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Thomas Ehrhard

December 16, 2024

We continue the study of the category of complete lattices and linear maps. In this problem, we
provide the main ingredients to exhibit a ∗-autonomous symmetric monoidal closed structure on Csl. In
other words Csl is a model of MALL (Multiplicative Additive Linear Logic).

2. (a) Prove that the set of linear morphisms S → T , equipped with the pointwise order (that is f ≤ g
if ∀x ∈ S f(x) ≤ g(x)), is a sup-CSL. We denote it as S ⊸ T .

Solution: Let F be a set of linear functions S → T . Let g : S → T be defined by

g(x) =
∨
f∈F

f(x) .

Let A ⊆ S, we have

g(
∨

A) =
∨
f∈F

f(
∨

A)

=
∨
f∈F

∨
x∈A

f(x) by linearity of the elements of A

=
∨
x∈A

∨
f∈F

f(x) easy property of
∨

=
∨

g(A)

which shows that g ∈ S ⊸ T . By definition we have f ≤ g for each f ∈ F . Let now
h ∈ S ⊸ T such that f ≤ h for each f ∈ F . This means that, for each x ∈ S, we have
f(x) ≤ h(x) for all f ∈ F , and hence g(x) ≤ h(x). Therefore g ≤ h and we have shown
that g is the sup of the set F .

(b) Given x ∈ S define a function x∗ : S → ⊥ by

x∗(y) =

{
1 if y ̸≤ x

0 if y ≤ x

Prove that x∗ ∈ S ⊸ ⊥.
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Solution: Let A ⊆ S. We have

x∗(
∨

A) = 1 ⇔
∨

A ̸≤ x

⇔ ∃y ∈ A y ̸≤ x

⇔ ∃y ∈A x∗(y) = 1

⇔
∨

x∗(y) = 1

(c) Given a sup-CSL S, we use Sop for the same set S equipped with the reverse order: x ≤Sop y
if y ≤S x. Prove that the map x 7→ x∗ is an order isomorphism from the poset Sop to S ⊸ ⊥.
Warning: one must prove that it is increasing in both directions because an increasing bijection
is not necessarily an order isomorphism! Call k : (S ⊸ ⊥) → Sop the inverse isomorphism.

Solution: Let x1, x2 ∈ S with x1 ≤ x2. Given y ∈ S, one has x1
∗(y) = 0 ⇔ y ≤

x1 ⇒ y ≤ x2 ⇔ x2
∗(y) = 0 and hence x2

∗ ≤ x1
∗. Hence the map x 7→ x∗ is increasing

Sop → (S ⊸ ⊥). Given x′ ∈ S ⊸ ⊥ let k(x′) =
∨
{x ∈ S | x′(x) = 0} ∈ S. If x′

1 ≤ x′
2 then

x′
2(x) = 0 ⇒ x′

1(x) = 0 and hence k(x′
2) ≤S k(x′

1) so k is increasing (S ⊸ ⊥) → Sop. Now
let x ∈ S, we have

k(x∗) =
∨

{y ∈ S | x∗(y) = 0} =
∨

{y ∈ S | y ≤ x} = x

and let x′ ∈ S ⊸ ⊥, for each y ∈ S we have

k(x′)
∗
(y) = 0 ⇔ y ≤ k(x′) ⇔ x′(y) = 0

because x′(k(x′)) = 0 by linearity of x′.

(d) (*) Given f ∈ (S ⊸ T ) define f∗ : (T ⊸ ⊥) → (S ⊸ ⊥) by f∗(y′) = y′ f . Prove that f∗ ∈
Csl(T ⊸ ⊥, S ⊸ ⊥). Let f⊥ ∈ Csl(T op, Sop) be the associated morphism (through the iso k
defined above, that is f⊥(y) = k(f∗(y∗)) ). Prove that

∀x ∈ S ∀y ∈ T f(x) ≤ y ⇔ x ≤ f⊥(y) .

One says that f and f⊥ define a Galois connection between S and T . Last prove that f⊥⊥ = f .

Solution: Let B′ ⊆ T ⊸ ⊥. The function f∗(
∨

B′) ∈ S ⊸ ⊥ is given by f∗(
∨

B′)(x) =
(
∨
B′)(f(x)) =

∨
y′∈B′ y′(f(x)) =

∨
y′∈B′ f∗(y′)(x) = (

∨
y′∈B′ f∗(y′))(x) which proves that

f∗ is linear.
Let x ∈ S and y ∈ T , one has

x ≤ f⊥(y) ⇔ x ≤ k(f∗(y∗))

⇔ x ≤
∨

{x1 ∈ S | f∗(y∗)(x1) = 0}

⇔ x ≤
∨

{x1 ∈ S | y∗(f(x1)) = 0}

⇔ x ≤
∨

{x1 ∈ S | f(x1) ≤ y}

⇔ f(x) ≤ y

In the last equivalence we have f(x) ≤ y ⇒ x ≤
∨
{x1 ∈ S | f(x1) ≤ y} because if f(x) ≤ y

then x ∈ {x1 ∈ S | f(x1) ≤ y} and conversely if x ≤
∨
{x1 ∈ S | f(x1) ≤ y} then

f(x) ≤ f(
∨
{x1 ∈ S | f(x1) ≤ y}) =

∨
{f(x1) ∈ S | f(x1) ≤ y} ≤ y.

Let f ∈ Csl(S, T ) so that f⊥ ∈ Csl(T op, Sop) and f⊥⊥ ∈ Csl(S, T ). We have x ≤S

f⊥(y) ⇔ f(x) ≤T y and y ≤T op f⊥⊥(x) ⇔ f⊥(y) ≤Sop x that is y ≥T f⊥⊥(x) ⇔ f⊥(y) ≥S
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x. So we get ∀x ∈ S, y ∈ T f(x) ≤T y ⇔ f⊥⊥(x) ≤T y. Taking y = f(x) and then
y = f⊥⊥(x) we get f⊥⊥(x) = f(x).

(e) Given sup-CSLs S and T we define S ⊗ T as the set of all I ⊆ S × T such that

• I is down-closed (that is: if (x, y) ∈ I and (x0, y0) ∈ S×T are such that x0 ≤ x and y0 ≤ y
then (x0, y0) ∈ I).

• and, for all A ⊆ S and B ⊆ T , if A and B satisfy A×B ⊆ I then (
∨

A,
∨
B) ∈ I.

Prove that (S ⊗ T,⊆) is an inf-CSL (more precisely, it is closed under arbitrary intersections).
As a consequence, it is also a sup-CSL: if I ⊆ S ⊗ T then

∨
I =

⋂
{I ∈ S ⊗ T |

⋃
I ⊆ I}. But

notice that in this sup-CSL, the sups are not defined as unions in general.

Solution: Let I ⊆ S ⊗ T and let I =
⋂

I. Let A ⊆ S and B ⊆ T be such that A×B ⊆ I.
For each J ∈ S ⊗ T we have A × B ⊆ J and hence (

∨
A,

∨
B) ∈ J . It follows that

(
∨

A,
∨
B) ∈ I.

(f) Prove that the least element of S ⊗ T is 0S⊗T = S × {0} ∪ {0} × T . [Hint: Remember that∨
∅ = 0 and that ∅ ×B = ∅ for any B. ]

Solution: Notice first that 0S⊗T is down-closed. Let A ⊆ S and B ⊆ T be such that
A × B ⊆ 0S⊗T . Notice that we must have A ⊆ {0} or B ⊆ {0}. Indeed otherwise we can
find x ∈ A \ {0} and y ∈ B \ {0}, but then we have (x, y) ∈ A × B ⊆ 0S⊗T which is not
possible. It follows that (

∨
A,

∨
B) ∈ 0S⊗T . Let now I ∈ S⊗T , then we have ∅ = ∅×T ⊆ I

and hence (0, 1) = (
∨
∅,
∨
T ) ∈ I. Similarly (1, 0) ∈ I, which shows that 0S⊗T ⊆ I since I

is down-closed.

(g) We say that a map f : S × T → U (where S, T, U are sup-CSLs) is bilinear if for all A ⊆ S
and B ⊆ T we have

∨
f(A × B) = f(

∨
(A × B)) = f(

∨
A,

∨
B). Prove that this condition is

equivalent to the following:

• for all x ∈ S and B ⊆ T , one has f(x,
∨

B) =
∨

y∈B f(x, y)

• and for all y ∈ T and A ⊆ S, one has f(
∨
A, y) =

∨
x∈A f(x, y)

that is, f is separately linear in both arguments.

Solution: Assume first that f is bilinear, then with these notations we have f(x,
∨

B) =
f(
∨
{x}×B) =

∨
f({x}×B) =

∨
y∈B f(x, y). Conversely assume that f is separately linear,

given A ⊆ S and B ⊆ T , we have f(
∨

A,
∨
B) =

∨
b∈B f(

∨
A, y) =

∨
y∈B

∨
x∈A f(x, y) =∨

f(A×B).

(h) (*) Given x ∈ S and y ∈ T let x⊗ y = ↓(x, y) ∪ 0S⊗T ⊆ S × T . Prove that x⊗ y ∈ S ⊗ T and
that the function τ : (x, y) 7→ x⊗ y is a bilinear map S × T → S ⊗ T .
Prove that, if I ∈ S ⊗ T then I =

∨
{x⊗ y | x ∈ S, y ∈ T and x⊗ y ⊆ I}.

Solution: First x ⊗ y is down-closed as a union of down-closed sets. Next let A ⊆ S and
B ⊆ T be such that A× B ⊆ x⊗ y. For any x1 ∈ A \ {0} and y1 ∈ B \ {0} we must have
x1 ≤ x and y1 ≤ y since (x1, y1) ∈ (A×B)\0S⊗T , it follows that (

∨
A,

∨
B) ≤ (x, y). This

shows that x⊗ y ∈ S ⊗ T .
To prove the bilinearity of τ we must show that

∨
τ(A × B) =

∨
A ⊗

∨
B. We have∨

τ(A × B) ⊆
∨
A ⊗

∨
B because the map τ is clearly increasing so it suffices to prove

the converse inclusion
∨
A ⊗

∨
B ⊆

∨
τ(A × B). This amounts to proving that for any

I ∈ S⊗T , if
⋃
τ(A×B) ⊆ I then

∨
A⊗

∨
B ⊆ I. Since we already know that 0S⊗T ⊆ I, it

suffices to see that (
∨
A,

∨
B) ∈ I. We know that

⋃
τ(A×B) ⊆ I, that is

⋃
(x,y)∈A×B(↓x×

↓y) ∪ 0S⊗T ⊆ I and hence A×B ⊆ I so that (
∨

A,
∨

B) ∈ I since I ∈ S ⊗ T .
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To prove the last equation, it suffices to show that I ⊆
⋃
{x⊗y | x ∈ S, y ∈ T and x⊗y ⊆ I},

so let (x, y) ∈ I, it will be enough to prove that x⊗ y ⊆ I. This results from 0S⊗T ⊆ I and
↓(x, y) ⊆ I because I is down-closed.

(i) Let (S, T ) ⊸ U be the set of all bilinear maps S × T → U ordered pointwise (that is f ≤ g if
∀(x, y) ∈ S × T f(x, y) ≤ g(x, y)). Prove that (S, T ) ⊸ U and (S ⊸ (T ⊸ U)) are isomorphic
in Csl. Deduce from this fact that (S, T ) ⊸ U is a sup-CSL.

Solution: Given f ∈ (S, T ) ⊸ U let λ(f) : S → UT be defined by λ(f)(x)(y) = f(x, y).
By bilinearity of f , for each x the function λ(f)(x) : T → U is linear, and the map λ(f)
itself is linear because T ⊸ U is ordered pointwise. The fact that λ is an order isomorphism
is an easy verification.

(j) (**) Let S, T and U be sup-CSLs. If f ∈ (S ⊗ T ⊸ U), then f τ ∈ ((S, T ) ⊸ U) by linearity
of f and the function

Φ : (S ⊗ T ⊸ U) → ((S, T ) ⊸ U)

f 7→ f τ

is a sup-CSL morphism (these facts are obvious).
Prove that Φ is injective and surjective. Deduce from this fact that Φ is an iso in Csl. [Hint:
To prove surjectivity, given h ∈ (S, T ) ⊸ U , define g : U → P(S × T ) by g(z) = {(x, y) ∈
S × T | h(x, y) ≤ z}, prove that g ∈ Csl(Uop, (S ⊗ T )

op
) and then show that Φ(g⊥) = h. Use

Question (d). ]

Solution: Let f ∈ (S ⊗ T ⊸ U). Let I ∈ S ⊗ T , we have

f(I) = f(
∨

{x⊗ y | x ∈ S, y ∈ T and x⊗ y ⊆ I}) by Question (h)

=
∨

{f(x⊗ y) | x ∈ S, y ∈ T and x⊗ y ⊆ I} by linearity of f

=
∨

{Φ(f)(x, y) | x ∈ S, y ∈ T and x⊗ y ⊆ I}

and hence Φ is injective.
Let h ∈ (S, T ) ⊸ U . We define g : U → P(S × T ) by

g(z) = {(x, y) ∈ S × T | h(x, y) ≤ z} .

Then by bilinearity of h we have g(z) ∈ S ⊗ T . Moreover, if C ⊆ U , we have

g(
∧

C) = {(x, y) ∈ S × T | h(x, y) ≤
∧

C}

= {(x, y) ∈ S × T | ∀z ∈ C h(x, y) ≤ z}

=
⋂
z∈C

g(z)

which shows that g ∈ Csl(Uop, (S ⊗ T )
op
) and hence g⊥ ∈ Csl(S ⊗ T,U).

We prove that Φ(g⊥) = h, which will prove that Φ is surjective as announced.
By definition of g⊥, we have

∀z ∈ U, I ∈ S ⊗ T g(z) ≤(S⊗T )op I ⇔ z ≤Uop g⊥(I)

but

g(z) ≤(S⊗T )op I ⇔ I ⊆ {(x, y) ∈ S × T | h(x, y) ≤ z}
⇔ h(I) ⊆ ↓z
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hence

∀z ∈ U, I ∈ S ⊗ T h(I) ⊆ ↓z ⇔ g⊥(I) ≤ z

that is

∀z ∈ U, I ∈ S ⊗ T
∨

h(I) ≤ z ⇔ g⊥(I) ≤ z

so that g⊥(I) =
∨
h(I). Therefore Φ(g⊥)(x, y) =

∨
{h(x0, y0) | (x0, y0) ∈ x ⊗ y} = f(x, y)

since, if (x0, y0) ∈ x⊗ y we have either x0 = 0 or y0 = 0 (and then h(x0, y0) = 0 because h
is bilinear), or (x0, y0) ≤ (x, y).

Using the fact that ⊸ is a functor Cslop ×Csl → Csl (which acts on morphisms by pre- and post-
composition, we saw a special case in Question (d)) and using the isomorphism Φ ∈ Csl(S ⊗ T ⊸
U, S ⊸ (T ⊸ U)), it is not difficult to show that Csl is an SMCC which is ∗-autonomous with
dualizing object ⊥. The main missing ingredient is the functorial action of the _ ⊗ _ operation we
have defined on objects. The interested reader is encouraged to work this out!
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