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Abstract

We study the Taylor expansion of lambda-terms in a
non-deterministic or algebraic setting, where terms can be
added. The target language is a resource lambda calculus
based on a differential lambda-calculus we introduced re-
cently. This operation is not possible in the general untyped
case where reduction can produce unbounded coefficients.
We endow resource terms with a finiteness structure (in the
sense of our earlier work on finiteness spaces) and show
that the Taylor expansions of terms typeable in Girard’s sys-
tem F are finitary by a reducibility method.

Introduction

Denotational semantics and linear logic. Denotational
semantics consists in interpreting proofs/programs as points
in abstract structures (typically, ordered sets with various
completeness properties). In this process, the dynamical
features of programs are lost, and abstract properties such
as continuity, stability or sequentiality are expressed.

A program, or a proof, is normally a finite object, and
its denotation is usually infinite, because it describes all the
possible behaviors of the program when applied to all pos-
sible arguments.

Linear logic (LL), which arose from investigations in
denotational semantics, sheds a new light on this picture.
Whilst being as expressive as intuitionistic logic, LL con-
tains a purely linear fragment which is completely finite in
the sense that, during cut-elimination/reduction, the size of
proofs strictly decreases. For allowing to define and ma-
nipulate potentially infinite pieces of proofs/programs, LL
introduces new connectives: the exponentials.

Unlike its finite multiplicative-additive fragment, the ex-
ponential fragment of LL is strongly asymmetric. On one
side, there is a promotion rule which allows to introduce the
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“!” connective and makes a proof duplicable and erasable,
and on the other side, there are the rules of contraction,
weakening and dereliction which allow to duplicate, erase
and access to promoted proofs. These rules introduce and
allow to perform deductions on the “?” connective, which
is the linear dual of “!”. Let us call these rules structural1.

The only infinite rule of LL is promotion. The poten-
tially infinite duplicating power of contraction is not “lo-
cated” in the contraction rule itself, but in the fact that, for
being duplicable by contractions, a proof must be promoted
first. This fact can be observed in denotational models but
is not clear in the syntax because the structural rules can be
cut with no other rule but promotion2.

Differential linear logic. The situation is quite different
in differential LL (and, implicitly, in differential lambda-
calculus and its variants), a system that we introduced re-
cently (see [6, 8, 5]). In this system, the “?” rules have
exact dual rules: there is a cocontraction, a coweakening
and a codereliction rules. These rules are logical versions
of standard mathematical operations used in elementary dif-
ferential calculus, whence the name of the system.

So in differential LL we have structural and costructural
rules and these rules interact in a completely symmetric and
finite way, just as in the multiplicative and additive frag-
ment. Promotion remains apart, as the only truly infinite
rule of logic. This fact, which in LL could be observed only
in denotational models, can be expressed syntactically in
differential LL by means of the Taylor expansion of promo-
tion rules.

Resource lambda-calculus. This operation is more eas-
ily understood in the lambda-calculus (see [17] for the
connection between lambda-terms and nets in differential
LL). Roughly speaking, the ordinary lambda-calculus cor-
responds to the fragment of LL which contains the multi-
plicative, structural and promotion rules. But we can also

1It is not really standard to consider dereliction as structural.
2This picture is not completely faithful because promotion has also to

be considered as a “?” rule.



consider a lambda-calculus corresponding to the multiplica-
tive, structural and costructural rules: the resource calculus
that we introduced in [9]. Similar calculi already existed
in the literature, such as Boudol’s calculi with multiplici-
ties [2] or with resources [3], and also Kfoury’s calculi [11],
introduced with different motivations and with different se-
mantic backgrounds. The intuition behind our calculus with
resources is as follows.

The first thing to say is that types should be thought of
as (topological) vector spaces and not as domains. Con-
sider then a term t : A ⇒ B which should be seen as a
function from A to B. Then imagine that it makes sense
to compute the nth derivative of t at the point 0 of the vec-
tor space A: it is a function t(n)(0) : An → A, separately
linear in each of its argument, and symmetric in the sense
that t(n)(0)(s1, . . . , sn) = t(n)(0)(sf(1), . . . , sf(n)) for any
permutation f ∈ Sn and any tuple (s1, . . . , sn) ∈ An. In
our resource calculus, we have an application construction
which represents this operation. Given a term t (of type
A ⇒ B if we are in a typed setting) and a finite number
s1, . . . , sn of terms (of type A), we can “apply” t to the
multiset S = s1 · · · sn (the multiset whose elements are
s1, . . . , sn, taking multiplicities into account) and we de-
note with 〈s〉S this operation. We take benefit of the intrin-
sic commutativity of multisets for implementing the sym-
metry of the nth derivative. The other constructions of this
calculus are standard: we have variables x, y, . . . and ab-
stractions λx s. Redexes are terms of the shape 〈λx s〉S and
x can have several free occurrences in s, which are all lin-
ear (in the resource sense and in the algebraic sense). When
reducing this redex, one does not duplicate S. Instead, one
splits it into as many pieces as there are occurrences of x in
s, and since all these occurrences are linear, all these pieces
should contain exactly one term. We do that in all possi-
ble ways and take the sum of all possible results. When the
number of free occurrences of x in s and the size of S do
not coincide, the result of this operation is 0.

For this to make sense, one must have the possibility of
adding terms, and this is compatible with the idea that types
are vector spaces.

Taylor expansion. Taylor expansion consists in replacing
the ordinary application of lambda-calculus with this differ-
ential application of the resource calculus. If M : A ⇒ B
and N : A are terms, then the standard Taylor formula

should be (M)N =
∑∞
n=0

1
n!M

(n)(0)(

n︷ ︸︸ ︷
N, . . . , N). This

leads to the idea of writing any term M as an infinite linear
combination of resource terms (with rational coefficients):
if M∗ and N∗ are such sums, we should have

((M)N)∗ =
∞∑
n=0

1
n!
〈M∗〉(N∗)n (1)

where the power (N∗)n has to be understood in the sense
of multiset concatenation, extended to linear combinations
of multisets by linearity. Using the fact that all the con-
structions of the resource calculus should be linear (that is,
should distribute over arbitrary linear combinations), for-
mula (1) leads to a definition of M∗ as a linear combination
of resource terms: M∗ =

∑
s∈∆M∗s s where each M∗s is

a positive rational number (∆ is the set of resource terms):
this is the Taylor expansion of M .

Taylor expansion is similar to denotational semantics: it
transforms a finite program M with a rich, potentially in-
finite, dynamics into an infinite set (linear combination to
be more precise) of more elementary things, the resource
terms. The difference wrt. denotational semantics is that
these terms still have a dynamics, but this dynamics is com-
pletely finite since they belong to the promotion-free frag-
ment of differential linear logic: all terms of our resource
calculus, even the non typeable ones, are trivially strongly
normalizing. But of course there is no uniform bound on
the length of the reductions of the resource terms appearing
in the Taylor expansion of a term.

Content. The present article is a contribution to a pro-
gramme which consists in considering infinite linear combi-
nations of resource terms as generalized lambda-terms. The
first point to understand is how beta-reduction can be ap-
plied to such infinite linear combinations without introduc-
ing infinite coefficients. In [9], we answered to this question
for the standard lambda-calculus, introducing a coherence
relation on resource terms. This is recorded briefly in Sec-
tion 5.3.

But if we allow linear combinations in the lambda-
calculus (as in the differential lambda-calculus for instance,
and we speak then of algebraic lambda-calculus3), then we
cannot expect Taylor expansions to be cliques for that co-
herence relation and the approach of [9] fails. Instead,
in Section 3, we equip the set of resource terms with a
finiteness structure (in the sense of [4], the basic definitions
and properties are recorded in Section 2) which is defined
in such a way that for any “finitary” linear combination∑
s αss of resource lambda-terms, the sum

∑
s αsas is al-

ways well defined4, whatever be the choices of as such that
s beta-reduces to as in the resource lambda-calculus. This
finiteness structure is called the basic finiteness structure of
resource terms.

The remainder of the paper (from Section 4) is de-
voted to proving that the Taylor expansion of an algebraic
lambda-term is always finitary in that sense. This does not

3There are other algebraizations of the lambda-calculus, we think in
particular of the calculus considered by Arrighi and Dowek [1] which is
quite different from ours because application is right-linear in their setting

4In the sense that, for computing the coefficient of any resource term in
that sum, one has only to add finitely many scalars.



hold however for the untyped algebraic lambda-calculus be-
cause we know that this calculus leads to unbounded coeffi-
cients during beta-reduction (think of (Θ)λx (z + x) where
z 6= x and Θ is the Turing fixpoint combinator). So we
prove our soundness result for second-order typeable alge-
braic lambda-terms, by a method similar to Girard’s proof
of strong normalization of system F in Krivine’s very ele-
gant presentation [12]. The method consists in associating
with any type a finiteness space (and hence a linearly topol-
ogized vector space) whose underlying set (web) is a set of
resource terms. This interpretation is described Section 5
which contains the main result of the paper, Proposition 16.
It implies that the Taylor expansion of a term typeable in
system F is finitary, in the sense of the basic finiteness struc-
ture on resource terms.

1 The resource lambda-calculus

1.1 The calculus

Given a set E, we denote as Mfin(E) the set of all fi-
nite multisets of elements of E. The syntax of our resource
calculus is defined as follows. The set ∆ of simple terms is
given by:

• if x is a variable then x ∈ ∆;

• if s ∈ ∆ and x is a variable then λx s ∈ ∆;

• if s ∈ ∆ and S ∈Mfin(∆) then 〈s〉S ∈ ∆.

The elements ofMfin(∆) are called simple poly-terms and
the setMfin(∆) will be denoted as ∆!. If s1, . . . , sn ∈ ∆,
the multiset which consists of the si’s is denoted in a mul-
tiplicative way as s1 · · · sn. The empty simple poly-term is
accordingly denoted as 1.

We define the size S(s) of a simple term s and the size
S(S) of a simple poly-term by induction as follows: S(x) =
1, S(λx s) = 1 + S(s), S(〈s〉S) = 1 + S(s) + S(S) and
S(s1 · · · s2) = S(s1) + · · ·+ S(sn).

1.1.1 Extended syntax.

Given a rig (semiring) R and a set E, we denote by R〈E〉
the set of all formal finite linear combinations of elements
of E with coefficients in R: it is the free R-module gener-
ated by E. If a ∈ R〈E〉 and s ∈ E, as ∈ R denotes the
coefficient of s in a. We also define R〈E〉∞ as the set of all
(not necessarily finite) linear combinations of elements of
E with coefficients in R; we use the same notations as for
the elements of R〈E〉 and we use R〈E〉(∞) to denote both
modules, to deal with constructions which are applicable in
both settings.

The semirings that we consider are

• S = {0, 1} with 1 + 1 = 1, so that S〈E〉 = Pfin(E)
and S〈E〉∞ = P(E);

• N, and then N〈E〉 = Mfin(E). Given a ∈ N〈E〉 and
s ∈ E we write s ∈ a when as 6= 0;

• a field k, and then k〈E〉 is the k-vector space gener-
ated by E and k〈E〉∞ is also a vector space.

Let a ∈ R〈∆〉(∞), we set λx a =
∑
s∈∆ asλx s ∈

R〈∆〉(∞). Given moreover A ∈ R〈∆!〉(∞), we set
〈a〉A =

∑
s∈∆,S∈∆! asAS〈s〉S ∈ R〈∆〉(∞). Last, given

a(1), . . . , a(n) ∈ R〈∆〉(∞), we define a(1) · · · a(n) as∑
(s(1),...,s(n))∈∆n a(1)s(1) · · · a(n)s(n)(s(1) · · · s(n)) ∈

R〈∆!〉(∞). In that formula, remember that s(1) · · · s(n) is
the multiset made of s(1), . . . , s(n). This formula expresses
that we consider polyterm concatenation as a product, and
so, when extended to linear combinations, a distributivity
law must hold.

In particular, given a ∈ R〈∆〉(∞) and n ∈ N, we set

an =
n︷ ︸︸ ︷

a · · · a ∈ R〈∆!〉(∞). When R = k, we set a! =∑
n∈N

1
n!a

n ∈ k〈∆!〉∞ (this sum is always well defined4,
and we require R = k to give a meaning to 1/n!). For
e ⊆ ∆ (that is e ∈ S〈∆〉∞), e! is the set of finite multisets
of elements of e.

So all the constructions of the syntax can be applied to
arbitrary linear combinations of simple terms, giving rise to
combinations of simple terms.

1.1.2 Differential substitution

Let s ∈ ∆, n ∈ N and s1, · · · , sn ∈ ∆. Let
S = s1 · · · sn ∈ ∆! and let x be a variable. We de-
fine the differential substitution ∂x(s, S) as 0 if the num-
ber of free occurrences of x in s is different from n,
and as

∑
f∈Sn

s[sf(1)/x1, . . . , sf(n)/xn] otherwise, where
x1, . . . , xn are the n occurrences of x in s and Sn is the
group of permutations on {1, . . . , n}.

Given s ∈ ∆ and S1, . . . , Sn ∈ ∆! and pairwise distinct
variables x1, . . . , xn which do not occur free in the Si’s, we
define more generally the parallel differential substitution
∂x1,...,xn(s, S1, . . . , Sn): the definition is similar (the sum
is indexed by tuples (f1, . . . , fn) where fi is a permutation
on the free occurrences of xi in s).

This operation must be extended by linearity. Given a ∈
R〈∆〉(∞) and A ∈ R〈∆!〉(∞), we set

∂x(a,A) =
∑

s∈∆,S∈∆!

asAS∂x(s, S) ∈ R〈∆〉(∞)

and we define similarly ∂x1,...,xn(a,A1, . . . , An) ∈
R〈∆〉(∞). It is not obvious at first sight that this sum is well
defined in the infinite case: we could imagine that, for some
t ∈ ∆, there are infinitely many pairs (s, S) ∈ ∆×∆! such
that asAS∂x(s, S)t 6= 0. By Lemma 6, this never happens.



1.1.3 The reduction relations

Given two sets E and F and a relation ρ ⊆ E × N〈F 〉, we
define a relation N〈ρ〉 ⊆ N〈E〉 × N〈F 〉 as follows: we say
that (a, b) ∈ N〈ρ〉 if there are (s1, a1), . . . , (sn, an) ∈ ρ
such that s1 + · · ·+ sn = a and b1 + · · ·+ bn = b.

The one step reduction relations β1
∆ ⊆ ∆ × N〈∆〉 and

β1
∆! ⊆ ∆! × N〈∆!〉 are defined as follows.

• x β1
∆ b never holds;

• λx s β1
∆ b if b = λx a with s β1

∆ a;

• s1 · · · sn β1
∆! B if, for some i, si β1

∆ bi and B =
s1 · · · bi · · · sn;

• 〈s〉S β1
∆ b in one of the following situations

– s β1
∆ a and b = 〈a〉S;

– S β1
∆! A and b = 〈s〉A;

– s = λx t and b = ∂x(t, S).

Lemma 1 Let s ∈ ∆ and b ∈ N〈∆〉. If s β1
∆ b, then, for

any t1, t2 ∈ b, one has S(t1) = S(t2) < S(s).

The proof is straightforward (simple case inspection).
Let β0,1

∆ = N〈{(s, s) | s ∈ ∆} ∪ β1
∆〉 and β0,1

∆! =
N〈{(S, S) | s ∈ ∆!} ∪ β1

∆!〉. These are reflexive reduction
relations on N〈∆〉 and N〈∆!〉 respectively. More explicitly,
we have a β0,1

∆ b if one can write a = s1 + · · · + sn + a′

and b = b1 + · · ·+ bn + a′ with si β1
∆ bi for i = 1, . . . , n,

and similarly for β0,1
∆! .

Finally we denote with β∆ and β∆! respectively the tran-
sitive closures of these relations.

Lemma 2 Let s, t ∈ ∆ and let x be a variable which oc-
curs freely exactly once in s. If s β1

∆ a then s [t/x] β1
∆

a [t/x] and if t β1
∆ b then s [t/x] β1

∆ s [b/x].

Lemma 3 If s β1
∆ a then ∂x(s, S) N〈β1

∆〉 ∂x(a, S). If
S β1

∆ A then ∂x(s, S) N〈β1
∆〉 ∂x(s,A).

These two lemmas are proved by straightforward induc-
tions.

The reduction relation β∆ on N〈∆〉 has good properties:
it is strongly normalizing, confluent (see [6, 18, 15]). Given
s ∈ ∆, we denote by NF(s) the unique normal form of s,
which is an element of N〈∆〉.

1.1.4 Examples of reduction

Of course 〈λxx〉y β∆ y, but if the identity is applied to
a multiset of size 6= 1, the result is 0: 〈λxx〉1 β∆ 0 and
〈λxx〉y2 β∆ 0 (where y2 is the multiset which contains
twice the variable y; this notation is compatible with the
distributivity laws of 1.1.1).

Similarly, the term 〈x〉x2 contains 3 occurrences of x
(it is sensible to say that it is of degree 3 in x). So
〈λx 〈x〉x2〉S β∆ 0 if the size of S is 6= 3. And we
have 〈λx 〈x〉x2〉(y2z) β∆ ∂x(〈x〉x2, y2z) = 4〈y〉yz +
2〈z〉y2. As a last example we have 〈λx 〈〈x〉x〉x〉(y2z) β∆

∂x(〈〈x〉x〉x, y2z) = 2〈〈y〉z〉y + 2〈〈y〉y〉z + 2〈〈z〉y〉y.

1.1.5 An order relation on simple terms and poly-
terms.

Let us define an order relation on simple terms. Given s, t ∈
∆, we write t ≤ s if there exists a ∈ N〈∆〉 such that s β∆ a
and t ∈ a. Given s ∈ ∆, we use ↓s = {t ∈ ∆ | t ≤ s} and
↑s = {t ∈ ∆ | t ≥ s}. We define similarly an order relation
on poly-terms and introduce similar notations: T ≤ S, ↑S
and ↓S. By Lemma 1 and Knig’s lemma, we get easily the
following.

Lemma 4 For any s ∈ ∆, the set ↓s is finite.

1.2 Two technical lemmas

Lemma 5 Let y be a variable and S1, . . . , Sn ∈ ∆!

which do not contain free the variable y and let v =
〈· · · 〈〈y〉S1〉S2 · · ·〉Sn. Let s ∈ ∆, S ∈ ∆!, x be a vari-
able. Let t ∈ ∆ be such that t ≤ v [〈λx s〉S/y]. Then one
of the the two following cases arises:

• either t = v′ [〈λx s′〉S′/y] with v′ ≤ v, s′ ≤ s and
S′ ≤ S

• or t ≤ v [u/y] for some u ∈ ∂x(s, S).

Proof. By induction on S(v)+S(s)+S(S). Let b ∈ N〈∆〉
be such that v [〈λx s〉S/y] β∆ b and t ∈ b. Consider the
first reduction step of this reduction. Four cases are possi-
ble, because of the particular shape of v.

First case: the reduction occurs in s. That is s β1
∆ a

for some a ∈ N〈∆〉 and the reduction v [〈λx s〉S/y] β∆

b splits in v [〈λx s〉S/y] β1
∆ v [〈λx a〉S/y] β∆ b. Since

t ∈ b, one can find some u ∈ ∆ with u ∈ a such that t ≤
v [〈λxu〉S/y]. Since S(u) < S(s), the inductive hypothesis
applies and so there are two cases.

• Either we have t = v′ [〈λxu′〉S′/y] with v′ ≤ v, u′ ≤
u and S′ ≤ S and we conclude because u < s.

• Or t ≤ v [w/y] with w ∈ ∆ such that w ∈ ∂x(u, S).
Since u ∈ a and w ∈ ∂x(u, S), we have w ∈ ∂x(a, S).
But ∂x(s, S) N〈β1

∆〉 ∂x(a, S) by Lemma 3 and hence
there exists w0 ∈ ∂x(s, S) such that w < w0. Hence
we have v [w/y] < v [w0/y] by Lemma 2 and we con-
clude by transitivity.



The second case, where the reduction occurs in S is sim-
ilar.

Third case: the reduction occurs in v. That is v β1
∆

c ∈ N〈∆〉 and the reduction v [〈λx s〉S/y] β∆ b splits in
v [〈λx s〉S/y] β1

∆ c [〈λx s〉S/y] β∆ b. Since t ∈ b, one
can find some w ∈ c such that t ≤ w [〈λx s〉S/y]. Since
S(w) < S(v), the inductive hypothesis applies and so there
are two cases.

• Either t = w′ [〈λx s′〉S′/y] with w′ ≤ w, s′ ≤ s and
S′ ≤ S and we conclude because w ≤ v.

• Or t ≤ w [u/y] for some u ∈ ∂S(s, x). We conclude
by Lemma 2 because w < v.

Last case: the reduction v [〈λx s〉S/y] β∆ b splits in
v [〈λx s〉S/y] β1

∆ v [∂x(s, S)/y] β∆ b and we conclude
immediately that there exists u ∈ ∂x(s, S) such that t ≤
v [u/x]. 2

Lemma 6 Let s ∈ ∆. There are only finitely many pairs
(t, T ) ∈ ∆×∆! such that s ∈ ∂x(t, T ).

Proof. (Sketch) The intuition is clear and can easily be
formalized. For building (t, T ), one must choose some n ∈
N, and then n pairwise disjoint5 sub-terms t1, . . . , tn of s.
Then t is obtained by replacing these sub-terms by x in s,
and T = t1 · · · tn. There are only finitely many ways of
choosing such a tuple (n, t1, . . . , tn). 2

2 Finiteness spaces

We recall some basic material on finiteness spaces.
Given a set I and a collection I of subsets of I , we define
I⊥ = {e′ ⊆ I | ∀e ∈ I e ∩ e′ is finite}. A finiteness space
is a pairX = (|X|,F(X)) where |X| is a set (the web ofX)
and F(X) ⊆ P(|X|) satisfies F(X)⊥⊥ ⊆ F(X) (the other
inclusion being always true). The following properties fol-
low immediately from this definition: if e ⊆ |X| is finite
then e ∈ F(X); if e ∈ F(X) and f ⊆ e then f ∈ F(X); if
e1, e2 ∈ F(X) then e1 ∪ e2 ∈ F(X).

Vector space. Let k be a field. Given a ∈ k|X|, let
Supp(a) = {s ∈ |X| | as 6= 0} (the support of a). We
set k〈X〉 = {a ∈ k|X| | Supp(a) ∈ F(X)}. This set is
a k-vector space, addition and scalar multiplication being
defined pointwise.

5None of these terms can be a sub-term of another one.

Topology. Given e′ ∈ F(X)⊥, let V0(e′) = {a ∈ k〈X〉 |
Supp(a) ∩ e′ = ∅}: this is a linear subspace of k〈X〉.
A subset V of k〈X〉 is open if, for all a ∈ V there ex-
ists e′ ∈ F(X)⊥ such that a + V0(e′) ⊆ V . This defines
a topology for which one checks easily that addition and
scalar multiplication are continuous (k being equipped with
the discrete topology). Actually k〈X〉 is a linearly topolo-
gized vector space in the sense of [13]: the topology is gen-
erated by neighborhoods of 0 which are linear subspaces
(for instance, the V0(e′) we introduced above). For any
a ∈ k〈X〉, if a 6= 0 one can find a (linear) neighborhood of
0 which does not contain a, hence the topology is Hausdorff
because k〈X〉 is a vector space.

A net of k〈X〉 if a family (a(γ))γ∈Γ of elements k〈X〉
indexed by a directed set Γ. Such a net converges to a ∈
k〈X〉 if, for any open linear subspace V of k〈X〉 there is
γ ∈ Γ such that ∀δ ∈ Γ δ ≥ γ ⇒ a(δ) − a ∈ V . If this
holds, a is unique (k〈X〉 is Hausdorff). A net (a(γ))γ∈Γ

is Cauchy if for any open linear subspace V of k〈X〉, there
exists γ ∈ Γ such that ∀δ ∈ Γ δ ≥ γ ⇒ a(δ) − a(γ) ∈ V .
Using crucially the fact that F(X) = F(X)⊥⊥, one can
prove that any Cauchy net converges (k〈X〉 is complete).

3 The basic finiteness structure

We set F1 = {↑s | s ∈ ∆}⊥ = {e ⊆ ∆ | ∀s ∈
∆ e ∩ ↑s is finite}. One defines similarly F !

1 ⊆ P(∆!)
as F !

1 = {E ⊆ ∆! | ∀S ∈ ∆! E ∩ ↑S is finite}. This de-
fines finiteness structures on ∆ and ∆!. We consider there-
fore (∆,F1) as a finiteness space that we simply denote
as N1. To get a better grasp of the topology of the vector
space k〈N1〉, we must make a first observation. We express
everything for ∆ for notational convenience, but obviously
what we do can be transposed to ∆! without any difficulty.

Lemma 7 A subset e′ of ∆ belongs to F1
⊥ = F(N1

⊥) iff
there are finitely many elements s1, . . . , sn ∈ ∆ such that
e′ ⊆ ↑s1 ∪ · · · ∪ ↑sn = ↑{s1, . . . , sn}.

Proof. The “if” part is trivial, let us check the “only if”
part. The only property of the order relation on simple terms
that we need is the fact that each set ↓s is finite (Lemma 4).

Assume that there exists e′ ∈ F1
⊥ such that e′ ⊆

↑{s1, . . . , sn} never holds. The set e′ cannot be empty, so
let u1 ∈ e′. Since ↓u1 is finite, we cannot have e′ ⊆ ↑↓u1.
So let u2 ∈ e′ \ ↑↓u1. Again, ↓u2 being finite, we cannot
have e′ ⊆ ↑↓u1 ∪ ↑↓u2. In that way, we construct an infi-
nite sequence u1, u2 . . . of elements of e′ such that for each
i, ui+1 ∈ e′ \ (↑↓u1 ∪ · · · ∪ ↑↓ui); in particular, the ui’s
are pairwise distinct, but we can say better: let i < j and
assume that ↓ui ∩ ↓uj 6= ∅. Then uj ∈ ↑↓ui and this is
impossible. Let us set e = {u1, u2, . . . }. For any s ∈ ∆, it



follows from the disjointness of the sets ↓ui that e ∩ ↑s has
at most one element and is therefore finite, so that e ∈ F1.
But e has an infinite intersection with e′ (namely e), and this
contradicts our hypothesis that e′ ∈ F1

⊥. 2

Therefore the topology of k〈N1〉 is generated by the
basic neighborhoods V(s1, . . . , sn) = {u ∈ k〈N1〉 |
Supp(u) ∩ ↑s1 = · · · = Supp(u) ∩ ↑sn = ∅}, where
s1, . . . , sn is an arbitrary finite family of elements of ∆.
Observe that these si’s can be assumed to be minimal in ∆.
An element s of ∆ is minimal for the order relation we have
defined iff s is normal, or reduces only to 0. A typical non-
normal minimal term is 〈λx y〉z, where y and z are distinct
variables.

The main purpose of these definitions is to give mean-
ing to a normalization function on vectors. Consider in-
deed an arbitrary linear combination of resource lambda-
terms, a =

∑
a∈∆ ass ∈ k〈∆〉∞. We would like to set

NF(a) =
∑
s∈∆ as NF(s). But there could perfectly ex-

ist normal elements s0 ∈ ∆ such that, for infinitely many
s ∈ ∆, s0 ∈ NF(s) and as 6= 0. If this is the case, we can-
not normalize a because infinite sums are not allowed in k
which is an arbitrary field6. As a typical example of this sit-
uation, consider a = x+ 〈λxx〉x+ 〈λxx〉(〈λxx〉x) + · · ·
All the terms of this sum reduce to the same term x and
hence NF(a) is not defined.

Proposition 8 The map NF given by NF(a) =∑
s∈∆ as NF(s) is well defined, linear and continuous from

the topological vector space k〈N1〉 to itself.

Proof. Given s ∈ ∆, we have Supp(NF(s)) ⊆ ↓s. So,
since Supp(a) ∈ N1, for any s0 ∈ ∆0, there are only
finitely many s ∈ Supp(a) such that s0 ∈ Supp(NF(s)).
So the sum above is always well defined4, it can be written

NF(a) =
∑
s0∈∆0

( ∑
s∈Supp(a)
s0∈↓s

as NF(s)s0
)
s0 .

All the elements of Supp(NF(a)) being minimal, this set
obviously belongs to F1.

The map NF defined in that way is obviously linear, we
must just check that it is continuous at 0 but this is easy;
indeed, if V = V(s1, . . . , sn) is a basic neighborhood of
0 then, by definition of V(s1, . . . , sn), if t ∈ ∆ satisfies
t ∈ V , this means that t /∈ ↑si for each i, and hence for no
i we can have si ∈ NF(t). Therefore NF(t) ∈ V . 2

We can also extend the β0,1
∆ reduction relation to k〈N1〉

in a completely “free7” way. Indeed let a ∈ k〈N1〉. If

6Of course, one could also consider infinite sums if the coefficients
were real or complex numbers but this will be the object of further studies.

7In the sense that each summand can be reduced independently from
the others.

one writes a =
∑
i∈N αisi with si ∈ ∆ and with the sole

restriction (for this sum to make sense at all) that for each
s ∈ ∆ there are only finitely i’s such that si = s and if, for
each i ∈ N, one chooses arbitrarily a(i) ∈ N〈∆〉 such that
si β

0,1
∆ a(i), then the sum b =

∑
i∈N αia(i) is always well

defined4, and belongs to k〈N1〉 (these facts result from the
very definition of N1). In that case we write a β0,1

∆ b, and
we denote by β∆ the transitive closure of β0,1

∆ .

Proposition 9 The relation β∆ is confluent on k〈N1〉.

Proof. (Sketch) Use the confluence of β1
∆ on N〈∆〉 and

the following observation: given two finite families (αi)i∈I
and (βj)j∈J of elements of k such that

∑
αi =

∑
βj , one

can find a family (γi,j)i∈I,j∈J of elements of k such that
∀i αi =

∑
j γi,j and ∀j βj =

∑
i γi,j . 2

One has to be aware that this “reduction” relation has
strange properties and can hardly be expected to normalize
in a standard sense. For instance if s β1

∆ a1 and s β1
∆ a2

where a1, a2 ∈ N〈∆〉 are distinct, then 0 = s− s β∆ a1 −
a2 6= 0 and the reduction can go on after that. See [19, 20]
for more explanations. It makes sense nevertheless to define
the associated equivalence relation (the symmetric closure
of β∆) that we denote as =∆.

Proposition 10 Let a, b ∈ k〈∆〉 be such that a =∆ b. Then
NF(a) = NF(b).

Proof. It suffices to show that a β0,1
∆ b⇒ NF(a) = NF(b)

and this is easy because s β1
∆ c⇒ NF(s) = NF(c). 2

The converse implication does not hold because reducing
an element a ∈ k〈∆〉 to NF(a) can require an infinite num-
ber of β0,1

∆ steps. But one can always exhibit sequences a =
a(1) β0,1

∆ a(2) β0,1
∆ a(3) · · · with limn→∞ a(n) = NF(a)

(in the sense of the topology of k〈N1〉).
Remark: It is not difficult to see that, given a finiteness
space X , the topological space k〈X〉 is metrizable (ie. its
topology can be defined by a distance) iff there exists an in-
creasing sequence (e′(n))n∈N of elements of F(X)⊥ such
that ∀e′ ∈ F(X)⊥ ∃n ∈ N e′ ⊆ e′(n). It is also interest-
ing to observe that, when interpreting linear logic in finite-
ness spaces (see [4]), one builds quite easily spaces which
do not have this property: for instance the interpretation of
!?1 (the formula 1 being interpreted by the finiteness space
({∗}, {∅, {∗}})) is not metrizable.

So the space k〈N1〉 is metrizable: choose an enumer-
ation s1, s2, . . . of ∆ and, given a, a′ ∈ k〈N1〉, define
d(a, a′) = 0 if a = a′, and d(a, a′) = 2−n where n is
the least integer such that ↑sn ∩ Supp(a− a′) 6= ∅. This
distance generates the topology we have defined, but pre-
senting this space as a metric space would be unnatural, be-
cause there is (apparently) no canonical choice of such a



distance (it depends on a completely arbitrary enumeration
of ∆).

A last interesting observation is that the subspace of
k〈N1〉 spanned by the normal resource term is linearly com-
pact8, so that NF can be seen as a projection onto a linearly
compact subspace.

3.1 Dealing with free variables

The finiteness space N1 allows to give meaning to nor-
malization as shown by Proposition 8, but we would also
like to deal with elements of k〈N1〉 as if they were lambda-
terms. However, nothing prevents an element e of F1 from
containing infinitely many free variables. The set FV(e)
can even be the set of all variables: take for e the set of all
variables itself! It would be hard to define β-reduction if we
have to deal with such objects.

Fortunately the solution to this problem is quite easy. Let
S ⊆ P(∆) be the set of all subsets e′ of ∆ such that, for
each finite set ξ of variables, there are only finitely many
elements s of e′ such that FV(s) ⊆ ξ.

Lemma 11 S⊥ = {e ⊆ ∆ | FV(e) is finite}.

We arrive to the final definition of our basic finiteness
space: we set F = F1 ∩ S⊥ = ({↑s | s ∈ ∆} ∪ S)⊥ and
therefore we have F⊥⊥ = F so that N = (∆,F) is actu-
ally a finiteness space.

4 Interpreting types

With any type (of system F, see Section 5.1), we want to
associate a finiteness space whose web will be a subset of
∆. The construction is based on the definition of saturated
sets in [12], so we shall call our finiteness spaces saturated
as well. This saturation condition is absolutely essential in
the proof of Proposition 16.

Let F0 be the collection of all subsets of ∆ which are
of the shape 〈〈〈x〉e1

!〉· · ·〉en! where x is a variable and
e1, . . . , en ∈ F .

4.1 Saturated finiteness space

A ∆-finiteness space is a finiteness space X such that
|X| ⊆ ∆. One says that such a space X is saturated if
F0 ⊆ F(X) ⊆ F and, whenever g, e, e1, . . . , en ∈ F , one
has (using the notations introduced in 1.1.1 and 1.1.2, with
S as semiring: sets of elements of ∆ are seen as linear com-
binations with coefficients in S) the implication

〈〈〈∂x(g, e!)〉e1
!〉· · ·〉en! ∈ F(X)

⇒ 〈〈〈〈λx g〉e!〉e1
!〉· · ·〉en! ∈ F(X) . (2)

8This notion is defined in [13]; it is a notion of compactness adapted to
this setting.

Then one simply says thatX is a saturated finiteness space.
Given two ∆-finiteness spaces X and Y , we construct

a new one, denoted as X ⇒ Y . The web |X ⇒ Y | is
the collection of all t ∈ ∆ such that ∀e ∈ F(X) 〈t〉e! ∈
F(Y ). We define F(X ⇒ Y ) as the collection of all g ⊆
|X ⇒ Y | such that ∀e ∈ F(X) 〈g〉e! ∈ F(Y ), that is
∀e ∈ F(X), ∀f ′ ∈ F(Y )⊥ 〈g〉e! ∩ f ′ is finite.

Given e ∈ F(X) and f ′ ∈ F(Y )⊥, let e • f ′ = {t ∈ ∆ |
〈t〉e! ∩ f ′ 6= ∅}.

Proposition 12 If X and Y are ∆-finiteness spaces, then

F(X ⇒ Y ) = {e • f ′ | e ∈ F(X), f ′ ∈ F(Y )⊥}
⊥

(3)

so that X ⇒ Y is a ∆-finiteness space. If moreover Y is
saturated, then X ⇒ Y is saturated as well.

Proof. Let us check Equation (3), so let g ⊆ |X ⇒ Y |.
Assume first that g ∈ F(X ⇒ Y ). Let e ∈ F(X) and

f ′ ∈ F(Y )⊥. We know that 〈g〉e! ∩ f ′ is finite. Let t ∈
g ∩ (e • f ′). This means that there exists St ∈ e! such
that 〈t〉St ∈ f ′, that is, 〈t〉St ∈ 〈g〉e! ∩ f ′. But this latter
set is finite, and the map t 7→ 〈t〉St is injective, so the set
g ∩ (e • f ′) is finite as well.

Assume that g ∈ {e • f ′ | e ∈ F(X) and f ′ ∈ F(Y )⊥}
⊥

and let us show that g ∈ F(X ⇒ Y ). So let e ∈ F(X) and
f ′ ∈ F(Y )⊥, we must show that 〈g〉e! ∩ f ′ is finite. By
definition of e • f ′, we have

〈g〉e! ∩ f ′ =
⋃

t∈g∩(e•f ′)

(〈t〉e! ∩ f ′)

and we conclude since g ∩ (e • f ′) is finite, and, for t ∈ g,
the set 〈t〉e! ∩ f ′ is finite since g ⊆ |X ⇒ Y | (remember
the definition above of that set).

So X ⇒ Y = (|X ⇒ Y |,F(X ⇒ Y )) is a finiteness
space. Assume that Y is saturated and let us show thatX ⇒
Y is.

We have F0 ⊆ F(X ⇒ Y ): this immediately follows
from F0 ⊆ F(Y ) and F(X) ⊆ F .

We have F(X ⇒ Y ) ⊆ F : let g ∈ F(X ⇒ Y ) and let
t ∈ ∆. We must show that g ∩ ↑t is finite, so assume to-
wards a contradiction that there are t1, t2, · · · ∈ g, pair-
wise distinct, and such that ti ∈ ↑t for each i. This means
that there are terms a1, a2, · · · ∈ N〈∆〉 such that ti β∆ ai
and t ∈ ai for each i. Let x be an arbitrary variable, then
〈ti〉x β∆ 〈ai〉x and 〈t〉x ∈ Supp(〈ai〉x) for each i, there-
fore 〈g〉x ∩ ↑〈t〉x is infinite, which is impossible because
{x} ∈ F(X) (since F0 ⊆ |X|) and F(Y ) ⊆ F .

It remains to check that F(X ⇒ Y ) satisfies condi-
tion (2), and this is straightforward. 2



4.2 The ground space

Lemma 13 The finiteness space N = (∆,F) is saturated.

Proof. The only condition which is not obviously satis-
fied is (2). So let g, e, e1, . . . , en ∈ F and assume that
〈〈〈∂x(g, e!)〉e1

!〉· · ·〉en! ∈ F . Let s ∈ ∆, we must show
that the intersection ↑s ∩ 〈〈〈〈λx g〉e!〉e1

!〉· · ·〉en! is finite.
Let (si, Si, S1,i, . . . , Sn,i)i∈I be a repetition free enumer-
ation of all the elements of g × e! × e1

! × · · · × en
!

such that ti = 〈〈〈〈λx si〉Si〉S1,i〉· · ·〉Sn,i is an element of
↑s ∩ 〈〈〈〈λx g〉e!〉e1

!〉· · ·〉en!.
Observe that all the free variables of the terms ti ap-

pear free in s and hence there are only finitely many such
variables. So we can choose a variable y which is free
in none of these terms. For each i ∈ I , we set vi =
〈〈〈y〉S1,i〉· · ·〉Sn,i ∈ ∆, so that ti = vi [〈λx si〉Si/y]. We
can also assume that x occurs free or bound in none of the
terms Si, S1,i, . . . , Sn,i (for all i ∈ I). We apply Lemma 5,
considering two cases.

• Either x appears bound in s, and in that case we have
s = v′ [〈λx s′〉S′/y] for some v′, s′ ∈ ∆ and S′ ∈ ∆!

such that v′ ≤ vi, s′ ≤ si and S′ ≤ Si for each i ∈ I .
We have v′ = 〈〈〈y〉S′1〉· · ·〉S′n for S′1, . . . , S

′
n ∈ ∆!

such that S′j ≤ Sj,i for each j ∈ {1, . . . , n} and
i ∈ I . By the assumption that g, e, e1, . . . , en ∈ F
we see that the sets {si | i ∈ I}, {Si | i ∈ I},
{S1,i | i ∈ I},. . . ,{Sn,i | i ∈ I} are finite and so
↑s ∩ 〈〈〈〈λx g〉e!〉e1

!〉· · ·〉en! is finite.

• Or x does not appear bound in s. Then for each i ∈ I
there exists ui ∈ ∆ such that ui ∈ ∂x(si, Si) and s ≤
vi [ui/y]. In other words

∀i ∈ I vi [ui/y] ∈ ↑s ∩ 〈〈〈∂x(g, e!)〉e1
!〉· · ·〉en!

and hence by our assumption that
〈〈〈∂x(g, e!)〉e1

!〉· · ·〉en! ∈ F , the set {vi [ui/y] |
i ∈ I} is finite. Coming back to the definition
of vi, this means that the sets {ui | i ∈ I},
{S1,i | i ∈ I},. . . ,{Sn,i | i ∈ I} are finite. But for
each i ∈ I , we know that there are only finitely many
pairs (w,W ) ∈ ∆ × ∆! such that ui ∈ ∂x(w,W ) by
Lemma 6 and hence, since ui ∈ ∂x(si, Si), the sets
{si | i ∈ I} and {Si | i ∈ I} must be finite as well
since {si | i ∈ I} is finite. 2

4.3 Inclusions and intersections of satu-
rated finiteness spaces

Let X and Y be saturated finiteness spaces. We write
X ⊆ Y when |X| ⊆ |Y | and F(X) ⊆ F(Y ). This defines
an order relation on saturated finiteness spaces.

Lemma 14 Let (Xi)i∈I be a family of saturated finite-
ness spaces. Let D =

⋂
i∈I |Xi|. Then

⋂
i∈I Xi =

(D,
⋂
i∈I(F(Xi) ∩ P(D))) is a saturated finiteness space,

and it is greatest lower bound of the family (Xi)i∈I .

Proof. Let X =
⋂
i∈I Xi. Let e ⊆ |X| =

⋂
i∈I |Xi|. We

assume that e ∈ F(X)⊥⊥ and we prove that e ∈ F(X).
Let i ∈ I , we must show that e ∈ F(Xi) = F(Xi)

⊥⊥. So
let e′ ⊆ |Xi| and let us show that e ∩ e′ is finite. Since
e ∈ F(X)⊥⊥, it will be sufficient to show that e′ ∈ F(X)⊥.
So let f ⊆ |X| be such that f ∈ F(X). In particular we
have f ∈ F(Xi) and hence e′ ∩ f is finite as required. So
X is a ∆-finiteness space.

Since F0 ⊆ F(Xi) ⊆ F holds for all i ∈ I , and since I
is non empty, it is clear that F0 ⊆ F(X) ⊆ F .

Let g, e, e1, . . . , en ∈ F be such that
〈〈〈∂x(g, e!)〉e1

!〉· · ·〉en! ∈ F(X). Then for each
i we have 〈〈〈∂x(g, e!)〉e1

!〉· · ·〉en! ∈ F(Xi) and
hence 〈〈〈〈λx g〉e!〉e1

!〉· · ·〉en! ∈ F(Xi) and therefore
〈〈〈〈λx g〉e!〉e1

!〉· · ·〉en! ∈ F(X). 2

5 Taylor expansion in an algebraic system F

5.1 Syntax of the algebraic system F

The types are defined as usual: one has type variables
ϕ,ψ . . . , and ifA andB are types, so areA⇒ B and ∀ϕA.
We adopt the Curry style for presenting system F, so that
our terms are ordinary lambda-terms, with the additional
possibility of linearly combining terms, with coefficients in
k. More precisely, we define the set Λk of lambda-terms
with coefficients in k as follows:

• if x is a variable then x ∈ Λk;

• if M ∈ Λk and x is a variable, then λxM ∈ Λk;

• if M ∈ Λk and Q ∈ k〈Λk〉 then (M)Q ∈ Λk.

For Q,R ∈ k〈Λk〉, we set λxQ =
∑
M∈Λk

QMλxM
and (Q)R =

∑
M∈Λk

QM (M)R. Observe that these two
sums are finite because Q is a finite linear combination of
terms. In other word, abstraction is linear and application
is left-linear (but not right-linear). We give now the typing
rules for terms belonging to Λk. A typing context Γ is as
usual a finite partial function from variables to types.

Γ, x : A ` x : A
Γ, x : A `M : B

Γ ` λxM : A⇒ B

Γ `M : A⇒ B Γ ` N1 : A . . . Γ ` Nn : A
Γ ` (M) (α1N1 + · · ·+ αnNn) : B

Γ `M : ∀ϕA
Γ `M : A [B/ϕ]

Γ `M : A
Γ `M : ∀ϕA



with, for the last rule, the usual side condition that ϕ should
not occur free in the typing context Γ.

5.2 Taylor expansion

Given a term M ∈ Λk (resp. Q ∈ k〈Λk〉), we define
a generally infinite linear combinations M∗ (resp. Q∗) of
elements of ∆, with coefficients in k, as follows:

x∗ = x (λxM)∗ = λx (M∗)

((M)Q)∗ =
∑
n∈N

1
n!
〈M∗〉(Q∗)n Q∗ =

∑
M∈Λk

QMQ
∗

where we use the conventions of 1.1.1 for infinite linear
combinations of terms. Let us be more explicit. With any
term M ∈ Λk, we associate a linear combination M∗ of
elements of ∆ which can be written M∗ =

∑
s∈∆M∗s s

where M∗s ∈ k for each s, and similarly we define Q∗s ∈ k
for each Q ∈ k〈Λk〉. Then these numbers are given induc-
tively by:

x∗s =

{
1 if s = x

0 otherwise
(λxM)s

∗ =

{
M∗t if s = λx t

0 otherwise

Q∗s =
∑
M∈Λk

QMM
∗
s

Last, ((M)Q)∗s = 0 if s is not an application, and otherwise

((M)Q)∗〈t〉T =

(∑
n∈N

1
n!
〈M∗〉(Q∗)n

)
〈t〉T

=
∑
n∈N

M∗t
n!

(Q∗)nT =
∑
n∈N

M∗t
n!

(∑
u∈∆

Q∗uu

)n
T

=
M∗t (Q∗)T

T !

where T ! =
∏
u∈∆ T (u)! and (Q∗)T =

∏
u∈∆(Q∗u)T (u)

(see [9] for more details on this kind of algebraic computa-
tions); remember that T is a finite multiset of elements of ∆
and that T (u) ∈ N is the multiplicity of u in T .

Given M ∈ Λk, we define a set T (M) ⊆ ∆ as follows:

T (x) = {x} T (λxM) = {λx s | s ∈ T (M)}
T ((M) (α1N1 + · · ·+ αnNn)) = {〈s〉(t1 · · · tp) |
s ∈ T (M) and t1, . . . , tp ∈ T (N1) ∪ · · · ∪ T (Nn)} .

The following property follows readily from these defi-
nitions.

Lemma 15 Let M ∈ Λk and s ∈ ∆. If M∗s 6= 0 then
s ∈ T (M).

5.3 The standard case: coherence

When the algebraic lambda-term M is a standard
lambda-term, that is an element of Λk where all the linear
combinations α1N1 + · · · + αpNp are trivial in the sense
that all αi’s are equal to 0 but one which is equal to 1,
we showed in [9] that the Taylor expansion can be written
M∗ =

∑
s∈T (M)

1
m(s)s where m(s) ∈ N \ {0} is an inte-

ger which depends only on s (in other words M∗s depends
on M in a very simple way: M∗s = 0 if s /∈ T (M), and
otherwise M∗s = 1/m(s)). Moreover the various elements
of T (M) cannot overlap during their reduction, in the sense
that if s, t ∈ T (M) are distinct then NF(s) ∩ NF(t) = ∅.
This is proven by introducing a binary symmetric but not
reflexive coherence relation, observing that each set T (M)
is a clique for this coherence relation and proving that NF
can be seen as a stable and linear function on this coherence
space (in the sense of [10]).

These properties are lost in the present setting and super-
positions can occur and even lead to infinite sums, as in the
Taylor expansion (that we do not compute here) of the term
M = (Θ)λx (x+ z) where z is a variable 6= x and Θ is
the Turing fixpoint combinator (reducing M leads to terms
of the shape nz + M for all n ∈ N). This superposition
of elementary normal forms is controlled by the finiteness
structures, but this is possible only in a typed setting (here,
second order types).

5.4 Finiteness of the Taylor expansions in
system F

A type valuation is a map I which associates a satu-
rated finiteness space I(ϕ) with any type variable ϕ. By
induction on type A we define, for all valuation I, a satu-
rated finiteness space [A]I in a fairly standard way: [ϕ]I =
I(ϕ), [(A ⇒ B)]I = [A]I ⇒ [B]I and [(∀ϕA)]I =⋂
X∈SFS[A]I[ϕ7→X] where SFS is the class of all saturated

finiteness spaces (remember that the intersection of satu-
rated finiteness spaces is defined in Section 4.3).

Our goal is to prove that, if Γ ` M : A, then T (M) ∈
F([A]I) for any valuation I. Of course this property can-
not be proven in that form and a more general statement is
needed.

Proposition 16 Let Γ = (x1 : A1, . . . , xn : An) be a typ-
ing context. Assume that Γ ` M : B, where M ∈ Λk and
B and the Ai’s are second order types. Let I be a valua-
tion. Let e1 ∈ F([A1]I),. . . ,en ∈ F([An]I) be sets of simple
terms and let f = T (M). Then ∂x1,...,xn

(f, e1
!, . . . , en

!) ∈
F([B]I).

The proof is an adaptation of the proof of strong normal-
ization of system F in [12]. It is an induction on the typing



derivation tree ofM , and the saturation property is essential
in the⇒-introduction step.

By Lemma 15, this shows in particular that, if M ∈ Λk

is typeable in system F, then M∗ ∈ k〈N〉 so that we can re-
duce the infinitely many resource terms appearing in this ex-
pansion without creating any infinite superposition of terms,
whatever be the choices we make in this process. Of course,
one can also prove that NF(M∗) = M0

∗ where M0 is the
normal form of M , but this is not straightforward.

Conclusion

Following the line of ideas initiated in [6, 9, 7], we con-
sidered the resource lambda-calculus as an algebraic set-
ting where various (algebraic, differential. . . ) extensions
of the lambda-calculus can be interpreted. In this setting,
the elementary points of the interpretation (the simple re-
source terms) are considered as base vectors and, in sharp
contrast with denotational semantics, have their own com-
pletely finite dynamics. We introduced topologies for con-
trolling their global behavior during reduction and avoiding
the appearance of infinite coefficients: linear combinations
of resource terms are organized as Hausdorff and complete
topological vector spaces associated with types. By a rather
standard reducibility argument, we proved that the Taylor
expansion of any term of an algebraic extension of system
F belongs to the vector space interpretation of its type, but
of course these vector spaces contain many elements which
are not Taylor expansions of such terms.

For instance, given a ∈ k〈X ⇒ Y 〉, it is not difficult to
define a′ ∈ k〈X ⇒ (X ⇒ Y )〉, the derivative of a (which
is linear in its first parameter of type X). Saying that a′ is
linear means that 〈a′〉xn =∆ 0 for n 6= 1, where x is an
arbitrary variable. One can show that this operation can be
reversed (under a necessary and sufficient condition), so that
it makes sense to compute “primitives” of resource terms
and it is certainly a fascinating challenge to understand the
operational meaning of this operation.
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and the Taylor expansion of ordinary lambda-terms. In
A. Beckmann, U. Berger, B. Löwe, and J. V. Tucker, ed-
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