′ ∈ Proc and any f ∈ Σ, if P →∗ P ′ and P ′ ↓f , then there exists
Q′ ∈ Proc such that Q→∗ Q′ and Q′ ↓f (B is weak barb preserving).

The diagonal relation {(P, P ) | P ∈ Proc} is a weak barbed bisimulation, and
if B and B′ are weak barbed bisimulations, then so are B′ ◦ B and B ∪ B′. We
say that P,Q ∈ Proc are weakly barbed bisimilar if there exists a weak barbed

bisimulation B such that P B Q. Notation: P
•
≈ Q.

Lemma 2. Weak barbed bisimilarity is an equivalence relation.

Weak barbed congruence. Let Y be a variable; a Y -context is a process R which
contains exactly one free occurrence of Y , which does not occur in a subprocess
of R of the shape µX ·R′ (in other words, Y must really occur only once in R).
If R and S are Y -contexts, so is R [S/Y ].

A relation R ⊆ Proc2 is a congruence if it is reflexive and such that, for any
Y -context R, one has P R Q⇒ R [P/Y ] R R [Q/Y ].

Proposition 2. For any reflexive relation R ⊆ Proc2, there is a largest congru-
ence R contained in R, characterized by: P R Q iff for any Y -context R one
has R [P/Y ] R R [Q/Y ]. Moreover, if R is an equivalence relation, so is R.



The largest congruence contained in
•
≈, written ∼=, is called weak barbed congru-

ence: it is our main notion of operational equivalence on processes and is ensured
to be an equivalence relation by the proposition above and by Lemma 2. More-
over,

P ∼= Q iff, for any Y -context R, R [P/Y ]
•
≈ R [Q/Y ] .

6 Localized transition systems of processes

As in CCS, it is difficult to prove that two processes are weak barbed congruent,
because of the universal quantification on contexts used in the definition. To
prove weak barbed congruence of processes, one needs more convenient tools. A
canonical tool is weak bisimilarity, an equivalence relation which means that two
processes manifest the same interaction capabilities along their internal reduc-
tions. This equivalence relation is defined as the union of all weak bisimulations.

Weak bisimilarity is a congruence, this is the main ingredient in the proof
that two weakly bisimilar processes are weakly barbed congruent. To prove this
fact, one associates with each weak bisimulation R a new one, R′, called its
parallel extension. In CCS, U R′ V if U = P | S and V = Q | S with P R Q and
S is a process. The main step is of course to show that R′ is a weak bisimulation.

In DPC however, we cannot simply speak of “the parallel composition” U of P
and S, we have to specify a relation C ⊆ |P |× |S|, and then we set U = P ⊕C S.
Similarly we must say that V = Q ⊕D S for some relation D ⊆ |Q| × |S|,
and that P R Q. These relations C and D must fulfill some requirement. Our
bisimulations cannot be simple relations between processes: when two processes
P = G〈Φ〉 and Q = H〈Ψ〉 are bisimilar, we must say which subprocess Φ(p) of
P should be in bisimulation with which subprocesses Ψ(q) of Q. For instance,
if P = f · (P1, P2) and Q = f · (Q1, Q2) (with |P | = |Q| = {1}) are related
by a bisimulation R, then (after performing the action f on both sides), the
processes P1 ⊕ P2 and Q1 ⊕ Q2 (with |P1 ⊕ P2| = |Q1 ⊕ Q2| = {1, 2}, and Pi
and Qi located at i for i = 1, 2) should be related by R. But this cannot be
achieved by saying that P1 R Q2 for instance: if P1 manifests some interaction
capability a, the same interaction capability a should be manifested by Q1.

We enforce this discipline by saying that a bisimulation is a set of triples
(P,E,Q) where P and Q are processes and E ⊆ |P |×|Q|. In the example above,
we start with (P, {(1, 1)}, Q) ∈ R (where 1 is the location of f ·(P1, P2) in P and
similarly for Q), and then, after having performed the action f on both sides,
we arrive to (P1 ⊕ P2, {(1, 1), (2, 2)}, Q1 ⊕ Q2) ∈ R.

Let us come back to the parallel extension of a bisimulation R, which is a
set of triples (P,E,Q) as explained above. We say that (U,F, V ) ∈ R′ when
we can find a process S and two relations C ⊆ |P | × |S| and D ⊆ |Q| × |S|
with U = P ⊕C S and V = Q⊕D S. There must also be a relation E such that
(P,E,Q) ∈ R and F = E ∪ Id|S| and we require C and D to be “equivalent up
to E”: if (p, q) ∈ E, we have (p, s) ∈ C iff (q, s) ∈ D.

Bisimulations are usually defined in terms of a transition system, a very
general and flexible concept. Due to our more complex definition of bisimulations,



it is not clear how to use transition systems in DPC; at least should we generalize
them to take localization into account. An abstract notion of localized transition
system might be of general interest, but we focus here on DPC and define one
particular localized transition system of processes. Its states are processes. There
are τ -transitions P

τ−→
ρ
P ′ corresponding to one internal reduction and ρ : |P ′| →

|P | allows to trace the “locative history” of the reduction. Labeled transition

have shape P
p:f ·(L)−→
λ1

P ′ where p ∈ |P |, L = (L1, . . . , Ln) with Li ⊆ |P ′| and

λ1 : |P ′| → |P | keep track of the locative history of the reduction.

Localized transitions. We define now this localized transition system. Let P and

P ′ be processes. We write P
p:f ·(L)−→
λ1

P ′ if p ∈ |P |, cs(P (p)) = f · (P1, . . . , Pn) + S

with P ′ = P [⊕P /p] (see Definition 4), L1 = |P1|,. . . , Ln = |Pn|, f /∈ IP , and
λ1 : |P ′| → |P | is the residual function defined by λ1(p′) = p if p′ ∈

⋃n
i=1 Li and

λ1(p′) = p′ otherwise4.

We write P
τ−→
λ1

P ′ if P → P ′ in the sense of Section 2.1 and, with the

notations of that section, λ1 : |P ′| → |P | is the residual function defined by
λ1(p′) = p if p′ ∈

⋃
i |Pi|, λ1(p′) = q if p′ ∈

⋃
i |Qi|, and λ1(p′) = p′ otherwise.

We define the reflexive-transitive closure
τ∗−→
λ

as follows. We say that P
τ∗−→
λ

P ′

if there are n ≥ 1, processes P1, . . . , Pn and functions λ1, . . . , λn−1 such that

P = P1, Pn = P ′ and Pi
τ−→
λi

Pi+1 for i = 1, . . . , n− 1, and λ = λ1 ◦ · · · ◦ λn−1.

We write P
p:f ·(L)
=⇒
λ,λ1,λ′

P ′ if there are processes P1 and P ′1 such that P
τ∗−→
λ

P1
p:f ·(L)−→
λ1

P ′1
τ∗−→
λ′

P ′.

Localized weak bisimilarity. The definition is coinductive and is based on a
concept of bisimulation which strongly uses locations. A localized relation (on
processes) is a set R ⊆ Proc × P(Loc2) × Proc such that, if (P,E,Q) ∈ R
then E ⊆ |P | × |Q|. Such a relation R is symmetric if (P,E,Q) ∈ R implies
(Q, tE,P ) ∈ R where tE = {(q, p) | (p, q) ∈ E}.

Definition 8. A (localized) weak bisimulation is a symmetric localized relation
such that

– if (P,E,Q) ∈ R and P
τ−→
λ1

P ′ then Q
τ∗−→
ρ
Q′ with (P ′, E′, Q′) ∈ R for some

E′ ⊆ |P ′| × |Q′| such that, if (p′, q′) ∈ E′ then (λ1(p′), ρ(q′)) ∈ E (this latter
condition will be called condition on residuals)

– if (P,E,Q) ∈ R and P
p:f ·(L)−→
λ1

P ′ then Q
q:f ·(M)

=⇒
ρ,ρ1,ρ′

Q′ with (p, ρ(q)) ∈ E and

(P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′| × |Q′| such that if (p′, q′) ∈ E′ then
(λ1(p′), ρρ1ρ

′(q′)) ∈ E, and, moreover, if n ≥ 2, then either (p′, ρ′(q′)) ∈
4 There are redundancies in these notations, for instance λ1 is completely determined

by the data p, L. This redundancy will be useful in the sequel.



⋃n
i=1(Li×Mi) or p′ /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1Mi (this condition is called

condition on residuals).

This dichotomy, according to whether n = 1 or n ≥ 2 yields three effects which
seem impossible to conciliate otherwise: weak bisimilarity must be transitive,
imply weak barbed congruence and extend the standard weak bisimilarity of
CCS (seen as a subsystem of DPC as in Section 3). Now we give a symmetric
characterization of weak bisimulation.

Lemma 3. A symmetric localized relation R ⊆ Proc×P(Loc2)×Proc is a weak
bisimulation iff the following properties hold.

– If (P,E,Q) ∈ R and P
p:f ·(L)
=⇒
λ,λ1,λ′

P ′, then Q
q:f ·(M)

=⇒
ρ,ρ1,ρ′

Q′ with (λ(p), ρ(q)) ∈ E

and (P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′| × |Q′| such that if (p′, q′) ∈ E′ then
(λλ1λ

′(p′), ρρ1ρ
′(q′)) ∈ E) and, moreover, if n ≥ 2, either (λ′(p′), ρ′(q′)) ∈⋃n

i=1(Li ×Mi) or λ′(p′) /∈
⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1Mi.

– If (P,E,Q) ∈ R and P
τ∗−→
λ

P ′, then Q
τ∗−→
ρ

Q′ with (P ′, E′, Q′) ∈ R for

some E′ ⊆ |P ′| × |Q′| such that if (p′, q′) ∈ E′ then (λ(p′), ρ(q′)) ∈ E.

Lemma 4 (Reflexivity). Let I be the localized relation defined by: (P,E,Q) ∈
I if P = Q and E = Id|P |. Then I is a weak bisimulation.

Let R and S be localized relations. We define a localized relation S ◦ R as
follows: (P,H,R) ∈ S ◦ R if H ⊆ |P | × |R| and there exist Q, E and F such
that (P,E,Q) ∈ R, (Q,F,R) ∈ S and F ◦ E ⊆ H.

Lemma 5 (Transitivity and union). If R and S are weak bisimulations, then
so are S ◦ R and R∪ S.

Definition 9. P and Q are weakly bisimilar (notation P ≈ Q) if there is a
weak bisimulation R and a relation E ⊆ |P | × |Q| such that (P,E,Q) ∈ R.

Proposition 3. The relation ≈ is an equivalence relation on processes.

Proposition 4. If P ≈ Q then P
•
≈ Q.

We want now to prove that weak bisimilarity implies weak barbed congruence
(and not just weak barbed bisimilarity). This boils down to proving that weak
bisimilarity is a congruence. Let us first illustrate this implication.

Example 3. Let first Σ be such that Σ1 = {a, b} and Σi = ∅ if i > 1. Then it is
easy to see that a · ∗ | b · ∗ and a · b · ∗ + b · a · ∗ are weakly bisimilar just as in
usual CCS and so they are weak barbed congruent.

Let now Σ be such that Σ1 = {a}, Σ2 = {f, g} and Σi = ∅ for i > 2. Let
P = f · (g · (∗, ∗), ∗) + g · (f · (∗, ∗), ∗) and Q = f · (∗, ∗) | g · (∗, ∗). Then we
cannot prove that P and Q are weakly bisimilar (because, in the definition of a
localized bisimulation, we are in the case n > 1). And indeed, surprisingly, P and
Q are not weak barbed congruent. Actually, let R = f · (∗, g · (a · ∗, ∗))). Then
Q | R →∗ Q0 with Q0 ↓a (Q0 is a process such that Q0(p) = ∗ for all p ∈ |Q0|
but for p = p0, and Q0(p0) = a · ∗), see Figure 5. And there is no process M
such that P | R→∗ M with M ↓a.
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Fig. 5. A process featuring an interaction capability a after some internal reductions

7 Weak bisimilarity is a congruence

As for CCS, the main step for proving that weak bisimilarity is a congruence
consists in extending a localized relation R on processes into another localized
relation R′ which is, intuitively, a congruence wrt. “parallel composition”.

Definition 10 (Adapted triples of relations). A triple of relations (D,D′, E)
with D ⊆ A × B, D′ ⊆ A × B′ and E ⊆ B × B′ is adapted, if, for any
(a, b, b′) ∈ A×B ×B′, with (b, b′) ∈ E, one has (a, b) ∈ D iff (a, b′) ∈ D′.

Definition 11 (Parallel extension of a localized relation). Let R be a
localized relation on processes. The parallel extension of R is the relation R′
such that (U,F, V ) ∈ R′ if there is a process S, a triple (P,E,Q) ∈ R and two
relations C ⊆ |S| × |P | and D ⊆ |S| × |Q| such that U = S ⊕C P , V = S ⊕D Q
(see Section 2), the triple (C,D,E) is adapted and F = Id|S| ∪E ⊆ |U | × |V |.

Intuitively, we express here that U is the parallel composition of S and P ,
with connections between the processes of S and those of P specified by C.
And similarly for V , defined as the parallel composition of S and Q through the
relation D. The hypothesis that (C,D,E) should be adapted means that C and
D specify the same connections between processes up to E.

Lemma 6. If R is symmetric, then so is its parallel extension R′.

The next result is essential to prove that weak bisimulation is a congruence.

Proposition 5. If R is a weak bisimulation, so is its parallel extension R′.

Now we are in position of proving that weak bisimilarity is a congruence, a
result which is interesting per se and will be essential for proving Theorem 4.

Theorem 3. The weak bisimilarity relation ≈ is a congruence.

We can prove now the main theorem of this section.

Theorem 4. Let P and Q be processes. If P ≈ Q (P and Q are weakly bisimilar)
then P ∼= Q (P and Q are weakly barb congruent).
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8 Annex: proofs of statements

8.1 Proof of Theorem 1

We use the notations introduced in Section 3.

Lemma 7. cs(〈A〉Y ) is the sum of all prefixed processes f · (〈A〉Y1
, . . . , 〈A〉Yn

)
where (Y, f, (Y1, . . . , Yn)) ∈ T .

Proof. More generally,

cs(〈A〉{X1,...,Xp}
X

[
〈A〉X1/X1, . . . , 〈A〉Xp/Xp

]
)

is equal to the sum above, for any subset {X1, . . . , Xp} of Q (with the Xi’s
pairwise distinct). The proof is a simple induction on q − p, where q is the
cardinality of Q. 2

The proof of the Theorem is straightforward, once observed that, if t =
f(t1, . . . , tn) and if (X, f, (X1, . . . , Xn)) ∈ T , one has

〈A〉X | proc(t̄)→ (〈A〉X1
| proc(t̄1))⊕ · · · ⊕ (〈A〉Xn

| proc(t̄n)) ,

thanks to Lemma 7. Observe then that (〈A〉X1 | proc(t̄1)) ⊕ · · · ⊕ (〈A〉Xn |
proc(t̄n)) reduces to an idle process iff each process 〈A〉Xi | proc(t̄i) reduces to
an idle process since these processes cannot interact with each other. Finally, f T
has no element of the shape (X, f, (X1, . . . , Xn)), then the process 〈A〉X | proc(t̄)
does not reduce.

8.2 Proof of Theorem 2

We shall need the following observation, using the notations of the beginning of
Section 2.1.

Lemma 8. If p′, q′ ∈ |P ′| and p′ _P ′ q′ then λ1(p′) _P λ1(q′) or λ1(p′) =
λ1(q′).

For the proof of the Theorem, we use the notations of its statement.
Let J ⊆ |t|◦. We say that J is a bar of t if, for any β ∈ ∂|t| there is exactly

one β0 ∈ J such that β0 < β. Similarly, a bar of the forest (sk)nk=1 is a subset I of⋃n
k=1{k}× |sk|◦ such that, for any (i, α) ∈

⋃n
k=1{k}×∂|sk|, there is exactly one

α0 ∈ |si|◦ such that (i, α0) ∈ I and α0 < α. Observe that a bar is an antichain
(for the prefix order) because of the uniqueness condition5.

In this proof, a state is a triple P = (I, J,G) where I is a bar of (si)
n
i=1,

J is a bar of t and G ⊆ I × J is such that π1(G) = I and π2(G) = J . Any
state P = (I, J,G) can be seen as a DPC process, also denoted as P to simplify
notations. This process is given by: |P | = I ∪ J (I and J are disjoint sets),
p _P q if (p, q) ∈ G or (q, p) ∈ G, P (i, α) = proc(si/α) and P (β) = proc(t/β).

5 ⋃n
k=1{k} × |sk|

◦ is equipped with the following prefix order: (i, α) ≤ (i′, α′) if i = i′

and α ≤ α′.



The initial state is P0 = (I0, J0, G0) where I0 = {(1, 〈〉), . . . , (n, 〈〉)}, J0 =
{〈〉} and G0 = I0 × J0. Seen as a process, it is clear that P0 coincides with the
process (proc(s1)⊕ · · · ⊕ proc(sn)) | proc(t̄) of the theorem we are proving.

Assume that t is a shuffle of s1, . . . , sn and let ϕ be a witness of this shuffle.
We say that a state P = (I, J,G) is compatible with ϕ if the following properties
hold.

– By restriction, ϕ induces a bijection between ↑I ⊆
⋃n
k=1{k} × |sk|◦ and

↑J ⊆ |t|◦ (where ↑J and ↑I are upward closures defined as usual, wrt. the
prefix order).

– If (i, α) ∈ ↑I and β ∈ ↑J is defined by β = ϕ(i, α), then the unique pair
of sequences α0 ≤ α and β0 ≤ β such that (i, α0) ∈ I and β0 ∈ J satisfy
((i, α0), β0) ∈ G.

Assume P = (I, J,G) is a state compatible with ϕ.
If J = ∅ then I = ∅ by the first condition in the definition of compatibility

and therefore P is an idle state.
Assume that J 6= ∅ and let β ∈ ↑J be minimal for the (transitive closure of

the) ≺ϕ relation; such an element must exist since ≺ϕ has no cycles. Let β0 be
the unique element of J such that β0 ≤ β, we must have β0 = β since otherwise
β = β′l for a β′ ≥ β0 which belongs to ↑J , contradicting the ≺ϕ minimality
of β. Let (i, α) be the unique element of ↑I such that ϕ(i, α) = β. If (i, α) /∈ I
then α = α′l with (i, α′) ∈ ↑I. Let β′ = ϕ(i, α′), we have β′ ∈ ↑J and β′ ≺ϕ β,
contradicting the ≺ϕ-minimality of β. Hence we have (i, α) ∈ I.

By the second property in the definition of compatibility, we have ((i, α), β) ∈
G and si(α) = t(β) = f ∈ Σr for r ≥ 1. Therefore we have a reduction P →
P ′ = (I ′, J ′, G′) with ((i, α), β) as main edge, so that

I ′ = I [{(i, αl) | l = 1, . . . , r}/(i, α)]

J ′ = J [{βl | l = 1, . . . , r}/β]

G′ = ∪{((i, αl), βl) | l = 1, . . . , r}
∪ {((i, αl), β′) | ((i, α), β′) ∈ G, β′ 6= β

and l = 1, . . . , r}
∪ {(((k, α′)), βl) | ((k, α′), β) ∈ G (k, α′) 6= (i, α)

and l = 1, . . . , r}
∪ {((k, α′), β′) ∈ G | (k, α′) 6= (i, α) and β′ 6= β}

It is clear that I ′ and J ′ are bars in (si)
n
i=1 and t, respectively. Observe that

↑I ′ = ↑I \ {(i, α)} and ↑J ′ = ↑J \ {β}. It follows that ϕ restricts to a bijection
from ↑I ′ to ↑J ′.

Now we show that P ′ = (I ′, J ′, G′) satisfies the second condition of com-
patibility with ϕ. Let ((i′, α′), β′) ∈ G′ be such that β′ = ϕ(i′, α′) and let α′0
and β′0 uniquely determined by the fact that (i′, α′0) ∈ I ′, β′0 ∈ J ′, α′0 ≤ α′ and
β′0 ≤ β′. We must check that ((i′, α′0), β′0) ∈ G′. We have ((i′, α′), β′) ∈ ↑I×↑J ⊇
I ′ × J ′ ⊇ G′ and hence the sequences α1 and β1 uniquely defined by the fact



that (i′, α1) ∈ I, β1 ∈ J , α1 ≤ α′ and β1 ≤ β′ satisfy ((i′, α1), β1) ∈ G: this is
due to our hypothesis that P is compatible with ϕ.

Moreover, we have α1 ≤ α′0 and β1 ≤ β′0 because I ′ ⊆ ↑I and J ′ ⊆ ↑J . By the
definition of I ′ and J ′, the following cases can occur. It is helpful to remember
that ↑I ′ = ↑I \ {(i, α)} and ↑J ′ = ↑J \ {β}.

– α′0 = α1 and β′0 = β1. Then we must have (i′, α′0) 6= (i, α) and β′0 6= β and
hence ((i, α′0), β′0) ∈ G′.

– α′0 = α1 and β1 < β′0. Then we must have β1 = β and β′0 = βl for
some l ∈ {1, . . . , r}. We know therefore that ((i′, α1), β) ∈ G and therefore
((i′, α′0), βl) ∈ G′ by definition of G′, as required.

– The case where α1 < α′0 and β1 = β′0 is similar (we must have i′ = i, α1 = α,
α′0 = αl for some l, and β′0 = β′1 6= β).

– In the last case we have α1 < α′0 and β1 < β′0. Then we must have i′ = i,
α1 = α, β1 = β and there must be l,m ∈ {1, . . . , r} such that α′0 = αl and
β′0 = βm. We know that ϕ(i, α′) = β′ ≥ β′0 = βm = ϕ(i, α)m, but α′ ≥ αl
and therefore l = m by our assumptions that ϕ is the witness of the shuffle.
Hence ((i′, α′0), βl) ∈ G′ by definition of G′, as required.

We have shown that P ′ is a state which is compatible with ϕ. It is also clear
that the state P0 is compatible with ϕ. Altogether, this shows that P →∗ Q
where Q is an idle state.

Conversely, assume that P0 →∗ Q where Q is an idle state and let us show
that t is a shuffle of (si)

n
i=1. So we have a sequence (Pq)

N
q=0 with PN = Q and

Pq → Pq+1 for q = 0, . . . , N − 1. We have Pq = (Iq, Jq, Gq) and we know that,
for each q < N , there is a unique ((iq, αq), βq) ∈ Gq which is the main edge of
the reduction Gq → Gq+1. Let

ϕ = {((iq, αq), βq) | q = 1, . . . , N} .

We prove first that ϕ is a bijection
⋃n
i=1{i} × |si|◦ → |t|◦.

Let i ∈ {1, . . . , n} and α ∈ |si|◦. We have (i, α) ∈ ↑I0 ⊃ ↑I1 ⊃ · · · ⊃ ↑IN = ∅
so let q be such that (i, α) ∈ ↑Iq and (i, α) /∈ ↑Iq+1. This means that (i, α) ∈ Iq
and that there is β ∈ Jq such that ((i, α), β) is the main edge of the reduction
Pq → Pq+1, that is, ((i, α), β) = ((iq, αq), βq) hence ((i, α), β) ∈ ϕ. If q′ ∈
{1, . . . , N} and (iq′ , αq′) = (i, α) we must have q′ ≤ q because (i, α) /∈ ↑Iq+1.
But since ((iq′ , αq′), βq′) is the main edge of the reduction Pq′ → Pq′+1, we
must have (i, α) /∈ ↑Iq′+1 and therefore q′ = q. Hence q is the unique element
of {1, . . . , N} such that (iq, αq) = (i, α) and hence there is only one β (namely
β = βq) such that ((i, α), β) ∈ ϕ. Hence ϕ is a function, and a symmetric
reasoning shows that ϕ is a bijection.

Now we show that ϕ satisfies the three conditions of being a witness that t
is a shuffle of the si’s.

The first condition obviously holds because if β = ϕ(i, α), then ((i, α), β) is
the main edge of a reduction Gq → Gq+1.

As to the second condition, let α, α′ ∈ |si|◦ with αl ≤ α′ for some l ∈ N+.
Assume that ϕ(i, α′) > ϕ(i, α), we must prove that ϕ(i, α′) ≥ ϕ(i, α)l. We



have (i, α) = (iq, αq) and (i, α′) = (iq′ , αq′) with q < q′ and βq < βq′ by our
assumption so that βqm ≤ βq′ for some m. We have ((i, αqm), βqm) ∈ Gq+1

by definition of the reduction of DPC processes. By iterating Lemma ?? along
the reductions Pq+1 → · · · → Pq′ we see that ((i, αql), βqm) ∈ Gq+1 (using
the fact that ((i, α′), β′) ∈ Gq′). Therefore we have l = m and this shows that
ϕ(i, α′) ≥ ϕ(i, α)l.

To prove the third condition, consider now β, β′ ∈ |t|◦ such that β ≺ϕ β′. Let
(i, α) and (i′, α′) be such that α ∈ |si|◦, α′ ∈ |si′ |◦, ϕ(i, α) = β and ϕ(i′, α′) = β′.
Let q and q′ be such that ((i, α), β) (resp. ((i′, α′), β′)) is the main edge of the
reduction Pq → Pq+1 (resp. of the reduction Pq′ → Pq′+1). We have q < q′.
Indeed, since q 6= q′, we must have otherwise q′ < q. Then there are only two
possibilities as to the fact that β ≺ϕ β′:

– If β′ = βl for some l, then we have a contradiction because β ∈ Jq and
β′ ∈ Jq′ and, for all γ ∈ Jq there is γ′ ∈ Jq′ such that γ′ ≤ γ. Therefore
there must be γ′ ∈ Jq′ such that γ′ ≤ β and we also have βl ∈ Jq′ hence
γ′ < βl and these two sequences belong to Jq′ , contradicting the fact that
this set is an antichain for the prefix order.

– Otherwise, we have i = i′ and α′ = αl. We reason similarly, using the fact
that Iq′ is an antichain in the forest

⋃n
j=1{i} × |si|◦, and the fact that, for

any (j, δ) ∈ Iq there exists (j′, δ′) ∈ Iq′ such that j′ = j and δ′ ≤ δ.

It follows that the relation ≺ϕ has no cycle, as contended.

8.3 Proof of Lemma 3

The proof uses the following results.

Lemma 9. Let R be a weak bisimulation. If (P,E,Q) ∈ R and P
τ∗−→
λ

P ′, then

Q
τ∗−→
ρ
Q′ with (P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′|×|Q′| such that if (p′, q′) ∈ E′

then (λ(p′), ρ(q′)) ∈ E.

Proof. Simple induction on the length of the sequence of reductions P
τ∗−→
λ

P ′.

2

Lemma 10. If P
τ∗−→
λ

P1, P1
p:f ·(L)
=⇒

λ1,λ2,λ′
1

P ′1 and P ′1
τ∗−→
λ′

P ′ then P
p:f ·(L)
=⇒

λλ1,λ2,λ′
1λ

′
P ′.

Proof. Results immediately from the definitions. 2

Assume that (P,E,Q) ∈ R and P
p:f ·(L)
=⇒
λ,λ1,λ′

P ′, that is P
τ∗−→
λ

P1
p:f ·(L)−→
λ1

P ′1
τ∗−→
λ′

P ′. By Lemma 9 one has Q
τ∗−→
ρ
Q1 with (P1, E1, Q1) ∈ R where E1 is such that

(p1, q1) ∈ E1 implies (λ(p1), ρ(q1)) ∈ E.

Since P1
p:f ·(L)−→
λ1

P ′1 and (P1, E1, Q1) ∈ R, one has Q1
q:f ·(M)

=⇒
ρ1,ρ2,ρ′1

Q′1 with

(p, ρ1(q)) ∈ E1 and (P ′1, E
′
1, Q

′
1) ∈ R where E′1 is such that if (p′1, q

′
1) ∈ E′1 then



(λ1(p′1), ρ1ρ2ρ
′
1(q′1)) ∈ E1 and, if n ≥ 2, then either (p′1, ρ

′
1(q′1)) ∈

⋃n
i=1(Li×Mi),

or p′1 /∈
⋃n
i=1 Li and ρ′1(q′1) /∈

⋃n
i=1Mi. Since P ′1

τ∗−→
λ′

P ′ and (P ′1, E
′
1, Q

′
1) ∈ R,

we can apply Lemma 9 again which shows that Q′1
τ∗−→
ρ′

Q′ with (P ′, E′, Q′) ∈ R

where E′ is such that (p′, q′) ∈ E′ implies (λ′(p′), ρ′(q′)) ∈ E′1. By Lemma 10, we

have Q
q:f ·(M)

=⇒
ρρ1,ρ2,ρ′1ρ

′
Q′ and remember that (P ′, E′, Q′) ∈ R. We have (p, ρ1(q)) ∈

E1 and hence (λ(p), ρρ1(q)) ∈ E by definition of E1. Last, the condition on
residuals obviously holds.

8.4 Proof of Lemma 5

Let (P,H,R) ∈ S ◦ R. Let Q, E and F be such that (P,E,Q) ∈ R, (Q,F,R) ∈ S
and F ◦ E ⊆ H.

� Assume first that P
p:f ·(L)
=⇒
λ,λ1,λ′

P ′. Then we have Q
q:f ·(M)

=⇒
ρ,ρ1,ρ′

Q′ with (λ(p), ρ(q)) ∈

E and (P ′, E′, Q′) ∈ R with E′ such that if (p′, q′) ∈ E′ then (λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈
E and, if n ≥ 2 then (λ′(p′), ρ′(q′)) ∈

⋃n
i=1(Li ×Mi) or λ′(p′) /∈

⋃n
i=1 Li and

ρ′(q′) /∈
⋃n
i=1Mi. Therefore we have R

r:f ·(N)
=⇒
σ,σ1,σ′

R′ with (ρ(q), σ(r)) ∈ F and

(Q′, F ′, R′) ∈ S with F ′ such that if (q′, r′) ∈ F ′ then (ρρ1ρ
′(q′), σσ1σ

′(r′)) ∈ F )
and, if n ≥ 2 then (ρ′(q′), σ′(r′)) ∈

⋃n
i=1(Mi × Ni) or ρ′(q′) /∈

⋃n
i=1Mi and

σ′(r′) /∈
⋃n
i=1Ni. So we have (λ(p), σ(r)) ∈ F ◦ E ⊆ H. Let

H ′ = {(p′, r′) ∈ |P ′| × |R′| | (λλ1λ′(p′), σσ1σ′(r′)) ∈ H
and if n ≥ 2 then

(λ′(p′), σ′(r′)) ∈
n⋃
i=1

(Li ×Ni)

or λ′(p′) /∈
n⋃
i=1

Li and σ′(r′) /∈
n⋃
i=1

Ni}

By definition of H ′, the triple (P ′, H ′, R′) satisfies the conditions on resid-
uals, and we are left with proving that F ′ ◦ E′ ⊆ H ′ which will show that
(P ′, H ′, R′) ∈ S ◦ R. Let (p′, r′) ∈ F ′ ◦ E′, there exists q′ such that (p′, q′) ∈ E′
and (q′, r′) ∈ F ′.

We know that (λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈ E and (ρρ1ρ
′(q′), σσ1σ

′(r)) ∈ F and
therefore (λλ1λ

′(p′), σσ1σ
′(r)) ∈ F ◦ E ⊆ H. So assume now that n ≥ 2. We

must prove that if λ′(p′) ∈
⋃n
i=1 Li or σ′(r′) ∈

⋃n
i=1Ni then (λ′(p′), σ′(r′)) ∈

Li × Ni for some i. Without loss of generality, we can assume that λ′(p′) ∈⋃n
i=1 Li (because the situation is symmetric). Then by the condition on residuals

for E′ we know that (λ′(p′), ρ′(q′)) ∈ Lj ×Mj for some j ∈ {1, . . . , n}, because
n ≥ 2. Therefore (ρ′(q′), σ′(r′)) ∈Mi×Ni by the conditions on residuals satisfied
by F ′. It follows that (λ′(p′), σ′(r′)) ∈ Li ×Ni as required.



� Assume now that P
τ∗−→
λ

P ′. Since (P,E,Q) ∈ R we have Q
τ∗−→
ρ
Q′ and there

exists E′ such that (P ′, E′, Q′) ∈ R and, if (p′, q′) ∈ E′, then (λ(p′), ρ(q′)) ∈
E. Since (Q,F,R) ∈ S, we have R

τ∗−→
σ

R′ and there exists F ′ such that

(Q′, F ′, R′) ∈ S and for any (q′, r′) ∈ F ′, one has (ρ(q′), σ(r′)) ∈ F . We have
(P ′, F ′ ◦ E′, Q′) ∈ S ◦ R and it is obvious that F ′ ◦ E′ satisfies the condition
on residuals.

8.5 Proof of Proposition 4

Let R be a weak bisimulation. Let B be the binary relation on processes defined
by: (P,Q) ∈ B if there exists E ⊆ |P |× |Q| such that (P,E,Q) ∈ R. We contend
that B is a weak barbed bisimulation, and this will prove the proposition. First
observe that B is symmetric because R is a symmetric localized relation.

� Let (P,Q) ∈ B and assume first that P →∗ P ′, that is P
τ∗−→
λ

P ′ for some

residual function λ. Let E ⊆ |P |× |Q| be such that (P,E,Q) ∈ R. By Lemma 3,

one has Q
τ∗−→
ρ
Q′ for some residual function ρ, and there exists E′ ⊆ |P ′| × |Q′|

such that (P ′, E′, Q′) ∈ R and therefore (P ′, Q′) ∈ B as required; this shows
that B is a weak reduction bisimulation.

� Assume now that (P,Q) ∈ B and that P →∗ P ′ with P ′ ↓f (with f ∈ Σ of

arity n), meaning that P ′
p′:f ·(L)−→
λ′
1

P ′′ for some p′ ∈ |P ′|, some sequence of sets of

locations L and some residual function λ′1.

Let E ⊆ |P | × |Q| be such that (P,E,Q) ∈ R. By Lemma 3, one has Q
τ∗−→
ρ

Q′ for some residual function ρ, and there exists E′ ⊆ |P ′| × |Q′| such that

(P ′, E′, Q′) ∈ R. Since R is a weak bisimulation we have therefore Q′
q′:f ·(M)

=⇒
ρ′,ρ1,ρ′′

Q′′

and hence Q′ →∗ Q′1 with Q′1 ↓f . This shows that B is weak barb preserving
since Q→∗ Q′1 and Q′1 ↓f .

8.6 Proof of Proposition 5

Symmetry of R′ results from the symmetry of R and from Lemma 6.
Let (U,F, V ) ∈ R′ with U = S ⊕C P , V = S ⊕D Q, (P,E,Q) ∈ R, (C,D,E)

adapted and F = Id|S| ∪E.

Case of a τ -transition. Assume that U
τ−→
λ

U ′. We must show that V
τ∗−→
ρ

V ′

with (U ′, F ′, V ′) ∈ R′ and (λ(u′), ρ(v′)) ∈ F for each (u′, v′) ∈ F ′ (condition
on residuals). There are three cases as to the locations of the two guarded sums
involved in that reduction.

� Assume first that they are located in S, in other words there are s, t ∈ |S|
with s _S t, cs(S(s)) = f ·S + S̃ (S̃ is a guarded sum) and cs(S(t)) = f ·T + T̃

(T̃ is a guarded sum), and we have S
τ−→
µ

S′ with



– IS′ = IS ∪
⋃n
i=1 ISi

∪
⋃n
i=1 ITi

– |S′| = (|S| \ {s, t}) ∪
⋃n
i=1 |Si| ∪

⋃n
i=1 |Ti|

– and _S′ is the least symmetric relation on |S′| such that s′ _S′ t′ if s′ _Si

t′, or s′ _Ti t
′, or (s′, t′) ∈ |Si| × |Ti| for some i ∈ {1, . . . , n}, or {s′, t′} 6⊆⋃n

i=1 |Si| ∪
⋃n
i=1 |Ti| and µ(s′) _S µ(t′)

where n is the arity of f so that S = (S1, . . . , Sn) and T = (T1, . . . , Tn).
Remember that the residual function µ is given by µ(s′) = s if s′ ∈

⋃n
i=1 |Si|,

µ(s′) = t if s′ ∈
⋃n
i=1 |Ti| and µ(s′) = s′ otherwise. We have U ′ = S′ ⊕C′ P

where C ′ = {(s′, p) ∈ |S′| × |P | | (µ(s′), p) ∈ C} and λ = µ ∪ Id|P |.

Then we have similarly V = S ⊕D Q
τ−→
ρ
V ′ = S′ ⊕D′ Q with ρ = µ ∪ Id|Q|,

and D′ = {(s′, q) ∈ |S′| × |Q| | (µ(s′), q) ∈ D}.
The triple (C ′, D′, E) is adapted: let s′ ∈ |S′|, p ∈ |P | and q ∈ |Q| be such

that (p, q) ∈ E. If (s′, p) ∈ C ′ then (µ(s′), p) ∈ C and hence (µ(s′), q) ∈ D
since (C,D,E) is adapted, that is (s′, q) ∈ D′, and similarly for the converse
implication.

Coming back to the definition of R′, we see that (U ′, F ′, V ′) ∈ R′ where
F ′ = Id|S′| ∪E. Moreover, the condition on residuals is satisfied, since, given
(u′, v′) ∈ F ′, we have either u′ = v′ ∈ |S′| and then λ(u′) = ρ(v′) ∈ |S| or
(u′, v′) ∈ E and (λ(u′), ρ(v′)) = (u′, v′) ∈ E. In both cases (λ(u′), ρ(v′)) ∈ F .

� Assume next that they are located in P , in other words there are p, r ∈ |P |
with cs(P (p)) = f ·P + P̃ (where P̃ is a guarded sum) and cs(P (r)) = f ·R+ R̃

(where R̃ is a guarded sum), and we have P
τ−→
µ

P ′ with

– IP ′ = IP ∪
⋃n
i=1 IPi

∪
⋃n
i=1 IRi

– |P ′| = (|P | \ {p, r}) ∪
⋃n
i=1 |Pi| ∪

⋃n
i=1 |Ri|

– and _P ′ is the least symmetric relation on |P ′| such that p′ _Pi r′ or
p′ _Ri r′ or (p′, r′) ∈ |Pi| × |Ri| for some i ∈ {1, . . . , n}, or {p′, r′} 6⊆⋃n
i=1 |Pi| ∪

⋃n
i=1 |Ri| and µ(p′) _P µ(r′).

We recall that the residual function µ is given by µ(p′) = p if p′ ∈
⋃n
i=1 |Pi|,

µ(p′) = r if p′ ∈
⋃n
i=1 |Ri| and µ(p′) = p′ otherwise. With these notations, the

process U ′ is U ′ = S ⊕C′ P ′ where C ′ = {(s, p′) ∈ |S| × |P ′| | (s, µ(p′)) ∈ C}
and the residual function λ is defined as λ = Id|S| ∪µ. Since (P,E,Q) ∈ R and

P
τ−→
µ

P ′, one has Q
τ∗−→
ν

Q′ with (P ′, E′, Q′) ∈ R where E′ ⊆ |P ′| × |Q′|
satisfies the condition on residuals (p′, q′) ∈ E′ implies (µ(p′), ν(q′)) ∈ E. Let
D′ = {(s, q′) ∈ |S| × |Q′| | (s, ν(q′)) ∈ D}. Setting V ′ = S ⊕D′ Q′, we have

V
τ∗−→
ρ
V ′ where ρ = Id|S| ∪ν.

The triple (C ′, D′, E′) is adapted: let (p′, q′) ∈ E′ and let s ∈ |S|. If (s, p′) ∈
C ′, we have (s, µ(p′)) ∈ C. Since (µ(p′), ν(q′)) ∈ E (by definition of E′), we have
(s, ν(q′)) ∈ D because (C,D,E) is adapted. That is (s, q′) ∈ D′. The converse
implication is proved similarly.

Let F ′ = Id|S| ∪E′ ⊆ |U ′| × |V ′|, we have therefore (U ′, F ′, V ′) ∈ R′ (by
definition of R′). Last we check the condition on residuals. Let (u′, v′) ∈ F ′,



then either u′ = v′ ∈ |S| and then λ(u′) = u′ = v′ = ρ(v′) or u′ ∈ |P ′|, v′ ∈ |Q′|
and (u′, v′) ∈ E′ and then (λ(u′), ρ(v′)) = (µ(u′), ν(v′)) ∈ E by the condition on
residuals satisfied by E.

� Assume last that one of the involved guarded sums is located in S and that
the other one is located in P , this is of course the most interesting case in this
first part of the proof.

By definition of internal reduction (see Section 2.1) we have s ∈ |S|, p ∈ |P |
with (s, p) ∈ C, cs(S(s)) = f · S + S̃ and f /∈ IS , and cs(P (p)) = f · P + P̃
and f /∈ IP with the usual notational conventions, and U ′ = S′ ⊕C′ P ′ where
S′ = S [⊕S/s], P ′ = P [⊕P /p], and C ′ ⊆ |S′| × |P ′| is defined as follows:
(s′, p′) ∈ C ′ if

– (s′, p′) ∈ |Si| × |Pi| for some i,
– or (s′, p′) /∈ (

⋃n
i=1 |Si|)× (

⋃n
i=1 |Pi|) and (λ(s′), λ(p′)) ∈ C,

where the residual map λ : |U ′| = |S′| ∪ |P ′| → |U | = |S| ∪ |P | is defined by
λ(u′) = u′ if u′ ∈ (|S′| \

⋃n
i=1 |Si|) ∪ (|P ′| \

⋃n
i=1 |Pi|), λ(s′) = s if s′ ∈

⋃n
i=1 |Si|

and λ(p′) = p if p′ ∈
⋃n
i=1 |Pi|.

The crucial property that f /∈ IS and f /∈ IP is due to the fact that, in S,
the names bound in IS are defined up to α-conversion and similarly for P .

Because f /∈ IP we have P
p:f ·(L)−→
λ

P ′ (where Li = |Pi| for each i = 1, . . . , n)

and hence, since we have assumed that (P,E,Q) ∈ R, we have Q
q:f ·(M)

=⇒
ρ,ρ1,ρ′

Q′ with

(p, ρ(q)) ∈ E and (P ′, E′, Q′) ∈ R where E′ is such that if (p′, q′) ∈ E′ then
(λ(p′), ρρ1ρ

′(q′)) ∈ E and, if n ≥ 2, then either (p′, ρ′(q′)) ∈ Li ×Mi for some i,
or p′ /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃
Mi.

We can decompose this transition as follows

Q
τ∗−→
ρ
Q1

q:f ·(M)−→
ρ1

Q′1
τ∗−→
ρ′

Q′ .

With these notations we have V
τ∗−→
µ

V1 with V1 = S ⊕D1
Q1 where D1 =

{(s, q1) ∈ |S| × |Q1| | (s, ρ(q1)) ∈ D}, and µ = Id|S| ∪ρ.

We have q ∈ |Q1| with cs(Q1(q)) = f ·R + R̃, f /∈ IQ1 and |Ri| = Mi for
i = 1, . . . , n. Moreover, since (p, ρ(q)) ∈ E and (s, p) ∈ C, and since (C,D,E) is
adapted, we have (s, ρ(q)) ∈ D, that is (s, q) ∈ D1. Therefore, since cs(S(s)) =

f ·S + S̃ and f /∈ IS , we have V1
τ−→
θ
V ′1 = S′ ⊕D′

1
Q′1 where D′1 ⊆ |S′| × |Q′1| is

defined as follows: given (s′, q′1) ∈ |S′| × |Q′1|, we have (s′, q′1) ∈ D′1

– if s′ ∈ |Si| and q′1 ∈ |Ri| for some i = 1, . . . , n
– or s′ /∈

⋃n
i=1 |Si| or q′1 /∈

⋃n
i=1 |Ri| and (θ(s′), θ(q′1)) ∈ D1 (that is (θ(s′), ρθ(q′1)) ∈

D),

and the residual function θ is defined by θ(v′1) = v′1 if v′1 ∈ (|S′| \
⋃n
i=1 |Si|) ∪

(|Q′1| \
⋃n
i=1 |Ri|), θ(s′) = s if s′ ∈

⋃n
i=1 |Si| and θ(q′1) = q if q′1 ∈

⋃n
i=1 |Ri|.

Observe that θ(q′1) = ρ1(q′1) for all q′1 ∈ |Q′1|.



Since Q′1
τ∗−→
ρ′

Q′, we have V ′1 = S′ ⊕D′
1
Q′1

τ∗−→
µ′

V ′ = S′ ⊕D′ Q′ where

µ′ = Id|S′| ∪ρ′ and D′ = {(s′, q′) ∈ |S′| × |Q′| | (s′, ρ′(q′)) ∈ D′1}. So we have

V
τ∗−→
µθµ′

V ′. Let F ′ ⊆ |U ′| × |V ′| be defined by F ′ = Id|S′| ∪E′. It is clear then

that (u′, v′) ∈ F ′ implies (λ(u′), µθµ′(v′)) ∈ F because (p′, q′) ∈ E′ implies
(λ(p′), ρρ1ρ

′(q′)) ∈ E and θ and ρ1 coincide on |Q′1|.
To finish, we must prove that (U ′, F ′, V ′) ∈ R′ and to this end it suffices to

show that the triple of relations (C ′, D′, E′) is adapted. So let s′ ∈ |S′|, p′ ∈ |P ′|
and q′ ∈ |Q′| with (p′, q′) ∈ E′ (so that in particular (λ(p′), ρθρ′(q′)) ∈ E).

Assume first that (s′, p′) ∈ C ′ and let us show that (s′, q′) ∈ D′, that is
(s′, ρ′(q′)) ∈ D′1. Coming back to the definition of C ′, we can reduce our analysis
to three cases.

– First case: (s′, p′) ∈ |Si| × |Pi| for some i. We distinguish two cases as to the
value of n (the arity of f). Assume first that n ≥ 2. Since p′ ∈ |Pi| = Li, we
must have ρ′(q′) ∈Mi = |Ri| because (p′, q′) ∈ E′ and then (s′, ρ′(q′)) ∈ D′1
as required. Assume now n = 1. If ρ′(q′) ∈ M1 we reason as above, so
assume that ρ′(q′) /∈ M1 =

⋃n
i=1 |Ri|. Coming back to the definition of D′1,

it suffices to prove that (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. Since (p′, q′) ∈ E′
we have (λ(p′), ρθρ′(q′)) = (p, ρρ′(q′)) ∈ E. We also have (s, p) ∈ C, and
hence (s, ρρ′(q′)) ∈ D as required, since (C,D,E) is adapted.

– Second case: s′ /∈
⋃n
i=1 |Si|. In order to prove (s′, q′) ∈ D′, it suffices to

prove that (θ(s′), ρθρ′(q′)) = (s′, ρθρ′(q′)) ∈ D. But we have (s′, p′) ∈ C ′

and s′ /∈
⋃n
i=1 |Si|, hence (λ(s′), λ(p′)) = (s′, λ(p′)) ∈ C. Since (p′, q′) ∈ E′,

we have (λ(p′), ρθρ′(q′)) ∈ E and hence (s′, ρθρ′(q′)) ∈ D since (C,D,E) is
adapted.

– Third case: s′ ∈
⋃n
i=1 |Si| and p′ /∈

⋃n
i=1 |Pi| so that we have (s, p′) ∈ C (by

definition of C ′ and because (s′, p′) ∈ C ′). Assume first that n ≥ 2. Since
(p′, q′) ∈ E′, we must have ρ′(q′) /∈

⋃n
i=1Mi. To prove that (s′, ρ′(q′)) ∈ D′1,

it suffices therefore to check that (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. This
property holds because (C,D,E) is adapted, (s, p′) ∈ C and (p′, ρρ′(q′)) ∈ E.
The latter holds because (p′, q′) ∈ E′. Assume now that n = 1. If ρ′(q′) /∈⋃n
i=1Mi = M1, we can reason as above, so assume that ρ′(q′) ∈ M1. Then

we have (s′, ρ′(q′)) ∈ |S1| ×M1 and hence (s′, ρ′(q′)) ∈ D′1.

Let us prove now the converse implication, assuming that (s′, ρ′(q′)) ∈ D′1;
we contend that (s′, p′) ∈ C ′. Again, we consider three cases.

– First case: s′ ∈ |Si| and ρ′(q′) ∈ Mi = |Ri| for some i ∈ {1, . . . , n}. If n ≥ 2
the fact that (p′, q′) ∈ E′ implies that p′ ∈ Li = |Pi| and hence (s′, p′) ∈ C ′
as required. Assume that n = 1. If p′ ∈ L1 we have (s′, p′) ∈ C ′ since
(s′, p′) ∈ |S1| × |P1|. So assume that p′ /∈ L1. We know that (s′, ρ′(q′)) ∈ D′1
and hence (s, ρ(q)) ∈ D. We have (p′, ρ(q)) = (λ(p′), ρθρ′(q′)) since p′ /∈ L1,
and hence (p′, ρ(q)) ∈ E since (p′, q′) ∈ E′ by assumption. As (C,D,E) is
adapted we have (s, p′) = (λ(s′), λ(p′)) ∈ C, hence (s′, p′) ∈ C ′ because
p′ /∈ L1 (come back to the definition of C ′).



– Second case: s′ /∈
⋃n
i=1 |Si|. In view of the definition of C ′, it suffices to prove

that (λ(s′), λ(p′)) = (s′, λ(p′)) ∈ C. Since (s′, ρ′(q′)) ∈ D′1 and s′ /∈
⋃n
i=1 |Si|,

we have (θ(s′), ρθρ′(q′)) = (s′, ρθρ′(q′)) ∈ D. And since (p′, q′) ∈ E′ we have
(λ(p′), ρθρ′(q′)) ∈ E, and hence (s′, λ(p′)) ∈ C because (C,D,E) is adapted.
Therefore (s′, p′) ∈ C ′ as required.

– Third case: s′ ∈ |Si| for some i ∈ {1, . . . , n} and ρ′(q′) /∈
⋃n
i=1Mi. If n ≥ 2,

we must have p′ /∈
⋃n
i=1 Li because (p′, q′) ∈ E′. Therefore, to check that

(s′, p′) ∈ C ′, it suffices to prove that (λ(s′), λ(p′)) = (s, p′) ∈ C. We have
(s′, ρ′(q′)) ∈ D′1 and hence (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. Since (p′, q′) ∈
E′ we have (λ(p′), ρθρ′(q′)) = (p′, ρρ′(q′)) ∈ E and hence (s, p′) ∈ C because
(C,D,E) is adapted. Assume now that n = 1. If p′ ∈ L1 we have (s′, p′) ∈ C ′
since (s′, p′) ∈ |S1| × |P1|. So assume that p′ /∈ L1. Since then p′ /∈

⋃n
i=1 |Pi|,

it suffices to prove that (λ(s′), λ(p′)) = (s, p′) ∈ C (by definition of C ′).
We have (p′, ρθρ′(q′)) = (p′, ρρ′(q′)) ∈ E because (p′, q′) ∈ E′ and p′ /∈
L1. Moreover (s, ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D because (s′, ρ′(q′)) ∈ D′1 and
ρ′(q′) /∈

⋃n
i=1Mi. It follows that (s, p′) ∈ C as required.

This ends the first part of the proof.

Case of a labeled transition. We assume now that U
r:f ·(L)−→
µ1

U ′. Since U = S⊕CP ,

we consider two cases as to the location of r. Observe that f /∈ IU = IS ∪ IP
(this two sets being assumed to be disjoint which is possible by α-conversion).

� If r ∈ |S| then we have cs(S(r)) = f ·S+S̃ and S
r:f ·(L)−→
σ1

S′ where S′ = S [⊕S/r]
(so that Li = |Si| for each i = 1, . . . , n), and U ′ = S′⊕C′ P where C ′ = {(s′, p) ∈
|S′| × |P | | (σ1(s′), p) ∈ C}. Let D′ = {(s′, q) ∈ |S′| × |Q| | (σ1(s′), q) ∈ D}. We
have µ1 = σ1 ∪ Id|P |. It is clear that (C ′, D′, E) is adapted, since (C,D,E) is
adapted.

Let V ′ = S′ ⊕D′ Q, we have just seen that (U ′, F ′, V ′) ∈ R′ where F ′ =

Id|S′| ∪E. We have (r, r) ∈ F , V
r:f ·(L)−→
ν1

V ′ (with ν1 = σ1 ∪ Id|Q|; observe indeed

that we can assume that f /∈ IQ up to α-conversion of Q) and, given (u′, v′) ∈ F ′,
we have either (u′, v′) ∈

⋃n
i=1(Li × Li) (and actually u′ = v′) or u′ /∈

⋃n
i=1 Li,

v′ /∈
⋃n
i=1 Li and (u′, v′) ∈ F as easily checked. Therefore the condition on

residuals is satisfied.

� The last case to consider is when r = p ∈ |P |. We have P (p) = f ·P + P̃ and

P
p:f ·(L)−→
λ1

P ′. Then U ′ = S ⊕C′ P ′ where C ′ = {(s, p′) ∈ |S| × |P ′| | (s, λ1(p′)) ∈
C}.

Since (P,E,Q) ∈ R we have Q
q:f ·(M)

=⇒
ρ,ρ1,ρ′

Q′ with (p, ρ(q)) ∈ E and there

exists E′ ⊆ |P ′| × |Q′| such that (P ′, E′, Q′) ∈ R and, for any (p′, q′) ∈ E′,
(λ1(p′), ρρ1ρ

′(q′)) ∈ E and, if n ≥ 2, either (p′, ρ′(q′)) ∈
⋃n
i=1(Li × Mi), or

p′ /∈
⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1Mi.



Therefore we have V
q:f ·(M)

=⇒
ν,ν1,ν′

V ′ (again, up to α-conversion we have f /∈ IV )

where V ′ = S ⊕D′ Q′ with D′ = {(s, q′) ∈ |S| × |Q′| | (s, ρρ1ρ
′(q′)) ∈ D}.

Moreover ν = Id|S| ∪ρ, ν1 = Id|S| ∪ρ1 and ν′ = Id|S| ∪ρ′.
Let F ′ ⊆ |U ′| × |V ′| be defined by F ′ = Id|S| ∪E′. Let (u′, v′) ∈ F ′. If

u′ ∈ |S| or v′ ∈ |S|, we must have u′ = v′. If u′ /∈ |S| and v′ /∈ |S| then we
have (u′, v′) ∈ E′ and hence (µ1(u′), νν1ν

′(v′)) = (λ1(u′), ρρ1ρ
′(v′)) ∈ E and,

if n ≥ 2, either there exists i such that u′ ∈ Li and ν′(v′) = ρ′(v′) ∈ Mi, or
u′ /∈

⋃n
i=1 Li and ν′(v′) = ρ′(v′) /∈

⋃n
i=1Mi.

Moreover, the triple (C ′, D′, E′) is adapted: let (p′, q′) ∈ E′ and s ∈ |S|.
We have (λ1(p′), ρρ1ρ

′(q′)) ∈ E. We have (s, p′) ∈ C ′ iff (s, λ1(p′)) ∈ C iff
(s, ρρ1ρ

′(q′)) ∈ D iff (s, q′) ∈ D′.

8.7 Proof of Theorem 3

Let R be a weak bisimulation. Let R be a Y -context. We define a new localized
relation denoted as R [R/Y ] as follows:

– if R = Y then R [R/Y ] = R;
– if R 6= Y then we stipulate that (P ′, E′, Q′) ∈ R [R/Y ] if there exists

(P,E,Q) ∈ R and if E′ = Id|R|, P
′ = R [P/Y ] and Q′ = R [Q/Y ] (ob-

serve that |P ′| = |Q′| = |R| because R 6= Y ).

We define a localized relationR+ as the union of I (the set of all triples (U,E,U)
where U is any process and E = Id|U |), of the parallel extension R′ of R (see
Proposition 5) and of all the relations of the shape R [R/Y ] for all Y -contexts
R.

We prove that R+ is a weak bisimulation and the theorem will follow easily.

Let (U,F, V ) ∈ R+ and assume that we are in one of the two following
situations

– U
τ−→
µ

U ′ (called case (1) in the sequel)

– or U
p:f ·(L)−→
µ1

U ′ (called case (2) in the sequel).

We describe explicitly our goals.

– In case (1) we must show that V
τ∗−→
ν

V ′ with (U ′, F ′, V ′) ∈ R+ for some

F ′ ⊆ |U ′| × |V ′| such that for any (u′, v′) ∈ F ′, one has (µ(u′), ν(v′)) ∈ F .

– In case (2) we must show that V
q:f ·(M)

=⇒
ν,ν1,ν′

V ′ with (p, ν(q))) ∈ F and (U ′, F ′, V ′) ∈

R+, for some F ′ ⊆ |U ′| × |V ′| such that, for any (u′, v′) ∈ F ′, one has
(µ1(u′), νν1ν

′(v′)) ∈ F and, if n ≥ 2, then one has either (u′, ν′(v′)) ∈⋃n
i=1(Li ×Mi) or u′ /∈

⋃n
i=1 Li and ν′(v′) /∈

⋃n
i=1Mi.

The case where (U,F, V ) ∈ I is trivial.

If (U,F, V ) ∈ R′ we apply directly Proposition 5 in both cases.



Assume now that (U,F, V ) ∈ R [R/Y ] for some Y -context R, so that U =
R [P/Y ], V = R [Q/Y ] with (P,E,Q) ∈ R and F = E if R = Y and F = Id|R|
otherwise. If R = Y we use directly the fact that R is a weak bisimulation to
exhibit V ′ and F ′ satisfying the required conditions.

So we assume from now on that R 6= Y and therefore F = Id|R|.

By definition of Y -contexts, there is exactly one r ∈ |R| such that Y occurs
free in R(r). Then R(r) can be written uniquely as R(r) = g · R + R̃ where
Y does not occur in R̃ and occurs in exactly one of the processes R1, . . . , Rn;
without loss of generality we can assume that R1 is a Y -context and that Y does
not occur free in R2, . . . , Rn.

Assume first that R1 6= Y . In both cases (1) and (2), we have U ′ = R′ [P/Y ]

with R
τ−→
µ

R′ (case (1)) or R
p:f ·(L)−→
µ1

R′ (case (2)). Let V ′ = R′ [Q/Y ]. In case

(1), we have V
τ−→
µ

V ′ and in case (2) we have V
q:f ·(L)−→
µ1

V ′, and since R′ 6= Y

(by our hypothesis on R1), we have (U ′, Id|R′|, V
′) ∈ R+ because (P,E,Q) ∈ R.

The condition on residuals is obviously satisfied in both cases.
Assume now that R1 = Y .

� Suppose first that we are in case (1). There are two cases to consider as to

the locations s, t ∈ |U | of the sub-processes involved in the transition U
τ−→
µ

U ′.

The case where s 6= r and t 6= r is similar to the case above where R1 6= Y . By
symmetry we are left with the case where s = r (and hence t 6= r).

So U(t) = R(t) = f · T + T̃ and the guarded sum R(r) has an unique

summand which is involved in the transition U
τ−→
µ

U ′ (called active summand

in the sequel), and this summand is of the shape f · S.
If the active summand is g·R6 (so that g = f) then U(r) = f ·(P,R2, . . . , Rn)+

S̃ and U ′ can be written U ′ = R′⊕C P for some process R′ which can be defined
using only R, and C ⊆ |R′| × |P |. Explicitly, R′ is defined as follows:

– IR′ = IR ∪
⋃n
i=2 IRi ∪

⋃n
i=1 ITi

– |R′| = (|R| \ {r, t}) ∪
⋃n
i=2 |Ri| ∪

⋃n
i=1 |Ti|

– and _R′ is the least symmetric relation on |R′| such that r′ _R′ t′ if r′ _Ri

t′ for some i = 2, . . . , n or r′ _Ti
t′ for some i = 1, . . . , n, or (r′, t′) ∈

|Ri| × |Ti| for some i ∈ {2, . . . , n}, or r′ /∈
⋃n
i=2 |Ri| or t′ /∈

⋃n
i=1 |Ti| and

r′ _R t and µ(r′) _R µ(t′)

where the residual function µ : |U ′| → |U | is given by µ(r′) = r if r′ ∈ |P | ∪⋃n
i=2 |Ri|, µ(r′) = t if r′ ∈

⋃n
i=1 |Ti| and µ(r′) = r′ when r′ belongs to none of

these two sets.
The relation C is defined as follows: given (r′, p) ∈ |R′|×|P |, one has (r′, p) ∈

C if r′ ∈ |T1|, or r′ /∈
⋃n
i=2 |Ri| ∪

⋃n
i=1 |Ti| and r′ _R r.

Let V ′ = R′⊕DQ, where D ⊆ |R′|×|Q| is defined exactly like C (just replace
P with Q in the definition). Then (C,D,E) is adapted (because the property
for (r′, p) ∈ |R′| × |P | of belonging or not to C depends only on r′, and does not

6 Remember that g ·R is the unique summand of R(r) which contains Y .



depend on p, and similarly for D). We can mimic that reduction on V , so that

V
τ−→
ν

V ′ for the residual function ν which is defined like µ (replacing P with Q).

We have (U ′, F ′, V ′) ∈ R′ ⊆ R+ where F ′ = Id|R′| ∪E. Given (u′, v′) ∈ F ′, we
have µ(u′) = ν(v′), that is (µ(u′), ν(v′)) ∈ F so that the condition on residuals
holds7.

Assume now that the active summand is not g ·R. In that case we also have
V

τ−→
µ

U ′ (both P and Q vanish in the corresponding reductions), and we are

done because (U ′, Id|U ′|, U
′) ∈ I ⊆ R+.

� We suppose now that we are in case (2). Assume first that p 6= r. In that case

we have R
p:f ·(L)−→
θ1

R′ and U ′ = R′ [P/Y ] and we also have V
p:f ·(L)−→
θ1

V ′ = R′ [Q/Y ]

so (U ′, Id|R′|, V
′) ∈ R′ [R/Y ] ⊆ R+, and the condition on residuals is obvious.

Assume now that p = r. Then exactly one of the summands of the guarded
sum R(r) is the prefixed process performing the action f in the considered
transition on U (again, this summand is called the active summand in the sequel).
We also know that f /∈ IR.

The case where the active summand is not g · (P,R2, . . . , Rn) is completely
similar to the previous one (P vanishes in the transition).

Assume that the active summand is g · (P,R2, . . . , Rn) (so that g = f), then
U ′ = R′ ⊕C P where R′ is defined by

– IR′ = IR ∪
⋃n
i=2 IRi

– |R′| = (|R| \ {r})∪
⋃n
i=2 |Ri| and _R′ is the least symmetric relation on |R′|

such that r′ _R′ t′ if r′ _Ri t
′ for some i = 2, . . . , n or θ1(r′) _R θ1(t′)

– the relation C ⊆ |R′| × |P | is defined by (r′, q) ∈ C if r′ /∈
⋃n
i=2 |Ri| and

r′ _R r (this does not depend on q).

Then we have V = R [Q/Y ]
p:f ·(M)−→
ϕ1

V ′ (with M1 = |Q| and Mi = Li = |Ri|
for i = 2, . . . , n; remember also that f /∈ IR) with V ′ = R′ ⊕D Q where D is
defined like C (replacing P with Q in the definition). Then we have (U ′, F ′, V ′) ∈
R′ ⊆ R+ where F ′ = Id|R′| ∪E since (C,D,E) is obviously adapted (as above).
Moreover the condition on residuals is obviously satisfied.

This ends the proof of the fact that R+ is a weak bisimulation.
We can now prove that ≈ is a congruence. Assume that P ≈ Q and let R

be a Y -context. Let E ⊆ |P | × |Q| and let R be a weak bisimulation such that
(P,E,Q) ∈ R. Then we have (R [P/Y ] , Id|R|, R [Q/Y ]) ∈ R [R/Y ] ⊆ R+ and
hence R [P/Y ] ≈ R [Q/Y ] since R+ is a weak bisimulation. 2

8.8 Weak bisimilarity on CCS

We assume in this section that Σn = ∅ if n > 1 (see the end of Section 3). All
processes P considered in this section are CCS processes built on Σ, meaning

7 It is in this part of the proof that one understand the importance of adapted triples
of relations in the definition of the parallel extension of a weak bisimulation.



that, in any subprocess of P which is of shape G〈Φ〉, the graph G is a complete
graph (for all p, q ∈ |G|, if p 6= q then p _G q).

We answer here a very natural question: when restricted to ordinary CCS,
does our weak localized bisimilarity coincide with standard weak bisimilarity?

Let R be a localized weak bisimulation. Let R0 be the following relation on
CCS processes: P R0 Q if (P,E,Q) ∈ R for some E ⊆ |P | × |Q|. We prove that
R0 is a weak bisimulation on CCS processes.

Lemma 11. Let R be a localized weak bisimulation. Then R0 is a weak bisim-
ulation on CCS processes.

Proof. Let P and Q be CCS processes such that P R0 Q. Let E ⊆ |P | × |Q| be
such that (P,E,Q) ∈ R.

Assume first that P
τ−→ P ′. Let p1, p2 ∈ |P | with cs(P (p1)) = a · P1 + S1

and cs(P (p2)) = a · P2 + S2 (the two sub-processes involved in this reduction).
Then, by definition of the internal reduction in DPC, P ′ = G〈Φ〉 where G is the
complete graph on |G| = |P | \ {p1, p2} ∪ |P1| ∪ |P2| and Φ(r) = P (r) if r ∈ |P |,
Φ(r) = Pi(r) if r ∈ |Pi| for i = 1, 2. In other words P ′ = P [P1/p1, P2/p2]

Let λ1 : |P ′| → |P | be the corresponding residual map (λ1(r) = r if r ∈ |P |
and λ1(r) = pi if r ∈ |Pi|), we have P

τ−→
λ1

P ′ and therefore there is a DPC process

Q′ such that (P ′, E′, Q′) ∈ R for some relation E′ ⊆ |P ′| × |Q′|, and a function

ρ : |Q′| → |Q| with Q
τ∗−→
ρ

Q′ and (p′, q′) ∈ E′ implies (λ1(p′), ρ(q′)) ∈ E.

Therefore we have P ′ R0 Q′ as required.
Assume now that P

a−→ P ′. Let p ∈ |P | with cs(P (p)) = a · P1 + S1 and

P ′ = P [P1/p], we also have a /∈ IP . Then we have P
p:a·(L)−→
λ1

P ′ where L = |P1|
and λ1 : |P ′| → |P | is given by λ1(r) = p if r ∈ |P1| and λ1(r) = r otherwise.

Since (P,E,Q) ∈ R, we have Q
q:a·(M)

=⇒
ρ,ρ1,ρ′

Q′ with (p, ρ(q)) ∈ E, and there exists

E′ ⊆ |P ′| × |Q′| such that (P ′, E′, Q′) ∈ R, and (λ1(p′), ρρ1ρ
′(q′)) ∈ E for each

(p′, q′) ∈ E′. In particular P ′ R0 Q′.
Since R is a localized bisimulation, the relation R0 is symmetric and is there-

fore a bisimulation on CCS processes. 2

We need now to prove the converse. Let U be a binary relation on CCS
processes. Let Û be the set of all triples (P,E,Q) where P and Q are CCS
processes such that P U Q and E = |P | × |Q|.

Lemma 12. If U is a bisimulation, then Û is a localized bisimulation.

Proof. Let P and Q be CCS processes and let E be such that (P,E,Q) ∈ Û , so
that E = |P | × |Q| and P U Q.

Assume first that P
τ−→
λ1

P ′ so that P
τ−→ P ′ (in CCS) and hence there exists

Q′ such that Q
τ∗−→ Q′ and P ′ U Q′. Then there is a function ρ : |Q′| → |Q| such

that Q
τ∗−→
ρ

Q′ and we have (P ′, E′, Q′) ∈ Û . The condition on residuals holds

obviously, by definition of E.



The case of a labeled transition is completely similar and the condition on
residuals holds again by definition of Û and because we are in the case where
n = 1 (all function symbols are of arity 1).

2

So we can conclude that, when restricted to CCS processes, our notion of
weak bisimilarity coincides with the usual one.

Theorem 5. Two CCS processes are weakly bisimilar (in the usual CCS sense)
iff they are weakly bisimilar in the localized sense.


