
MPRI 2–2 Models of programming languages: domains,
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Exercises

Thomas Ehrhard

December 13, 2022

The signs (*) and (**) try to indicate more difficult and interesting questions. These are of course
completely subjective indications!

1. Let E be a coherence space. We use Cl(E) for the set of all cliques of E. We say that X ⊆ Cl(E)
is summable if ∀x, y ∈ X x ̸= y ⇒ x ∩ y = ∅ and

⋃
X ∈ Cl(E). Let E,F be coherence spaces and

f : Cl(E) → Cl(F ) be a function. Prove that f is linear iff for all summable X ⊆ Cl(E), one has that
f(X) = {f(x) | x ∈ X} is summable and

⋃
f(X) = f(

⋃
X).

2. This exercise develops a somehow degenerate model of Linear Logic which does not satisfy ∗-
autonomy but satisfies all the other requirements. A pointed set is a structure X = (X, 0X) where
X is a set and 0X ∈ X. Given pointed sets X, X1, X2 and Y ,

• a morphism of pointed sets from X to Y is a function f : X → Y such that f(0X) = 0Y

• and a bimorphism of pointed sets from X1, X2 to Y is a function f : X1 ×X2 → Y such that
f(0X1 , x2) = f(x1, 0X2) = 0Y for each x1 ∈ X1 and x2 ∈ X2.

(a) Prove that pointed sets together with morphisms of pointed sets form a category Set0. What
are the isos in that category?

One sets 1 = ({01, ∗}) where ∗ and 01 are are distinct chosen elements (for instance 01 is the integer
0 and ∗ is the integer 1). Given pointed sets X1 and X2 one defines X1 ⊗X2 as follows:

X1 ⊗X2 = {(x1, x2) ∈ X1 ×X2 | x1 = 0X1 ⇔ x2 = 0X2} and 0X1⊗X2 = (0X1 , 0X2) .

Given xi ∈ Xi for i = 1, 2, one defines

x1 ⊗ x2 =

{
(0X1

, 0X2
) if x1 = 0X1

or x2 = 0X2

(x1, x2) otherwise.

(b) Prove that the function (x1, x2) 7→ x1 ⊗ x2 is a bimorphism from X1, X2 to X1 ⊗X2 which is
surjective as a function X1 ×X2 → X1 ⊗X2 and that for any bimorphism f from X1, X2 to Y
there is exactly one morphism f̃ ∈ Set0(X1 ⊗X2, Y ) such that f(x1, x2) = f̃(x1 ⊗ x2) for all
x1 ∈ X1 and x2 ∈ X2.

(c) Given fi ∈ Set0(Xi, Yi) for i = 1, 2, deduce from the above that there is exactly one morphism
f1 ⊗ f2 ∈ Set0(X1 ⊗X2, Y1 ⊗ Y2) such that

∀x1 ∈ X1 ∀x2 ∈ X2 (f1 ⊗ f2)(x1 ⊗ x2) = f1(x1)⊗ f2(x2) .

(d) Using again the universal property of Question (b) prove that the operation on morphisms
defined in Question (c) is a functor.
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(e) Exhibit isomorphisms λX ∈ Set0(1 ⊗ X,X) and αX1,X2,X3
∈ Set0((X1 ⊗X2) ⊗ X3, X1 ⊗

(X2 ⊗X3)).

So Set0 is an SMC (there is a symmetry iso γX1,X2
∈ Set0(X1⊗X2, X2⊗X1) such that γX1,X2

(x1⊗
x2) = x2 ⊗ x1 which is quite easy to define, and the Mac Lane coherence diagrams commute).

(f) One defines X ⊸ Y by X ⊸ Y = Set0(X,Y ) and for 0X⊸Y we take the function such that
0X⊸Y (x) = 0Y for all x ∈ X. Let e : X ⊸ Y × X → Y be defined by e(f, x) = f(x). Prove
that e is a bimorphism and that the SMC Set0 is closed.

(g) Prove that there is no object ⊥ of Set0 which turns this symmetric monoidal closed category
into a ∗-autonomous category.

(h) Given a family (Xi)i∈I of objects of Set0 we define an object X as follows: X =
∏

i∈I Xi and
0X = (0Xi)i∈I ∈ X so that the the projections πi : X → Xi are obviously morphisms of Set0.
Prove that X, together with these projections, is the cartesian product of the family (Xi)i∈I

that we denote as
˘

i∈I Xi.

Notice that the terminal object (which is the product of an empty family of objects) is ⊤ =
({0⊤}, 0⊤).
Contrarily to Rel, the category Set0 has all (projective) limits. It seems rather difficult to build
∗-autonomous categories which are at the same type complete. A noticeable exception is the category
of complete lattices (next exercise).
Given an object X of Set0, we define !X by !X = {(0, 0!)} ∪ {1} ×X where 0! is a chosen element
(for instance, a given integer) and 0!X = (0, 0!). Notice that (1, 0X) ∈ !X but 0!X ̸= (1, 0X). So !X
is just X to which we have added a new 0-element.
Given f ∈ Set0(X,Y ), we define !f ∈ Set0(!X, !Y ) by !f(0!X) = 0!Y and !f(1, x) = (1, f(x)). This
obviously defines a functor Set0 → Set0.

(i) We define derX : Set0(!X,X) by derX(0!X) = 0X and derX(1, x) = x. Prove that this is a
natural transformation.

(j) We define digX ∈ Set0(!X, !!X) by digX(0, 0!) = (0, 0!), that is digX(0!X) = 0!!X , and digX(1, x) =
(1, (1, x)) which is easily seen to be a natural transformation. Prove that equipped with the
natural transformations der and dig the functor !_ is a comonad.

(k) Given two objects X and Y of Set0, exhibit an isomorphism between !(X & Y ) and !X ⊗ !Y .

(l) Prove that the Kleisli category of “!” can be identified with the category whose objects are
pointed sets and morphisms are arbitrary functions (not necessarily preserving the 0 element).

3. In this exercise we study a model of linear logic which is based on complete sup-semilattices and linear
maps. A complete sup-semilattice (most often we will simply say “sup semilattice”) is a partially
ordered set S (the order relation will always be denoted as ≤ or ≤S if required) such that any subset
A of S has a least upper bound

∨
A ∈ S (also called “lub”, “sup” or “supremum”). Remember that

this means

• ∀x ∈ A x ≤
∨
A

• ∀x ∈ S (∀y ∈ A y ≤ x) ⇒
∨
A ≤ x.

In particular we have two elements 0 =
∨
∅ which is the least element of S and 1 =

∨
S which is the

greatest element of S. In particular, a sup-semilattice is never empty.

A subset A of S is down-closed if for all x ∈ A and all y ∈ S, if y ≤ x then y ∈ A. Given x ∈ S we
set ↓x = {y ∈ S | y ≤ x}.
A linear morphism of sup-semilattices from S to T is a function f : S → T such that for all
A ⊆ S f(

∨
A) =

∨
f(A) where we define as usual f(A) = {f(x) | x ∈ A}. Notice that this implies

that f is monotone: given x ≤ y in S we have f(y) = f(
∨
{x, y}) = f(x)∨ f(y), that is f(x) ≤ f(y).

Let Slat be the category whose objects are the sup-semilattices and morphisms are the linear maps
of sup-semilattices. We set ⊥ = {0 < 1} for the object of Slat which has exactly two elements.
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It is important to remember that any inf-semilattice, partially ordered set S where each A ⊆ S
has an greatest lower bound (also called “glb”, “inf” of “infimum”)

∧
A, is also a sup-semilattice:∨

A =
∧
{x ∈ S | ∀y ∈ A y ≤ x}.

It is easy to check that Slat is cartesian. The product of a family (Sj)j∈J of objects of Slat is
the usual cartesian product

∏
j∈J Sj equipped with the product order and projection defined in the

usual way. We also use S =
˘

j∈J Sj for this product and πj ∈ Slat(S, Sj) for the projections. The
terminal object is ⊤ = {0}.
(a) Show that the isomorphisms of Slat are the linear morphisms which are bijections.

(b) Given a set X we denote as P(X) its powerset (that is, the set of all of its subsets) ordered
under inclusion, so that P(X) is a sup-semilattice for

∨
A =

⋃
A for any A ⊆ P(X). Given

t ∈ Rel(X,Y ) we define t̂ : P(X) → P(Y ) by t̂(x) = t · x = {b ∈ Y | ∃a ∈ x (a, b) ∈ t}.
Prove that t̂ ∈ Slat(P(X),P(Y )) and that, for any f ∈ Slat(P(X),P(Y )) there is exactly one
t = trf ∈ Rel(X,Y ) such that f = t̂. In other words, the functor L : Rel → Slat which maps
X to P(X) and t to t̂ is full and faithful. This is the categorical way of saying that Rel is a
“subcategory” of Slat.

(c) Prove that the category Slat has all equalizers, in other words: given objects S and T of Slat
and f, g ∈ Slat(S, T ) there is an object E of Slat and a morphism e ∈ Slat(E,S) such that
f e = g e and, for any object V of Slat and any morphism h ∈ Slat(V, S) such that f h = g h,
there is exactly one morphism h0 ∈ Slat(V,E) such that h = e h0.

The Cantor space is the set {0, 1}ω of all infinites sequences α of 0 and 1 equipped with the following
topology (which is the product topology of the discrete space {0, 1}): a subset U of {0, 1}ω is open
iff for any α ∈ U there is a finite prefix w of α such that, for any β ∈ {0, 1}ω, if w is a prefix of
β then β ∈ U . In other words, a subset F of {0, 1}ω is closed iff it has the following property: if
α ∈ {0, 1}ω is such that, for any finite prefix w of α there exists β ∈ F such that w is a prefix of β,
then α ∈ F . As in any topological spaces, if F is a set of closed subsets then

⋂
F is closed (you are

advised to check this directly using the characterization above of closed subsets).
So the set of closed subsets of {0, 1}ω is an inf-semilattice and hence also a sup-semilattice: the sup
of a set of closed sets is the closure of its union (= the intersection of all closed sets which contain
this union).

(d) (**) Let W = {0, 1}∗ be the set of all finite sequences of 0 and 1. If w = ⟨a1, . . . , an⟩ ∈ W
is such a sequence and a ∈ {0, 1} let wa = ⟨a1, . . . , an, a⟩. Let θ = {(wa,w) | w ∈ W and a ∈
{0, 1}} ∈ Rel(W,W ). Let (C, c) be the equalizer of Id, θ̂ ∈ Slat(P(W ),P(X)) (so that C is a
sup-semilattice and c ∈ Slat(C,P(W )). Exhibit an order isomorphism between C and the set
of all closed subsets of the Cantor.

Given a lattice S, we say that x ∈ S is prime if

∀A ⊆ S x ≤
∨
A⇒ ∃y ∈ A x ≤ y .

(e) (*) Prove that, for a set X, the prime elements of P(X) ∈ Slat are exactly the singletons.
Prove that C, in sharp contrast with the previous case, has no prime elements.
[Hint: prove first that if F ∈ C is prime, it must be a singleton {α} and then prove that no
such singleton is prime. For this notice that, for a collection F of closed subsets of {0, 1}ω, the
closed set

∨
F is the closure of

⋃
F (the intersection of all closed sets which contain

⋃
F). So

consider a set F of shape F = {{α(n)} | n ∈ N} where α(n) →n→∞ α and ∀n ∈ N α(n) ̸= α. ]

This example is a concrete illustration of the fact that the category Rel is not complete, indeed it
has no equalizer for the two maps θ, Id ∈ Rel(W,W ) because the equalizer of θ̂ and Id in Slat is not
an object of Rel since it is not a prime-algebraic sup-semilattice.

(f) Prove that the set of linear morphisms S → T , equipped with the pointwise order (that is f ≤ g
if ∀x ∈ S f(x) ≤ g(x)), is a sup-semilattice. We denote it as S ⊸ T .
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(g) Given x ∈ S define a function x∗ : S → ⊥ by

x∗(y) =

{
1 if y ̸≤ x

0 if y ≤ x

Prove that x∗ ∈ S ⊸ ⊥.

(h) Given a sup-semilattice S, we use Sop for the same set S equipped with the reverse order:
x ≤Sop y if y ≤S x. Prove that the map x 7→ x∗ is an order isomorphism from the poset
Sop to S ⊸ ⊥. Warning: one must prove that it is monotone in both directions because
a monotone bijection is not necessarily an order isomorphism! Call k : (S ⊸ ⊥) → Sop the
inverse isomorphism.

(i) (*) Given f ∈ (S ⊸ T ) define f∗ : (T ⊸ ⊥) → (S ⊸ ⊥) by f∗(y′) = y′ f . Prove that f∗ ∈
Slat(T ⊸ ⊥, S ⊸ ⊥). Let f⊥ ∈ Slat(T op, Sop) be the associated morphism (through the iso k
defined above, that is f⊥(y) = k(f∗(y∗)) ). Prove that

∀x ∈ S ∀y ∈ T f(x) ≤ y ⇔ x ≤ f⊥(y) .

One says that f and f⊥ define a Galois connection between S and T . Last prove that f⊥⊥ = f .

(j) Given sup-semilattices S and T we define S ⊗ T as the set of all I ⊆ S × T such that

• I is down-closed
• and, for all A ⊆ S and B ⊆ T , if A and B satisfy A×B ⊆ I then (

∨
A,

∨
B) ∈ I.

Prove that (S ⊗ T,⊆) is an inf-semilattice (that is, is closed under arbitrary intersections). As
a consequence, it is also a sup-semilattice: if I ⊆ S ⊗ T then

∨
I =

⋂
{I ∈ S ⊗ T |

⋃
I ⊆ I}.

But notice that in this sup-semilattice, the sups are not defined as unions in general.

(k) Prove that the least element of S ⊗ T is 0S⊗T = S × {0} ∪ {0} × T . [Hint: Remember that∨
∅ = 0 and that ∅ ×B = ∅ for any B. ]

(l) We say that a map f : S×T → U (where S, T, U are sup-semilattices) is bilinear if for all A ⊆ S
and B ⊆ T we have

∨
f(A × B) = f(

∨
(A × B)) = f(

∨
A,

∨
B). Prove that this condition is

equivalent to the following:

• for all x ∈ S and B ⊆ T , one has f(x,
∨
B) =

∨
y∈B f(x, y)

• and for all y ∈ T and A ⊆ S, one has f(
∨
A, y) =

∨
x∈A f(x, y)

that is, f is separately linear in both variables.

(m) (*) Given x ∈ S and y ∈ T let x⊗ y = ↓(x, y) ∪ 0S⊗T ⊆ S × T . Prove that x⊗ y ∈ S ⊗ T and
that the function τ : (x, y) 7→ x⊗ y is a bilinear map S × T → S ⊗ T .

(n) Let (S, T ) ⊸ U be the set of all bilinear maps S × T → U ordered pointwise (that is f ≤ g if
∀(x, y) ∈ S × T f(x, y) ≤ g(x, y)). Prove that (S, T ) ⊸ U ≃ (S ⊸ (T ⊸ U)). Deduce from
this fact that (S, T ) ⊸ U is a sup-semilattice.

(o) Given I ∈ X ⊗ Y let f I : S × T → ⊥ be given by

f I(x, y) =

{
0 if (x, y) ∈ I

1 otherwise.

Prove that f I is bilinear. Conversely given f ∈ (S, T ) ⊸ ⊥ prove that ker2f = {(x, y) ∈ S×T |
f(x, y) = 0} belongs to S⊗T . Prove that these operations define an order isomorphism between
S ⊗ T and ((S, T ) ⊸ ⊥)

op.

4. This problem is the sequel of the previous one. We deal now with a class of non-(multi)linear
functions. Given two objects S, T of Slat we define S ⇒s T as the set of all Scott continuous
functions S → T , that is, of all monotone functions f : S → T such that, for any directed D ⊆ S
one has f(

∨
D) =

∨
f(D) =

∨
{f(x) | x ∈ D}. We equip this set with the following order relation:

f ≤ g is ∀x ∈ S f(x) ≤ g(x). We recall that D ⊆ S is directed if D is non-empty and ∀x, y ∈ D ∃z ∈
D x ≤ z and y ≤ z, equivalently: any finite subset of D has an upper bound in D.
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(a) Given semi-lattices S, T, U and f : S & T → U , prove that f is Scott continuous iff it is
separately Scott-continuous, that is: for all x ∈ S the function y 7→ f(x, y) is Scott-continuous
T → U and for any y ∈ T the function x 7→ f(x, y) is Scott-continuous S → U .

(b) Prove that sup-semilattice and Scott-continuous functions form a category, that we will denote
as SlatC. Prove that this category has all products (defined as in Slat).

(c) Prove that S ⇒s T is a sup-semilattice.
(d) Prove that the function Ev : (S ⇒s T ) & S → T which maps (f, x) to f(x) is Scott continuous.
(e) Prove that SlatC is cartesian closed, with (S ⇒s T,Ev) as object of morphisms from S to T .
(f) Let S be an object of Slat. We define !sS as the set of all I ⊆ P(S) (the powerset of S)

which are down-closed and such that, for any directed subset D of S, if D ⊆ I then
∨
D ∈ I.

Prove that, equipped with the ⊆ partial order relation, !sS is an inf-semilattice where infima
are intersections. Therefore it is also a sup-semilattice (but suprema are not unions in general).
What is the least element of !sS (give a proof of your answer)?

(g) Prove that if I ⊆ !sS is directed then
∨

I =
⋃
I. And prove that if I ∈ !sS then

∨
{↓x | x ∈

I} =
⋃
{↓x | x ∈ I} = I. As a consequence show that if φ ∈ Slat(!sS, T ) then ∀I ∈ !sS φ(I) =∨

{φ(↓x) | s ∈ I}. Show that if φ,ψ ∈ Slat(!sS, T ) satisfy ∀x ∈ S φ(↓x) = ψ(↓x) then φ = ψ.
(h) Let φ ∈ Slat(S, T ). If I ∈ !sS wet set !sφ(I) =

∨
{↓φ(x) | x ∈ I} =

⋂
{J ∈ !sT | φ(I) ⊆ J}.

Prove that !sφ ∈ Slat(!sS, !sT ) and that !s_ is a functor Slat → Slat. Notice that !sφ is fully
characterized by ∀x ∈ S !sφ(↓x) = ↓φ(x).

(i) Let f ∈ SlatC(S, T ). For y ∈ T let

f(y) = {x ∈ S | f(x) ≤ y} .

Prove that f ∈ Slat(T op, (!S)
op
) , that is, prove first that ∀y ∈ T f(y) ∈ !sS and then that, for

any B ⊆ T , one has f(
∧
B) =

⋂
y∈B f(y).

(j) Let lin(f) = f
⊥ ∈ Slat(!S, T ) so that

∀I ∈ !sS ∀y ∈ T lin(f)(I) ≤ y ⇔ I ⊆ f(y) .

Prove that lin(f)(I) =
∧
{y ∈ T | f(I) ⊆ ↓y} where as usual f(I) = {f(x) | x ∈ I}. [Hint: See

Question (i) of Problem 3. ]
(k) Let cnt : S → P(S) be defined by cnt(x) = ↓x. Prove that cnt ∈ SlatC(S, !sS) and that cnt is

never linear [Hint: Consider cnt(0). ]. Prove that lin(cnt) = Id!sS .
(l) Prove that the function

Slat(!sS, T ) → SlatC(S, T )

φ 7→ φ ◦ cnt

is the inverse of lin.
(m) We define derS = lin(IdS) ∈ Slat(!sS, S) where IdS ∈ SlatC(S, S). Prove that derS(I) =

∨
I.

(n) Let f : S → !s!sS be the function given by f(x) = ↓↓x. Prove that f is Scott continuous. Let
digS = lin(f) ∈ Slat(!sS, !s!sS).

(o) Prove that der and dig are natural transformations and that !s_, equipped with these two
natural transformations, is a comonad.

(p) For any objects S, T, U prove that there is a bijection Slat(!s(S & T ), U) → Slat(!sS ⊗ !sT ,U).

From this observation, we could deduce with a bit more work that there are also Seely isomorphisms,
taking U = !s(S & T ) and U = !sS ⊗ !sT .

5. The goal of this exercise is to study the properties of the objects of the Eilenberg Moore category
Rel! of Rel, the relational model of LL.

Let P be an object of Rel! (the category of coalgebras of !_). Remember that P = (P , hP ) where
P is an object of Rel (a set) and hP ∈ Rel(P , !P ) satisfies the following commutations:
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P !P

P

hP

P
derP

P !P

!P !!P

hP

hP digP

!hP

(a) Check that these commutations mean:
• for all a, a′ ∈ P , one has (a, [a′]) ∈ hP iff a = a′

• and for all a ∈ P and m1, . . . ,mk ∈ !P , one has (a,m1 + · · · + mk) ∈ hP iff there are
a1, . . . , ak ∈ P such that (a, [a1, . . . , ak]) ∈ hP and (ai,mi) ∈ hP for i = 1, . . . , k.

Intuitively, (a, [a1, . . . , ak]) means that a can be decomposed into “a1 + · · ·+ ak” where the “+”
is the decomposition operation associated with P .

(b) Prove that if P is an object of Rel! such that P ̸= ∅ then there is at least one element e of P
such that (e, [ ]) ∈ hP . Explain why such an e could be called a “coneutral element of P ”.

(c) If P and Q are objects of Rel!, remember that an f ∈ Rel!(P,Q) (morphism of coalgebras) is
an f ∈ Rel(P ,Q) such that the following diagram commutes

P Q

!P !Q

f

hP hQ

!f

Check that this commutation means that for all a ∈ P and b1, . . . , bk ∈ Q, the two following
properties are equivalent

• there is b ∈ Q such that (a, b) ∈ f and (b, [b1, . . . , bk]) ∈ hQ
• there are a1, . . . , ak ∈ P such that (a, [a1, . . . , ak]) ∈ hP and (ai, bi) ∈ f for i = 1, . . . , k.

(d) Remember that 1 (the set {∗}) can be equipped with a structure of coalgebra (still denoted 1)
with h1 = {(∗, k[∗]) | k ∈ N}. Prove that the elements of Rel!(1, P ) can be identified with the
subsets x of P such that: for all a1, . . . , ak ∈ P , one has a1, . . . , ak ∈ x iff there exists a ∈ x
such that (a, [a1, . . . , ak]) ∈ hP . We call values of P these subsets of P and denote as val(P )
the set of these values.
Prove that an element of val(P ) is never empty and that val(P ), equipped with inclusion, is a
complete partially ordered set (cpo), that is: the union of a set of values which is directed (with
respect to ⊆) is still a value.

(e) Remember that if E is an object of Rel then (!E, digE) is an object of Rel! (the free coalgebra
generated by E, that we can identify with an object of the Kleisli category Rel!). Prove that,
as a partially ordered set, val(!E, digE) is isomorphic to P(E).

(f) Is it always true that if x1, x2 ∈ val(P ) then x1 ∪ x2 ∈ val(P )?
(g) We have seen (without proof) that Rel! is cartesian. Remember that the product of P1 and P2

is P1 ⊗P2, the coalgebra defined by P1 ⊗ P2 = P1 ⊗P2 and hP1⊗P2
is the following composition

of morphisms in Rel:

P1 ⊗ P2 !P1 ⊗ !P2 !(P1 ⊗ P2)
hP1

⊗hP2
µ2
P1,P2

where µ2
E1,E2

∈ Rel(!E1 ⊗ !E2, !(E1 ⊗ E2)) is the lax monoidality natural transformation of !_,
remember that in Rel we have

µ2
E1,E2

= {(([a1, . . . , ak], [b1, . . . , bk]), [(a1, b1), . . . , (ak, bk)]) |
k ∈ N and (a1, b1), . . . , (ak, bk) ∈ E1 × E2} .

Concretely, we have simply that ((a1, a2), [(a11, a12), . . . , (ak1 , ak2)]) ∈ hP1⊗P2
iff (ai, [a

1
i , . . . , a

k
i ]) ∈

hPi for i = 1, 2.
Prove that P1 ⊗ P2, equipped with suitable projections, is the cartesian product of P1 and P2

in Rel!. Prove also that 1 is the terminal object of Rel!. Warning: L! is always cartesian when
L is a model of LL; I’m not asking for a general proof, just for a verification that this is true in
Rel!.
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(h) Check directly that the partially ordered sets val(P1⊗P2) and val(P1)× val(P2) are isomorphic.

(i) Remember also that we have defined P1 ⊕ P2 = (P1 ⊕ P2, hP1⊕P2) where hP1⊕P2 is the unique
element of Rel(P1 ⊕ P2, !(P1 ⊕ P2)) such that, for i = 1, 2, the morphism hP1⊕P2

πi coincides
with the following composition of morphisms in Rel:

Pi !Pi !(P1 ⊕ P2)
hPi !πi

Describe hP1⊕P2
as simply as possible and prove that, equipped with suitable injections, P1⊕P2

is the coproduct of P1 and P2 in Rel!.

6. The goal of this exercise is to illustrate the fact that Rel, the relational model of LL, can be equipped
with additional structures of various kinds without modifying the interpretation of proofs and pro-
grams. As an example we shall study the notion of non-uniform coherence space (NUCS). A NUCS
is a triple X = (|X|,˝X ,ˇX) where

• |X| is a set (the web of X)

• and ˝X and ˇX are two symmetric relations on |X| such that ˝X ∩ˇX = ∅. In other words,
for any a, a′ ∈ |X|, one never has a ˝X a′ and a ˇX a′.

So we can consider an ordinary coherence space (in the sense of the first part of thise series of
lectures) as a NUCS X which satisfies moreover:

∀a, a′ ∈ |X| (a ˝X a′ or a ˇX a′) ⇔ a ̸= a′ .

It is then possible to introduce three other natural symmetric relations on the elements of |X|:

• a ≡X a′ if it is not true that a ˝X a′ or a ˇX a′.

• a ¨X a′ if a ˝X a′ or a ≡X a′.

• a ˚X a′ if a ˇX a′ or a ≡X a′.

A clique of a NUCS X is a subset x of |X| such that ∀a, a′ ∈ |X| a ¨X a′, we use Cl(X) for the set
of cliques of X.

We say that a NUCS X satisfies the Boudes’ Condition1 (or simply that X is Boudes) if

∀a, a′ ∈ |X| a ≡X a′ ⇒ a = a′ .

We shall show that the class of NUCS’s can be turned into a categorical model of LL in such a way
that all the operations on objects coincide with the corresponding operations on objects in Rel. For
instance we shall define !X in such a way that |!X| = !|X| = Mfin(|X|). Moreover, all the “structure
morphisms” of this model will be defined exactly as in Rel. For instance, the digging morphism from
!X to !!X will simply be dig|X|. Important: such definitions are impossible with ordinary coherence
spaces. When defining |!E| in ordinary coherence spaces one needs to restrict to the finite multisets
(or finite sets) of elements of |E| which are cliques of E. It is exactly for that reason that, in NUCS’s,
the relation ≡X is not required to coincide with equality. Nevertheless, the weaker Boudes’ condition
will be preserved by all of our constructions.

(a) Check that a NUCS can be specified by |X| together with any of the following seven pairs of
relations.

• Two symmetric relations ¨X and ˝X on |X| such that ˝X ⊆ ¨X . Then setting ˇX =
(|X|×|X|)\¨X , the relation ¨X is the one canonically associated with the NUCS (|X|,˝X ,ˇX).

• Two symmetric relations ˚X and ˇX on |X| such that ˇX ⊆ ˚X . How should we define
˝X in that case?

• Two symmetric relations ¨X and ≡X on |X| such that ≡X ⊆ ¨X . How should we define
˝X and ˇX in that case?

• Two symmetric relations ˚X and ≡X on |X| such that ≡X ⊆ ˚X . How should we define
˝X and ˇX in that case?

1From Pierre Boudes who discovered this condition and the nice properties of these objects.
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• Two symmetric relations ˝X and ≡X on |X| such that ≡X ∩˝X = ∅. How should we define
ˇX in that case?

• Two symmetric relations ˇX and ≡X on |X| such that ≡X ∩ˇX = ∅. How should we define
˝X in that case?

• Two symmetric relation ¨X and ˚X such that ¨X ∪˚X = |X|×|X|. How should we define
˝X and ˇX in that case?

(b) Given NUCS’s X and Y , we define a NUCS X ⊸ Y by |X ⊸ Y | = |X| × |Y | and

• (a, b) ≡X⊸Y (a′, b′) if a ≡X a′ and b ≡Y b′

• and (a, b) ˝X⊸Y (a′, b′) if a ˇX a′ or b ˝Y b′.

Check that we have defined in that way a NUCS. Prove that Id|X| = {(a, a) | a ∈ |X|} ∈
Cl(X ⊸ X). Prove that if X and Y are Boudes then X ⊸ Y is Boudes.

(c) Prove that, if s ∈ Cl(X ⊸ Y ) and t ∈ Cl(Y ⊸ Z) then t s ∈ Cl(X ⊸ Z). So we define a
category Nucs by taking the NUCS’s as object and by setting Nucs(X,Y ) = Cl(X ⊸ Y ).

(d) We define X⊥ by |X⊥| = |X|, ˝X⊥ = ˇX and ˇX⊥ = ˝X . Then we set X⊗Y =
(
X ⊸ Y ⊥)⊥.

Describe as simply as possible the NUCS structure of X ⊗ Y . We set 1 = ({∗} , ∅, ∅) (in other
words ∗ ≡1 ∗). Prove that if X and Y are Boudes then X⊥ and X ⊗ Y is Boudes.

(e) Given si ∈ Nucs(Xi, Yi) for i = 1, 2, prove that s1 ⊗ s2 ∈ Rel(|X1| ⊗ |X2|, |Y1| ⊗ |Y2|) (defined
as in Rel) does actually belong to Nucs(X1 ⊗X2, Y1 ⊗ Y2).

(f) Check quickly that Nucs (equipped with the ⊗ defined above and 1 as tensor unit, and ⊥ = 1
as dualizing object) is a ∗-autonomous category.

(g) Prove that the category Nucs is cartesian and cocartesian, with X =
˘

i∈I Xi given by |X| =⋃
i∈I {i} × |Xi|, and

• (i, a) ≡X (i′, a′) if i = i′ and a ≡Xi a
′

• (i, a) ˇX (i′, a′) if i = i′ and a ˇXi
a′.

and the associated operations (projections, tupling of morphisms) defined as in Rel.
Prove that if all Xi’s are Boudes then

˘
i∈I Xi is Boudes.

(h) We define !X as follows. We take |!X| = Mfin(|X|) and, given m,m′ ∈ |!X|
• we have m ¨!X m′ if for all a ∈ supp(m) and a′ ∈ supp(m′) one has a ¨X a′

• and m ≡!X m′ if m ¨!X m′ and m = [a1, . . . , ak], m′ = [a′1, . . . , a
′
k] with ai ≡X a′i for each

i ∈ {1, . . . , k}.
Notice that m ˇ!X m′ iff there is a ∈ supp(m) and a′ ∈ supp(m′) such that a ˇX a′. Remember
that supp(m) = {a ∈ |X| | m(a) ̸= 0}.
Let s ∈ Nucs(X,Y ). Prove that !s ∈ Rel(!|X|, !|Y |) actually belongs to Nucs(!X, !Y ).

(i) Prove that der|X| = {([a], a) | a ∈ |X|} belongs to Nucs(!X,X).

(j) Prove that digX = {(m1 + · · ·+mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ Mfin(|X|)} is an element of
Nucs(!X, !!X).

(k) Prove that if X is Boudes then !X is Boudes.

(l) Let X = 1 ⊕ 1, and let t, f be the two elements of |X| (X is the “type of booleans”). Let
s ∈ Rel(|X| ⊗ |X|, |X|) by s = {((t, f), t), ((f , t), f)}. Prove that s ∈ Nucs(X ⊗ X,X). Let
then t ∈ Nucs(!X,X) be defined by the following composition of morphisms in Nucs:

!X !X ⊗ !X X ⊗X X
cX derX⊗derX s

We recall that contraction
cX ∈ Nucs(!X, !X ⊗ !X)

is given by cX = {m1 +m2, (m1,m2) | m1,m2 ∈ !|X|} and dereliction derX ∈ Nucs(!X,X) is
given by derX = {([a], a) | a ∈ |X|}.
Prove that ([t, f ], t), ([t, f ], f) ∈ t. So any notion of coherence on !|X| must satisfy [t, f ] ˇ!X [t, f ]
since we have t ˇX f by the definition of the NUCS 1⊕ 1 since we must have ([t, f ], t) ¨!X⊸X
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([t, f ], f) because t is a clique. In particular it is impossible to endow !|X| with a notion of
Girard’s coherence space since in such a coherence space we would have [t, f ] ¨!X [t, f ] and
hence ([t, f ], t) ˇ!X⊸X ([t, f ], f).

As an illustration of the usefulness of this semantics, consider the language PCF studied during the
lectures. Let M be a closed term such that ⊢ M : ι. By the Church Rosser Theorem for PCF (of
which we have outlined the proof) we know that if M β∗ n and M β∗ p then n = p. This proof is
completely syntactic and not very modular (if we modify the syntax, a lot of work has to be redone).
The PCF type ι is interpreted in any model of LL as N = 1⊕ 1⊕ · · ·. In Nucs, the only cliques of
N are ∅ and the singletons. The semantics of any term is identical in Rel and in Nucs. Since the
semantics of M in Nucs is a clique of N, this proves that if M β∗ n and M β∗ p then n = p.
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