MPRI 2-2  Final exam, 5/3/2020

Authorized documents: all documents, no electronic devices. You may answer the questions in French or
English.

NB:

(1332

e A few questions are more difficult, they are highlighted by a
associated with these questions.

. Of course additional points will be

e Questions are written in such a way that you can easily skip them if you wish. However for solving a
question you may need results stated in earlier questions.

1) Let M be the following term of PCF:
M = fix(Az* succ(z))

1.1) Provide a typing derivation showing that + M : ¢.
1.2) Prove that [M] =0 (in the relational model).
1.3) Give a typing derivation and compute the relational semantics of the term

AfL—)L (f)M.

[ Hint: You can use the “intersection type system” presented during the lectures for computing the semantics,
Section 7.2.4 in the Lecture Notes. |

2) We record that a t € Rel(E, F) is an isomorphism in Rel (that is there is ' € Rel(F, E) such that
t't = Id and tt' = Id) if and only if ¢ is a bijection (identified with its graph, that is, there is a bijection
f: E — F such that t = {(a, f(a)) | a € E}).

Given a set F, we define !TE as the least set such that

e 0c!™E
e if a € E then (1,a) €!TE
e and if 0,7 € !TE then (2, (0, 7)) € !TE.

To increase readability, we use the following notations: () =0, {(a) = (1,a) (for a € E) and (o, 7) = (2, (0, 7)).
An element of !TE can be seen as a binary tree with two kind of leaves: “empty leaves” () and “singleton
leaves” (a) labeled by an element a of E. The main tool of reasoning with such trees is of course induction
on their size or structure.

The goal of this exercise is to show that !T is “almost” an exponential on Rel.

2.1) Given t € Rel(E, F), we define Tt as the least subset of !" E' —o ITF such that

o ((),()e!Tt
o (a,b) €t = ((a), (b)) €Tt
o (01,71),(02,m2) €Tt = ((01,09), (11, T2)) €Tt

Prove that !T is a functor. [ Hint: Let s € Rel(E, F) and t € Rel(F,G). By induction on o € !"E prove
that for any ¢ € "G one has (0, p) € (I"t) (ITs) & (0,¢) € !T(ts). Of course one can also use an induction
on ¢.]

2.2) We define der), € Rel(I"E, E) by der, = {((a),a) | a € E}. Prove that it is a natural transformation
IT = Id. [Hint: For this, consider t € Rel(E,F) and (0,b) € !"E x F. By induction on o, prove that
(0,b) € der. (ITt) & (0,b) € tderg. You will see in particular that when o is not of shape (a) for some
a € F, the two sides of this equivalence are false and hence the equivalence holds trivially. |



2.3) We define a function flat : I"!TE — T E by induction on trees as follows:

e flat(()) = (),
e flat({c)) = o and

L] ﬂat(<217 22>) = (flat(Zl),fIat(22)>.

We define diggy, € Rel(!TE,!TITE) by diggl, = {(flat(X),%) | £ € TITE}. Prove that digg' is a natural
transformation !T = (IT o IT). [ Hint: Let t € Rel(E, F) and (0,b) € !"E x F. By induction on © € I"ITF,
prove that for all o € ITE, one has (0,0) € diggp (ITt) & (0,0) € (IT!Tt) digg . |

2.4) Prove that (!7,der",digg") is a comonad.

2.5) We record that, given sets (E;)ics, their cartesian product E = &,.; E; in Rel is defined by E =
User({i} x E;). For each i € I we define a function p] : ITE — !TE; by induction as follows:

e p; (() =1,

e p; ({(i,a))) = (a),

o p] (((j,0))) = () if j # 1,

o and p] ((01,02)) = (p] (01),p] (02)).

Provide a counter-example showing that it is not true that the function p] coincides (as a graph) with
ITor, € Rel(!"E,!TE;), where pr, € Rel(E, E;) is the i-th projection of the cartesian product, that is
pr; = {((i,a),0) [a € E}.

2.6) Then we define m]Til’E2 € Rel(I"E; ® ITEy, \T(E) & E»)) as

mp, g, = {((p1(0),p2(0)),0) | 0 € IT(E1 & Ep)} .

We admit that this morphism is natural in F; and F,. Provide a counter-example showing that mTEl, o is
not an isomorphism in general.

2.7) Prove that the following diagram commutes (lax monoidality).

[e3%

(!TEl ® !TEQ) ® !TEg !TEl ® (!TEQ X 'TE3)
lmg11E2®|d lld@m}r,;z,ES
(B, & E2) @ 1T E; "B, @ 1T (Ey & Es)

T T
lmEl&Ez,Eg lmEl,Ez&ES

!T(<Pr1 pri, (Pra Pri, pra)))

(B, & Es) & E3) T(E1 & (Ey & E3))

[ Hint: Define two functions f,g : !T(Ey & (B & E3)) — (ITE; ® T Ey) ® T 3 allowing to describe simply
the two morphisms that have to be proven equal. Prove that these two functions are equal. |

2.8) We define a function ms: |TE — |E (where |E is the set Mg, (E) of finite multisets of elements of E,
the exponential on Rel presented during the lectures) as follows:

e ms(()) =],
e ms({a)) = [a] and
e ms({o,7)) = ms(o) + ms(7).

We define msg = {(0,ms(c)) | 0 € !TE}. Prove that this is a natural transformation !™ = 1.

2.9) Prove that the following diagrams are commutative



Tmsg digg" E
TR —5% TR TR TR

mS!TEl lmS!E msEl lm
|

! di
WNTE —— 1 g% g

where m is the morphism !T!TE — !!E defined in two different ways by the left hand diagram.

3) Remember that a coherence space E is a pair (|E|,<g) where |E| is a set (the web) and <g is a binary
symmetric and reflexive relation on |E| (coherence relation), and that the cliques of E form a domain that
we will denote as CI(E). Remember that ~g is the strict coherence relation: a ~g b if a # b and a ~g b.

Remember also that, given coherence spaces E and F' one defines a coherence space FF —o F' whose cliques
are the linear morphisms from E to F' (|E — F| = |E| x |F|, (a1,a2) Sp—or (b1,b2) if a1 Tg aga = by <F by
and a1 ~g as = by ~p ba). We use Coh for the category of coherence spaces and linear maps, composition
being defined as relational composition and identities being the diagonal relations. We also write ¢t : E — F
when t € CI(E — F') = Coh(E, F).

Given coherence spaces F and F, we say that a function f : |E| — |F| is an embedding if

e f is injective
e and Va,a’ € |E| a cg d < f(a) or f(a’). [ Warning: this has to be an equivalence, not a simple
implication! |
We use Coh® for the category of coherence spaces and embeddings. We write f : £ < F when f €
Coh¢(E, F).

Let S = (E,, fn)nen be a family where the F,, are coherence spaces and f, : E, < E,,+1. Such a family
will be called an embedding system. If n,p € N with n < p, we set fp,, = fp—1 00 fr, : E, <E,. In
particular f, , = Id.

Let A = Upen({n} % |Ey|). We say that an element (n,a) of A is root if n =0, or if n > 0 and there is
no a’ € |E,_1| such that f,_1(a’) = a, or equivalently a € |E,|\ fn—1(|En-1]). Let Ay be the set of all root
elements of A.

3.1) Prove that for any (n,a) € A there is exactly one (p,b) € Ao such that p < n and f, ,(b) = a. We set
root(n,a) = (p,b). [ Hint: By induction on n, prove that the property holds for all a € |E,,|.]

We define a “limit” coherence space E = Lim S by taking |E| = Ay and coherence specified as follows.
Let (n,a), (p,b) € |[E| = Ag. We say that (n,a) <g (p,b) if

en=panda<g, b
e orn <pand f,,(a) Sg, b (notice that, in that case, necessarily f, ,(a) # b because b is root)
e orn>panda<g, fp,(b) (similar remark).

3.2) For each n € N, prove that the function g, : |E,| — |E| defined by g, (a) = root(n, a) is an injection.
3.3) Prove that g, : E,, < E.

We consider now three examples of embedding systems. Let the sequence (E,,)nen of coherence spaces
be defined as follows: Ey = T (the coherence space such that |T| = 0) and E,1; = (1 & (1® E,)). In other
words (up to an isomorphism) |E,| ={1,...,n} x {1,—-1} and (i,¢) cg, (¢',€’) if

e i<iande=1

eori <itande =1
.,

e ori=1.

Hence (with the notations above), A = {(n,i,¢) |n,i € N, 1 <i<nandee {1,-1}}.



3.4) Let n,p € N with n <pandlet ¢:{1,...,n} = {1,...,p} be an injection. Let f : |E,| — |E,| be
defined by f(i,e) = (¢(4),¢). Prove that f : E,, < E, if and only if ¢ is monotone (that is i < j = ¢(i) <
©(4))-
3.5) We define S = (Ey, fn)nen where f,(i,e) = (i,¢) for all (i,e) € |F,|. Prove that each f, is an
embedding and that an element (n,i,¢) is root if and ounly if ¢« = n. [ Hint: By induction on n € N prove
that for all ¢ € {1,...,n}, (n,i,e) is root if and only if i = n.].
3.6) For (n,i,e) € A (so that 1 <14 < n) prove that root(n,i,e) = (i,1,¢).
3.7) Let E = Lim S, we can identify |E| with Nx {1, —1}. With this identification, prove that (i,¢) <g (i’,&’)
if

e i<iande=1

eori <iande =1

e ori=71.
3.8) We define another embedding system T = (E,,, gn)neny Where g, (i,e) = (i + 1,¢) for all (i,e) € |E,|.
Prove that each g, is an embedding and that an element (n,?,¢) is root if and only if ¢ = 1.
3.9) Prove that for any (n,i,¢) € A, one has root(n,i,e) = (n —i+1,1,¢).
3.10) Let F = LimT. We identify |F| with N x {1, -1} by mapping a root element (n,1,e) € A to
(n,e) € N x {1, —1}. With this identification, prove that (n,e) < (n',¢’) if and only if

e n=n'or

en>n ande=1or

en' >nande =1.
3.11)* Prove that Lim S and Lim T are not isomorphic (an isomorphism from a coherence space from E to
F' is the same thing as an embedding E < F' which, as a function, is a bijection).

3.12)* As in questions (3.5)—(3.7) and (3.8)—(3.10), work out the following example: let H,, = Es» and
hy @ Hp, 4 Hyyq be defined by hy,(i,e) = (2i,e). Let U = (Hp, hy)nen. Prove that G = LimU can be
described as follows: |G| = {r € D |r > 0} x {1,—1} where D is the set of rational numbers which can be
written 75 (dyadic numbers) and (r,e) <g (r/,€') if

o r=r
eorr<r ande=1
e orr <rande =1.

3.13)* Prove that Lim U is neither isomorphic to Lim S nor to LimT.

4)

4.1) Given probabilistic coherence spaces (PCS for short) X, Y and Z and ¢ € Rgg@y)%z‘, prove that
t € Pcoh(X ® 1Y, Z) if and only if a

Vue P(X)Vv e P(Y) t-(u®ov")eP(Z).

We use e; for the element of R such that (e;); =, ; (= 1 if i = j and 0 otherwise).

Given an at most countable set I, we use I for the probabilistic coherence space such that |I] = I and
P(I)={ue IRIEO | >;er ui < 1}. Notice that (up to a trivial isomorphism) I = @, 1. Let B = {0,1} and
let W = B* (the set of finite sequences of elements of B).

4.2) For each w € W we define a function f,, : P(B) — RZ, by induction on w (using () for the empty word

and aw for prefixing w € W with a € B): for all u € P(B),



o fi(u) =-eg
o fow(u) = ugfu(x) +ures
o firw(u) = upeo + uy fu(x)

By induction on w, prove that there is a family (¢, )wew of elements of P(!B — B) such that
Vu € P(B)  fu(u) =ty -u .

[ Hint: Prove first that if s € P(IB — B) and i € B then 5 € RS 5! defined by 37(7?,1; = Syt[i],p Satisfies
s € P(IB —o B) and Yu € P(B) s - u® = u;(s-uM).] -

4.3) Prove that there is a morphism ¢ € Pcoh(W ® !B, B) such that Yw € WYu € P(B) t- (e, @ ul")) =
fu(w).

4.4) Given a word w € W let len(w) be its length and nb(w) the number w represents in binary notation (if
w is the word a,_ - - ag then len(w) = n and nb(w) = 327" a,2* so that 0 < nb(w) < 2" — 1). Prove that

1 1 nb(w) + 1 nb(w) + 1
Yw e W fw(§e0 + 561) = glen(w) <0 + (1 T T glen(w) ) &

4.5) Explain the usefulness of the functions f,, in a programming language where the only available random

number generator produces 0 with probability % and 1 with probability %, for instance a version of our pPCF

where rand(r) is available only for r = 3.



