MPRI 2-2 Models of programming languages: domains, categories, games

Exercises

Thomas Ehrhard

February 23, 2024

The signs $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ try to indicate more difficult and interesting questions. These are of course completely subjective indications!

1. Let E be a coherence space. We use $\mathrm{Cl}(E)$ for the set of all cliques of E. We say that a family of cliques $\vec{x}=\left(x_{i}\right)_{i \in I} \in \mathrm{Cl}(E)^{I}$ is summable if $\forall i, j \in I i \neq j \Rightarrow x_{i} \cap x_{j}=\emptyset$ and $\bigcup_{i \in I} x_{i} \in \mathrm{Cl}(E)$. Let E, F be coherence spaces and $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a function. Prove that f is linear iff for all summable family $\vec{x} \in \mathrm{Cl}(E)^{I}$, one has:

- the family $\left(f\left(x_{i}\right)\right)_{i \in I}$ is summable
- and $\bigcup_{i \in I} f\left(x_{i}\right)=f\left(\bigcup_{i \in I} x_{i}\right)$.

2. This exercise develops a somehow degenerate model of Linear Logic which does not satisfy *autonomy but satisfies all the other requirements. A pointed set is a structure $X=\left(\underline{X}, 0_{X}\right)$ where \underline{X} is a set and $0_{X} \in \underline{X}$. Given pointed sets X, X_{1}, X_{2} and Y,

- a morphism of pointed sets from X to Y is a function $f: \underline{X} \rightarrow \underline{Y}$ such that $f\left(0_{X}\right)=0_{Y}$
- and a bimorphism of pointed sets from X_{1}, X_{2} to Y is a function $f: \underline{X_{1}} \times \underline{X_{2}} \rightarrow \underline{Y}$ such that $f\left(0_{X_{1}}, x_{2}\right)=f\left(x_{1}, 0_{X_{2}}\right)=0_{Y}$ for each $x_{1} \in \underline{X_{1}}$ and $x_{2} \in \underline{X_{2}}$
(a) Prove that pointed sets together with morphisms of pointed sets form a category Set_{0}. What are the isos in that category?

One sets $1=\left(\left\{0_{1}, *\right\}\right)$ where $*$ and 0_{1} are are distinct chosen elements (for instance 0_{1} is the integer 0 and $*$ is the integer 1). Given pointed sets X_{1} and X_{2} one defines $X_{1} \otimes X_{2}$ as follows:

$$
\underline{X_{1} \otimes X_{2}}=\left\{\left(x_{1}, x_{2}\right) \in \underline{X_{1}} \times \underline{X_{2}} \mid x_{1}=0_{X_{1}} \Leftrightarrow x_{2}=0_{X_{2}}\right\} \quad \text { and } \quad 0_{X_{1} \otimes X_{2}}=\left(0_{X_{1}}, 0_{X_{2}}\right) .
$$

Given $x_{i} \in \underline{X_{i}}$ for $i=1,2$, one defines

$$
x_{1} \otimes x_{2}= \begin{cases}\left(0_{X_{1}}, 0_{X_{2}}\right) & \text { if } x_{1}=0_{X_{1}} \text { or } x_{2}=0_{X_{2}} \\ \left(x_{1}, x_{2}\right) & \text { otherwise } .\end{cases}
$$

(b) Prove that the function $\left(x_{1}, x_{2}\right) \mapsto x_{1} \otimes x_{2}$ is a bimorphism from X_{1}, X_{2} to $X_{1} \otimes X_{2}$ which is surjective as a function $\underline{X_{1}} \times \underline{X_{2}} \rightarrow \underline{X_{1} \otimes X_{2}}$ and that for any bimorphism f from X_{1}, X_{2} to Y there is exactly one morphism $\left.\overline{\widetilde{f}} \in \overline{\boldsymbol{\operatorname { S e t }}_{0}\left(X_{1}\right.} \otimes X_{2}, Y\right)$ such that $f\left(x_{1}, x_{2}\right)=\widetilde{f}\left(x_{1} \otimes x_{2}\right)$ for all $x_{1} \in \underline{X_{1}}$ and $x_{2} \in \underline{X_{2}}$.
(c) Given $f_{i} \in \operatorname{Set}_{0}\left(X_{i}, Y_{i}\right)$ for $i=1,2$, deduce from the above that there is exactly one morphism $f_{1} \otimes f_{2} \in \operatorname{Set}_{0}\left(X_{1} \otimes X_{2}, Y_{1} \otimes Y_{2}\right)$ such that

$$
\forall x_{1} \in \underline{X_{1}} \forall x_{2} \in \underline{X_{2}} \quad\left(f_{1} \otimes f_{2}\right)\left(x_{1} \otimes x_{2}\right)=f_{1}\left(x_{1}\right) \otimes f_{2}\left(x_{2}\right) .
$$

(d) Using again the universal property of Question (b) prove that the operation on morphisms defined in Question (c) is a functor.
(e) Exhibit isomorphisms $\lambda_{X} \in \operatorname{Set}_{0}(1 \otimes X, X)$ and $\alpha_{X_{1}, X_{2}, X_{3}} \in \operatorname{Set}_{0}\left(\left(X_{1} \otimes X_{2}\right) \otimes X_{3}, X_{1} \otimes\right.$ $\left.\left(X_{2} \otimes X_{3}\right)\right)$.

So Set_{0} is an SMC (there is a symmetry iso $\gamma_{X_{1}, X_{2}} \in \operatorname{Set}_{0}\left(X_{1} \otimes X_{2}, X_{2} \otimes X_{1}\right)$ such that $\gamma_{X_{1}, X_{2}}\left(x_{1} \otimes\right.$ $\left.x_{2}\right)=x_{2} \otimes x_{1}$ which is quite easy to define, and the Mac Lane coherence diagrams commute).
(f) One defines $X \multimap Y$ by $X \multimap Y=\operatorname{Set}_{0}(X, Y)$ and for $0_{X \multimap Y}$ we take the function such that $0_{X \rightarrow Y}(x)=0_{Y}$ for all $x \in \underline{X}$. Let $e: \underline{X} \multimap Y \times \underline{X} \rightarrow \underline{Y}$ be defined by $e(f, x)=f(x)$. Prove that e is a bimorphism and that the SMC Set ${ }_{0}$ is closed.
(g) Prove that there is no object \perp of Set_{0} which turns this symmetric monoidal closed category into a $*$-autonomous category.
(h) Given a family $\left(X_{i}\right)_{i \in I}$ of objects of $\boldsymbol{S e t}_{0}$ we define an object X as follows: $\underline{X}=\prod_{i \in I} \underline{X_{i}}$ and $0_{X}=\left(0_{X_{i}}\right)_{i \in I} \in \underline{X}$ so that the the projections $\pi_{i}: \underline{X} \rightarrow \underline{X_{i}}$ are obviously morphisms of Set_{0}. Prove that X, together with these projections, is the cartesian product of the family $\left(X_{i}\right)_{i \in I}$ that we denote as $\&_{i \in I} X_{i}$.

Notice that the terminal object (which is the product of an empty family of objects) is $\top=$ ($\left\{0_{\top}\right\}, 0_{\top}$).
Contrarily to Rel, the category Set $_{0}$ has all (projective) limits. It seems rather difficult to build *-autonomous categories which are at the same type complete. A noticeable exception is the category of complete semilattices (next exercise).
Given an object X of $\mathbf{S e t}_{0}$, we define $!X$ by $!X=\left\{\left(0,0_{!}\right)\right\} \cup\{1\} \times \underline{X}$ where $0!$ is a chosen element (for instance, a given integer) and $0_{!X}=\left(0,0_{!}\right)$. Notice that $\left(1,0_{X}\right) \in \underline{X}$ but $0_{!X} \neq\left(1,0_{X}\right)$. So ! X is just X to which we have added a new 0 -element.
Given $f \in \boldsymbol{\operatorname { S e t }}_{0}(X, Y)$, we define $!f \in \boldsymbol{\operatorname { S e t }}_{0}(!X,!Y)$ by $!f\left(0_{!X}\right)=0!Y$ and $!f(1, x)=(1, f(x))$. This obviously defines a functor Set $_{0} \rightarrow$ Set $_{0}$.
(i) We define $\operatorname{der}_{X}: \operatorname{Set}_{0}(!X, X)$ by $\operatorname{der}_{X}\left(0_{!X}\right)=0_{X}$ and $\operatorname{der}_{X}(1, x)=x$. Prove that this is a natural transformation.
(j) We define $\operatorname{dig}_{X} \in \operatorname{Set}_{0}(!X,!!X)$ by $\operatorname{dig}_{X}\left(0,0_{!}\right)=\left(0,0_{!}\right)$, that is $\operatorname{dig}_{X}\left(0_{!X}\right)=0_{!!X}$, and $\operatorname{dig}_{X}(1, x)=$ $(1,(1, x))$ which is easily seen to be a natural transformation. Prove that equipped with the natural transformations der and dig the functor !_ is a comonad.
(k) Given two objects X and Y of $\boldsymbol{S e t}_{0}$, exhibit an isomorphism between $!(X \& Y)$ and $!X \otimes!Y$.
(l) Prove that the Kleisli category of "!" can be identified with the category whose objects are pointed sets and morphisms are arbitrary functions (not necessarily preserving the 0 element).
3. In this exercise we study a model of linear logic which is based on complete sup-semilattices and linear maps. A complete sup-semilattice (most often we will simply say "complete semilattice" or CSL) is a partially ordered set S (the order relation will always be denoted as \leq or \leq_{S} if required) such that any subset A of S has a least upper bound $\bigvee A \in S$ (also called "lub", "sup" or "supremum"). Remember that this means

- $\forall x \in A x \leq \bigvee A$
- $\forall x \in S(\forall y \in A y \leq x) \Rightarrow \bigvee A \leq x$.

In particular we have two elements $0=\bigvee \emptyset$ which is the least element of S and $1=\bigvee S$ which is the greatest element of S. In particular, a sup-semilattice is never empty.
A subset A of S is down-closed if for all $x \in A$ and all $y \in S$, if $y \leq x$ then $y \in A$. Given $x \in S$ we set $\downarrow x=\{y \in S \mid y \leq x\}$.
A linear morphism of CSL from S to T is a function $f: S \rightarrow T$ such that for all $A \subseteq S f(\bigvee A)=$ $\bigvee f(A)$ where we define as usual $f(A)=\{f(x) \mid x \in A\}$. Notice that this implies that f is monotone: given $x \leq y$ in S we have $f(y)=f(\bigvee\{x, y\})=f(x) \vee f(y)$, that is $f(x) \leq f(y)$. Let

Csl be the category whose objects are the sup-semilattices and morphisms are the linear maps of sup-semilattices. We set $\perp=\{0<1\}$ for the object of Csl which has exactly two elements.
It is important to remember that any inf-semilattice, partially ordered set S where each $A \subseteq S$ has a greatest lower bound (also called "glb", "inf" of "infimum") $\bigwedge A$, is also a sup-semilattice: $\bigvee A=\bigwedge\{x \in S \mid \forall y \in A y \leq x\}=\bigwedge\{x \in S \mid A \subseteq \downarrow x\}$.
It is easy to check that $\mathbf{C s l}$ is cartesian. The product of a family $\left(S_{j}\right)_{j \in J}$ of objects of $\mathbf{C s l}$ is the usual cartesian product $\prod_{j \in J} S_{j}$ equipped with the product order and projection defined in the usual way. We also use $S=\&_{j \in J} S_{j}$ for this product and $\pi_{j} \in \operatorname{Csl}\left(S, S_{j}\right)$ for the projections. The terminal object is $T=\{0\}$.
(a) Show that the isomorphisms of $\mathbf{C s l}$ are the linear morphisms which are bijections.
(b) Given a set X we denote as $\mathcal{P}(X)$ its powerset (that is, the set of all of its subsets) ordered under inclusion, so that $\mathcal{P}(X)$ is a sup-semilattice for $\bigvee A=\bigcup A$ for any $A \subseteq \mathcal{P}(X)$. Given $t \in \operatorname{Rel}(X, Y)$ we define fun $(t): \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ by fun $(t)(x)=t \cdot x=\{b \in Y \mid \exists a \in x(a, b) \in t\}$. Prove that fun $(t) \in \operatorname{Csl}(\mathcal{P}(X), \mathcal{P}(Y))$ and that, for any $f \in \operatorname{Csl}(\mathcal{P}(X), \mathcal{P}(Y))$ there is exactly one $t=\operatorname{tr}(f) \in \boldsymbol{\operatorname { R e l }}(X, Y)$ such that $f=\operatorname{fun}(t)$. In other words, the functor $L: \mathbf{R e l} \rightarrow \mathbf{C s l}$ which maps X to $\mathcal{P}(X)$ and t to fun (t) is full and faithful. This is the categorical way of saying that Rel is a "subcategory" of Csl.
(c) Prove that the category Csl has all equalizers, in other words: given objects S and T of $\mathbf{C s l}$ and $f, g \in \mathbf{C s l}(S, T)$ there is an object E of $\mathbf{C s l}$ and a morphism $e \in \mathbf{C s l}(E, S)$ such that $f e=g e$ and, for any object V of $\mathbf{C s l}$ and any morphism $h \in \operatorname{Csl}(V, S)$ such that $f h=g h$, there is exactly one morphism $h_{0} \in \mathbf{C s l}(V, E)$ such that $h=e h_{0}$.

The Cantor space is the set $\{0,1\}^{\omega}$ of all infinites sequences α of 0 and 1 equipped with the following topology (which is the product topology of the discrete space $\{0,1\}$): a subset U of $\{0,1\}^{\omega}$ is open iff for any $\alpha \in U$ there is a finite prefix w of α such that, for any $\beta \in\{0,1\}^{\omega}$, if w is a prefix of β then $\beta \in U$. In other words, a subset F of $\{0,1\}^{\omega}$ is closed iff it has the following property: if $\alpha \in\{0,1\}^{\omega}$ is such that, for any finite prefix w of α there exists $\beta \in F$ such that w is a prefix of β, then $\alpha \in F$. As in any topological spaces, if \mathcal{F} is a set of closed subsets then $\bigcap \mathcal{F}$ is closed (you are advised to check this directly using the characterization above of closed subsets).
So the set of closed subsets of $\{0,1\}^{\omega}$ ordered by inclusions is an inf-CSL (that is, any subset \mathcal{F} has a greatest lower bound, namely $\bigcap \mathcal{F})$ and hence also a CSL: the sup of a set of closed sets is the closure of its union ($=$ the intersection of all closed sets which contain this union).
(d) $\left(^{* *}\right)$ Let $W=\{0,1\}^{*}$ be the set of all finite sequences of 0 and 1 . If $w=\left\langle a_{1}, \ldots, a_{n}\right\rangle \in W$ is such a sequence and $a \in\{0,1\}$ let $w a=\left\langle a_{1}, \ldots, a_{n}, a\right\rangle$. Let $\theta=\{(w a, w) \mid w \in W$ and $a \in$ $\{0,1\}\} \in \operatorname{Rel}(W, W)$. Let (C, c) be the equalizer of $\operatorname{Id}, \operatorname{fun}(\theta) \in \operatorname{Csl}(\mathcal{P}(W), \mathcal{P}(X))$ (so that C is a sup-semilattice and $c \in \operatorname{Csl}(C, \mathcal{P}(W))$. Exhibit an order isomorphism between C and the set of all closed subsets of the Cantor space.

Given a CSL S, we say that $x \in S$ is prime if

$$
\forall A \subseteq S \quad x \leq \bigvee A \Rightarrow \exists y \in A x \leq y
$$

(e) $\left(^{*}\right)$ Prove that, for a set X, the prime elements of $\mathcal{P}(X) \in \mathbf{C s l}$ are exactly the singletons. Prove that C, in sharp contrast with the previous case, has no prime elements.
[Hint: prove first that if $F \in C$ is prime, it must be a singleton $\{\alpha\}$ and then prove that no such singleton is prime. For this notice that, for a collection \mathcal{F} of closed subsets of $\{0,1\}^{\omega}$, the closed set $\bigvee \mathcal{F}$ is the closure of $\bigcup \mathcal{F}$ (the intersection of all closed sets which contain $\bigcup \mathcal{F}$). So consider a set \mathcal{F} of shape $\mathcal{F}=\{\{\alpha(n)\} \mid n \in \mathbb{N}\}$ where $\alpha(n) \rightarrow_{n \rightarrow \infty} \alpha$ and $\forall n \in \mathbb{N} \alpha(n) \neq \alpha$.]

This shows that the category Rel is not complete, indeed it has no equalizer for the two maps $\theta, \operatorname{Id} \in \operatorname{Rel}(W, W)$ because the equalizer of fun (θ) and Id in Csl is not an object of Rel. Indeed this equalizer is an infinite CSL which has no prime elements, whereas the only set X such that the CSL ($\mathcal{P}(X), \subseteq)$ has no prime element is $X=\emptyset$.
(f) Prove that the set of linear morphisms $S \rightarrow T$, equipped with the pointwise order (that is $f \leq g$ if $\forall x \in S f(x) \leq g(x))$, is a sup-CSL. We denote it as $S \multimap T$.
(g) Given $x \in S$ define a function $x^{*}: S \rightarrow \perp$ by

$$
x^{*}(y)= \begin{cases}1 & \text { if } y \not \leq x \\ 0 & \text { if } y \leq x\end{cases}
$$

Prove that $x^{*} \in S \multimap \perp$.
(h) Given a sup-CSL S, we use $S^{\text {op }}$ for the same set S equipped with the reverse order: $x \leq_{S^{\text {op }}} y$ if $y \leq_{S} x$. Prove that the map $x \mapsto x^{*}$ is an order isomorphism from the poset $S^{\circ \mathrm{p}}$ to $S \multimap \perp$. Warning: one must prove that it is monotone in both directions because a monotone bijection is not necessarily an order isomorphism! Call k: $(S \multimap \perp) \rightarrow S^{\circ \mathrm{p}}$ the inverse isomorphism.
(i) $\left(^{*}\right.$) Given $f \in(S \multimap T)$ define $f^{*}:(T \multimap \perp) \rightarrow(S \multimap \perp)$ by $f^{*}\left(y^{\prime}\right)=y^{\prime} f$. Prove that $f^{*} \in$ $\operatorname{Csl}(T \multimap \perp, S \multimap \perp)$. Let $f^{\perp} \in \mathbf{C s l}\left(T^{\mathrm{op}}, S^{\mathrm{op}}\right)$ be the associated morphism (through the iso k defined above, that is $f^{\perp}(y)=\mathrm{k}\left(f^{*}\left(y^{*}\right)\right)$). Prove that

$$
\forall x \in S \forall y \in T \quad f(x) \leq y \Leftrightarrow x \leq f^{\perp}(y)
$$

One says that f and f^{\perp} define a Galois connection between S and T. Last prove that $f^{\perp \perp}=f$.
(j) Given sup-CSL S and T we define $S \otimes T$ as the set of all $I \subseteq S \times T$ such that

- I is down-closed
- and, for all $A \subseteq S$ and $B \subseteq T$, if A and B satisfy $A \times B \subseteq I$ then $(\bigvee A, \bigvee B) \in I$.

Prove that $(S \otimes T, \subseteq)$ is an inf-CSL (that is, is closed under arbitrary intersections). As a consequence, it is also a sup-CSL: if $\mathcal{I} \subseteq S \otimes T$ then $\bigvee \mathcal{I}=\bigcap\{I \in S \otimes T \mid \bigcup \mathcal{I} \subseteq I\}$. But notice that in this sup-CSL, the sups are not defined as unions in general.
(k) Prove that the least element of $S \otimes T$ is $0_{S \otimes T}=S \times\{0\} \cup\{0\} \times T$. [Hint: Remember that $\bigvee \emptyset=0$ and that $\emptyset \times B=\emptyset$ for any B.]
(l) We say that a map $f: S \times T \rightarrow U$ (where S, T, U are sup-CSLs) is bilinear if for all $A \subseteq S$ and $B \subseteq T$ we have $\bigvee f(A \times B)=f(\bigvee(A \times B))=f(\bigvee A, \bigvee B)$. Prove that this condition is equivalent to the following:

- for all $x \in S$ and $B \subseteq T$, one has $f(x, \bigvee B)=\bigvee_{y \in B} f(x, y)$
- and for all $y \in T$ and $A \subseteq S$, one has $f(\bigvee A, y)=\bigvee_{x \in A} f(x, y)$
that is, f is separately linear in both variables.
(m) $\left(^{*}\right.$) Given $x \in S$ and $y \in T$ let $x \otimes y=\downarrow(x, y) \cup 0_{S \otimes T} \subseteq S \times T$. Prove that $x \otimes y \in S \otimes T$ and that the function $\tau:(x, y) \mapsto x \otimes y$ is a bilinear map $S \times T \rightarrow S \otimes T$.
(n) Let $(S, T) \multimap U$ be the set of all bilinear maps $S \times T \rightarrow U$ ordered pointwise (that is $f \leq g$ if $\forall(x, y) \in S \times T f(x, y) \leq g(x, y))$. Prove that $(S, T) \multimap U \simeq(S \multimap(T \multimap U))$. Deduce from this fact that $(S, T) \multimap U$ is a sup-CSL.
(o) Given $I \in X \otimes Y$ let $f^{I}: S \times T \rightarrow \perp$ be given by

$$
f^{I}(x, y)= \begin{cases}0 & \text { if }(x, y) \in I \\ 1 & \text { otherwise }\end{cases}
$$

Prove that f^{I} is bilinear. Conversely given $f \in(S, T) \multimap \perp$ prove that $\operatorname{ker}_{2} f=\{(x, y) \in S \times T \mid$ $f(x, y)=0\}$ belongs to $S \otimes T$. Prove that these operations define an order isomorphism between $S \otimes T$ and $((S, T) \multimap \perp)^{\mathrm{op}}$.
4. This problem is the sequel of the previous one. We deal now with a class of non-(multi)linear functions. Given two objects S, T of Csl we define $S \Rightarrow_{\mathrm{s}} T$ as the set of all Scott continuous functions $S \rightarrow T$, that is, of all monotone functions $f: S \rightarrow T$ such that, for any directed $D \subseteq S$ one has $f(\bigvee D)=\bigvee f(D)=\bigvee\{f(x) \mid x \in D\}$. We equip this set with the following order relation: $f \leq g$ is $\forall x \in S f(x) \leq g(x)$. We recall that $D \subseteq S$ is directed if D is non-empty and $\forall x, y \in D \exists z \in$ $D x \leq z$ and $y \leq z$, equivalently: any finite subset of D has an upper bound in D.
(a) Given CSL S, T, U and $f: S \& T \rightarrow U$, prove that f is Scott continuous iff it is separately Scott-continuous, that is: for all $x \in S$ the function $y \mapsto f(x, y)$ is Scott-continuous $T \rightarrow U$ and for any $y \in T$ the function $x \mapsto f(x, y)$ is Scott-continuous $S \rightarrow U$.
(b) Prove that sup-CSL and Scott-continuous functions form a category, that we will denote as CslC. Prove that this category has all products (defined as in Csl).
(c) Prove that $S \Rightarrow_{\mathrm{s}} T$ is a sup-CSL.
(d) Prove that the function Ev : $\left.S \Rightarrow_{\mathrm{s}} T\right) \& S \rightarrow T$ which maps (f, x) to $f(x)$ is Scott continuous.
(e) Prove that CslC is cartesian closed, with $\left(S \Rightarrow_{\mathrm{s}} T\right.$, Ev $)$ as object of morphisms from S to T.
(f) Let S be an object of Csl. We define $!_{s} S$ as the set of all $I \subseteq \mathcal{P}(S)$ (the powerset of S) which are down-closed and such that, for any directed subset D of S, if $D \subseteq I$ then $\bigvee D \in I$. Prove that, equipped with the \subseteq partial order relation, $!_{s} S$ is an inf-CSL where infima are intersections. Therefore it is also a sup-CSL (but suprema are not unions in general). What is the least element of ${ }_{s} S$ (give a proof of your answer)?
(g) Prove that if $\mathcal{I} \subseteq!_{\mathrm{s}} S$ is directed then $\bigvee \mathcal{I}=\bigcup \mathcal{I}$. And prove that if $I \in!_{\mathrm{s}} S$ then $\bigvee\{\downarrow x \mid x \in$ $I\}=\bigcup\{\downarrow x \mid x \in I\}=I$. As a consequence show that if $\varphi \in \operatorname{Csl}\left(!_{s} S, T\right)$ then $\forall I \in!_{s} S \varphi(I)=$ $\bigvee\{\varphi(\downarrow x) \mid s \in I\}$. Show that if $\varphi, \psi \in \mathbf{C s l}\left(!_{s} S, T\right)$ satisfy $\forall x \in S \varphi(\downarrow x)=\psi(\downarrow x)$ then $\varphi=\psi$.
(h) Let $\varphi \in \operatorname{Csl}(S, T)$. If $I \in!_{s} S$ wet set $!_{s} \varphi(I)=\bigvee\{\downarrow \varphi(x) \mid x \in I\}=\bigcap\left\{J \in!_{s} T \mid \varphi(I) \subseteq J\right\}$. Prove that $!_{s} \varphi \in \operatorname{Csl}\left(!_{s} S,!_{s} T\right)$ and that $!_{s}$ is a functor $\mathbf{C s l} \rightarrow \mathbf{C s l}$. Notice that ${ }_{s} \varphi$ is fully characterized by $\forall x \in S!_{s} \varphi(\downarrow x)=\downarrow \varphi(x)$.
(i) Let $f \in \mathbf{C s l C}(S, T)$. For $y \in T$ let

$$
\bar{f}(y)=\{x \in S \mid f(x) \leq y\} .
$$

Prove that $\bar{f} \in \operatorname{Csl}\left(T^{\mathrm{op}},(!S)^{\mathrm{op}}\right)$, that is, prove first that $\forall y \in T \bar{f}(y) \in!_{s} S$ and then that, for any $B \subseteq T$, one has $\bar{f}(\bigwedge B)=\bigcap_{y \in B} \bar{f}(y)$.
(j) Let $\operatorname{lin}(f)=\bar{f}^{\perp} \in \mathbf{C s l}(!S, T)$ so that

$$
\forall I \in!_{\mathrm{s}} S \forall y \in T \quad \operatorname{lin}(f)(I) \leq y \Leftrightarrow I \subseteq \bar{f}(y)
$$

Prove that $\operatorname{lin}(f)(I)=\bigwedge\{y \in T \mid f(I) \subseteq \downarrow y\}$ where as usual $f(I)=\{f(x) \mid x \in I\}$. [Hint: See Question (i) of Problem 3.]
(k) Let cnt : $S \rightarrow \mathcal{P}(S)$ be defined by $\operatorname{cnt}(x)=\downarrow x$. Prove that cnt $\in \mathbf{C s l C}\left(S,!_{\mathrm{s}} S\right)$ and that cnt is never linear [Hint: Consider $\operatorname{cnt}(0)$.]. Prove that $\operatorname{lin}(\mathrm{cnt})=\mathrm{Id}_{!_{5} S}$.
(l) Prove that the function

$$
\begin{aligned}
\operatorname{Csl}\left(!_{s} S, T\right) & \rightarrow \mathbf{C s l C}(S, T) \\
\varphi & \mapsto \varphi \circ \mathrm{cnt}
\end{aligned}
$$

is the inverse of lin.
(m) We define $\operatorname{der}_{S}=\operatorname{lin}\left(\operatorname{ld}_{S}\right) \in \mathbf{C s l}\left(!_{s} S, S\right)$ where $\operatorname{ld}_{S} \in \mathbf{C s l C}(S, S)$. Prove that der ${ }_{S}(I)=\bigvee I$.
(n) Let $f: S \rightarrow!_{s}!_{s} S$ be the function given by $f(x)=\downarrow \downarrow x$. Prove that f is Scott continuous. Let $\operatorname{dig}_{S}=\operatorname{lin}(f) \in \operatorname{Csl}\left(!_{s} S,!_{\mathrm{s}}!_{\mathrm{s}} S\right)$.
(o) Prove that der and dig are natural transformations and that $!_{s_{-}}$, equipped with these two natural transformations, is a comonad.
(p) For any objects S, T, U prove that there is a bijection $\operatorname{Csl}\left(!_{\mathrm{s}}(S \& T), U\right) \rightarrow \mathbf{C s l}\left(!_{\mathrm{s}} S \otimes!_{\mathrm{s}} T, U\right)$.

From this observation, we could deduce with a bit more work that there are also Seely isomorphisms, taking $U=!_{\mathrm{s}}(S \& T)$ and $U=!_{\mathrm{s}} S \otimes!_{\mathrm{s}} T$.
5. The goal of this exercise is to study the properties of the objects of the Eilenberg Moore category Rel ${ }^{!}$of Rel, the relational model of LL.
Let P be an object of Rel ${ }^{!}$(the category of coalgebras of $\left.!_{-}\right)$. Remember that $P=\left(\underline{P}, \mathrm{~h}_{P}\right)$ where \underline{P} is an object of Rel (a set) and $\mathrm{h}_{P} \in \boldsymbol{\operatorname { R e l }}(\underline{P},!\underline{P})$ satisfies the following commutations:

(a) Check that these commutations mean:

- for all $a, a^{\prime} \in \underline{P}$, one has $\left(a,\left[a^{\prime}\right]\right) \in \mathrm{h}_{P}$ iff $a=a^{\prime}$
- and for all $a \in \underline{P}$ and $m_{1}, \ldots, m_{k} \in!\underline{P}$, one has $\left(a, m_{1}+\cdots+m_{k}\right) \in \mathrm{h}_{P}$ iff there are $a_{1}, \ldots, a_{k} \in \underline{P}$ such that $\left(a,\left[a_{1}, \ldots, a_{k}\right]\right) \in \mathrm{h}_{P}$ and $\left(a_{i}, m_{i}\right) \in \mathrm{h}_{P}$ for $i=1, \ldots, k$.
Intuitively, $\left(a,\left[a_{1}, \ldots, a_{k}\right]\right)$ means that a can be decomposed into " $a_{1}+\cdots+a_{k}$ " where the " + " is the decomposition operation associated with P.
(b) Prove that if P is an object of Rel ${ }^{!}$such that $\underline{P} \neq \emptyset$ then there is at least one element e of \underline{P} such that $(e,[]) \in \mathrm{h}_{P}$. Explain why such an e could be called a "coneutral element of P ".
(c) If P and Q are objects of $\mathbf{R e l}{ }^{!}$, remember that an $f \in \boldsymbol{R e l}^{!}(P, Q)$ (morphism of coalgebras) is an $f \in \operatorname{Rel}(\underline{P}, \underline{Q})$ such that the following diagram commutes

Check that this commutation means that for all $a \in \underline{P}$ and $b_{1}, \ldots, b_{k} \in \underline{Q}$, the two following properties are equivalent

- there is $b \in \underline{Q}$ such that $(a, b) \in f$ and $\left(b,\left[b_{1}, \ldots, b_{k}\right]\right) \in \mathrm{h}_{Q}$
- there are $a_{1}, \ldots, a_{k} \in \underline{P}$ such that $\left(a,\left[a_{1}, \ldots, a_{k}\right]\right) \in \mathrm{h}_{P}$ and $\left(a_{i}, b_{i}\right) \in f$ for $i=1, \ldots, k$.
(d) Remember that 1 (the set $\{*\}$) can be equipped with a structure of coalgebra (still denoted 1) with $\mathrm{h}_{1}=\{(*, k[*]) \mid k \in \mathbb{N}\}$. Prove that the elements of $\operatorname{Rel}^{!}(1, P)$ can be identified with the subsets x of \underline{P} such that: for all $a_{1}, \ldots, a_{k} \in \underline{P}$, one has $a_{1}, \ldots, a_{k} \in x$ iff there exists $a \in x$ such that $\left(a,\left[a_{1}, \ldots, a_{k}\right]\right) \in \mathrm{h}_{P}$. We call values of P these subsets of \underline{P} and denote as $\operatorname{val}(P)$ the set of these values.
Prove that an element of $\operatorname{val}(P)$ is never empty and that $\operatorname{val}(P)$, equipped with inclusion, is a complete partially ordered set (cpo), that is: the union of a set of values which is directed (with respect to \subseteq) is still a value.
(e) Remember that if E is an object of $\mathbf{R e l}$ then $\left(!E, \operatorname{dig}_{E}\right)$ is an object of $\mathbf{R e l}^{!}$(the free coalgebra generated by E, that we can identify with an object of the Kleisli category Rel $\mathbf{R}_{\text {I }}$. Prove that, as a partially ordered set, $\operatorname{val}\left(!E, \operatorname{dig}_{E}\right)$ is isomorphic to $\mathcal{P}(E)$.
(f) Is it always true that if $x_{1}, x_{2} \in \operatorname{val}(P)$ then $x_{1} \cup x_{2} \in \operatorname{val}(P)$?
(g) We have seen (without proof) that Rel ${ }^{!}$is cartesian. Remember that the product of P_{1} and P_{2} is $P_{1} \otimes P_{2}$, the coalgebra defined by $\underline{P_{1} \otimes P_{2}}=\underline{P_{1}} \otimes \underline{P_{2}}$ and $\mathrm{h}_{P_{1} \otimes P_{2}}$ is the following composition of morphisms in Rel:

$$
\underline{P_{1}} \otimes \underline{P_{2}} \xrightarrow{\mathrm{~h}_{P_{1}} \otimes \mathrm{~h}_{P_{2}}}!\underline{P_{1}} \otimes!\underline{P_{2}} \xrightarrow{\mu_{P_{1}, P_{2}}^{2}}!\left(\underline{P_{1}} \otimes \underline{P_{2}}\right)
$$

where $\mu_{E_{1}, E_{2}}^{2} \in \operatorname{Rel}\left(!E_{1} \otimes!E_{2},!\left(E_{1} \otimes E_{2}\right)\right)$ is the lax monoidality natural transformation of ! , remember that in Rel we have

$$
\begin{aligned}
& \mu_{E_{1}, E_{2}}^{2}=\left\{\left(\left(\left[a_{1}, \ldots, a_{k}\right],\left[b_{1}, \ldots, b_{k}\right]\right),\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right]\right) \mid\right. \\
& \left.k \in \mathbb{N} \text { and }\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right) \in E_{1} \times E_{2}\right\} .
\end{aligned}
$$

Concretely, we have simply that $\left(\left(a_{1}, a_{2}\right),\left[\left(a_{1}^{1}, a_{2}^{1}\right), \ldots,\left(a_{1}^{k}, a_{2}^{k}\right)\right]\right) \in \mathrm{h}_{P_{1} \otimes P_{2}}$ iff $\left(a_{i},\left[a_{i}^{1}, \ldots, a_{i}^{k}\right]\right) \in$ $\mathrm{h}_{P_{i}}$ for $i=1,2$.
Prove that $P_{1} \otimes P_{2}$, equipped with suitable projections, is the cartesian product of P_{1} and P_{2} in Rel ${ }^{!}$. Prove also that 1 is the terminal object of Rel ${ }^{!}$. Warning: $\mathcal{L}^{!}$is always cartesian when \mathcal{L} is a model of LL; I'm not asking for a general proof, just for a verification that this is true in Rel!.
(h) Check directly that the partially ordered sets $\operatorname{val}\left(P_{1} \otimes P_{2}\right)$ and $\operatorname{val}\left(P_{1}\right) \times \operatorname{val}\left(P_{2}\right)$ are isomorphic.
(i) Remember also that we have defined $P_{1} \oplus P_{2}=\left(\underline{P_{1}} \oplus \underline{P_{2}}, \mathrm{~h}_{P_{1} \oplus P_{2}}\right)$ where $\mathrm{h}_{P_{1} \oplus P_{2}}$ is the unique element of $\operatorname{Rel}\left(P_{1} \oplus P_{2},!\left(P_{1} \oplus P_{2}\right)\right)$ such that, for $i=\overline{1,2}$, the morphism $\mathrm{h}_{P_{1} \oplus P_{2}} \bar{\pi}_{i}$ coincides with the following composition of morphisms in Rel:

$$
\underline{P_{i}} \xrightarrow{\mathrm{~h}_{P_{i}}}!\underline{P_{i}} \xrightarrow{!\bar{\pi}_{i}}!\left(\underline{P_{1}} \oplus \underline{P_{2}}\right)
$$

Describe $\mathrm{h}_{P_{1} \oplus P_{2}}$ as simply as possible and prove that, equipped with suitable injections, $P_{1} \oplus P_{2}$ is the coproduct of P_{1} and P_{2} in Rel ${ }^{!}$.
6. The goal of this exercise is to illustrate the fact that Rel, the relational model of LL, can be equipped with additional structures of various kinds without modifying the interpretation of proofs and programs. As an example we shall study the notion of non-uniform coherence space (NUCS). A NUCS is a triple $X=\left(|X|, \frown_{X}, \smile_{X}\right)$ where

- $|X|$ is a set (the web of X)
- and \frown_{X} and \smile_{X} are two symmetric relations on $|X|$ such that $\frown_{X} \cap \smile_{X}=\emptyset$. In other words, for any $a, a^{\prime} \in|X|$, one never has $a \frown_{X} a^{\prime}$ and $a \smile_{X} a^{\prime}$.

So we can consider an ordinary coherence space (in the sense of the first part of thise series of lectures) as a NUCS X which satisfies moreover:

$$
\forall a, a^{\prime} \in|X| \quad\left(a \frown_{X} a^{\prime} \text { or } a \smile_{X} a^{\prime}\right) \Leftrightarrow a \neq a^{\prime}
$$

It is then possible to introduce three other natural symmetric relations on the elements of $|X|$:

- $a \equiv_{X} a^{\prime}$ if it is not true that $a \frown_{X} a^{\prime}$ or $a \smile_{X} a^{\prime}$.
- $a \frown_{X} a^{\prime}$ if $a \frown_{X} a^{\prime}$ or $a \equiv_{X} a^{\prime}$.
- $a \asymp_{X} a^{\prime}$ if $a \smile_{X} a^{\prime}$ or $a \equiv_{X} a^{\prime}$.

A clique of a NUCS X is a subset x of $|X|$ such that $\forall a, a^{\prime} \in|X| a \frown_{X} a^{\prime}$, we use $\mathrm{Cl}(X)$ for the set of cliques of X.
We say that a NUCS X satisfies the Boudes' Condition ${ }^{1}$ (or simply that X is Boudes) if

$$
\forall a, a^{\prime} \in|X| a \equiv_{X} a^{\prime} \Rightarrow a=a^{\prime}
$$

We shall show that the class of NUCS's can be turned into a categorical model of LL in such a way that all the operations on objects coincide with the corresponding operations on objects in Rel. For instance we shall define ! X in such a way that $|!X|=!|X|=\mathcal{M}_{\text {fin }}(|X|)$. Moreover, all the "structure morphisms" of this model will be defined exactly as in Rel. For instance, the digging morphism from $!X$ to !! X will simply be $\operatorname{dig}_{|X|}$. Important: such definitions are impossible with ordinary coherence spaces. When defining $|!E|$ in ordinary coherence spaces one needs to restrict to the finite multisets (or finite sets) of elements of $|E|$ which are cliques of E. It is exactly for that reason that, in NUCS's, the relation \equiv_{X} is not required to coincide with equality. Nevertheless, the weaker Boudes' condition will be preserved by all of our constructions.
(a) Check that a NUCS can be specified by $|X|$ together with any of the following seven pairs of relations.

- Two symmetric relations \frown_{X} and \frown_{X} on $|X|$ such that $\frown_{X} \subseteq \frown_{X}$. Then setting $\smile_{X}=$ $(|X| \times|X|) \backslash \frown_{X}$, the relation \frown_{X} is the one canonically associated with the NUCS $\left(|X|, \frown_{x}, \smile_{X}\right)$.
- Two symmetric relations \asymp_{X} and \smile_{X} on $|X|$ such that $\smile_{X} \subseteq \asymp_{X}$. How should we define \frown_{X} in that case?
- Two symmetric relations \frown_{X} and \equiv_{X} on $|X|$ such that $\equiv_{X} \subseteq \frown_{X}$. How should we define \frown_{X} and \smile_{X} in that case?
- Two symmetric relations \asymp_{x} and \equiv_{x} on $|X|$ such that $\equiv_{X} \subseteq \asymp_{X}$. How should we define \frown_{X} and \smile_{X} in that case?

[^0]- Two symmetric relations \frown_{X} and \equiv_{X} on $|X|$ such that $\equiv_{X} \cap \frown_{X}=\emptyset$. How should we define \smile_{X} in that case?
- Two symmetric relations \smile_{X} and \equiv_{X} on $|X|$ such that $\equiv_{X} \cap \smile_{X}=\emptyset$. How should we define \frown_{X} in that case?
- Two symmetric relation \frown_{X} and \asymp_{X} such that $\frown_{X} \cup \asymp_{X}=|X| \times|X|$. How should we define \frown_{X} and \smile_{X} in that case?
(b) Given NUCS's X and Y, we define a NUCS $X \multimap Y$ by $|X \multimap Y|=|X| \times|Y|$ and
- $(a, b) \equiv_{X \rightarrow Y}\left(a^{\prime}, b^{\prime}\right)$ if $a \equiv_{X} a^{\prime}$ and $b \equiv_{Y} b^{\prime}$
- and $(a, b) \frown_{X \rightarrow Y}\left(a^{\prime}, b^{\prime}\right)$ if $a \smile_{X} a^{\prime}$ or $b \frown_{Y} b^{\prime}$.

Check that we have defined in that way a NUCS. Prove that $\operatorname{ld}_{|X|}=\{(a, a)|a \in| X \mid\} \in$ $\mathrm{Cl}(X \multimap X)$. Prove that if X and Y are Boudes then $X \multimap Y$ is Boudes.
(c) Prove that, if $s \in \mathrm{Cl}(X \multimap Y)$ and $t \in \mathrm{Cl}(Y \multimap Z)$ then $t s \in \mathrm{Cl}(X \multimap Z)$. So we define a category Nucs by taking the NUCS's as object and by setting $\operatorname{Nucs}(X, Y)=\mathrm{Cl}(X \multimap Y)$.
(d) We define X^{\perp} by $\left|X^{\perp}\right|=|X|, \frown_{X^{\perp}}=\smile_{X}$ and $\smile_{X^{\perp}}=\frown_{X}$. Then we set $X \otimes Y=\left(X \multimap Y^{\perp}\right)^{\perp}$. Describe as simply as possible the NUCS structure of $X \otimes Y$. We set $1=(\{*\}, \emptyset, \emptyset)$ (in other words $\left.* \equiv_{1} *\right)$. Prove that if X and Y are Boudes then X^{\perp} and $X \otimes Y$ is Boudes.
(e) Given $s_{i} \in \operatorname{Nucs}\left(X_{i}, Y_{i}\right)$ for $i=1,2$, prove that $s_{1} \otimes s_{2} \in \operatorname{Rel}\left(\left|X_{1}\right| \otimes\left|X_{2}\right|,\left|Y_{1}\right| \otimes\left|Y_{2}\right|\right)$ (defined as in Rel) does actually belong to $\operatorname{Nucs}\left(X_{1} \otimes X_{2}, Y_{1} \otimes Y_{2}\right)$.
(f) Check quickly that Nucs (equipped with the \otimes defined above and 1 as tensor unit, and $\perp=1$ as dualizing object) is a $*$-autonomous category.
(g) Prove that the category Nucs is cartesian and cocartesian, with $X=\&_{i \in I} X_{i}$ given by $|X|=$ $\bigcup_{i \in I}\{i\} \times\left|X_{i}\right|$, and

- $(i, a) \equiv_{X}\left(i^{\prime}, a^{\prime}\right)$ if $i=i^{\prime}$ and $a \equiv_{X_{i}} a^{\prime}$
- $(i, a) \smile_{X}\left(i^{\prime}, a^{\prime}\right)$ if $i=i^{\prime}$ and $a \smile_{X_{i}} a^{\prime}$.
and the associated operations (projections, tupling of morphisms) defined as in Rel.
Prove that if all X_{i} 's are Boudes then $\&_{i \in I} X_{i}$ is Boudes.
(h) We define $!X$ as follows. We take $|!X|=\mathcal{M}_{\text {fin }}(|X|)$ and, given $m, m^{\prime} \in|!X|$
- we have $m \varsigma_{!} m^{\prime}$ if for all $a \in \operatorname{supp}(m)$ and $a^{\prime} \in \operatorname{supp}\left(m^{\prime}\right)$ one has $a \frown_{X} a^{\prime}$
- and $m \equiv!X m^{\prime}$ if $m \frown_{!X} m^{\prime}$ and $m=\left[a_{1}, \ldots, a_{k}\right], m^{\prime}=\left[a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right]$ with $a_{i} \equiv_{X} a_{i}^{\prime}$ for each $i \in\{1, \ldots, k\}$.
Notice that $m \smile_{!X} m^{\prime}$ iff there is $a \in \operatorname{supp}(m)$ and $a^{\prime} \in \operatorname{supp}\left(m^{\prime}\right)$ such that $a \smile_{X} a^{\prime}$. Remember that $\operatorname{supp}(m)=\{a \in|X| \mid m(a) \neq 0\}$.
Let $s \in \mathbf{N u c s}(X, Y)$. Prove that $!s \in \operatorname{Rel}(!|X|,!|Y|)$ actually belongs to $\mathbf{N u c s}(!X,!Y)$.
(i) Prove that $\operatorname{der}_{|X|}=\{([a], a)|a \in| X \mid\}$ belongs to Nucs $(!X, X)$.
(j) Prove that $\operatorname{dig}_{X}=\left\{\left(m_{1}+\cdots+m_{k},\left[m_{1}, \ldots, m_{k}\right]\right) \mid m_{1}, \ldots, m_{k} \in \mathcal{M}_{\text {fin }}(|X|)\right\}$ is an element of Nucs(! $X,!!X)$.
(k) Prove that if X is Boudes then ! X is Boudes.
(l) Let $X=1 \oplus 1$, and let \mathbf{t}, \mathbf{f} be the two elements of $|X|$ (X is the "type of booleans"). Let $s \in \operatorname{Rel}(|X| \otimes|X|,|X|)$ by $s=\{((\mathbf{t}, \mathbf{f}), \mathbf{t}),((\mathbf{f}, \mathbf{t}), \mathbf{f})\}$. Prove that $s \in \operatorname{Nucs}(X \otimes X, X)$. Let then $t \in \operatorname{Nucs}(!X, X)$ be defined by the following composition of morphisms in Nucs:

$$
!X \xrightarrow{\mathrm{c}_{X}}!X \otimes!X \xrightarrow{\operatorname{der}_{X} \otimes \operatorname{der}_{X}} X \otimes X \xrightarrow{s} X
$$

We recall that contraction

$$
\mathrm{c}_{X} \in \operatorname{Nucs}(!X,!X \otimes!X)
$$

is given by $\mathrm{c}_{X}=\left\{m_{1}+m_{2},\left(m_{1}, m_{2}\right)\left|m_{1}, m_{2} \in!\right| X \mid\right\}$ and dereliction $\operatorname{der}_{X} \in \mathbf{N u c s}(!X, X)$ is given by $\operatorname{der}_{X}=\{([a], a)|a \in| X \mid\}$.
Prove that $([\mathbf{t}, \mathbf{f}], \mathbf{t}),([\mathbf{t}, \mathbf{f}], \mathbf{f}) \in t$. So any notion of coherence on $!|X|$ must satisfy $[\mathbf{t}, \mathbf{f}] \smile_{!X}[\mathbf{t}, \mathbf{f}]$ since we have $\mathbf{t} \smile_{X} \mathbf{f}$ by the definition of the NUCS $1 \oplus 1$ since we must have $([\mathbf{t}, \mathbf{f}], \mathbf{t}) \frown_{!X \rightarrow X}$
$([\mathbf{t}, \mathbf{f}], \mathbf{f})$ because t is a clique. In particular it is impossible to endow $!|X|$ with a notion of Girard's coherence space since in such a coherence space we would have $[\mathbf{t}, \mathbf{f}] \Xi_{!X}[\mathbf{t}, \mathbf{f}]$ and hence $([\mathbf{t}, \mathbf{f}], \mathbf{t}) \smile_{!X \rightarrow X}([\mathbf{t}, \mathbf{f}], \mathbf{f})$.

As an illustration of the usefulness of this semantics, consider the language PCF studied during the lectures. Let M be a closed term such that $\vdash M: \iota$. By the Church Rosser Theorem for PCF (of which we have outlined the proof) we know that if $M \beta^{*} \underline{n}$ and $M \beta^{*} \underline{p}$ then $n=p$. This proof is completely syntactic and not very modular (if we modify the syntax, a lot of work has to be redone). The PCF type ι is interpreted in any model of LL as $N=1 \oplus 1 \oplus \cdots$. In Nucs, the only cliques of N are \emptyset and the singletons. The semantics of any term is identical in Rel and in Nucs. Since the semantics of M in Nucs is a clique of N , this proves that if $M \beta^{*} \underline{n}$ and $M \beta^{*} \underline{p}$ then $n=p$.
7. Remember that, in probabilistic coherence spaces, $P(1)=[0,1]$ (the closed unit interval) and $P(1 \oplus 1)$ can be described as follows

$$
\mathrm{P}(1 \oplus 1)=\left\{\left(u_{0}, u_{1}\right) \in[0,1]^{2} \mid u_{0}+u_{1} \leq 1\right\}
$$

whose elements are the sub-probability distributions on the booleans. We consider the program $M:$ bool \rightarrow bool defined by

$$
\begin{array}{r}
\text { let } M(x)=\text { if } x \text { then if } x \text { then true else false } \\
\text { else if } x \text { then false else true }
\end{array}
$$

and we admit that the semantics of M in the model of probabilistic coherence spaces is the function $f: \mathrm{P}(1 \oplus 1) \rightarrow \mathrm{P}(1 \oplus 1)$ given by

$$
f\left(u_{0}, u_{1}\right)=\left(u_{0}^{2}+u_{1}^{2}\right) \mathrm{e}_{0}+2 u_{0} u_{1} \mathrm{e}_{1}
$$

where $\mathrm{e}_{0}=(1,0) \in \mathrm{P}(1 \oplus 1)$ and $\mathrm{e}_{1}=(0,1) \in \mathrm{P}(1 \oplus 1)$. Check that when $\left(u_{0}, u_{1}\right)$ is a probability distribution (that is $u_{0}+u_{1}=1$), so is $f\left(u_{0}, u_{1}\right)$. Compute the distributions $f(1,0), f(0,1), f\left(\frac{1}{2}, \frac{1}{2}\right)$, $f\left(\frac{1}{4}, \frac{3}{4}\right)$ and $f\left(\frac{2}{3}, \frac{1}{3}\right)$.
8. We consider the program M : bool \rightarrow bool defined by

$$
\begin{array}{r}
\text { let rec } M(x)=\text { if } x \text { then if } x \text { then } M(x) \text { else true } \\
\text { else if } x \text { then false else } M(x)
\end{array}
$$

called the Von Neumann rectifier. We admit that the semantics of M in the model of probabilistic coherence spaces is a function $f: \mathrm{P}(1) \times \mathrm{P}(1 \oplus 1) \rightarrow \mathrm{P}(1)$ which satisfies

$$
f\left(u_{0}, u_{1}\right)=\left(u_{0}^{2}+u_{1}^{2}\right) f\left(u_{0}, u_{1}\right)+u_{0} u_{1}\left(\mathrm{e}_{0}+\mathrm{e}_{1}\right) .
$$

and is minimal for this property (for the pointwise order on functions: $g \leq g^{\prime}$ if $g\left(u_{0}, u_{1}\right) \leq g^{\prime}\left(u_{0}, u_{1}\right)$ for all $\left.\left(u_{0}, u_{1}\right) \in \mathrm{P}(1 \oplus 1)\right)$.
(a) Prove that, assuming that $\left(u_{0}, u_{1}\right)$ is a probability distribution (that is $u_{0}+u_{1}=1$) one has

$$
f\left(u_{0}, u_{1}\right)= \begin{cases}0 & \text { if } u_{0}=1 \text { or } u_{1}=1 \\ \frac{1}{2} \mathrm{e}_{0}+\frac{1}{2} \mathrm{e}_{1} & \text { otherwise }\end{cases}
$$

Explain the name given to this program.
(b) Define the function $g:[0,1] \times[0,1] \rightarrow[0,1]$ by

$$
g(u, t)=s(f(t u,(1-t) u))
$$

where $s: \mathrm{P}(1 \oplus 1) \rightarrow[0,1]$ is defined by $s\left(u_{0}, u_{1}\right)=u_{0}+u_{1}$. Using for instance the function splot of gnuplot, plot the function g in 3 d and observe its behaviour when u is close to 1 .
9. We consider the program M : unit \times bool \rightarrow unit defined by

$$
\text { let rec } M(x, y)=\text { if } y \text { then } x \text { else }(M(x, y) ; M(x, y))
$$

and we admit that the semantics of M in the model of probabilistic coherence spaces is a function $f: \mathrm{P}(1) \times \mathrm{P}(1 \oplus 1) \rightarrow \mathrm{P}(1)$ which satisfies

$$
f\left(w,\left(u_{0}, u_{1}\right)\right)=u_{0} w+u_{1} f\left(w,\left(u_{0}, u_{1}\right)\right)^{2} .
$$

(a) Express explicitely $f\left(w,\left(u_{0}, u_{1}\right)\right)$ in function of u_{0}, u_{1} and w. For $u_{1} \neq 0$ you will have to solve a quadratic equation and hence to choose between " + " and " - " for the square root of the discriminant. Explain why one must choose "-". To this end, remember that there must be coefficients $a_{n, p, q} \in \mathbb{R}_{\geq 0}$ such that $f\left(w,\left(u_{0}, u_{1}\right)\right)=\sum_{n, p, q \in \mathbb{N}} a_{n, p, q} w^{n} u_{0}^{p} u_{1}^{q}$ (you are not asked to compute these coefficients). Remember that

$$
(1+v)^{\alpha}=1+\alpha u+\frac{\alpha(\alpha-1)}{2} v^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{2 \times 3} v^{3}+\cdots
$$

for $v \in\left[0,1\left[\right.\right.$ and $\alpha \in \mathbb{R}_{\geq 0}$ (here $\alpha=\frac{1}{2}$).
(b) Let $g:[0,1] \rightarrow[0,1]$ be defined by $g(t)=f(1,(1-t, t))$. Describe this function as simply as possible (observe that there is a critical value for t, namely $t=1 / 2$). Draw the graph of g and interpret it computationally.
10. We recall that there is a probabilistic coherence space N such that $|N|=\mathbb{N}$ and

$$
\mathrm{P}(\mathbb{N})=\left\{w \in \mathbb{R}_{\geq 0}^{\mathbb{N}} \mid \sum_{n \in \mathbb{N}} w_{n} \leq 1\right\}
$$

We consider the program M : int \times bool \rightarrow unit defined by

$$
\text { let } \operatorname{rec} M(x, y)=\text { if } y \text { then } x \text { else } M(x+1, y)
$$

and we admit that the semantics of M in the model of probabilistic coherence spaces is a function $f: \mathrm{P}(\mathrm{N}) \times \mathrm{P}(1 \oplus 1) \rightarrow \mathrm{P}(\mathrm{N})$ which satisfies

$$
f\left(w,\left(u_{0}, u_{1}\right)\right)=u_{0} w+u_{1} f\left(s \cdot w,\left(u_{0}, u_{1}\right)\right) .
$$

where $s \in \mathrm{P}(\mathrm{N} \multimap \mathrm{N})$ is given by

$$
s_{i, j}= \begin{cases}1 & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

Remember also that, for $i \in \mathbb{N}$, one has $\mathrm{e}_{i} \in \mathrm{P}(\mathrm{N})$ defined by

$$
\left(\mathrm{e}_{i}\right)_{j}= \begin{cases}1 & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $w=f\left(\mathrm{e}_{0},\left(u_{0}, u_{1}\right)\right) \in \mathrm{P}(\mathrm{N})$ is given by $w_{n}=u_{0} u_{1}^{n}$.
11. Let I and J be sets, with $I \subseteq J$. We use $\eta_{I, J}$, or simply η, for the element of $\mathbb{R}_{\geq 0}^{I \times J}$ defined by

$$
\eta_{i, j}= \begin{cases}1 & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

and $\rho_{I, J}$, or simply ρ, for the element of $\mathbb{R}_{\geq 0}^{J \times I}$ defined by

$$
\rho_{j, i}= \begin{cases}1 & \text { if } j=i \\ 0 & \text { otherwise } .\end{cases}
$$

If X and Y are probabilistic coherence spaces, we write $X \leq Y$ if

- $|X| \subseteq|Y|$,
- $\eta_{|X|,|Y|} \in \mathbf{P} \operatorname{coh}(X, Y)$ (in other words: if $x \in \mathrm{P}(X)$ then $y \in \mathbb{R}_{\geq 0}^{|Y|}$ obtained by extending x with 0's belongs to $\mathrm{P}(Y)$)
- and $\rho_{|X|,|Y|} \in \mathbf{P} \operatorname{coh}(Y, X)$ (in other words: if $y \in \mathrm{P}(Y)$ then $x \in \mathbb{R}_{\geq 0}^{|X|}$ obtained by restricting y to $|X|$ belongs to $\mathrm{P}(X))$.

When these conditions hold, we use $\eta_{X, Y}$ and $\rho_{X, Y}$ instead of $\eta_{|X|,|Y|}$ and $\rho_{|X|,|Y|}$.
(a) Prove that $X \leq Y \Rightarrow X^{\perp} \leq Y^{\perp}$.
(b) Prove that if $X_{1} \leq X_{2}$ and $Y_{1} \leq Y_{2}$ then $\left(X_{1} \multimap Y_{1}\right) \leq\left(X_{2} \multimap Y_{2}\right)$. We say that the operation ${ }_{-}{ }_{-}$is increasing.
(c) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a family of probabilistic coherence spaces which is increasing in the sense that $\forall n \in \mathbb{N} X_{n} \leq X_{n+1}$. Let X be defined as follows: $|X|=\bigcup_{n \in \mathbb{N}}\left|X_{n}\right|$ and $x \in \mathbb{R}_{\geq 0}^{|X|}$ if, for all $n \in \mathbb{N}, \rho_{\left|X_{n}\right|,|X|} \cdot x \in \mathrm{P}\left(X_{n}\right)$ (that is, for each $n \in \mathbb{N}$, the restriction of x to $\left|X_{n}\right|$ belongs to $\left.\mathrm{P}\left(X_{n}\right)\right)$. Prove that X is a probabilistic coherence space.

We admit that $X_{n} \leq X$ for all n, the verification is easy. We set $X=\bigcup_{n \in \mathbb{N}} X_{n}$.
(d) Prove that X is the colimit of the X_{n} in the sense that, given any family probabilistic coherence space Y and any family of morphisms $\left(t(n) \in \mathbf{P} \boldsymbol{c o h}\left(X_{n}, Y\right)\right)_{n \in \mathbb{N}}$ such that $\forall n \in \mathbb{N} t(n)=$ $t(n+1) \eta_{X_{n}, X_{n+1}}$, there is exactly one $t \in \mathbf{P} \operatorname{coh}(Y, X)$ such that $\forall n \in \mathbb{N} t(n)=t \eta_{X_{n}, X}$.
(e) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ be increasing sequences of probabilistic coherence spaces. Prove that

$$
\bigcup_{n \in \mathbb{N}} X_{n} \multimap \bigcup_{n \in \mathbb{N}} Y_{n}=\bigcup_{n \in \mathbb{N}}\left(X_{n} \multimap Y_{n}\right) .
$$

We will say that the functor ${ }_{-} \bigcirc_{-}$is cocontinuous.
We admit that the operation _ \& _ on probabilistic coherence spaces is similalry increasing and continuous (the proof is very easy). Observe that the probabilistic coherence space 0 whose web is empty is \leq than any probabilistic coherence space.
(f) Prove that if $F\left({ }_{-}\right)$is an increasing and continuous operation on probabilistic coherence space, then the sequence $\left(F^{n}(0)\right)_{n \in \mathbb{N}}$ is increasing and, setting $\mu F=\bigcup F^{n}(0)$, one has $\mu F=F(\mu F)$ and μF is minimal with this property (for the order relation \leq).
(g) Let F be defined by $F(X)=1 \&(X \oplus X)$. Prove that F is increasing and continuous. Prove by induction on $n \in \mathbb{N}$ that $F^{n}(0)$ can be described as the following probabilistic coherence spaces:

- $\left|F^{n}(0)\right|$ is the set of all sequences of 0 and 1 of length $\leq n-1$,
- and $x \in \mathbb{R}_{\geq 0}^{\left|F^{n}(0)\right|}$ belongs to $\mathrm{P}\left(F^{n}(0)\right)$ if, for any $u \subseteq\left|F^{n}(0)\right|$, if u satisfies

$$
\forall s, s^{\prime} \in u \quad s \leq s^{\prime} \Rightarrow s=s^{\prime}
$$

(where \leq is the prefix order on finite sequeces; we say that such an u is an antichain), then $\sum_{s \in u} x_{s} \leq 1$.
(h) Prove that μF can be described as follows.

- $|\mu F|=\{0,1\}^{<\omega}$
- and $x \in \mathbb{R}_{>0}^{|\mu F|}$ belongs to $\mathrm{P}(\mu F)$ iff, for any $u \subseteq|\mu F|$ which is an antichain, one has $\sum_{s \in u} x_{s} \leq 1$.

The two last questions require some basic knowledge in measure theory.
(i) Remember that the Cantor space \mathcal{C} is the set $\{0,1\}^{\omega}$ of infinite sequences of 0 's and 1 's equipped with the coarsest topology such that, for any $s \in\{0,1\}^{<\omega}$ (finite sequence of 0's and 1's) the set $\uparrow s$ of all $\alpha \in\{0,1\}^{\omega}$ such that s is a prefix of α is open.
Let ν be a sub-probability measure for the Borel σ-algebra of the Cantor space (a measure ν on \mathcal{C} is a sub-probability measure if $\nu(\mathcal{C}) \leq 1)$. Define $x \in \mathbb{R}_{\geq 0}^{|\mu F|}$ by $x_{s}=\nu(\uparrow s)$. Prove that $x \in \mathrm{P}(\mu F)$.
(j) (*) Let $x \in \mathrm{P}(\mu F)$. Prove that the two following properties are equivalent:

- there is a sub-probability measure ν for the Borel σ-algebra of the Cantor space such that $x_{s}=\nu(\uparrow s)$ for all $s \in\{0,1\}^{<\omega}$
- for all $s \in|\mu F|$, one has $x_{s}=x_{s 0}+x_{s 1}$
where si is the sequence s to which $i \in\{0,1\}$ has been appended.

12. Let X and Y be probabilistic coherence spaces. Let $B \subseteq \mathbb{R}_{\geq 0}^{|X|}$ be such that $\mathrm{P}(X)=B^{\perp \perp}$. Let $t \in \mathbb{R}_{\geq 0}^{|X| \times|Y|}$. Prove that $t \in \mathrm{P}(X \multimap Y)$ if and only if $\forall x \in B t \cdot x \in \mathrm{P}(Y)$.
13. We identify $|1 \oplus 1|$ with $\{0,1\}$ and $|!(1 \oplus 1)|$ with $\mathbb{N} \times \mathbb{N}$.
(a) Justify the second of these identifications.
(b) We identify $|(1 \oplus 1) \multimap 1|$ with $\mathbb{N} \times \mathbb{N}$. Let $s \in \mathbb{R}_{\geq 0}^{|(1 \oplus 1) \multimap 1|}$. Prove that $s \in \mathrm{P}((1 \oplus 1) \multimap 1)$ iff for all $r \in[0,1]$, one has

$$
\sum_{n, p \in \mathbb{N}} s_{n, p} r^{n}(1-r)^{p} \leq 1
$$

(c) Let $s \in \mathbb{R}_{\geq 0}^{\mathbb{N} \times \mathbb{N}}$ be given by

$$
s_{n, p}= \begin{cases}2^{n} & \text { if } n=p>0 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $s \in \mathrm{P}((1 \oplus 1) \multimap 1)$. Let $f: \mathrm{P}(1 \oplus 1) \rightarrow \mathrm{P}(1)=[0,1]$ be the associated function, that is

$$
f\left(u_{0}, u_{1}\right)=\sum_{n=1}^{\infty} 2^{n} u_{0}^{n} u_{1}^{n}
$$

Is this function convex, that is, is it true that for all $u, v \in \mathrm{P}(1 \oplus 1)$ and $\lambda \in[0,1]$, one has $f(\lambda u+(1-\lambda) v) \leq \lambda f(u)+(1-\lambda) f(v) ?$

[^0]: ${ }^{1}$ From Pierre Boudes who discovered this condition and the nice properties of these objects.

