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Module 2.2: Models of Programming Languages
Exam, parts II and III

(Correction)

There are 5 exercices gathered in 3 parts which are independent of each other. Part (a) and (b) will be
corrected by Thomas Ehrhard, Part (c) will be corrected by Michele Pagani. Try to answer some questions
in the three parts, but you are free to invest more time in one part than in the others, depending on your
feeling and strengths.
We expect from you a personal work. You can use all the documents provided during the lecture (lecture
notes, slides, exercise sheets). You can write in French and in English.
You must submit your solutions in an electronic format (pdf, jpeg, png etc) by email to both ehrhard@
irif.fr and pagani@irif.fr, strictly before 11 :50 am this morning (Tue Mar 9th, 2021). The email
must have as object "MPRI EXAM : MODULE 2-02 [yourname]".

a) Lists in the relational model of linear logic

Exercice 1 :
Remember that Rel is the category of sets and relations, which is a model of linear logic. All the objects
and morphisms in this exercise are in Rel.
Let L be the set N<ω of finite sequences of integers and N = N, considered as objects of Rel (the category
of sets and relations). We write 〈n1, . . . , nk〉 for an empty sequence of length k, 〈 〉 for the empty sequence
and we set n@〈n1, . . . , nk〉 = 〈n, n1, . . . , nk〉. Remember that, in Rel, the object 1 is the set {∗}.

1. Let θ ∈ Rel(L, 1⊕ (N⊗ L)) be defined as

θ = {(〈 〉, (1, ∗))} ∪ {(n@s, (2, (n, s))) | n ∈ N and s ∈ L} .

Prove that θ is an isomorphism in Rel, that is, that θ is (the graph of) a bijection.
2. Let E be a set and let f ∈ Rel(1⊕ (N⊗ E), E). We define a sequence fk of elements of Rel(L,E)

by induction on k as follows

f0 = ∅
fk+1 = {(〈 〉, e) | ((1, ∗), e) ∈ f} ∪ {(n@s, e) | ∃e′ ∈ E ((2, (n, e′)), e) ∈ f and (s, e′) ∈ fk}

Prove that ∀k ∈ N fk ⊆ fk+1. We set f̃ =
⋃
k∈N fk ∈ Rel(L, E).

3. Prove that the following diagram is commutative in Rel

L E

1⊕ (N⊗ L) 1⊕ (N⊗ E)

f̃

θ

f ′=1⊕(N⊗f̃)
f

where f ′ is obtained by applying the functor 1⊕ (N⊗_) to f̃ , that is

f ′ = {((1, ∗), (1, ∗))} ∪ {((2, (n, s)), (2, (n, e))) | n ∈ N and (s, e) ∈ f̃)} .

4. Prove that f̃ is the only element of Rel(L, E) such that the diagram above is commutative. In other
word, prove that if g ∈ Rel(L, E) satisfies

L E

1⊕ (N⊗ L) 1⊕ (N⊗ E)

g

θ

1⊕(N⊗g)
f

then g = f̃ . [Hint : assuming the commutation above, prove by induction on (the length of) s ∈ L
that, for any e ∈ E, one has (s, e) ∈ g iff (s, e) ∈ f̃ . ]
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5. If m is a multiset and k ∈ N, we set km =

k︷ ︸︸ ︷
m+ · · ·+m. We define a morphism a ∈ Rel(1 ⊕

(N⊗ !L), !L) by

a = {((1, ∗), k[〈 〉]) | k ∈ N}
∪ {((2, (n, [s1, . . . , sk]})), [n@s1, . . . , n@sk]) | n, k ∈ N and s1, . . . , sk ∈ L} .

By the construction above, there is a unique hL = ã ∈ Rel(L, !L) such that

L !L

1⊕ (N⊗ L) 1⊕ (N⊗ !L)

hL

θ

1⊕(N⊗hL)

a

Prove that

hL = {(s, k[s]) | k ∈ N and s ∈ L} .

.

1. This amounts to proving that θ is (the graph of) a bijection. First, it is a total function defined by cases as
follows : θ(〈 〉) = (1, ∗) and θ(n@s) = (2, (n, s)). It is injective since, if s, s′ ∈ L satisfy θ(s) = θ(s′) then
either θ(s) = θ(s′) = (1, ∗), in which case s = s′ = 〈 〉, or θ(s) = θ(s′) = (2, (n, t)) in which case we must
have s = s′ = n@t. Last θ is surjective since an element d of 1 ⊕ (N⊗ L) is either of shape d = (1, ∗)) in
which case d = θ(〈 〉) or of shape d = (2, (n, t)) in which case d = θ(n@t).

2. Straightforward induction on k.
3. We prove first that f̃ ⊆ f f ′ θ, that is, we prove that for all k ∈ N, fk ⊆ f f ′ θ. The proof is by induction on

k. For k = 0 this is obvious since f0 = ∅. So assume that fk ⊆ f f ′ θ and let us prove that fk+1 ⊆ f f ′ θ.
Let (s, e) ∈ fk+1. If s = 〈 〉 we have that ((1, ∗), e) ∈ f by definition of fk+1. We also have (s, (1, ∗)) ∈ θ
and since ((1, ∗), (1, ∗)) ∈ f ′, we have (s, e) ∈ f f ′ θ. Assume now that s = n@t. We have (s, (2, (n, t))) ∈ θ.
Moreover by definition of fk+1 we have that (t, e′) ∈ fk and ((2, (n, e′)), e) ∈ f for some e′ ∈ E. We have
(t, e′) ∈ f̃ since fk ⊆ f̃ and hence ((2, (n, t)), (2, (n, e′))) ∈ f ′. Therefore (s, e) ∈ f f ′ θ.
We prove now that f f ′ θ ⊆ f̃ . So let (s, e) ∈ f f ′ θ and let (d, r) ∈ f ′ be such that (s, d) ∈ θ and (r, e) ∈ f .
– If s = 〈 〉 we have d = (1, ∗) and hence r = (1, ∗), therefore ((1, ∗), e) ∈ f so that (s, e) ∈ f1 ⊆ f̃ .
– If s = n@t then d = (2, (n, t)) and therefore, by definition of f ′, we have r = (2, (n, e′)) for some e′ ∈ E

such that (t, e′) ∈ f̃ . Let k ∈ N be such that (t, e′) ∈ fk. Since ((2, (n, e′)), e) ∈ f we have (s, e) ∈ fk+1

by definition of fk+1 and hence (s, e) ∈ f̃ .
4. We follow the Hint. Assume first s = 〈 〉. If (s, e) ∈ g = f g′ θ (where g′ = 1 ⊕ (N⊗ g)), then we have

((1, ∗), e) ∈ f by definition of g′ and hence (s, e) ∈ f̃ . If (s, e) ∈ f̃ then by definition of f̃ we have
((1, ∗), e) ∈ f and hence (s, e) ∈ f g′θ by definition of g′ so that (s, e) ∈ g. Assume now that s = n@t and
assume that ∀e′ ∈ E (t, e′) ∈ g ⇔ (t, e′) ∈ f̃ (inductive hypothesis). Assume first (s, e) ∈ g = f g′ θ. By
definition of θ and g′, this means that there is e′ ∈ E such that (t, e′) ∈ g such that ((2, (n, e′)), e) ∈ f .
By inductive hypothesis we have (t, e′) ∈ f̃ so let k ∈ N be such that (t, e′) ∈ fk. Then by definition of
fk+1 we have (s, e) ∈ fk+1 and hence (s, e) ∈ f̃ . Assume next that (s, e) ∈ f̃ and let k ∈ N be such that
(s, e) ∈ fk. This implies that k 6= 0 and since s = n@t there must be e′ ∈ E such that (t, e′) ∈ fk−1 and
((2, (n, e′)), e) ∈ f . By inductive hypothesis we have (t, e′) ∈ g and hence (s, e) ∈ f g′ θ = g.

5. With the notations above we have hL =
⋃
k∈N ak where

a0 = ∅
ak+1 = {(〈 〉,m) | ((1, ∗),m) ∈ a} ∪ {(n@t,m) | ∃m′((2, (n,m′)),m) ∈ a and (t,m′) ∈ ak} .

We prove that ak = bk where bk = {(s, l[s]) | l ∈ N, s ∈ L and len(s) < k} where len(s) is the length of the
sequence s. The proof is by induction on k. The base case k = 0 is obvious since b0 = ∅. Assume that the
equation holds for k and let us prove it for k + 1. Let (s,m) ∈ ak+1. If s = 〈 〉 we must have ((1, ∗),m) ∈ a
and hence m = l[〈 〉] for some l ∈ N so that (s,m) ∈ bk+1. If s = n@t we must have ((2, (n,m′)),m) ∈ a
and (t,m′) ∈ ak for some m′ ∈ !L. By the inductive hypothesis we have ak = bk and hence m′ = l[t] where
l ∈ N (this also shows that len(t) < k). By definition of a we have m = l[s] hence (s,m) ∈ ak+1. Last let
(s,m) ∈ bk+1 which means that m = l[s] for some l ∈ N and that len(s) 6 k. If s = 〈 〉 we have ((1, ∗),m) ∈ a
by definition of a and hence (s,m) ∈ ak+1. Assume that s = n@t. Let m′ = l[t], we have len(t) < k and
hence (t,m′) ∈ bk by definition of bk and hence (t,m′) ∈ ak by inductive hypothesis. By definition of a and
ak+1 we get (s,m) ∈ ak+1.
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b) Computing the denotation of a probabilistic term
In this section, we consider the category Pcoh! of probabilistic coherence spaces (PCS) and analytic
maps between PCS. We recall that Pcoh! is a model of probabilistic PCF and it is the Kleisli category
associated with the ! comonad of the category Pcoh of PCS and linear morphisms between PCS.

Exercice 2 :
Consider the following PCF terms :

T = if(x, if(x, y, z · 0), z · if(x, 1, w · y))

U = λxι fix(λyι T )

1. Give a type derivation of ` U : ι⇒ ι.

2. Suppose v, u ∈ PN, compute the value of ̂JT Kx:ι,y:ι(v, u). (It can be convenient to use the notation
v>0 for the scalar

∑∞
n=1 vn).

3. Let ϕv = ĴUK(v). Prove that ϕv = ̂JT Kx:ι,y:ι(v, ϕv).

4. Suppose v0 + v>0 = 1 and v0v>0 > 0. By using the recursive equation above, compute ĴUK(v).

5. In the case v0 = 1 or v>0 = 1 what is the value of ĴUK(v) ?
6. Deduce a specification for the operational behaviour of the term U .

.

1. See Figure 2.

2. ̂JT Kx:ι,y:ι(v, u) = v0v>0(e0 + e1) + (v2
0 + v2

>0)u

3. We have :

ϕv =
∞

sup
n=0

(( ̂̂
Jλyι T Kx:ι(v)

)n
(0)

)
=
∞

sup
n=1

(
̂JT Kx:ι,y:ι(v,

̂
( ̂Jλyι T Kx:ι(v))n−1(0))

)
= ̂JT Kx:ι,y:ι

(
v,
∞

sup
n=0

(
̂

( ̂Jλyι T Kx:ι(v))n(0)

))
= ̂JT Kx:ι,y:ι (v, ϕv)

4. By 2 and 3, we have ϕv = v0v>0(e0 + e1) + (v2
0 + v2

>0)ϕv, so that : ϕv = v0v>0

1−v20−v
2
>0

(e0 + e1). By hypothesis

v>0 = 1− v0, so ϕv =
v0−v20

2v0−2v20
(e0 + e1) = 1

2
(e0 + e1).

5. If one between v0 or v>0 is 1, so the other one is 0, we have the recursive equation ϕv = ϕv, of which the
smallest solution is 0, so ĴUK(v) = 0.

6. By the Adequacy Theorem, we deduce that U returns the uniform distribution over 0, 1 whenever applied to
a probabilistic distribution having 0 < v0 < 1. In the cases v0 = 0, 1, U diverges.

c) Extending pPCF with a type for lists
We recall that N<ω is the set of finite sequences of natural numbers, the writing 〈n1, . . . , nk〉 denoting a
sequence of length k, and 〈 〉 being the empty sequence. The metavariable s will always range over N<ω.
Given n ∈ N and 〈n1, . . . , nk〉 ∈ N<ω, we denote by n@〈n1, . . . , nk〉 the sequence 〈n, n1, . . . , nk〉.

Consider the extension of pPCF with the ground type List for the set of finite sequences of natural
numbers and the new operators presented in Figure 1 with the associated typing rules 1a and operational
semantics 1b. In particular, s is the constant of pPCF associated with a sequence s, the writing :: denotes
the append operation over pPCF terms of suitable type and a further conditional ifl is introduced, allowing
a pattern matching and a decomposition for non-empty sequences. Notice that the definition of the
stochastic matrix Red (and hence of Red∞) can be also extended to encompass these new operations by
following the rules of Figure 1b.
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s ∈ N<ω
Γ ` s : List

Γ `M : ι Γ ` N : List
Γ ` (M :: N) : List

Γ ` P : List Γ ` Q : A Γ, x : ι, y : List ` R : A

Γ ` ifl(P,Q, x · y ·R) : A

(a) The new typing rules : notice that x · y ·R is a binder in ifl(P,Q, x · y ·R) for the free variables x, y of R.

(n :: s)
1→ n@s ifl(〈 〉, P, x · y ·R)

1→ P ifl(n@s, P, x · y ·R)
1→ R[n/x, s/y]

M
p→ N

(M :: P )
p→ (N :: P )

M
p→ N

(n :: M)
p→ (n :: N)

M
p→ N

ifl(M,P, x · y ·R)
p→ ifl(N,P, x · y ·R)

(b) The new reduction rules extending the pPCF reduction relation.

JListK = (|L|,PL)

ĴsKΓ(~v) = es

̂J(M :: N)KΓ(~v) =
∑
n∈N

∑
s∈N<ω

ĴMKΓ(~v)nĴNKΓ(~v)sen@s

̂Jifl(P,Q, x · y ·R)KΓ(~v) = ĴP KΓ(~v)〈 〉ĴQKΓ(~v) +
∑
n∈N

∑
s∈N<ω

ĴP KΓ(~v)n@s
̂JRKΓ,x:ι,y:List(~v, en, es)

(c) The extension of the Pcoh! denotational model of pPCF for modelling the new primitives, where ~v ∈ PJΓK.

Figure 1 – The extension of pPCF with new primitives manipulating finite sequences of natural numbers.
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The new ground type List is interpreted in Pcoh! by endowing the Rel object L of finite sequences of
natural numbers with the PCS of subprobability distributions, that is :

|L| = N<ω, PL =

{
u ∈ [0, 1]N

<ω

;
∑
s∈N<ω

us 6 1

}

Figure 1c gives the functional characterisation of the denotation of the new primitives of pPCF in Pcoh!,
where we recall that, for any sequence s ∈ N<ω, es is the vector in PL giving 1 to s and zero to any other
sequence.

Exercice 3 :
Consider the hom-set Pcoh(L, 1 ⊕ (N ⊗ L)) of linear morphisms between the PCSs L and 1 ⊕ (N ⊗ L).
Prove that the matrix mat(θ) generated by the relational isomorphism θ discussed in Exercise 1 is an
isomorphism in Pcoh(L, 1⊕ (N⊗ L)).
. By definition we have :

mat(θ)s,(1,?) =

{
1 if s = 〈 〉
0 otherwise

mat(θ)s,(2,(n,s′)) =

{
1 if s = n@s′

0 otherwise

One way to prove that mat(θ) ∈ Pcoh(JListK, 1⊕ (N⊗ JListK)) is to check that for every x ∈ PJListK, mat(θ) · x ∈
P(1⊕ (N⊗ JListK)). Notice that :

mat(θ) · x = x〈 〉e(1,?) +
∑

n@s∈N<ω

xn@se(2,(n,s))

Notice also that e(1,?), e(2,(n,s)) ∈ P(1⊕ (N⊗ JListK)), so mat(θ) · x ∈ P(1⊕ (N⊗ JListK)) as a barycentric combi-
nation of vectors in P(1⊕ (N⊗ JListK)).
In order to prove that mat(θ−1) ∈ Pcoh(1 ⊕ (N ⊗ JListK), JListK). Consider the matrices f ∈ R{?}×|JListK|

>0 and
g ∈ R|N×JListK|×|JListK|

>0

f?,s = δs,〈 〉 g(n,s),s′ = δs′,n@s

Notice that they are morphisms in Pcoh, in fact for g we have, for any u ∈ PN and v ∈ PJListK, g(u ⊗ v) =∑
n un

∑
s vsen@s, this latter being in PJListK as a barycentric combination of vectors in PJListK. By the density

lemma for the monoidal product this is enough to conclude that g ∈ Pcoh(N⊗ JListK, JListK).
Finally, we can conclude that mat(θ−1) ∈ Pcoh(1⊕ (N⊗ JListK), JListK) as mat(θ−1) is the copairing of f and g.

The goal of the next exercices is to prove the adequacy Theorem of Pcoh! for this extension of pPCF
with List. The idea is to adapt the technique of logical relations for standard pPCF. We first extend the
definition of logical relation we have considered in the lecture notes with the relation RList⊆ PL× ΛList

∅ :

u RList M iff ∀s ∈ N<ω, us 6 Red(List)∞M,s

Exercice 4 :
An auxiliary lemma convenient for the logical relation technique is the following statement 1 :

(?) For every closed terms M of type ι and P of type List, we have :

Red(ι)∞M,nRed(List)∞P,s 6 Red(List)∞(M ::P ),n@s

Prove the above inequality. [Hint : one can prove that for any k, h ∈ N, Red(ι)kM,nRed(List)hP,s 6
Red(List)∞(M ::P ),n@s. The proof can be developed by induction on k + h.]
. We have to prove that for any k, h ∈ N, Red(ι)kM,nRed(List)hP,s 6 Red(List)∞(M ::P ),n@s. The proof is by induction
on k + h.

– For k + h = 0, then the left-hand side of the claimed inequality is non-zero only for M = n and P = s, in
which case the right-hand side values 1.

1. Actually also the inverse inequality of (?) holds, but it is not necessary for the proof of the adequacy.
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– For k = 0, h > 0, then for a similar reasoning as above, we can suppose M = n, in which case we have :

Red(ι)0
M,nRed(List)hP,s =

∑
L

Red(List)P,LRed(ι)0
n,nRed(List)h−1

L,s

6
∑
L

Red(List)P,LRed(List)∞(n::L),n@s by ind. hyp.

=
∑
L

Red(List)(n::P ),(n::L)Red(List)∞(n::L),n@s by the contextual rules of Figure 1b

= Red(List)∞(n::P ),n@s

– For k > 0, we have :

Red(ι)kM,nRed(List)hP,s =
∑
L

Red(ι)M,LRed(ι)k−1
L,n Red(List)hP,s

6
∑
L

Red(List)M,LRed(List)∞(L::P ),n@s by ind. hyp.

=
∑
L

Red(List)(M ::P ),(L::P )Red(List)∞(L::P ),n@s by the contextual rules of Figure 1b

= Red(List)∞(M ::P ),n@s

Exercice 5 :
The key lemma of a logical relation is the so-called interpretation Lemma, stating that for all Γ `M : A,
with Γ = x1 : A1, . . . , xk : Ak, for all closed terms Ni of type Ai, for all vectors ui ∈ P(JAK) such that
ui RAi Ni for i = 1, . . . k, one has :

ĴMKΓ(u1, . . . , uk) RA M [N1/x1, . . . , Nk/xk]. (1)

The proof of this lemma is by structural induction on the type derivation of Γ `M : A. Detail the cases
of this inductive proof for the three new typing rules of Figure 1a.
In addition to the inequality (?) of Exercise 4 you can also use (without proving it) the following inequality,
for any type judgments `M : List, ` P : A and x : ι, y : List ` R : A :

(??) for all closed value V of type A,

Red(List)∞M,〈 〉Red(A)∞P,V +
∑
n∈N

∑
s∈N<ω

Red(List)∞M,n@sRed(A)∞R[n/x,s/y],V 6 Red(A)∞ifl(M,P,x·y·R),V

.
– If M = s, then the proof is trivial, as ĴsKΓ(~u) = es = (Red(List)∞

M [ ~N/~x],s′
)s′ .

– If M = (P :: Q), then we have Γ ` P : ι, Γ ` Q : List, and A is the ground type List. We should then prove
that for any n ∈ N, s ∈ N<ω, ĴMKΓ(~u)n@s 6 Red(List)M [ ~N/~x],n@s (the case of the empty list being trivial
as the left-hand side of the inequality is null). We have :

ĴMKΓ(~u)n@s = ĴP KΓ(~u)nĴQKΓ(~u)s

6 Red(ι)∞
P [ ~N/~x],n

Red(List)∞
Q[ ~N/~x],s

by ind. hyp.

6 Red(List)∞
M [ ~N/~x],n@s

by (?)

– If M = ifl(P,Q, x · y · R). Then A = B1 ⇒ · · · ⇒ Bq ⇒ G, for some q ∈ N and G ∈ {ι, List}. For every
j 6 q, let vj RBj Hj, we have to prove that (with a bit of abuse of notation), for every w value of type G,

ĴMKΓ(~u,~v)w 6 Red(G)∞
M [ ~N/~x] ~H,w

. In fact, we have (remarking that en Rι n and es RList n) :

ĴMKΓ(~u,~v)w = ĴP KΓ(~u)〈 〉ĴQKΓ(~u,~v)w +
∑
n∈N

∑
s∈N<ω

ĴP KΓ(~u)n@s
̂JRKΓ,x:ι,y:List(~u, en, es, ~v)w

6 Red(ι)∞
P [ ~N/~x],〈 〉Red(G)∞

Q[ ~N/~x] ~H,w
+
∑
n∈N

∑
s∈N<ω

Red(ι)∞
P [ ~N/~x],n@s

Red(G)∞
R[ ~N/~x,n/x,s/y] ~H,w

by ind.hyp.

6 Red(G)∞
M [ ~N/~x] ~H,w

by (??)
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x
:
ι,
y

:
ι
`
x

:
ι

x
:
ι,
y

:
ι
`
x

:
ι

x
:
ι,
y

:
ι
`
y

:
ι

x
:
ι,
y

:
ι,
z

:
ι
`

0
:
ι

x
:
ι,
y

:
ι
`

ifl
(x
,y
,z
·0

)
:
ι

x
:
ι,
y

:
ι,
z

:
ι
`
x

:
ι

x
:
ι,
y

:
ι,
z

:
ι
`
y

:
ι

x
:
ι,
y

:
ι,
z

:
ι,
w

:
ι
`

1
:
ι

x
:
ι,
y

:
ι,
z

:
ι
`

ifl
(x
,y
,w
·1

)
:
ι

x
:
ι,
y

:
ι
`
T

:
ι

x
:
ι
`
λ
y
ι
T

:
ι
⇒
ι

x
:
ι
`

fi
x(
λ
y
ι
T

)
:
ι

`
U

:
ι
⇒
ι

Figure 2 – Solution to exercice 2
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